Logo Search packages:      
Sourcecode: linux version File versions  Download package

3c527.c

/* 3c527.c: 3Com Etherlink/MC32 driver for Linux 2.4 and 2.6.
 *
 *    (c) Copyright 1998 Red Hat Software Inc
 *    Written by Alan Cox.
 *    Further debugging by Carl Drougge.
 *      Initial SMP support by Felipe W Damasio <felipewd@terra.com.br>
 *      Heavily modified by Richard Procter <rnp@paradise.net.nz>
 *
 *    Based on skeleton.c written 1993-94 by Donald Becker and ne2.c
 *    (for the MCA stuff) written by Wim Dumon.
 *
 *    Thanks to 3Com for making this possible by providing me with the
 *    documentation.
 *
 *    This software may be used and distributed according to the terms
 *    of the GNU General Public License, incorporated herein by reference.
 *
 */

#define DRV_NAME        "3c527"
#define DRV_VERSION           "0.7-SMP"
#define DRV_RELDATE           "2003/09/21"

static const char *version =
DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Richard Procter <rnp@paradise.net.nz>\n";

/**
 * DOC: Traps for the unwary
 *
 *    The diagram (Figure 1-1) and the POS summary disagree with the
 *    "Interrupt Level" section in the manual.
 *
 *    The manual contradicts itself when describing the minimum number
 *    buffers in the 'configure lists' command.
 *    My card accepts a buffer config of 4/4.
 *
 *    Setting the SAV BP bit does not save bad packets, but
 *    only enables RX on-card stats collection.
 *
 *    The documentation in places seems to miss things. In actual fact
 *    I've always eventually found everything is documented, it just
 *    requires careful study.
 *
 * DOC: Theory Of Operation
 *
 *    The 3com 3c527 is a 32bit MCA bus mastering adapter with a large
 *    amount of on board intelligence that housekeeps a somewhat dumber
 *    Intel NIC. For performance we want to keep the transmit queue deep
 *    as the card can transmit packets while fetching others from main
 *    memory by bus master DMA. Transmission and reception are driven by
 *    circular buffer queues.
 *
 *    The mailboxes can be used for controlling how the card traverses
 *    its buffer rings, but are used only for inital setup in this
 *    implementation.  The exec mailbox allows a variety of commands to
 *    be executed. Each command must complete before the next is
 *    executed. Primarily we use the exec mailbox for controlling the
 *    multicast lists.  We have to do a certain amount of interesting
 *    hoop jumping as the multicast list changes can occur in interrupt
 *    state when the card has an exec command pending. We defer such
 *    events until the command completion interrupt.
 *
 *    A copy break scheme (taken from 3c59x.c) is employed whereby
 *    received frames exceeding a configurable length are passed
 *    directly to the higher networking layers without incuring a copy,
 *    in what amounts to a time/space trade-off.
 *
 *    The card also keeps a large amount of statistical information
 *    on-board. In a perfect world, these could be used safely at no
 *    cost. However, lacking information to the contrary, processing
 *    them without races would involve so much extra complexity as to
 *    make it unworthwhile to do so. In the end, a hybrid SW/HW
 *    implementation was made necessary --- see mc32_update_stats().
 *
 * DOC: Notes
 *
 *    It should be possible to use two or more cards, but at this stage
 *    only by loading two copies of the same module.
 *
 *    The on-board 82586 NIC has trouble receiving multiple
 *    back-to-back frames and so is likely to drop packets from fast
 *    senders.
**/

#include <linux/module.h>

#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/mca-legacy.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/wait.h>
#include <linux/ethtool.h>
#include <linux/completion.h>
#include <linux/bitops.h>

#include <asm/semaphore.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>

#include "3c527.h"

MODULE_LICENSE("GPL");

/*
 * The name of the card. Is used for messages and in the requests for
 * io regions, irqs and dma channels
 */
static const char* cardname = DRV_NAME;

/* use 0 for production, 1 for verification, >2 for debug */
#ifndef NET_DEBUG
#define NET_DEBUG 2
#endif

#undef DEBUG_IRQ

static unsigned int mc32_debug = NET_DEBUG;

/* The number of low I/O ports used by the ethercard. */
#define MC32_IO_EXTENT  8

/* As implemented, values must be a power-of-2 -- 4/8/16/32 */
#define TX_RING_LEN     32       /* Typically the card supports 37  */
#define RX_RING_LEN     8        /*     "       "        "          */

/* Copy break point, see above for details.
 * Setting to > 1512 effectively disables this feature.     */
#define RX_COPYBREAK    200      /* Value from 3c59x.c */

/* Issue the 82586 workaround command - this is for "busy lans", but
 * basically means for all lans now days - has a performance (latency)
 * cost, but best set. */
static const int WORKAROUND_82586=1;

/* Pointers to buffers and their on-card records */
struct mc32_ring_desc
{
      volatile struct skb_header *p;
      struct sk_buff *skb;
};

/* Information that needs to be kept for each board. */
struct mc32_local
{
      int slot;

      u32 base;
      struct net_device_stats net_stats;
      volatile struct mc32_mailbox *rx_box;
      volatile struct mc32_mailbox *tx_box;
      volatile struct mc32_mailbox *exec_box;
        volatile struct mc32_stats *stats;    /* Start of on-card statistics */
        u16 tx_chain;           /* Transmit list start offset */
      u16 rx_chain;           /* Receive list start offset */
        u16 tx_len;             /* Transmit list count */
        u16 rx_len;             /* Receive list count */

      u16 xceiver_desired_state; /* HALTED or RUNNING */
      u16 cmd_nonblocking;    /* Thread is uninterested in command result */
      u16 mc_reload_wait;     /* A multicast load request is pending */
      u32 mc_list_valid;      /* True when the mclist is set */

      struct mc32_ring_desc tx_ring[TX_RING_LEN];     /* Host Transmit ring */
      struct mc32_ring_desc rx_ring[RX_RING_LEN];     /* Host Receive ring */

      atomic_t tx_count;      /* buffers left */
      atomic_t tx_ring_head;  /* index to tx en-queue end */
      u16 tx_ring_tail;       /* index to tx de-queue end */

      u16 rx_ring_tail;       /* index to rx de-queue end */

      struct semaphore cmd_mutex;    /* Serialises issuing of execute commands */
        struct completion execution_cmd; /* Card has completed an execute command */
      struct completion xceiver_cmd;   /* Card has completed a tx or rx command */
};

