Logo Search packages:      
Sourcecode: linux version File versions  Download package

adm1031.c

/*
  adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
  monitoring
  Based on lm75.c and lm85.c
  Supports adm1030 / adm1031
  Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
  Reworked by Jean Delvare <khali@linux-fr.org>
  
  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/mutex.h>

/* Following macros takes channel parameter starting from 0 to 2 */
#define ADM1031_REG_FAN_SPEED(nr)   (0x08 + (nr))
#define ADM1031_REG_FAN_DIV(nr)           (0x20  + (nr))
#define ADM1031_REG_PWM             (0x22)
#define ADM1031_REG_FAN_MIN(nr)           (0x10 + (nr))

#define ADM1031_REG_TEMP_MAX(nr)    (0x14  + 4*(nr))
#define ADM1031_REG_TEMP_MIN(nr)    (0x15  + 4*(nr))
#define ADM1031_REG_TEMP_CRIT(nr)   (0x16  + 4*(nr))

#define ADM1031_REG_TEMP(nr)        (0xa + (nr))
#define ADM1031_REG_AUTO_TEMP(nr)   (0x24 + (nr))

#define ADM1031_REG_STATUS(nr)            (0x2 + (nr))

#define ADM1031_REG_CONF1           0x0
#define ADM1031_REG_CONF2           0x1
#define ADM1031_REG_EXT_TEMP        0x6

#define ADM1031_CONF1_MONITOR_ENABLE      0x01  /* Monitoring enable */
#define ADM1031_CONF1_PWM_INVERT    0x08  /* PWM Invert */
#define ADM1031_CONF1_AUTO_MODE           0x80  /* Auto FAN */

#define ADM1031_CONF2_PWM1_ENABLE   0x01
#define ADM1031_CONF2_PWM2_ENABLE   0x02
#define ADM1031_CONF2_TACH1_ENABLE  0x04
#define ADM1031_CONF2_TACH2_ENABLE  0x08
#define ADM1031_CONF2_TEMP_ENABLE(chan)   (0x10 << (chan))

/* Addresses to scan */
static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };

/* Insmod parameters */
I2C_CLIENT_INSMOD_2(adm1030, adm1031);

typedef u8 auto_chan_table_t[8][2];

/* Each client has this additional data */
struct adm1031_data {
      struct i2c_client client;
      struct device *hwmon_dev;
      struct mutex update_lock;
      int chip_type;
      char valid;       /* !=0 if following fields are valid */
      unsigned long last_updated;   /* In jiffies */
      /* The chan_select_table contains the possible configurations for
       * auto fan control.
       */
      auto_chan_table_t *chan_select_table;
      u16 alarm;
      u8 conf1;
      u8 conf2;
      u8 fan[2];
      u8 fan_div[2];
      u8 fan_min[2];
      u8 pwm[2];
      u8 old_pwm[2];
      s8 temp[3];
      u8 ext_temp[3];
      u8 auto_temp[3];
      u8 auto_temp_min[3];
      u8 auto_temp_off[3];
      u8 auto_temp_max[3];
      s8 temp_min[3];
      s8 temp_max[3];
      s8 temp_crit[3];
};

static int adm1031_attach_adapter(struct i2c_adapter *adapter);
static int adm1031_detect(struct i2c_adapter *adapter, int address, int kind);
static void adm1031_init_client(struct i2c_client *client);
static int adm1031_detach_client(struct i2c_client *client);
static struct adm1031_data *adm1031_update_device(struct device *dev);

/* This is the driver that will be inserted */
static struct i2c_driver adm1031_driver = {
      .driver = {
            .name = "adm1031",
      },
      .attach_adapter = adm1031_attach_adapter,
      .detach_client = adm1031_detach_client,
};

static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
{
      return i2c_smbus_read_byte_data(client, reg);
}

static inline int
adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
{
      return i2c_smbus_write_byte_data(client, reg, value);
}


#define TEMP_TO_REG(val)            (((val) < 0 ? ((val - 500) / 1000) : \
                              ((val + 500) / 1000)))

#define TEMP_FROM_REG(val)          ((val) * 1000)

#define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)

