Logo Search packages:      
Sourcecode: linux version File versions  Download package

adm1026.c

/*
    adm1026.c - Part of lm_sensors, Linux kernel modules for hardware
           monitoring
    Copyright (C) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
    Copyright (C) 2004 Justin Thiessen <jthiessen@penguincomputing.com>

    Chip details at:

    <http://www.analog.com/UploadedFiles/Data_Sheets/779263102ADM1026_a.pdf>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>

/* Addresses to scan */
static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };

/* Insmod parameters */
I2C_CLIENT_INSMOD_1(adm1026);

static int gpio_input[17]  = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
                        -1, -1, -1, -1, -1, -1, -1, -1 }; 
static int gpio_output[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
                        -1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_inverted[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
                        -1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_normal[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
                        -1, -1, -1, -1, -1, -1, -1, -1 };
static int gpio_fan[8] = { -1, -1, -1, -1, -1, -1, -1, -1 };
module_param_array(gpio_input,int,NULL,0);
MODULE_PARM_DESC(gpio_input,"List of GPIO pins (0-16) to program as inputs");
module_param_array(gpio_output,int,NULL,0);
MODULE_PARM_DESC(gpio_output,"List of GPIO pins (0-16) to program as "
      "outputs");
module_param_array(gpio_inverted,int,NULL,0);
MODULE_PARM_DESC(gpio_inverted,"List of GPIO pins (0-16) to program as "
      "inverted");
module_param_array(gpio_normal,int,NULL,0);
MODULE_PARM_DESC(gpio_normal,"List of GPIO pins (0-16) to program as "
      "normal/non-inverted");
module_param_array(gpio_fan,int,NULL,0);
MODULE_PARM_DESC(gpio_fan,"List of GPIO pins (0-7) to program as fan tachs");

/* Many ADM1026 constants specified below */

/* The ADM1026 registers */
#define ADM1026_REG_CONFIG1  0x00
#define CFG1_MONITOR     0x01
#define CFG1_INT_ENABLE  0x02
#define CFG1_INT_CLEAR   0x04
#define CFG1_AIN8_9      0x08
#define CFG1_THERM_HOT   0x10
#define CFG1_DAC_AFC     0x20
#define CFG1_PWM_AFC     0x40
#define CFG1_RESET       0x80
#define ADM1026_REG_CONFIG2  0x01
/* CONFIG2 controls FAN0/GPIO0 through FAN7/GPIO7 */
#define ADM1026_REG_CONFIG3  0x07
#define CFG3_GPIO16_ENABLE  0x01
#define CFG3_CI_CLEAR  0x02
#define CFG3_VREF_250  0x04
#define CFG3_GPIO16_DIR  0x40
#define CFG3_GPIO16_POL  0x80
#define ADM1026_REG_E2CONFIG  0x13
#define E2CFG_READ  0x01
#define E2CFG_WRITE  0x02
#define E2CFG_ERASE  0x04
#define E2CFG_ROM  0x08
#define E2CFG_CLK_EXT  0x80

/* There are 10 general analog inputs and 7 dedicated inputs
 * They are:
 *    0 - 9  =  AIN0 - AIN9
 *       10  =  Vbat
 *       11  =  3.3V Standby
 *       12  =  3.3V Main
 *       13  =  +5V
 *       14  =  Vccp (CPU core voltage)
 *       15  =  +12V
 *       16  =  -12V
 */
static u16 ADM1026_REG_IN[] = {
            0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
            0x36, 0x37, 0x27, 0x29, 0x26, 0x2a,
            0x2b, 0x2c, 0x2d, 0x2e, 0x2f
      };
static u16 ADM1026_REG_IN_MIN[] = {
            0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d,
            0x5e, 0x5f, 0x6d, 0x49, 0x6b, 0x4a,
            0x4b, 0x4c, 0x4d, 0x4e, 0x4f
      };
static u16 ADM1026_REG_IN_MAX[] = {
            0x50, 0x51, 0x52, 0x53, 0x54, 0x55,
            0x56, 0x57, 0x6c, 0x41, 0x6a, 0x42,
            0x43, 0x44, 0x45, 0x46, 0x47
      };

/* Temperatures are:
 *    0 - Internal
 *    1 - External 1
 *    2 - External 2
 */
static u16 ADM1026_REG_TEMP[] = { 0x1f, 0x28, 0x29 };
static u16 ADM1026_REG_TEMP_MIN[] = { 0x69, 0x48, 0x49 };
static u16 ADM1026_REG_TEMP_MAX[] = { 0x68, 0x40, 0x41 };
static u16 ADM1026_REG_TEMP_TMIN[] = { 0x10, 0x11, 0x12 };
static u16 ADM1026_REG_TEMP_THERM[] = { 0x0d, 0x0e, 0x0f };
static u16 ADM1026_REG_TEMP_OFFSET[] = { 0x1e, 0x6e, 0x6f };

#define ADM1026_REG_FAN(nr) (0x38 + (nr))
#define ADM1026_REG_FAN_MIN(nr) (0x60 + (nr))
#define ADM1026_REG_FAN_DIV_0_3 0x02
#define ADM1026_REG_FAN_DIV_4_7 0x03

#define ADM1026_REG_DAC  0x04
#define ADM1026_REG_PWM  0x05

#define ADM1026_REG_GPIO_CFG_0_3 0x08
#define ADM1026_REG_GPIO_CFG_4_7 0x09
#define ADM1026_REG_GPIO_CFG_8_11 0x0a
#define ADM1026_REG_GPIO_CFG_12_15 0x0b
/* CFG_16 in REG_CFG3 */
#define ADM1026_REG_GPIO_STATUS_0_7 0x24
#define ADM1026_REG_GPIO_STATUS_8_15 0x25
/* STATUS_16 in REG_STATUS4 */
#define ADM1026_REG_GPIO_MASK_0_7 0x1c
#define ADM1026_REG_GPIO_MASK_8_15 0x1d
/* MASK_16 in REG_MASK4 */

#define ADM1026_REG_COMPANY 0x16
#define ADM1026_REG_VERSTEP 0x17
/* These are the recognized values for the above regs */
#define ADM1026_COMPANY_ANALOG_DEV 0x41
#define ADM1026_VERSTEP_GENERIC 0x40
#define ADM1026_VERSTEP_ADM1026 0x44

#define ADM1026_REG_MASK1 0x18
#define ADM1026_REG_MASK2 0x19
#define ADM1026_REG_MASK3 0x1a
#define ADM1026_REG_MASK4 0x1b

#define ADM1026_REG_STATUS1 0x20
#define ADM1026_REG_STATUS2 0x21
#define ADM1026_REG_STATUS3 0x22
#define ADM1026_REG_STATUS4 0x23

#define ADM1026_FAN_ACTIVATION_TEMP_HYST -6
#define ADM1026_FAN_CONTROL_TEMP_RANGE 20
#define ADM1026_PWM_MAX 255

/* Conversions. Rounding and limit checking is only done on the TO_REG 
 * variants. Note that you should be a bit careful with which arguments
 * these macros are called: arguments may be evaluated more than once.
 */