/* The station (ethernet) address prefix, used for a sanity check. */
#define SA_ADDR0 0x02
#define SA_ADDR1 0x60
#define SA_ADDR2 0xAC

struct mca_adapters_t {
      unsigned int      id;
      char        *name;
};

static const struct mca_adapters_t mc32_adapters[] = {
      { 0x0041, "3COM EtherLink MC/32" },
      { 0x8EF5, "IBM High Performance Lan Adapter" },
      { 0x0000, NULL }
};


/* Macros for ring index manipulations */
static inline u16 next_rx(u16 rx) { return (rx+1)&(RX_RING_LEN-1); };
static inline u16 prev_rx(u16 rx) { return (rx-1)&(RX_RING_LEN-1); };

static inline u16 next_tx(u16 tx) { return (tx+1)&(TX_RING_LEN-1); };


/* Index to functions, as function prototypes. */
static int  mc32_probe1(struct net_device *dev, int ioaddr);
static int      mc32_command(struct net_device *dev, u16 cmd, void *data, int len);
static int  mc32_open(struct net_device *dev);
static void mc32_timeout(struct net_device *dev);
static int  mc32_send_packet(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t mc32_interrupt(int irq, void *dev_id);
static int  mc32_close(struct net_device *dev);
static struct     net_device_stats *mc32_get_stats(struct net_device *dev);
static void mc32_set_multicast_list(struct net_device *dev);
static void mc32_reset_multicast_list(struct net_device *dev);
static const struct ethtool_ops netdev_ethtool_ops;

static void cleanup_card(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      unsigned slot = lp->slot;
      mca_mark_as_unused(slot);
      mca_set_adapter_name(slot, NULL);
      free_irq(dev->irq, dev);
      release_region(dev->base_addr, MC32_IO_EXTENT);
}

/**
 * mc32_probe     -     Search for supported boards
 * @unit: interface number to use
 *
 * Because MCA bus is a real bus and we can scan for cards we could do a
 * single scan for all boards here. Right now we use the passed in device
 * structure and scan for only one board. This needs fixing for modules
 * in particular.
 */

struct net_device *__init mc32_probe(int unit)
{
      struct net_device *dev = alloc_etherdev(sizeof(struct mc32_local));
      static int current_mca_slot = -1;
      int i;
      int err;

      if (!dev)
            return ERR_PTR(-ENOMEM);

      if (unit >= 0)
            sprintf(dev->name, "eth%d", unit);

      /* Do not check any supplied i/o locations.
         POS registers usually don't fail :) */

      /* MCA cards have POS registers.
         Autodetecting MCA cards is extremely simple.
         Just search for the card. */

      for(i = 0; (mc32_adapters[i].name != NULL); i++) {
            current_mca_slot =
                  mca_find_unused_adapter(mc32_adapters[i].id, 0);

            if(current_mca_slot != MCA_NOTFOUND) {
                  if(!mc32_probe1(dev, current_mca_slot))
                  {
                        mca_set_adapter_name(current_mca_slot,
                                    mc32_adapters[i].name);
                        mca_mark_as_used(current_mca_slot);
                        err = register_netdev(dev);
                        if (err) {
                              cleanup_card(dev);
                              free_netdev(dev);
                              dev = ERR_PTR(err);
                        }
                        return dev;
                  }

            }
      }
      free_netdev(dev);
      return ERR_PTR(-ENODEV);
}

/**
 * mc32_probe1    -     Check a given slot for a board and test the card
 * @dev:  Device structure to fill in
 * @slot: The MCA bus slot being used by this card
 *
 * Decode the slot data and configure the card structures. Having done this we
 * can reset the card and configure it. The card does a full self test cycle
 * in firmware so we have to wait for it to return and post us either a
 * failure case or some addresses we use to find the board internals.
 */

static int __init mc32_probe1(struct net_device *dev, int slot)
{
      static unsigned version_printed;
      int i, err;
      u8 POS;
      u32 base;
      struct mc32_local *lp = netdev_priv(dev);
      static u16 mca_io_bases[]={
            0x7280,0x7290,
            0x7680,0x7690,
            0x7A80,0x7A90,
            0x7E80,0x7E90
      };
      static u32 mca_mem_bases[]={
            0x00C0000,
            0x00C4000,
            0x00C8000,
            0x00CC000,
            0x00D0000,
            0x00D4000,
            0x00D8000,
            0x00DC000
      };
      static char *failures[]={
            "Processor instruction",
            "Processor data bus",
            "Processor data bus",
            "Processor data bus",
            "Adapter bus",
            "ROM checksum",
            "Base RAM",
            "Extended RAM",
            "82586 internal loopback",
            "82586 initialisation failure",
            "Adapter list configuration error"
      };
      DECLARE_MAC_BUF(mac);

      /* Time to play MCA games */

      if (mc32_debug  &&  version_printed++ == 0)
            printk(KERN_DEBUG "%s", version);

      printk(KERN_INFO "%s: %s found in slot %d:", dev->name, cardname, slot);

      POS = mca_read_stored_pos(slot, 2);

      if(!(POS&1))
      {
            printk(" disabled.\n");
            return -ENODEV;
      }

      /* Fill in the 'dev' fields. */
      dev->base_addr = mca_io_bases[(POS>>1)&7];
      dev->mem_start = mca_mem_bases[(POS>>4)&7];

      POS = mca_read_stored_pos(slot, 4);
      if(!(POS&1))
      {
            printk("memory window disabled.\n");
            return -ENODEV;
      }

      POS = mca_read_stored_pos(slot, 5);

      i=(POS>>4)&3;
      if(i==3)
      {
            printk("invalid memory window.\n");
            return -ENODEV;
      }

      i*=16384;
      i+=16384;

      dev->mem_end=dev->mem_start + i;

      dev->irq = ((POS>>2)&3)+9;

      if(!request_region(dev->base_addr, MC32_IO_EXTENT, cardname))
      {
            printk("io 0x%3lX, which is busy.\n", dev->base_addr);
            return -EBUSY;
      }

      printk("io 0x%3lX irq %d mem 0x%lX (%dK)\n",
            dev->base_addr, dev->irq, dev->mem_start, i/1024);