#define FAN_FROM_REG(reg, div)            ((reg) ? (11250 * 60) / ((reg) * (div)) : 0)

static int FAN_TO_REG(int reg, int div)
{
      int tmp;
      tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
      return tmp > 255 ? 255 : tmp;
}

#define FAN_DIV_FROM_REG(reg)       (1<<(((reg)&0xc0)>>6))

#define PWM_TO_REG(val)             (SENSORS_LIMIT((val), 0, 255) >> 4)
#define PWM_FROM_REG(val)           ((val) << 4)

#define FAN_CHAN_FROM_REG(reg)            (((reg) >> 5) & 7)
#define FAN_CHAN_TO_REG(val, reg)   \
      (((reg) & 0x1F) | (((val) << 5) & 0xe0))

#define AUTO_TEMP_MIN_TO_REG(val, reg)    \
      ((((val)/500) & 0xf8)|((reg) & 0x7))
#define AUTO_TEMP_RANGE_FROM_REG(reg)     (5000 * (1<< ((reg)&0x7)))
#define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))

#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)   ((((reg) >> 3) & 0x1f) << 2)

#define AUTO_TEMP_OFF_FROM_REG(reg)       \
      (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)

#define AUTO_TEMP_MAX_FROM_REG(reg)       \
      (AUTO_TEMP_RANGE_FROM_REG(reg) +    \
      AUTO_TEMP_MIN_FROM_REG(reg))

static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
{
      int ret;
      int range = val - AUTO_TEMP_MIN_FROM_REG(reg);

      range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
      ret = ((reg & 0xf8) |
             (range < 10000 ? 0 :
            range < 20000 ? 1 :
            range < 40000 ? 2 : range < 80000 ? 3 : 4));
      return ret;
}

/* FAN auto control */
#define GET_FAN_AUTO_BITFIELD(data, idx)  \
      (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]

/* The tables below contains the possible values for the auto fan 
 * control bitfields. the index in the table is the register value.
 * MSb is the auto fan control enable bit, so the four first entries
 * in the table disables auto fan control when both bitfields are zero.
 */
static auto_chan_table_t auto_channel_select_table_adm1031 = {
      {0, 0}, {0, 0}, {0, 0}, {0, 0},
      {2 /*0b010 */ , 4 /*0b100 */ },
      {2 /*0b010 */ , 2 /*0b010 */ },
      {4 /*0b100 */ , 4 /*0b100 */ },
      {7 /*0b111 */ , 7 /*0b111 */ },
};

static auto_chan_table_t auto_channel_select_table_adm1030 = {
      {0, 0}, {0, 0}, {0, 0}, {0, 0},
      {2 /*0b10 */            , 0},
      {0xff /*invalid */      , 0},
      {0xff /*invalid */      , 0},
      {3 /*0b11 */            , 0},
};

/* That function checks if a bitfield is valid and returns the other bitfield
 * nearest match if no exact match where found.
 */
static int
get_fan_auto_nearest(struct adm1031_data *data,
                 int chan, u8 val, u8 reg, u8 * new_reg)
{
      int i;
      int first_match = -1, exact_match = -1;
      u8 other_reg_val =
          (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];

      if (val == 0) {
            *new_reg = 0;
            return 0;
      }

      for (i = 0; i < 8; i++) {
            if ((val == (*data->chan_select_table)[i][chan]) &&
                ((*data->chan_select_table)[i][chan ? 0 : 1] ==
                 other_reg_val)) {
                  /* We found an exact match */
                  exact_match = i;
                  break;
            } else if (val == (*data->chan_select_table)[i][chan] &&
                     first_match == -1) {
                  /* Save the first match in case of an exact match has not been
                   * found 
                   */
                  first_match = i;
            }
      }

      if (exact_match >= 0) {
            *new_reg = exact_match;
      } else if (first_match >= 0) {
            *new_reg = first_match;
      } else {
            return -EINVAL;
      }
      return 0;
}

static ssize_t show_fan_auto_channel(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
}

static ssize_t
set_fan_auto_channel(struct device *dev, const char *buf, size_t count, int nr)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1031_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);
      u8 reg;
      int ret;
      u8 old_fan_mode;

      old_fan_mode = data->conf1;

      mutex_lock(&data->update_lock);
      