/* IN are scaled acording to built-in resistors.  These are the
 *   voltages corresponding to 3/4 of full scale (192 or 0xc0)
 *   NOTE: The -12V input needs an additional factor to account
 *      for the Vref pullup resistor.
 *      NEG12_OFFSET = SCALE * Vref / V-192 - Vref
 *                   = 13875 * 2.50 / 1.875 - 2500
 *                   = 16000
 *
 * The values in this table are based on Table II, page 15 of the
 *    datasheet.
 */
static int adm1026_scaling[] = {  /* .001 Volts */
            2250, 2250, 2250, 2250, 2250, 2250, 
            1875, 1875, 1875, 1875, 3000, 3330, 
            3330, 4995, 2250, 12000, 13875
      };
#define NEG12_OFFSET  16000
#define SCALE(val,from,to) (((val)*(to) + ((from)/2))/(from))
#define INS_TO_REG(n,val)  (SENSORS_LIMIT(SCALE(val,adm1026_scaling[n],192),\
      0,255))
#define INS_FROM_REG(n,val) (SCALE(val,192,adm1026_scaling[n]))

/* FAN speed is measured using 22.5kHz clock and counts for 2 pulses
 *   and we assume a 2 pulse-per-rev fan tach signal
 *      22500 kHz * 60 (sec/min) * 2 (pulse) / 2 (pulse/rev) == 1350000
 */
#define FAN_TO_REG(val,div)  ((val)<=0 ? 0xff : SENSORS_LIMIT(1350000/((val)*\
      (div)),1,254)) 
#define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==0xff ? 0 : 1350000/((val)*\
      (div)))
#define DIV_FROM_REG(val) (1<<(val))
#define DIV_TO_REG(val) ((val)>=8 ? 3 : (val)>=4 ? 2 : (val)>=2 ? 1 : 0)

/* Temperature is reported in 1 degC increments */
#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)+((val)<0 ? -500 : 500))/1000,\
      -127,127))
#define TEMP_FROM_REG(val) ((val) * 1000)
#define OFFSET_TO_REG(val) (SENSORS_LIMIT(((val)+((val)<0 ? -500 : 500))/1000,\
      -127,127))
#define OFFSET_FROM_REG(val) ((val) * 1000)

#define PWM_TO_REG(val) (SENSORS_LIMIT(val,0,255))
#define PWM_FROM_REG(val) (val)

#define PWM_MIN_TO_REG(val) ((val) & 0xf0)
#define PWM_MIN_FROM_REG(val) (((val) & 0xf0) + ((val) >> 4))

/* Analog output is a voltage, and scaled to millivolts.  The datasheet 
 *   indicates that the DAC could be used to drive the fans, but in our 
 *   example board (Arima HDAMA) it isn't connected to the fans at all.
 */
#define DAC_TO_REG(val) (SENSORS_LIMIT(((((val)*255)+500)/2500),0,255)) 
#define DAC_FROM_REG(val) (((val)*2500)/255)

/* Typically used with systems using a v9.1 VRM spec ? */
#define ADM1026_INIT_VRM  91

/* Chip sampling rates
 *
 * Some sensors are not updated more frequently than once per second
 *    so it doesn't make sense to read them more often than that.
 *    We cache the results and return the saved data if the driver
 *    is called again before a second has elapsed.
 *
 * Also, there is significant configuration data for this chip
 *    So, we keep the config data up to date in the cache
 *    when it is written and only sample it once every 5 *minutes*
 */
#define ADM1026_DATA_INTERVAL  (1 * HZ)
#define ADM1026_CONFIG_INTERVAL  (5 * 60 * HZ)

/* We allow for multiple chips in a single system.
 *
 * For each registered ADM1026, we need to keep state information
 * at client->data. The adm1026_data structure is dynamically
 * allocated, when a new client structure is allocated. */

struct pwm_data {
      u8 pwm;
      u8 enable;
      u8 auto_pwm_min;
};

struct adm1026_data {
      struct i2c_client client;
      struct device *hwmon_dev;
      enum chips type;

      struct mutex update_lock;
      int valid;        /* !=0 if following fields are valid */
      unsigned long last_reading;   /* In jiffies */
      unsigned long last_config;    /* In jiffies */

      u8 in[17];              /* Register value */
      u8 in_max[17];          /* Register value */
      u8 in_min[17];          /* Register value */
      s8 temp[3];             /* Register value */
      s8 temp_min[3];         /* Register value */
      s8 temp_max[3];         /* Register value */
      s8 temp_tmin[3];        /* Register value */
      s8 temp_crit[3];        /* Register value */
      s8 temp_offset[3];      /* Register value */
      u8 fan[8];              /* Register value */
      u8 fan_min[8];          /* Register value */
      u8 fan_div[8];          /* Decoded value */
      struct pwm_data pwm1;   /* Pwm control values */
      int vid;                /* Decoded value */
      u8 vrm;                 /* VRM version */
      u8 analog_out;          /* Register value (DAC) */
      long alarms;            /* Register encoding, combined */
      long alarm_mask;        /* Register encoding, combined */
      long gpio;              /* Register encoding, combined */
      long gpio_mask;         /* Register encoding, combined */
      u8 gpio_config[17];     /* Decoded value */
      u8 config1;             /* Register value */
      u8 config2;             /* Register value */
      u8 config3;             /* Register value */
};

static int adm1026_attach_adapter(struct i2c_adapter *adapter);
static int adm1026_detect(struct i2c_adapter *adapter, int address,
      int kind);
static int adm1026_detach_client(struct i2c_client *client);
static int adm1026_read_value(struct i2c_client *client, u8 reg);
static int adm1026_write_value(struct i2c_client *client, u8 reg, int value);
static void adm1026_print_gpio(struct i2c_client *client);
static void adm1026_fixup_gpio(struct i2c_client *client); 
static struct adm1026_data *adm1026_update_device(struct device *dev);
static void adm1026_init_client(struct i2c_client *client);


static struct i2c_driver adm1026_driver = {
      .driver = {
            .name = "adm1026",
      },
      .attach_adapter = adm1026_attach_adapter,
      .detach_client  = adm1026_detach_client,
};

static int adm1026_attach_adapter(struct i2c_adapter *adapter)
{
      if (!(adapter->class & I2C_CLASS_HWMON)) {
            return 0;
      }
      return i2c_probe(adapter, &addr_data, adm1026_detect);
}

static int adm1026_read_value(struct i2c_client *client, u8 reg)
{
      int res;

      if (reg < 0x80) {
            /* "RAM" locations */
            res = i2c_smbus_read_byte_data(client, reg) & 0xff;
      } else {
            /* EEPROM, do nothing */
            res = 0;
      }
      return res;
}

static int adm1026_write_value(struct i2c_client *client, u8 reg, int value)
{
      int res;

      if (reg < 0x80) {
            /* "RAM" locations */
            res = i2c_smbus_write_byte_data(client, reg, value);
      } else {
            /* EEPROM, do nothing */
            res = 0;
      }
      return res;
}

static void adm1026_init_client(struct i2c_client *client)
{
      int value, i;
      struct adm1026_data *data = i2c_get_clientdata(client);

        dev_dbg(&client->dev, "Initializing device\n");
      /* Read chip config */
      data->config1 = adm1026_read_value(client, ADM1026_REG_CONFIG1);
      data->config2 = adm1026_read_value(client, ADM1026_REG_CONFIG2);
      data->config3 = adm1026_read_value(client, ADM1026_REG_CONFIG3);