      /* We ought to set the cache line size here.. */


      /*
       *    Go PROM browsing
       */

      /* Retrieve and print the ethernet address. */
      for (i = 0; i < 6; i++)
      {
            mca_write_pos(slot, 6, i+12);
            mca_write_pos(slot, 7, 0);

            dev->dev_addr[i] = mca_read_pos(slot,3);
      }

      printk("%s: Address %s", dev->name, print_mac(mac, dev->dev_addr));

      mca_write_pos(slot, 6, 0);
      mca_write_pos(slot, 7, 0);

      POS = mca_read_stored_pos(slot, 4);

      if(POS&2)
            printk(" : BNC port selected.\n");
      else
            printk(" : AUI port selected.\n");

      POS=inb(dev->base_addr+HOST_CTRL);
      POS|=HOST_CTRL_ATTN|HOST_CTRL_RESET;
      POS&=~HOST_CTRL_INTE;
      outb(POS, dev->base_addr+HOST_CTRL);
      /* Reset adapter */
      udelay(100);
      /* Reset off */
      POS&=~(HOST_CTRL_ATTN|HOST_CTRL_RESET);
      outb(POS, dev->base_addr+HOST_CTRL);

      udelay(300);

      /*
       *    Grab the IRQ
       */

      err = request_irq(dev->irq, &mc32_interrupt, IRQF_SHARED | IRQF_SAMPLE_RANDOM, DRV_NAME, dev);
      if (err) {
            release_region(dev->base_addr, MC32_IO_EXTENT);
            printk(KERN_ERR "%s: unable to get IRQ %d.\n", DRV_NAME, dev->irq);
            goto err_exit_ports;
      }

      memset(lp, 0, sizeof(struct mc32_local));
      lp->slot = slot;

      i=0;

      base = inb(dev->base_addr);

      while(base == 0xFF)
      {
            i++;
            if(i == 1000)
            {
                  printk(KERN_ERR "%s: failed to boot adapter.\n", dev->name);
                  err = -ENODEV;
                  goto err_exit_irq;
            }
            udelay(1000);
            if(inb(dev->base_addr+2)&(1<<5))
                  base = inb(dev->base_addr);
      }

      if(base>0)
      {
            if(base < 0x0C)
                  printk(KERN_ERR "%s: %s%s.\n", dev->name, failures[base-1],
                        base<0x0A?" test failure":"");
            else
                  printk(KERN_ERR "%s: unknown failure %d.\n", dev->name, base);
            err = -ENODEV;
            goto err_exit_irq;
      }

      base=0;
      for(i=0;i<4;i++)
      {
            int n=0;

            while(!(inb(dev->base_addr+2)&(1<<5)))
            {
                  n++;
                  udelay(50);
                  if(n>100)
                  {
                        printk(KERN_ERR "%s: mailbox read fail (%d).\n", dev->name, i);
                        err = -ENODEV;
                        goto err_exit_irq;
                  }
            }

            base|=(inb(dev->base_addr)<<(8*i));
      }

      lp->exec_box=isa_bus_to_virt(dev->mem_start+base);

      base=lp->exec_box->data[1]<<16|lp->exec_box->data[0];

      lp->base = dev->mem_start+base;

      lp->rx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[2]);
      lp->tx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[3]);

      lp->stats = isa_bus_to_virt(lp->base + lp->exec_box->data[5]);

      /*
       *    Descriptor chains (card relative)
       */

      lp->tx_chain            = lp->exec_box->data[8];   /* Transmit list start offset */
      lp->rx_chain            = lp->exec_box->data[10];  /* Receive list start offset */
      lp->tx_len        = lp->exec_box->data[9];   /* Transmit list count */
      lp->rx_len        = lp->exec_box->data[11];  /* Receive list count */

      init_MUTEX_LOCKED(&lp->cmd_mutex);
      init_completion(&lp->execution_cmd);
      init_completion(&lp->xceiver_cmd);

      printk("%s: Firmware Rev %d. %d RX buffers, %d TX buffers. Base of 0x%08X.\n",
            dev->name, lp->exec_box->data[12], lp->rx_len, lp->tx_len, lp->base);

      dev->open         = mc32_open;
      dev->stop         = mc32_close;
      dev->hard_start_xmit    = mc32_send_packet;
      dev->get_stats          = mc32_get_stats;
      dev->set_multicast_list = mc32_set_multicast_list;
      dev->tx_timeout         = mc32_timeout;
      dev->watchdog_timeo     = HZ*5;     /* Board does all the work */
      dev->ethtool_ops  = &netdev_ethtool_ops;

      return 0;

err_exit_irq:
      free_irq(dev->irq, dev);
err_exit_ports:
      release_region(dev->base_addr, MC32_IO_EXTENT);
      return err;
}


/**
 *    mc32_ready_poll         -     wait until we can feed it a command
 *    @dev: The device to wait for
 *
 *    Wait until the card becomes ready to accept a command via the
 *    command register. This tells us nothing about the completion
 *    status of any pending commands and takes very little time at all.
 */

static inline void mc32_ready_poll(struct net_device *dev)
{
      int ioaddr = dev->base_addr;
      while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR));
}


/**
 *    mc32_command_nowait     -     send a command non blocking
 *    @dev: The 3c527 to issue the command to
 *    @cmd: The command word to write to the mailbox
 *    @data: A data block if the command expects one
 *    @len: Length of the data block
 *
 *    Send a command from interrupt state. If there is a command
 *    currently being executed then we return an error of -1. It
 *    simply isn't viable to wait around as commands may be
 *    slow. This can theoretically be starved on SMP, but it's hard
 *    to see a realistic situation.  We do not wait for the command
 *    to complete --- we rely on the interrupt handler to tidy up
 *    after us.
 */

static int mc32_command_nowait(struct net_device *dev, u16 cmd, void *data, int len)
{
      struct mc32_local *lp = netdev_priv(dev);
      int ioaddr = dev->base_addr;
      int ret = -1;

      if (down_trylock(&lp->cmd_mutex) == 0)
      {
            lp->cmd_nonblocking=1;
            lp->exec_box->mbox=0;
            lp->exec_box->mbox=cmd;
            memcpy((void *)lp->exec_box->data, data, len);
            barrier();  /* the memcpy forgot the volatile so be sure */