      /* Inform user of chip config */
      dev_dbg(&client->dev, "ADM1026_REG_CONFIG1 is: 0x%02x\n",
            data->config1);
      if ((data->config1 & CFG1_MONITOR) == 0) {
            dev_dbg(&client->dev, "Monitoring not currently "
                  "enabled.\n");
      }
      if (data->config1 & CFG1_INT_ENABLE) {
            dev_dbg(&client->dev, "SMBALERT interrupts are "
                  "enabled.\n");
      }
      if (data->config1 & CFG1_AIN8_9) {
            dev_dbg(&client->dev, "in8 and in9 enabled. "
                  "temp3 disabled.\n");
      } else {
            dev_dbg(&client->dev, "temp3 enabled.  in8 and "
                  "in9 disabled.\n");
      }
      if (data->config1 & CFG1_THERM_HOT) {
            dev_dbg(&client->dev, "Automatic THERM, PWM, "
                  "and temp limits enabled.\n");
      }

      value = data->config3;
      if (data->config3 & CFG3_GPIO16_ENABLE) {
            dev_dbg(&client->dev, "GPIO16 enabled.  THERM "
                  "pin disabled.\n");
      } else {
            dev_dbg(&client->dev, "THERM pin enabled.  "
                  "GPIO16 disabled.\n");
      }
      if (data->config3 & CFG3_VREF_250) {
            dev_dbg(&client->dev, "Vref is 2.50 Volts.\n");
      } else {
            dev_dbg(&client->dev, "Vref is 1.82 Volts.\n");
      }
      /* Read and pick apart the existing GPIO configuration */
      value = 0;
      for (i = 0;i <= 15;++i) {
            if ((i & 0x03) == 0) {
                  value = adm1026_read_value(client,
                              ADM1026_REG_GPIO_CFG_0_3 + i/4);
            }
            data->gpio_config[i] = value & 0x03;
            value >>= 2;
      }
      data->gpio_config[16] = (data->config3 >> 6) & 0x03;

      /* ... and then print it */
      adm1026_print_gpio(client);

      /* If the user asks us to reprogram the GPIO config, then
       * do it now.
       */
      if (gpio_input[0] != -1 || gpio_output[0] != -1
            || gpio_inverted[0] != -1 || gpio_normal[0] != -1
            || gpio_fan[0] != -1) {
            adm1026_fixup_gpio(client);
      }

      /* WE INTENTIONALLY make no changes to the limits,
       *   offsets, pwms, fans and zones.  If they were
       *   configured, we don't want to mess with them.
       *   If they weren't, the default is 100% PWM, no
       *   control and will suffice until 'sensors -s'
       *   can be run by the user.  We DO set the default 
       *   value for pwm1.auto_pwm_min to its maximum
       *   so that enabling automatic pwm fan control
       *   without first setting a value for pwm1.auto_pwm_min 
       *   will not result in potentially dangerous fan speed decrease.
       */
      data->pwm1.auto_pwm_min=255;
      /* Start monitoring */
      value = adm1026_read_value(client, ADM1026_REG_CONFIG1);
      /* Set MONITOR, clear interrupt acknowledge and s/w reset */
      value = (value | CFG1_MONITOR) & (~CFG1_INT_CLEAR & ~CFG1_RESET);
      dev_dbg(&client->dev, "Setting CONFIG to: 0x%02x\n", value);
      data->config1 = value;
      adm1026_write_value(client, ADM1026_REG_CONFIG1, value);

      /* initialize fan_div[] to hardware defaults */
      value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3) |
            (adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7) << 8);
      for (i = 0;i <= 7;++i) {
            data->fan_div[i] = DIV_FROM_REG(value & 0x03);
            value >>= 2;
      }
}

static void adm1026_print_gpio(struct i2c_client *client)
{
      struct adm1026_data *data = i2c_get_clientdata(client);
      int  i;

      dev_dbg(&client->dev, "GPIO config is:");
      for (i = 0;i <= 7;++i) {
            if (data->config2 & (1 << i)) {
                  dev_dbg(&client->dev, "\t%sGP%s%d\n",
                        data->gpio_config[i] & 0x02 ? "" : "!",
                        data->gpio_config[i] & 0x01 ? "OUT" : "IN",
                        i);
            } else {
                  dev_dbg(&client->dev, "\tFAN%d\n", i);
            }
      }
      for (i = 8;i <= 15;++i) {
            dev_dbg(&client->dev, "\t%sGP%s%d\n",
                  data->gpio_config[i] & 0x02 ? "" : "!",
                  data->gpio_config[i] & 0x01 ? "OUT" : "IN",
                  i);
      }
      if (data->config3 & CFG3_GPIO16_ENABLE) {
            dev_dbg(&client->dev, "\t%sGP%s16\n",
                  data->gpio_config[16] & 0x02 ? "" : "!",
                  data->gpio_config[16] & 0x01 ? "OUT" : "IN");
      } else {
            /* GPIO16 is THERM  */
            dev_dbg(&client->dev, "\tTHERM\n");
      }
}

static void adm1026_fixup_gpio(struct i2c_client *client)
{
      struct adm1026_data *data = i2c_get_clientdata(client);
      int  i;
      int  value;

      /* Make the changes requested. */
      /* We may need to unlock/stop monitoring or soft-reset the
       *    chip before we can make changes.  This hasn't been
       *    tested much.  FIXME
       */

      /* Make outputs */
      for (i = 0;i <= 16;++i) {
            if (gpio_output[i] >= 0 && gpio_output[i] <= 16) {
                  data->gpio_config[gpio_output[i]] |= 0x01;
            }
            /* if GPIO0-7 is output, it isn't a FAN tach */
            if (gpio_output[i] >= 0 && gpio_output[i] <= 7) {
                  data->config2 |= 1 << gpio_output[i];
            }
      }

      /* Input overrides output */
      for (i = 0;i <= 16;++i) {
            if (gpio_input[i] >= 0 && gpio_input[i] <= 16) {
                  data->gpio_config[gpio_input[i]] &= ~ 0x01;
            }
            /* if GPIO0-7 is input, it isn't a FAN tach */
            if (gpio_input[i] >= 0 && gpio_input[i] <= 7) {
                  data->config2 |= 1 << gpio_input[i];
            }
      }

      /* Inverted  */
      for (i = 0;i <= 16;++i) {
            if (gpio_inverted[i] >= 0 && gpio_inverted[i] <= 16) {
                  data->gpio_config[gpio_inverted[i]] &= ~ 0x02;
            }
      }

      /* Normal overrides inverted  */
      for (i = 0;i <= 16;++i) {
            if (gpio_normal[i] >= 0 && gpio_normal[i] <= 16) {
                  data->gpio_config[gpio_normal[i]] |= 0x02;
            }
      }

      /* Fan overrides input and output */
      for (i = 0;i <= 7;++i) {
            if (gpio_fan[i] >= 0 && gpio_fan[i] <= 7) {
                  data->config2 &= ~(1 << gpio_fan[i]);
            }
      }

      /* Write new configs to registers */
      adm1026_write_value(client, ADM1026_REG_CONFIG2, data->config2);
      data->config3 = (data->config3 & 0x3f)
                  | ((data->gpio_config[16] & 0x03) << 6);
      adm1026_write_value(client, ADM1026_REG_CONFIG3, data->config3);
      for (i = 15, value = 0;i >= 0;--i) {
            value <<= 2;
            value |= data->gpio_config[i] & 0x03;
            if ((i & 0x03) == 0) {
                  adm1026_write_value(client,
                              ADM1026_REG_GPIO_CFG_0_3 + i/4,
                              value);
                  value = 0;
            }
      }

      /* Print the new config */
      adm1026_print_gpio(client);
}


static struct adm1026_data *adm1026_update_device(struct device *dev)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int i;
      long value, alarms, gpio;

      mutex_lock(&data->update_lock);
      if (!data->valid
          || time_after(jiffies, data->last_reading + ADM1026_DATA_INTERVAL)) {
            /* Things that change quickly */
            dev_dbg(&client->dev,"Reading sensor values\n");
            for (i = 0;i <= 16;++i) {
                  data->in[i] =
                      adm1026_read_value(client, ADM1026_REG_IN[i]);
            }

            for (i = 0;i <= 7;++i) {
                  data->fan[i] =
                      adm1026_read_value(client, ADM1026_REG_FAN(i));
            }

            for (i = 0;i <= 2;++i) {
                  /* NOTE: temp[] is s8 and we assume 2's complement
                   *   "conversion" in the assignment   */
                  data->temp[i] =
                      adm1026_read_value(client, ADM1026_REG_TEMP[i]);
            }

            data->pwm1.pwm = adm1026_read_value(client, 
                  ADM1026_REG_PWM);
            data->analog_out = adm1026_read_value(client, 
                  ADM1026_REG_DAC);
            /* GPIO16 is MSbit of alarms, move it to gpio */
            alarms = adm1026_read_value(client, ADM1026_REG_STATUS4);
            gpio = alarms & 0x80 ? 0x0100 : 0;  /* GPIO16 */
            alarms &= 0x7f;
            alarms <<= 8;
            alarms |= adm1026_read_value(client, ADM1026_REG_STATUS3);
            alarms <<= 8;
            alarms |= adm1026_read_value(client, ADM1026_REG_STATUS2);
            alarms <<= 8;
            alarms |= adm1026_read_value(client, ADM1026_REG_STATUS1);
            data->alarms = alarms;

            /* Read the GPIO values */
            gpio |= adm1026_read_value(client, 
                  ADM1026_REG_GPIO_STATUS_8_15);
            gpio <<= 8;
            gpio |= adm1026_read_value(client, 
                  ADM1026_REG_GPIO_STATUS_0_7);
            data->gpio = gpio;

            data->last_reading = jiffies;
      };  /* last_reading */

      if (!data->valid ||
          time_after(jiffies, data->last_config + ADM1026_CONFIG_INTERVAL)) {
            /* Things that don't change often */
            dev_dbg(&client->dev, "Reading config values\n");
            for (i = 0;i <= 16;++i) {
                  data->in_min[i] = adm1026_read_value(client, 
                        ADM1026_REG_IN_MIN[i]);
                  data->in_max[i] = adm1026_read_value(client, 
                        ADM1026_REG_IN_MAX[i]);
            }

            value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3)
                  | (adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7)
                  << 8);
            for (i = 0;i <= 7;++i) {
                  data->fan_min[i] = adm1026_read_value(client, 
                        ADM1026_REG_FAN_MIN(i));
                  data->fan_div[i] = DIV_FROM_REG(value & 0x03);
                  value >>= 2;
            }

            for (i = 0; i <= 2; ++i) {
                  /* NOTE: temp_xxx[] are s8 and we assume 2's 
                   *    complement "conversion" in the assignment
                   */
                  data->temp_min[i] = adm1026_read_value(client, 
                        ADM1026_REG_TEMP_MIN[i]);
                  data->temp_max[i] = adm1026_read_value(client, 
                        ADM1026_REG_TEMP_MAX[i]);
                  data->temp_tmin[i] = adm1026_read_value(client, 
                        ADM1026_REG_TEMP_TMIN[i]);
                  data->temp_crit[i] = adm1026_read_value(client, 
                        ADM1026_REG_TEMP_THERM[i]);
                  data->temp_offset[i] = adm1026_read_value(client, 
                        ADM1026_REG_TEMP_OFFSET[i]);
            }

            /* Read the STATUS/alarm masks */
            alarms  = adm1026_read_value(client, ADM1026_REG_MASK4);
            gpio    = alarms & 0x80 ? 0x0100 : 0;  /* GPIO16 */
            alarms  = (alarms & 0x7f) << 8;
            alarms |= adm1026_read_value(client, ADM1026_REG_MASK3);
            alarms <<= 8;
            alarms |= adm1026_read_value(client, ADM1026_REG_MASK2);
            alarms <<= 8;
            alarms |= adm1026_read_value(client, ADM1026_REG_MASK1);
            data->alarm_mask = alarms;

            /* Read the GPIO values */
            gpio |= adm1026_read_value(client, 
                  ADM1026_REG_GPIO_MASK_8_15);
            gpio <<= 8;
            gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_MASK_0_7);
            data->gpio_mask = gpio;

            /* Read various values from CONFIG1 */
            data->config1 = adm1026_read_value(client, 
                  ADM1026_REG_CONFIG1);
            if (data->config1 & CFG1_PWM_AFC) {
                  data->pwm1.enable = 2;
                  data->pwm1.auto_pwm_min = 
                        PWM_MIN_FROM_REG(data->pwm1.pwm);
            }
            /* Read the GPIO config */
            data->config2 = adm1026_read_value(client, 
                  ADM1026_REG_CONFIG2);
            data->config3 = adm1026_read_value(client, 
                  ADM1026_REG_CONFIG3);
            data->gpio_config[16] = (data->config3 >> 6) & 0x03;

            value = 0;
            for (i = 0;i <= 15;++i) {
                  if ((i & 0x03) == 0) {
                        value = adm1026_read_value(client,
                                  ADM1026_REG_GPIO_CFG_0_3 + i/4);
                  }
                  data->gpio_config[i] = value & 0x03;
                  value >>= 2;
            }

            data->last_config = jiffies;
      };  /* last_config */

      dev_dbg(&client->dev, "Setting VID from GPIO11-15.\n");
      data->vid = (data->gpio >> 11) & 0x1f;
      data->valid = 1;
      mutex_unlock(&data->update_lock);
      return data;
}

static ssize_t show_in(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in[nr]));
}
static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev); 
      return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_min[nr]));
}
static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->in_min[nr] = INS_TO_REG(nr, val);
      adm1026_write_value(client, ADM1026_REG_IN_MIN[nr], data->in_min[nr]);
      mutex_unlock(&data->update_lock);
      return count; 
}
static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_max[nr]));
}
static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->in_max[nr] = INS_TO_REG(nr, val);
      adm1026_write_value(client, ADM1026_REG_IN_MAX[nr], data->in_max[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define in_reg(offset)                                \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in,   \
            NULL, offset);                            \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,    \
            show_in_min, set_in_min, offset);         \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,    \
            show_in_max, set_in_max, offset);