            /* Send the command */
            mc32_ready_poll(dev);
            outb(1<<6, ioaddr+HOST_CMD);

            ret = 0;

            /* Interrupt handler will signal mutex on completion */
      }

      return ret;
}


/**
 *    mc32_command      -     send a command and sleep until completion
 *    @dev: The 3c527 card to issue the command to
 *    @cmd: The command word to write to the mailbox
 *    @data: A data block if the command expects one
 *    @len: Length of the data block
 *
 *    Sends exec commands in a user context. This permits us to wait around
 *    for the replies and also to wait for the command buffer to complete
 *    from a previous command before we execute our command. After our
 *    command completes we will attempt any pending multicast reload
 *    we blocked off by hogging the exec buffer.
 *
 *    You feed the card a command, you wait, it interrupts you get a
 *    reply. All well and good. The complication arises because you use
 *    commands for filter list changes which come in at bh level from things
 *    like IPV6 group stuff.
 */

static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len)
{
      struct mc32_local *lp = netdev_priv(dev);
      int ioaddr = dev->base_addr;
      int ret = 0;

      down(&lp->cmd_mutex);

      /*
       *     My Turn
       */

      lp->cmd_nonblocking=0;
      lp->exec_box->mbox=0;
      lp->exec_box->mbox=cmd;
      memcpy((void *)lp->exec_box->data, data, len);
      barrier();  /* the memcpy forgot the volatile so be sure */

      mc32_ready_poll(dev);
      outb(1<<6, ioaddr+HOST_CMD);

      wait_for_completion(&lp->execution_cmd);

      if(lp->exec_box->mbox&(1<<13))
            ret = -1;

      up(&lp->cmd_mutex);

      /*
       *    A multicast set got blocked - try it now
         */

      if(lp->mc_reload_wait)
      {
            mc32_reset_multicast_list(dev);
      }

      return ret;
}


/**
 *    mc32_start_transceiver  -     tell board to restart tx/rx
 *    @dev: The 3c527 card to issue the command to
 *
 *    This may be called from the interrupt state, where it is used
 *    to restart the rx ring if the card runs out of rx buffers.
 *
 *    We must first check if it's ok to (re)start the transceiver. See
 *      mc32_close for details.
 */

static void mc32_start_transceiver(struct net_device *dev) {

      struct mc32_local *lp = netdev_priv(dev);
      int ioaddr = dev->base_addr;

      /* Ignore RX overflow on device closure */
      if (lp->xceiver_desired_state==HALTED)
            return;

      /* Give the card the offset to the post-EOL-bit RX descriptor */
      mc32_ready_poll(dev);
      lp->rx_box->mbox=0;
      lp->rx_box->data[0]=lp->rx_ring[prev_rx(lp->rx_ring_tail)].p->next;
      outb(HOST_CMD_START_RX, ioaddr+HOST_CMD);

      mc32_ready_poll(dev);
      lp->tx_box->mbox=0;
      outb(HOST_CMD_RESTRT_TX, ioaddr+HOST_CMD);   /* card ignores this on RX restart */

      /* We are not interrupted on start completion */
}


/**
 *    mc32_halt_transceiver   -     tell board to stop tx/rx
 *    @dev: The 3c527 card to issue the command to
 *
 *    We issue the commands to halt the card's transceiver. In fact,
 *    after some experimenting we now simply tell the card to
 *    suspend. When issuing aborts occasionally odd things happened.
 *
 *    We then sleep until the card has notified us that both rx and
 *    tx have been suspended.
 */

static void mc32_halt_transceiver(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      int ioaddr = dev->base_addr;

      mc32_ready_poll(dev);
      lp->rx_box->mbox=0;
      outb(HOST_CMD_SUSPND_RX, ioaddr+HOST_CMD);
      wait_for_completion(&lp->xceiver_cmd);

      mc32_ready_poll(dev);
      lp->tx_box->mbox=0;
      outb(HOST_CMD_SUSPND_TX, ioaddr+HOST_CMD);
      wait_for_completion(&lp->xceiver_cmd);
}


/**
 *    mc32_load_rx_ring -     load the ring of receive buffers
 *    @dev: 3c527 to build the ring for
 *
 *    This initalises the on-card and driver datastructures to
 *    the point where mc32_start_transceiver() can be called.
 *
 *    The card sets up the receive ring for us. We are required to use the
 *    ring it provides, although the size of the ring is configurable.
 *
 *    We allocate an sk_buff for each ring entry in turn and
 *    initalise its house-keeping info. At the same time, we read
 *    each 'next' pointer in our rx_ring array. This reduces slow
 *    shared-memory reads and makes it easy to access predecessor
 *    descriptors.
 *
 *    We then set the end-of-list bit for the last entry so that the
 *    card will know when it has run out of buffers.
 */

static int mc32_load_rx_ring(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      int i;
      u16 rx_base;
      volatile struct skb_header *p;

      rx_base=lp->rx_chain;

      for(i=0; i<RX_RING_LEN; i++) {
            lp->rx_ring[i].skb=alloc_skb(1532, GFP_KERNEL);
            if (lp->rx_ring[i].skb==NULL) {
                  for (;i>=0;i--)
                        kfree_skb(lp->rx_ring[i].skb);
                  return -ENOBUFS;
            }
            skb_reserve(lp->rx_ring[i].skb, 18);

            p=isa_bus_to_virt(lp->base+rx_base);

            p->control=0;
            p->data=isa_virt_to_bus(lp->rx_ring[i].skb->data);
            p->status=0;
            p->length=1532;

            lp->rx_ring[i].p=p;
            rx_base=p->next;
      }

      lp->rx_ring[i-1].p->control |= CONTROL_EOL;

      lp->rx_ring_tail=0;

      return 0;
}


/**
 *    mc32_flush_rx_ring      -     free the ring of receive buffers
 *    @lp: Local data of 3c527 to flush the rx ring of
 *
 *    Free the buffer for each ring slot. This may be called
 *      before mc32_load_rx_ring(), eg. on error in mc32_open().
 *      Requires rx skb pointers to point to a valid skb, or NULL.
 */

static void mc32_flush_rx_ring(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      int i;

      for(i=0; i < RX_RING_LEN; i++)
      {
            if (lp->rx_ring[i].skb) {
                  dev_kfree_skb(lp->rx_ring[i].skb);
                  lp->rx_ring[i].skb = NULL;
            }
            lp->rx_ring[i].p=NULL;
      }
}