in_reg(0);
in_reg(1);
in_reg(2);
in_reg(3);
in_reg(4);
in_reg(5);
in_reg(6);
in_reg(7);
in_reg(8);
in_reg(9);
in_reg(10);
in_reg(11);
in_reg(12);
in_reg(13);
in_reg(14);
in_reg(15);

static ssize_t show_in16(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", INS_FROM_REG(16, data->in[16]) -
            NEG12_OFFSET);
}
static ssize_t show_in16_min(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev); 
      return sprintf(buf,"%d\n", INS_FROM_REG(16, data->in_min[16])
            - NEG12_OFFSET);
}
static ssize_t set_in16_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->in_min[16] = INS_TO_REG(16, val + NEG12_OFFSET);
      adm1026_write_value(client, ADM1026_REG_IN_MIN[16], data->in_min[16]);
      mutex_unlock(&data->update_lock);
      return count; 
}
static ssize_t show_in16_max(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", INS_FROM_REG(16, data->in_max[16])
                  - NEG12_OFFSET);
}
static ssize_t set_in16_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->in_max[16] = INS_TO_REG(16, val+NEG12_OFFSET);
      adm1026_write_value(client, ADM1026_REG_IN_MAX[16], data->in_max[16]);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(in16_input, S_IRUGO, show_in16, NULL, 16);
static SENSOR_DEVICE_ATTR(in16_min, S_IRUGO | S_IWUSR, show_in16_min, set_in16_min, 16);
static SENSOR_DEVICE_ATTR(in16_max, S_IRUGO | S_IWUSR, show_in16_max, set_in16_max, 16);




/* Now add fan read/write functions */

static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan[nr],
            data->fan_div[nr]));
}
static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan_min[nr],
            data->fan_div[nr]));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->fan_min[nr] = FAN_TO_REG(val, data->fan_div[nr]);
      adm1026_write_value(client, ADM1026_REG_FAN_MIN(nr),
            data->fan_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define fan_offset(offset)                                                    \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan, NULL,       \
            offset - 1);                                          \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,               \
            show_fan_min, set_fan_min, offset - 1);

fan_offset(1);
fan_offset(2);
fan_offset(3);
fan_offset(4);
fan_offset(5);
fan_offset(6);
fan_offset(7);
fan_offset(8);

/* Adjust fan_min to account for new fan divisor */
static void fixup_fan_min(struct device *dev, int fan, int old_div)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int    new_min;
      int    new_div = data->fan_div[fan];

      /* 0 and 0xff are special.  Don't adjust them */
      if (data->fan_min[fan] == 0 || data->fan_min[fan] == 0xff) {
            return;
      }

      new_min = data->fan_min[fan] * old_div / new_div;
      new_min = SENSORS_LIMIT(new_min, 1, 254);
      data->fan_min[fan] = new_min;
      adm1026_write_value(client, ADM1026_REG_FAN_MIN(fan), new_min);
}

/* Now add fan_div read/write functions */
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", data->fan_div[nr]);
}
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int    val,orig_div,new_div,shift;

      val = simple_strtol(buf, NULL, 10);
      new_div = DIV_TO_REG(val); 
      if (new_div == 0) {
            return -EINVAL;
      }
      mutex_lock(&data->update_lock);
      orig_div = data->fan_div[nr];
      data->fan_div[nr] = DIV_FROM_REG(new_div);

      if (nr < 4) { /* 0 <= nr < 4 */
            shift = 2 * nr;
            adm1026_write_value(client, ADM1026_REG_FAN_DIV_0_3,
                  ((DIV_TO_REG(orig_div) & (~(0x03 << shift))) |
                  (new_div << shift)));
      } else { /* 3 < nr < 8 */
            shift = 2 * (nr - 4);
            adm1026_write_value(client, ADM1026_REG_FAN_DIV_4_7,
                  ((DIV_TO_REG(orig_div) & (~(0x03 << (2 * shift)))) |
                  (new_div << shift)));
      }

      if (data->fan_div[nr] != orig_div) {
            fixup_fan_min(dev,nr,orig_div);
      }
      mutex_unlock(&data->update_lock);
      return count;
}

#define fan_offset_div(offset)                                          \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,         \
            show_fan_div, set_fan_div, offset - 1);

fan_offset_div(1);
fan_offset_div(2);
fan_offset_div(3);
fan_offset_div(4);
fan_offset_div(5);
fan_offset_div(6);
fan_offset_div(7);
fan_offset_div(8);

/* Temps */
static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp[nr]));
}
static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_min[nr]));
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_min[nr] = TEMP_TO_REG(val);
      adm1026_write_value(client, ADM1026_REG_TEMP_MIN[nr],
            data->temp_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}
static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_max[nr]));
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_max[nr] = TEMP_TO_REG(val);
      adm1026_write_value(client, ADM1026_REG_TEMP_MAX[nr],
            data->temp_max[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define temp_reg(offset)                                    \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp,     \
            NULL, offset - 1);                              \
static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,  \
            show_temp_min, set_temp_min, offset - 1);       \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,  \
            show_temp_max, set_temp_max, offset - 1);


temp_reg(1);
temp_reg(2);
temp_reg(3);

static ssize_t show_temp_offset(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_offset[nr]));
}
static ssize_t set_temp_offset(struct device *dev,
            struct device_attribute *attr, const char *buf,
            size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_offset[nr] = TEMP_TO_REG(val);
      adm1026_write_value(client, ADM1026_REG_TEMP_OFFSET[nr],
            data->temp_offset[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define temp_offset_reg(offset)                                         \
static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,           \
            show_temp_offset, set_temp_offset, offset - 1);

temp_offset_reg(1);
temp_offset_reg(2);
temp_offset_reg(3);

static ssize_t show_temp_auto_point1_temp_hyst(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(
            ADM1026_FAN_ACTIVATION_TEMP_HYST + data->temp_tmin[nr]));
}
static ssize_t show_temp_auto_point2_temp(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_tmin[nr] +
            ADM1026_FAN_CONTROL_TEMP_RANGE));
}
static ssize_t show_temp_auto_point1_temp(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_tmin[nr]));
}
static ssize_t set_temp_auto_point1_temp(struct device *dev,
            struct device_attribute *attr, const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_tmin[nr] = TEMP_TO_REG(val);
      adm1026_write_value(client, ADM1026_REG_TEMP_TMIN[nr],
            data->temp_tmin[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define temp_auto_point(offset)                                         \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_point1_temp, S_IRUGO | S_IWUSR, \
            show_temp_auto_point1_temp, set_temp_auto_point1_temp,            \
            offset - 1);                                          \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_point1_temp_hyst, S_IRUGO,      \
            show_temp_auto_point1_temp_hyst, NULL, offset - 1);         \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_point2_temp, S_IRUGO,           \
            show_temp_auto_point2_temp, NULL, offset - 1);

temp_auto_point(1);
temp_auto_point(2);
temp_auto_point(3);

static ssize_t show_temp_crit_enable(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", (data->config1 & CFG1_THERM_HOT) >> 4);
}
static ssize_t set_temp_crit_enable(struct device *dev,
            struct device_attribute *attr, const char *buf, size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      if ((val == 1) || (val==0)) {
            mutex_lock(&data->update_lock);
            data->config1 = (data->config1 & ~CFG1_THERM_HOT) | (val << 4);
            adm1026_write_value(client, ADM1026_REG_CONFIG1, 
                  data->config1);
            mutex_unlock(&data->update_lock);
      }
      return count;
}

#define temp_crit_enable(offset)                      \
static DEVICE_ATTR(temp##offset##_crit_enable, S_IRUGO | S_IWUSR, \
      show_temp_crit_enable, set_temp_crit_enable);

temp_crit_enable(1);
temp_crit_enable(2);
temp_crit_enable(3);

static ssize_t show_temp_crit(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
}
static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
      int nr = sensor_attr->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_crit[nr] = TEMP_TO_REG(val);
      adm1026_write_value(client, ADM1026_REG_TEMP_THERM[nr],
            data->temp_crit[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define temp_crit_reg(offset)                               \
static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
            show_temp_crit, set_temp_crit, offset - 1);

temp_crit_reg(1);
temp_crit_reg(2);
temp_crit_reg(3);

static ssize_t show_analog_out_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", DAC_FROM_REG(data->analog_out));
}
static ssize_t set_analog_out_reg(struct device *dev, struct device_attribute *attr, const char *buf,
            size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->analog_out = DAC_TO_REG(val);
      adm1026_write_value(client, ADM1026_REG_DAC, data->analog_out);
      mutex_unlock(&data->update_lock);
      return count;
}

static DEVICE_ATTR(analog_out, S_IRUGO | S_IWUSR, show_analog_out_reg, 
      set_analog_out_reg);

static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", vid_from_reg(data->vid & 0x3f, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);

static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = dev_get_drvdata(dev);
      return sprintf(buf,"%d\n", data->vrm);
}
static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, const char *buf,
            size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);

      data->vrm = simple_strtol(buf, NULL, 10);
      return count;
}

static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);

static ssize_t show_alarms_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf, "%ld\n", (long) (data->alarms));
}

static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);

static ssize_t show_alarm_mask(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%ld\n", data->alarm_mask);
}
static ssize_t set_alarm_mask(struct device *dev, struct device_attribute *attr, const char *buf,
            size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);
      unsigned long mask;

      mutex_lock(&data->update_lock);
      data->alarm_mask = val & 0x7fffffff;
      mask = data->alarm_mask
            | (data->gpio_mask & 0x10000 ? 0x80000000 : 0);
      adm1026_write_value(client, ADM1026_REG_MASK1,
            mask & 0xff);
      mask >>= 8;
      adm1026_write_value(client, ADM1026_REG_MASK2,
            mask & 0xff);
      mask >>= 8;
      adm1026_write_value(client, ADM1026_REG_MASK3,
            mask & 0xff);
      mask >>= 8;
      adm1026_write_value(client, ADM1026_REG_MASK4,
            mask & 0xff);
      mutex_unlock(&data->update_lock);
      return count;
}

static DEVICE_ATTR(alarm_mask, S_IRUGO | S_IWUSR, show_alarm_mask,
      set_alarm_mask);


static ssize_t show_gpio(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%ld\n", data->gpio);
}
static ssize_t set_gpio(struct device *dev, struct device_attribute *attr, const char *buf,
            size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);
      long   gpio;

      mutex_lock(&data->update_lock);
      data->gpio = val & 0x1ffff;
      gpio = data->gpio;
      adm1026_write_value(client, ADM1026_REG_GPIO_STATUS_0_7,gpio & 0xff);
      gpio >>= 8;
      adm1026_write_value(client, ADM1026_REG_GPIO_STATUS_8_15,gpio & 0xff);
      gpio = ((gpio >> 1) & 0x80) | (data->alarms >> 24 & 0x7f);
      adm1026_write_value(client, ADM1026_REG_STATUS4,gpio & 0xff);
      mutex_unlock(&data->update_lock);
      return count;
}

static DEVICE_ATTR(gpio, S_IRUGO | S_IWUSR, show_gpio, set_gpio);


static ssize_t show_gpio_mask(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%ld\n", data->gpio_mask);
}
static ssize_t set_gpio_mask(struct device *dev, struct device_attribute *attr, const char *buf,
            size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);
      long   mask;

      mutex_lock(&data->update_lock);
      data->gpio_mask = val & 0x1ffff;
      mask = data->gpio_mask;
      adm1026_write_value(client, ADM1026_REG_GPIO_MASK_0_7,mask & 0xff);
      mask >>= 8;
      adm1026_write_value(client, ADM1026_REG_GPIO_MASK_8_15,mask & 0xff);
      mask = ((mask >> 1) & 0x80) | (data->alarm_mask >> 24 & 0x7f);
      adm1026_write_value(client, ADM1026_REG_MASK1,mask & 0xff);
      mutex_unlock(&data->update_lock);
      return count;
}

static DEVICE_ATTR(gpio_mask, S_IRUGO | S_IWUSR, show_gpio_mask, set_gpio_mask);

static ssize_t show_pwm_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", PWM_FROM_REG(data->pwm1.pwm));
}
static ssize_t set_pwm_reg(struct device *dev, struct device_attribute *attr, const char *buf,
            size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);

      if (data->pwm1.enable == 1) {
            int val = simple_strtol(buf, NULL, 10);

            mutex_lock(&data->update_lock);
            data->pwm1.pwm = PWM_TO_REG(val);
            adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm);
            mutex_unlock(&data->update_lock);
      }
      return count;
}
static ssize_t show_auto_pwm_min(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", data->pwm1.auto_pwm_min);
}
static ssize_t set_auto_pwm_min(struct device *dev, struct device_attribute *attr, const char *buf,
            size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->pwm1.auto_pwm_min = SENSORS_LIMIT(val,0,255);
      if (data->pwm1.enable == 2) { /* apply immediately */
            data->pwm1.pwm = PWM_TO_REG((data->pwm1.pwm & 0x0f) |
                  PWM_MIN_TO_REG(data->pwm1.auto_pwm_min)); 
            adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm);
      }
      mutex_unlock(&data->update_lock);
      return count;
}
static ssize_t show_auto_pwm_max(struct device *dev, struct device_attribute *attr, char *buf)
{
      return sprintf(buf,"%d\n", ADM1026_PWM_MAX);
}
static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1026_data *data = adm1026_update_device(dev);
      return sprintf(buf,"%d\n", data->pwm1.enable);
}
static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *attr, const char *buf,
            size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1026_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);
      int     old_enable;

      if ((val >= 0) && (val < 3)) {
            mutex_lock(&data->update_lock);
            old_enable = data->pwm1.enable;
            data->pwm1.enable = val;
            data->config1 = (data->config1 & ~CFG1_PWM_AFC)
                        | ((val == 2) ? CFG1_PWM_AFC : 0);
            adm1026_write_value(client, ADM1026_REG_CONFIG1,
                  data->config1);
            if (val == 2) {  /* apply pwm1_auto_pwm_min to pwm1 */
                  data->pwm1.pwm = PWM_TO_REG((data->pwm1.pwm & 0x0f) |
                        PWM_MIN_TO_REG(data->pwm1.auto_pwm_min)); 
                  adm1026_write_value(client, ADM1026_REG_PWM, 
                        data->pwm1.pwm);
            } else if (!((old_enable == 1) && (val == 1))) {
                  /* set pwm to safe value */
                  data->pwm1.pwm = 255;
                  adm1026_write_value(client, ADM1026_REG_PWM, 
                        data->pwm1.pwm);
            }
            mutex_unlock(&data->update_lock);
      }
      return count;
}