/**
 *    mc32_load_tx_ring -     load transmit ring
 *    @dev: The 3c527 card to issue the command to
 *
 *    This sets up the host transmit data-structures.
 *
 *    First, we obtain from the card it's current postion in the tx
 *    ring, so that we will know where to begin transmitting
 *    packets.
 *
 *    Then, we read the 'next' pointers from the on-card tx ring into
 *    our tx_ring array to reduce slow shared-mem reads. Finally, we
 *    intitalise the tx house keeping variables.
 *
 */

static void mc32_load_tx_ring(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      volatile struct skb_header *p;
      int i;
      u16 tx_base;

      tx_base=lp->tx_box->data[0];

      for(i=0 ; i<TX_RING_LEN ; i++)
      {
            p=isa_bus_to_virt(lp->base+tx_base);
            lp->tx_ring[i].p=p;
            lp->tx_ring[i].skb=NULL;

            tx_base=p->next;
      }

      /* -1 so that tx_ring_head cannot "lap" tx_ring_tail */
      /* see mc32_tx_ring */

      atomic_set(&lp->tx_count, TX_RING_LEN-1);
      atomic_set(&lp->tx_ring_head, 0);
      lp->tx_ring_tail=0;
}


/**
 *    mc32_flush_tx_ring      -     free transmit ring
 *    @lp: Local data of 3c527 to flush the tx ring of
 *
 *      If the ring is non-empty, zip over the it, freeing any
 *      allocated skb_buffs.  The tx ring house-keeping variables are
 *      then reset. Requires rx skb pointers to point to a valid skb,
 *      or NULL.
 */

static void mc32_flush_tx_ring(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      int i;

      for (i=0; i < TX_RING_LEN; i++)
      {
            if (lp->tx_ring[i].skb)
            {
                  dev_kfree_skb(lp->tx_ring[i].skb);
                  lp->tx_ring[i].skb = NULL;
            }
      }

      atomic_set(&lp->tx_count, 0);
      atomic_set(&lp->tx_ring_head, 0);
      lp->tx_ring_tail=0;
}


/**
 *    mc32_open   -     handle 'up' of card
 *    @dev: device to open
 *
 *    The user is trying to bring the card into ready state. This requires
 *    a brief dialogue with the card. Firstly we enable interrupts and then
 *    'indications'. Without these enabled the card doesn't bother telling
 *    us what it has done. This had me puzzled for a week.
 *
 *    We configure the number of card descriptors, then load the network
 *    address and multicast filters. Turn on the workaround mode. This
 *    works around a bug in the 82586 - it asks the firmware to do
 *    so. It has a performance (latency) hit but is needed on busy
 *    [read most] lans. We load the ring with buffers then we kick it
 *    all off.
 */

static int mc32_open(struct net_device *dev)
{
      int ioaddr = dev->base_addr;
      struct mc32_local *lp = netdev_priv(dev);
      u8 one=1;
      u8 regs;
      u16 descnumbuffs[2] = {TX_RING_LEN, RX_RING_LEN};

      /*
       *    Interrupts enabled
       */

      regs=inb(ioaddr+HOST_CTRL);
      regs|=HOST_CTRL_INTE;
      outb(regs, ioaddr+HOST_CTRL);

      /*
       *      Allow ourselves to issue commands
       */

      up(&lp->cmd_mutex);


      /*
       *    Send the indications on command
       */

      mc32_command(dev, 4, &one, 2);

      /*
       *    Poke it to make sure it's really dead.
       */

      mc32_halt_transceiver(dev);
      mc32_flush_tx_ring(dev);

      /*
       *    Ask card to set up on-card descriptors to our spec
       */

      if(mc32_command(dev, 8, descnumbuffs, 4)) {
            printk("%s: %s rejected our buffer configuration!\n",
                   dev->name, cardname);
            mc32_close(dev);
            return -ENOBUFS;
      }

      /* Report new configuration */
      mc32_command(dev, 6, NULL, 0);

      lp->tx_chain            = lp->exec_box->data[8];   /* Transmit list start offset */
      lp->rx_chain            = lp->exec_box->data[10];  /* Receive list start offset */
      lp->tx_len        = lp->exec_box->data[9];   /* Transmit list count */
      lp->rx_len        = lp->exec_box->data[11];  /* Receive list count */

      /* Set Network Address */
      mc32_command(dev, 1, dev->dev_addr, 6);

      /* Set the filters */
      mc32_set_multicast_list(dev);

      if (WORKAROUND_82586) {
            u16 zero_word=0;
            mc32_command(dev, 0x0D, &zero_word, 2);   /* 82586 bug workaround on  */
      }

      mc32_load_tx_ring(dev);

      if(mc32_load_rx_ring(dev))
      {
            mc32_close(dev);
            return -ENOBUFS;
      }

      lp->xceiver_desired_state = RUNNING;

      /* And finally, set the ball rolling... */
      mc32_start_transceiver(dev);

      netif_start_queue(dev);

      return 0;
}


/**
 *    mc32_timeout      -     handle a timeout from the network layer
 *    @dev: 3c527 that timed out
 *
 *    Handle a timeout on transmit from the 3c527. This normally means
 *    bad things as the hardware handles cable timeouts and mess for
 *    us.
 *
 */

static void mc32_timeout(struct net_device *dev)
{
      printk(KERN_WARNING "%s: transmit timed out?\n", dev->name);
      /* Try to restart the adaptor. */
      netif_wake_queue(dev);
}