/* enable PWM fan control */
static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg); 
static DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg); 
static DEVICE_ATTR(pwm3, S_IRUGO | S_IWUSR, show_pwm_reg, set_pwm_reg); 
static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, show_pwm_enable, 
      set_pwm_enable);
static DEVICE_ATTR(pwm2_enable, S_IRUGO | S_IWUSR, show_pwm_enable, 
      set_pwm_enable);
static DEVICE_ATTR(pwm3_enable, S_IRUGO | S_IWUSR, show_pwm_enable, 
      set_pwm_enable);
static DEVICE_ATTR(temp1_auto_point1_pwm, S_IRUGO | S_IWUSR, 
      show_auto_pwm_min, set_auto_pwm_min);
static DEVICE_ATTR(temp2_auto_point1_pwm, S_IRUGO | S_IWUSR, 
      show_auto_pwm_min, set_auto_pwm_min);
static DEVICE_ATTR(temp3_auto_point1_pwm, S_IRUGO | S_IWUSR, 
      show_auto_pwm_min, set_auto_pwm_min);

static DEVICE_ATTR(temp1_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL);
static DEVICE_ATTR(temp2_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL);
static DEVICE_ATTR(temp3_auto_point2_pwm, S_IRUGO, show_auto_pwm_max, NULL);

static struct attribute *adm1026_attributes[] = {
      &sensor_dev_attr_in0_input.dev_attr.attr,
      &sensor_dev_attr_in0_max.dev_attr.attr,
      &sensor_dev_attr_in0_min.dev_attr.attr,
      &sensor_dev_attr_in1_input.dev_attr.attr,
      &sensor_dev_attr_in1_max.dev_attr.attr,
      &sensor_dev_attr_in1_min.dev_attr.attr,
      &sensor_dev_attr_in2_input.dev_attr.attr,
      &sensor_dev_attr_in2_max.dev_attr.attr,
      &sensor_dev_attr_in2_min.dev_attr.attr,
      &sensor_dev_attr_in3_input.dev_attr.attr,
      &sensor_dev_attr_in3_max.dev_attr.attr,
      &sensor_dev_attr_in3_min.dev_attr.attr,
      &sensor_dev_attr_in4_input.dev_attr.attr,
      &sensor_dev_attr_in4_max.dev_attr.attr,
      &sensor_dev_attr_in4_min.dev_attr.attr,
      &sensor_dev_attr_in5_input.dev_attr.attr,
      &sensor_dev_attr_in5_max.dev_attr.attr,
      &sensor_dev_attr_in5_min.dev_attr.attr,
      &sensor_dev_attr_in6_input.dev_attr.attr,
      &sensor_dev_attr_in6_max.dev_attr.attr,
      &sensor_dev_attr_in6_min.dev_attr.attr,
      &sensor_dev_attr_in7_input.dev_attr.attr,
      &sensor_dev_attr_in7_max.dev_attr.attr,
      &sensor_dev_attr_in7_min.dev_attr.attr,
      &sensor_dev_attr_in8_input.dev_attr.attr,
      &sensor_dev_attr_in8_max.dev_attr.attr,
      &sensor_dev_attr_in8_min.dev_attr.attr,
      &sensor_dev_attr_in9_input.dev_attr.attr,
      &sensor_dev_attr_in9_max.dev_attr.attr,
      &sensor_dev_attr_in9_min.dev_attr.attr,
      &sensor_dev_attr_in10_input.dev_attr.attr,
      &sensor_dev_attr_in10_max.dev_attr.attr,
      &sensor_dev_attr_in10_min.dev_attr.attr,
      &sensor_dev_attr_in11_input.dev_attr.attr,
      &sensor_dev_attr_in11_max.dev_attr.attr,
      &sensor_dev_attr_in11_min.dev_attr.attr,
      &sensor_dev_attr_in12_input.dev_attr.attr,
      &sensor_dev_attr_in12_max.dev_attr.attr,
      &sensor_dev_attr_in12_min.dev_attr.attr,
      &sensor_dev_attr_in13_input.dev_attr.attr,
      &sensor_dev_attr_in13_max.dev_attr.attr,
      &sensor_dev_attr_in13_min.dev_attr.attr,
      &sensor_dev_attr_in14_input.dev_attr.attr,
      &sensor_dev_attr_in14_max.dev_attr.attr,
      &sensor_dev_attr_in14_min.dev_attr.attr,
      &sensor_dev_attr_in15_input.dev_attr.attr,
      &sensor_dev_attr_in15_max.dev_attr.attr,
      &sensor_dev_attr_in15_min.dev_attr.attr,
      &sensor_dev_attr_in16_input.dev_attr.attr,
      &sensor_dev_attr_in16_max.dev_attr.attr,
      &sensor_dev_attr_in16_min.dev_attr.attr,
      &sensor_dev_attr_fan1_input.dev_attr.attr,
      &sensor_dev_attr_fan1_div.dev_attr.attr,
      &sensor_dev_attr_fan1_min.dev_attr.attr,
      &sensor_dev_attr_fan2_input.dev_attr.attr,
      &sensor_dev_attr_fan2_div.dev_attr.attr,
      &sensor_dev_attr_fan2_min.dev_attr.attr,
      &sensor_dev_attr_fan3_input.dev_attr.attr,
      &sensor_dev_attr_fan3_div.dev_attr.attr,
      &sensor_dev_attr_fan3_min.dev_attr.attr,
      &sensor_dev_attr_fan4_input.dev_attr.attr,
      &sensor_dev_attr_fan4_div.dev_attr.attr,
      &sensor_dev_attr_fan4_min.dev_attr.attr,
      &sensor_dev_attr_fan5_input.dev_attr.attr,
      &sensor_dev_attr_fan5_div.dev_attr.attr,
      &sensor_dev_attr_fan5_min.dev_attr.attr,
      &sensor_dev_attr_fan6_input.dev_attr.attr,
      &sensor_dev_attr_fan6_div.dev_attr.attr,
      &sensor_dev_attr_fan6_min.dev_attr.attr,
      &sensor_dev_attr_fan7_input.dev_attr.attr,
      &sensor_dev_attr_fan7_div.dev_attr.attr,
      &sensor_dev_attr_fan7_min.dev_attr.attr,
      &sensor_dev_attr_fan8_input.dev_attr.attr,
      &sensor_dev_attr_fan8_div.dev_attr.attr,
      &sensor_dev_attr_fan8_min.dev_attr.attr,
      &sensor_dev_attr_temp1_input.dev_attr.attr,
      &sensor_dev_attr_temp1_max.dev_attr.attr,
      &sensor_dev_attr_temp1_min.dev_attr.attr,
      &sensor_dev_attr_temp2_input.dev_attr.attr,
      &sensor_dev_attr_temp2_max.dev_attr.attr,
      &sensor_dev_attr_temp2_min.dev_attr.attr,
      &sensor_dev_attr_temp3_input.dev_attr.attr,
      &sensor_dev_attr_temp3_max.dev_attr.attr,
      &sensor_dev_attr_temp3_min.dev_attr.attr,
      &sensor_dev_attr_temp1_offset.dev_attr.attr,
      &sensor_dev_attr_temp2_offset.dev_attr.attr,
      &sensor_dev_attr_temp3_offset.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_point1_temp_hyst.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_point1_temp_hyst.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_point1_temp_hyst.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
      &sensor_dev_attr_temp1_crit.dev_attr.attr,
      &sensor_dev_attr_temp2_crit.dev_attr.attr,
      &sensor_dev_attr_temp3_crit.dev_attr.attr,
      &dev_attr_temp1_crit_enable.attr,
      &dev_attr_temp2_crit_enable.attr,
      &dev_attr_temp3_crit_enable.attr,
      &dev_attr_cpu0_vid.attr,
      &dev_attr_vrm.attr,
      &dev_attr_alarms.attr,
      &dev_attr_alarm_mask.attr,
      &dev_attr_gpio.attr,
      &dev_attr_gpio_mask.attr,
      &dev_attr_pwm1.attr,
      &dev_attr_pwm2.attr,
      &dev_attr_pwm3.attr,
      &dev_attr_pwm1_enable.attr,
      &dev_attr_pwm2_enable.attr,
      &dev_attr_pwm3_enable.attr,
      &dev_attr_temp1_auto_point1_pwm.attr,
      &dev_attr_temp2_auto_point1_pwm.attr,
      &dev_attr_temp3_auto_point1_pwm.attr,
      &dev_attr_temp1_auto_point2_pwm.attr,
      &dev_attr_temp2_auto_point2_pwm.attr,
      &dev_attr_temp3_auto_point2_pwm.attr,
      &dev_attr_analog_out.attr,
      NULL
};