/**
 *    mc32_send_packet  -     queue a frame for transmit
 *    @skb: buffer to transmit
 *    @dev: 3c527 to send it out of
 *
 *    Transmit a buffer. This normally means throwing the buffer onto
 *    the transmit queue as the queue is quite large. If the queue is
 *    full then we set tx_busy and return. Once the interrupt handler
 *    gets messages telling it to reclaim transmit queue entries, we will
 *    clear tx_busy and the kernel will start calling this again.
 *
 *      We do not disable interrupts or acquire any locks; this can
 *      run concurrently with mc32_tx_ring(), and the function itself
 *      is serialised at a higher layer. However, similarly for the
 *      card itself, we must ensure that we update tx_ring_head only
 *      after we've established a valid packet on the tx ring (and
 *      before we let the card "see" it, to prevent it racing with the
 *      irq handler).
 *
 */

static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      u32 head = atomic_read(&lp->tx_ring_head);

      volatile struct skb_header *p, *np;

      netif_stop_queue(dev);

      if(atomic_read(&lp->tx_count)==0) {
            return 1;
      }

      if (skb_padto(skb, ETH_ZLEN)) {
            netif_wake_queue(dev);
            return 0;
      }

      atomic_dec(&lp->tx_count);

      /* P is the last sending/sent buffer as a pointer */
      p=lp->tx_ring[head].p;

      head = next_tx(head);

      /* NP is the buffer we will be loading */
      np=lp->tx_ring[head].p;

      /* We will need this to flush the buffer out */
      lp->tx_ring[head].skb=skb;

      np->length      = unlikely(skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
      np->data    = isa_virt_to_bus(skb->data);
      np->status  = 0;
      np->control     = CONTROL_EOP | CONTROL_EOL;
      wmb();

      /*
       * The new frame has been setup; we can now
       * let the interrupt handler and card "see" it
       */

      atomic_set(&lp->tx_ring_head, head);
      p->control     &= ~CONTROL_EOL;

      netif_wake_queue(dev);
      return 0;
}


/**
 *    mc32_update_stats -     pull off the on board statistics
 *    @dev: 3c527 to service
 *
 *
 *    Query and reset the on-card stats. There's the small possibility
 *    of a race here, which would result in an underestimation of
 *    actual errors. As such, we'd prefer to keep all our stats
 *    collection in software. As a rule, we do. However it can't be
 *    used for rx errors and collisions as, by default, the card discards
 *    bad rx packets.
 *
 *    Setting the SAV BP in the rx filter command supposedly
 *    stops this behaviour. However, testing shows that it only seems to
 *    enable the collation of on-card rx statistics --- the driver
 *    never sees an RX descriptor with an error status set.
 *
 */

static void mc32_update_stats(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      volatile struct mc32_stats *st = lp->stats;

      u32 rx_errors=0;

      rx_errors+=lp->net_stats.rx_crc_errors   +=st->rx_crc_errors;
                                                 st->rx_crc_errors=0;
      rx_errors+=lp->net_stats.rx_fifo_errors  +=st->rx_overrun_errors;
                                                 st->rx_overrun_errors=0;
      rx_errors+=lp->net_stats.rx_frame_errors +=st->rx_alignment_errors;
                                                 st->rx_alignment_errors=0;
      rx_errors+=lp->net_stats.rx_length_errors+=st->rx_tooshort_errors;
                                                 st->rx_tooshort_errors=0;
      rx_errors+=lp->net_stats.rx_missed_errors+=st->rx_outofresource_errors;
                                                 st->rx_outofresource_errors=0;
        lp->net_stats.rx_errors=rx_errors;

      /* Number of packets which saw one collision */
      lp->net_stats.collisions+=st->dataC[10];
      st->dataC[10]=0;

      /* Number of packets which saw 2--15 collisions */
      lp->net_stats.collisions+=st->dataC[11];
      st->dataC[11]=0;
}


/**
 *    mc32_rx_ring      -     process the receive ring
 *    @dev: 3c527 that needs its receive ring processing
 *
 *
 *    We have received one or more indications from the card that a
 *    receive has completed. The buffer ring thus contains dirty
 *    entries. We walk the ring by iterating over the circular rx_ring
 *    array, starting at the next dirty buffer (which happens to be the
 *    one we finished up at last time around).
 *
 *    For each completed packet, we will either copy it and pass it up
 *    the stack or, if the packet is near MTU sized, we allocate
 *    another buffer and flip the old one up the stack.
 *
 *    We must succeed in keeping a buffer on the ring. If necessary we
 *    will toss a received packet rather than lose a ring entry. Once
 *    the first uncompleted descriptor is found, we move the
 *    End-Of-List bit to include the buffers just processed.
 *
 */

static void mc32_rx_ring(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      volatile struct skb_header *p;
      u16 rx_ring_tail;
      u16 rx_old_tail;
      int x=0;

      rx_old_tail = rx_ring_tail = lp->rx_ring_tail;

      do
      {
            p=lp->rx_ring[rx_ring_tail].p;

            if(!(p->status & (1<<7))) { /* Not COMPLETED */
                  break;
            }
            if(p->status & (1<<6)) /* COMPLETED_OK */
            {

                  u16 length=p->length;
                  struct sk_buff *skb;
                  struct sk_buff *newskb;

                  /* Try to save time by avoiding a copy on big frames */

                  if ((length > RX_COPYBREAK)
                      && ((newskb=dev_alloc_skb(1532)) != NULL))
                  {
                        skb=lp->rx_ring[rx_ring_tail].skb;
                        skb_put(skb, length);

                        skb_reserve(newskb,18);
                        lp->rx_ring[rx_ring_tail].skb=newskb;
                        p->data=isa_virt_to_bus(newskb->data);
                  }
                  else
                  {
                        skb=dev_alloc_skb(length+2);

                        if(skb==NULL) {
                              lp->net_stats.rx_dropped++;
                              goto dropped;
                        }

                        skb_reserve(skb,2);
                        memcpy(skb_put(skb, length),
                               lp->rx_ring[rx_ring_tail].skb->data, length);
                  }

                  skb->protocol=eth_type_trans(skb,dev);
                  dev->last_rx = jiffies;
                  lp->net_stats.rx_packets++;
                  lp->net_stats.rx_bytes += length;
                  netif_rx(skb);
            }

      dropped:
            p->length = 1532;
            p->status = 0;

            rx_ring_tail=next_rx(rx_ring_tail);
      }
        while(x++<48);