static const struct attribute_group adm1026_group = {
      .attrs = adm1026_attributes,
};

static int adm1026_detect(struct i2c_adapter *adapter, int address,
                    int kind)
{
      int company, verstep;
      struct i2c_client *new_client;
      struct adm1026_data *data;
      int err = 0;
      const char *type_name = "";

      if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
            /* We need to be able to do byte I/O */
            goto exit;
      };

      /* OK. For now, we presume we have a valid client. We now create the
         client structure, even though we cannot fill it completely yet.
         But it allows us to access adm1026_{read,write}_value. */

      if (!(data = kzalloc(sizeof(struct adm1026_data), GFP_KERNEL))) {
            err = -ENOMEM;
            goto exit;
      }

      new_client = &data->client;
      i2c_set_clientdata(new_client, data);
      new_client->addr = address;
      new_client->adapter = adapter;
      new_client->driver = &adm1026_driver;
      new_client->flags = 0;

      /* Now, we do the remaining detection. */

      company = adm1026_read_value(new_client, ADM1026_REG_COMPANY);
      verstep = adm1026_read_value(new_client, ADM1026_REG_VERSTEP);

      dev_dbg(&new_client->dev, "Detecting device at %d,0x%02x with"
            " COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
            i2c_adapter_id(new_client->adapter), new_client->addr,
            company, verstep);

      /* If auto-detecting, Determine the chip type. */
      if (kind <= 0) {
            dev_dbg(&new_client->dev, "Autodetecting device at %d,0x%02x "
                  "...\n", i2c_adapter_id(adapter), address);
            if (company == ADM1026_COMPANY_ANALOG_DEV
                && verstep == ADM1026_VERSTEP_ADM1026) {
                  kind = adm1026;
            } else if (company == ADM1026_COMPANY_ANALOG_DEV
                  && (verstep & 0xf0) == ADM1026_VERSTEP_GENERIC) {
                  dev_err(&adapter->dev, ": Unrecognized stepping "
                        "0x%02x. Defaulting to ADM1026.\n", verstep);
                  kind = adm1026;
            } else if ((verstep & 0xf0) == ADM1026_VERSTEP_GENERIC) {
                  dev_err(&adapter->dev, ": Found version/stepping "
                        "0x%02x. Assuming generic ADM1026.\n",
                        verstep);
                  kind = any_chip;
            } else {
                  dev_dbg(&new_client->dev, ": Autodetection "
                        "failed\n");
                  /* Not an ADM1026 ... */
                  if (kind == 0)  { /* User used force=x,y */
                        dev_err(&adapter->dev, "Generic ADM1026 not "
                              "found at %d,0x%02x.  Try "
                              "force_adm1026.\n",
                              i2c_adapter_id(adapter), address);
                  }
                  err = 0;
                  goto exitfree;
            }
      }

      /* Fill in the chip specific driver values */
      switch (kind) {
      case any_chip :
            type_name = "adm1026";
            break;
      case adm1026 :
            type_name = "adm1026";
            break;
      default :
            dev_err(&adapter->dev, ": Internal error, invalid "
                  "kind (%d)!\n", kind);
            err = -EFAULT;
            goto exitfree;
      }
      strlcpy(new_client->name, type_name, I2C_NAME_SIZE);

      /* Fill in the remaining client fields */
      data->type = kind;
      data->valid = 0;
      mutex_init(&data->update_lock);

      /* Tell the I2C layer a new client has arrived */
      if ((err = i2c_attach_client(new_client)))
            goto exitfree;

      /* Set the VRM version */
      data->vrm = vid_which_vrm();

      /* Initialize the ADM1026 chip */
      adm1026_init_client(new_client);

      /* Register sysfs hooks */
      if ((err = sysfs_create_group(&new_client->dev.kobj, &adm1026_group)))
            goto exitdetach;

      data->hwmon_dev = hwmon_device_register(&new_client->dev);
      if (IS_ERR(data->hwmon_dev)) {
            err = PTR_ERR(data->hwmon_dev);
            goto exitremove;
      }

      return 0;

      /* Error out and cleanup code */
exitremove:
      sysfs_remove_group(&new_client->dev.kobj, &adm1026_group);
exitdetach:
      i2c_detach_client(new_client);
exitfree:
      kfree(data);
exit:
      return err;
}

static int adm1026_detach_client(struct i2c_client *client)
{
      struct adm1026_data *data = i2c_get_clientdata(client);
      hwmon_device_unregister(data->hwmon_dev);
      sysfs_remove_group(&client->dev.kobj, &adm1026_group);
      i2c_detach_client(client);
      kfree(data);
      return 0;
}

static int __init sm_adm1026_init(void)
{
      return i2c_add_driver(&adm1026_driver);
}

static void  __exit sm_adm1026_exit(void)
{
      i2c_del_driver(&adm1026_driver);
}

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
              "Justin Thiessen <jthiessen@penguincomputing.com>");
MODULE_DESCRIPTION("ADM1026 driver");

module_init(sm_adm1026_init);
module_exit(sm_adm1026_exit);

Generated by  Doxygen 1.6.0   Back to index