      /* If there was actually a frame to be processed, place the EOL bit */
      /* at the descriptor prior to the one to be filled next */

      if (rx_ring_tail != rx_old_tail)
      {
            lp->rx_ring[prev_rx(rx_ring_tail)].p->control |=  CONTROL_EOL;
            lp->rx_ring[prev_rx(rx_old_tail)].p->control  &= ~CONTROL_EOL;

            lp->rx_ring_tail=rx_ring_tail;
      }
}


/**
 *    mc32_tx_ring      -     process completed transmits
 *    @dev: 3c527 that needs its transmit ring processing
 *
 *
 *    This operates in a similar fashion to mc32_rx_ring. We iterate
 *    over the transmit ring. For each descriptor which has been
 *    processed by the card, we free its associated buffer and note
 *    any errors. This continues until the transmit ring is emptied
 *    or we reach a descriptor that hasn't yet been processed by the
 *    card.
 *
 */

static void mc32_tx_ring(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      volatile struct skb_header *np;

      /*
       * We rely on head==tail to mean 'queue empty'.
       * This is why lp->tx_count=TX_RING_LEN-1: in order to prevent
       * tx_ring_head wrapping to tail and confusing a 'queue empty'
       * condition with 'queue full'
       */

      while (lp->tx_ring_tail != atomic_read(&lp->tx_ring_head))
      {
            u16 t;

            t=next_tx(lp->tx_ring_tail);
            np=lp->tx_ring[t].p;

            if(!(np->status & (1<<7)))
            {
                  /* Not COMPLETED */
                  break;
            }
            lp->net_stats.tx_packets++;
            if(!(np->status & (1<<6))) /* Not COMPLETED_OK */
            {
                  lp->net_stats.tx_errors++;

                  switch(np->status&0x0F)
                  {
                        case 1:
                              lp->net_stats.tx_aborted_errors++;
                              break; /* Max collisions */
                        case 2:
                              lp->net_stats.tx_fifo_errors++;
                              break;
                        case 3:
                              lp->net_stats.tx_carrier_errors++;
                              break;
                        case 4:
                              lp->net_stats.tx_window_errors++;
                              break;  /* CTS Lost */
                        case 5:
                              lp->net_stats.tx_aborted_errors++;
                              break; /* Transmit timeout */
                  }
            }
            /* Packets are sent in order - this is
                basically a FIFO queue of buffers matching
                the card ring */
            lp->net_stats.tx_bytes+=lp->tx_ring[t].skb->len;
            dev_kfree_skb_irq(lp->tx_ring[t].skb);
            lp->tx_ring[t].skb=NULL;
            atomic_inc(&lp->tx_count);
            netif_wake_queue(dev);

            lp->tx_ring_tail=t;
      }

}


/**
 *    mc32_interrupt          -     handle an interrupt from a 3c527
 *    @irq: Interrupt number
 *    @dev_id: 3c527 that requires servicing
 *    @regs: Registers (unused)
 *
 *
 *    An interrupt is raised whenever the 3c527 writes to the command
 *    register. This register contains the message it wishes to send us
 *    packed into a single byte field. We keep reading status entries
 *    until we have processed all the control items, but simply count
 *    transmit and receive reports. When all reports are in we empty the
 *    transceiver rings as appropriate. This saves the overhead of
 *    multiple command requests.
 *
 *    Because MCA is level-triggered, we shouldn't miss indications.
 *    Therefore, we needn't ask the card to suspend interrupts within
 *    this handler. The card receives an implicit acknowledgment of the
 *    current interrupt when we read the command register.
 *
 */

static irqreturn_t mc32_interrupt(int irq, void *dev_id)
{
      struct net_device *dev = dev_id;
      struct mc32_local *lp;
      int ioaddr, status, boguscount = 0;
      int rx_event = 0;
      int tx_event = 0;

      ioaddr = dev->base_addr;
      lp = netdev_priv(dev);

      /* See whats cooking */

      while((inb(ioaddr+HOST_STATUS)&HOST_STATUS_CWR) && boguscount++<2000)
      {
            status=inb(ioaddr+HOST_CMD);

#ifdef DEBUG_IRQ
            printk("Status TX%d RX%d EX%d OV%d BC%d\n",
                  (status&7), (status>>3)&7, (status>>6)&1,
                  (status>>7)&1, boguscount);
#endif

            switch(status&7)
            {
                  case 0:
                        break;
                  case 6: /* TX fail */
                  case 2:     /* TX ok */
                        tx_event = 1;
                        break;
                  case 3: /* Halt */
                  case 4: /* Abort */
                        complete(&lp->xceiver_cmd);
                        break;
                  default:
                        printk("%s: strange tx ack %d\n", dev->name, status&7);
            }
            status>>=3;
            switch(status&7)
            {
                  case 0:
                        break;
                  case 2:     /* RX */
                        rx_event=1;
                        break;
                  case 3: /* Halt */
                  case 4: /* Abort */
                        complete(&lp->xceiver_cmd);
                        break;
                  case 6:
                        /* Out of RX buffers stat */
                        /* Must restart rx */
                        lp->net_stats.rx_dropped++;
                        mc32_rx_ring(dev);
                        mc32_start_transceiver(dev);
                        break;
                  default:
                        printk("%s: strange rx ack %d\n",
                              dev->name, status&7);
            }
            status>>=3;
            if(status&1)
            {
                  /*
                   * No thread is waiting: we need to tidy
                   * up ourself.
                   */

                  if (lp->cmd_nonblocking) {
                        up(&lp->cmd_mutex);
                        if (lp->mc_reload_wait)
                              mc32_reset_multicast_list(dev);
                  }
                  else complete(&lp->execution_cmd);
            }
            if(status&2)
            {
                  /*
                   *    We get interrupted once per
                   *    counter that is about to overflow.
                   */

                  mc32_update_stats(dev);
            }
      }


      /*
       *    Process the transmit and receive rings
         */

      if(tx_event)
            mc32_tx_ring(dev);

      if(rx_event)
            mc32_rx_ring(dev);

      return IRQ_HANDLED;
}


/**
 *    mc32_close  -     user configuring the 3c527 down
 *    @dev: 3c527 card to shut down
 *
 *    The 3c527 is a bus mastering device. We must be careful how we
 *    shut it down. It may also be running shared interrupt so we have
 *    to be sure to silence it properly
 *
 *    We indicate that the card is closing to the rest of the
 *    driver.  Otherwise, it is possible that the card may run out
 *    of receive buffers and restart the transceiver while we're
 *    trying to close it.
 *
 *    We abort any receive and transmits going on and then wait until
 *    any pending exec commands have completed in other code threads.
 *    In theory we can't get here while that is true, in practice I am
 *    paranoid
 *
 *    We turn off the interrupt enable for the board to be sure it can't
 *    intefere with other devices.
 */

static int mc32_close(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);
      int ioaddr = dev->base_addr;

      u8 regs;
      u16 one=1;

      lp->xceiver_desired_state = HALTED;
      netif_stop_queue(dev);

      /*
       *    Send the indications on command (handy debug check)
       */

      mc32_command(dev, 4, &one, 2);

      /* Shut down the transceiver */

      mc32_halt_transceiver(dev);

      /* Ensure we issue no more commands beyond this point */

      down(&lp->cmd_mutex);

      /* Ok the card is now stopping */

      regs=inb(ioaddr+HOST_CTRL);
      regs&=~HOST_CTRL_INTE;
      outb(regs, ioaddr+HOST_CTRL);

      mc32_flush_rx_ring(dev);
      mc32_flush_tx_ring(dev);

      mc32_update_stats(dev);

      return 0;
}


/**
 *    mc32_get_stats          -     hand back stats to network layer
 *    @dev: The 3c527 card to handle
 *
 *    We've collected all the stats we can in software already. Now
 *    it's time to update those kept on-card and return the lot.
 *
 */

static struct net_device_stats *mc32_get_stats(struct net_device *dev)
{
      struct mc32_local *lp = netdev_priv(dev);

      mc32_update_stats(dev);
      return &lp->net_stats;
}


/**
 *    do_mc32_set_multicast_list    -     attempt to update multicasts
 *    @dev: 3c527 device to load the list on
 *    @retry: indicates this is not the first call.
 *
 *
 *    Actually set or clear the multicast filter for this adaptor. The
 *    locking issues are handled by this routine. We have to track
 *    state as it may take multiple calls to get the command sequence
 *    completed. We just keep trying to schedule the loads until we
 *    manage to process them all.
 *
 *    num_addrs == -1   Promiscuous mode, receive all packets
 *
 *    num_addrs == 0    Normal mode, clear multicast list
 *
 *    num_addrs > 0     Multicast mode, receive normal and MC packets,
 *                and do best-effort filtering.
 *
 *    See mc32_update_stats() regards setting the SAV BP bit.
 *
 */

static void do_mc32_set_multicast_list(struct net_device *dev, int retry)
{
      struct mc32_local *lp = netdev_priv(dev);
      u16 filt = (1<<2); /* Save Bad Packets, for stats purposes */

      if (dev->flags&IFF_PROMISC)
            /* Enable promiscuous mode */
            filt |= 1;
      else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > 10)
      {
            dev->flags|=IFF_PROMISC;
            filt |= 1;
      }
      else if(dev->mc_count)
      {
            unsigned char block[62];
            unsigned char *bp;
            struct dev_mc_list *dmc=dev->mc_list;

            int i;

            if(retry==0)
                  lp->mc_list_valid = 0;
            if(!lp->mc_list_valid)
            {
                  block[1]=0;
                  block[0]=dev->mc_count;
                  bp=block+2;

                  for(i=0;i<dev->mc_count;i++)
                  {
                        memcpy(bp, dmc->dmi_addr, 6);
                        bp+=6;
                        dmc=dmc->next;
                  }
                  if(mc32_command_nowait(dev, 2, block, 2+6*dev->mc_count)==-1)
                  {
                        lp->mc_reload_wait = 1;
                        return;
                  }
                  lp->mc_list_valid=1;
            }
      }

      if(mc32_command_nowait(dev, 0, &filt, 2)==-1)
      {
            lp->mc_reload_wait = 1;
      }
      else {
            lp->mc_reload_wait = 0;
      }
}


/**
 *    mc32_set_multicast_list -     queue multicast list update
 *    @dev: The 3c527 to use
 *
 *    Commence loading the multicast list. This is called when the kernel
 *    changes the lists. It will override any pending list we are trying to
 *    load.
 */

static void mc32_set_multicast_list(struct net_device *dev)
{
      do_mc32_set_multicast_list(dev,0);
}


/**
 *    mc32_reset_multicast_list     -     reset multicast list
 *    @dev: The 3c527 to use
 *
 *    Attempt the next step in loading the multicast lists. If this attempt
 *    fails to complete then it will be scheduled and this function called
 *    again later from elsewhere.
 */

static void mc32_reset_multicast_list(struct net_device *dev)
{
      do_mc32_set_multicast_list(dev,1);
}

static void netdev_get_drvinfo(struct net_device *dev,
                         struct ethtool_drvinfo *info)
{
      strcpy(info->driver, DRV_NAME);
      strcpy(info->version, DRV_VERSION);
      sprintf(info->bus_info, "MCA 0x%lx", dev->base_addr);
}

static u32 netdev_get_msglevel(struct net_device *dev)
{
      return mc32_debug;
}

static void netdev_set_msglevel(struct net_device *dev, u32 level)
{
      mc32_debug = level;
}

static const struct ethtool_ops netdev_ethtool_ops = {
      .get_drvinfo            = netdev_get_drvinfo,
      .get_msglevel           = netdev_get_msglevel,
      .set_msglevel           = netdev_set_msglevel,
};

#ifdef MODULE

static struct net_device *this_device;

/**
 *    init_module       -     entry point
 *
 *    Probe and locate a 3c527 card. This really should probe and locate
 *    all the 3c527 cards in the machine not just one of them. Yes you can
 *    insmod multiple modules for now but it's a hack.
 */

int __init init_module(void)
{
      this_device = mc32_probe(-1);
      if (IS_ERR(this_device))
            return PTR_ERR(this_device);
      return 0;
}

/**
 *    cleanup_module    -     free resources for an unload
 *
 *    Unloading time. We release the MCA bus resources and the interrupt
 *    at which point everything is ready to unload. The card must be stopped
 *    at this point or we would not have been called. When we unload we
 *    leave the card stopped but not totally shut down. When the card is
 *    initialized it must be rebooted or the rings reloaded before any
 *    transmit operations are allowed to start scribbling into memory.
 */

void __exit cleanup_module(void)
{
      unregister_netdev(this_device);
      cleanup_card(this_device);
      free_netdev(this_device);
}

#endif /* MODULE */

Generated by  Doxygen 1.6.0   Back to index