      if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
            mutex_unlock(&data->update_lock);
            return ret;
      }
      if (((data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1)) & ADM1031_CONF1_AUTO_MODE) ^ 
          (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
            if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
                  /* Switch to Auto Fan Mode 
                   * Save PWM registers 
                   * Set PWM registers to 33% Both */
                  data->old_pwm[0] = data->pwm[0];
                  data->old_pwm[1] = data->pwm[1];
                  adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
            } else {
                  /* Switch to Manual Mode */
                  data->pwm[0] = data->old_pwm[0];
                  data->pwm[1] = data->old_pwm[1];
                  /* Restore PWM registers */
                  adm1031_write_value(client, ADM1031_REG_PWM, 
                                  data->pwm[0] | (data->pwm[1] << 4));
            }
      }
      data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
      adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
      mutex_unlock(&data->update_lock);
      return count;
}

#define fan_auto_channel_offset(offset)                                 \
static ssize_t show_fan_auto_channel_##offset (struct device *dev, struct device_attribute *attr, char *buf)      \
{                                                           \
      return show_fan_auto_channel(dev, buf, offset - 1);               \
}                                                           \
static ssize_t set_fan_auto_channel_##offset (struct device *dev, struct device_attribute *attr,            \
      const char *buf, size_t count)                                    \
{                                                           \
      return set_fan_auto_channel(dev, buf, count, offset - 1);         \
}                                                           \
static DEVICE_ATTR(auto_fan##offset##_channel, S_IRUGO | S_IWUSR,       \
               show_fan_auto_channel_##offset,                    \
               set_fan_auto_channel_##offset)

fan_auto_channel_offset(1);
fan_auto_channel_offset(2);

/* Auto Temps */
static ssize_t show_auto_temp_off(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n", 
                   AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
}
static ssize_t show_auto_temp_min(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n",
                   AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
}
static ssize_t
set_auto_temp_min(struct device *dev, const char *buf, size_t count, int nr)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1031_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
      adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
                      data->auto_temp[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}
static ssize_t show_auto_temp_max(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n",
                   AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
}
static ssize_t
set_auto_temp_max(struct device *dev, const char *buf, size_t count, int nr)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1031_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
      adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
                      data->temp_max[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define auto_temp_reg(offset)                                     \
static ssize_t show_auto_temp_##offset##_off (struct device *dev, struct device_attribute *attr, char *buf) \
{                                                           \
      return show_auto_temp_off(dev, buf, offset - 1);                  \
}                                                           \
static ssize_t show_auto_temp_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
{                                                           \
      return show_auto_temp_min(dev, buf, offset - 1);                  \
}                                                           \
static ssize_t show_auto_temp_##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \
{                                                           \
      return show_auto_temp_max(dev, buf, offset - 1);                  \
}                                                           \
static ssize_t set_auto_temp_##offset##_min (struct device *dev, struct device_attribute *attr,       \
                                   const char *buf, size_t count) \
{                                                           \
      return set_auto_temp_min(dev, buf, count, offset - 1);            \
}                                                           \
static ssize_t set_auto_temp_##offset##_max (struct device *dev, struct device_attribute *attr,       \
                                   const char *buf, size_t count) \
{                                                           \
      return set_auto_temp_max(dev, buf, count, offset - 1);            \
}                                                           \
static DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,                    \
               show_auto_temp_##offset##_off, NULL);              \
static DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,                \
               show_auto_temp_##offset##_min, set_auto_temp_##offset##_min);\
static DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,                \
               show_auto_temp_##offset##_max, set_auto_temp_##offset##_max)

auto_temp_reg(1);
auto_temp_reg(2);
auto_temp_reg(3);

/* pwm */
static ssize_t show_pwm(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
}
static ssize_t
set_pwm(struct device *dev, const char *buf, size_t count, int nr)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1031_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);
      int reg;

      mutex_lock(&data->update_lock);
      if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) && 
          (((val>>4) & 0xf) != 5)) {
            /* In automatic mode, the only PWM accepted is 33% */
            mutex_unlock(&data->update_lock);
            return -EINVAL;
      }
      data->pwm[nr] = PWM_TO_REG(val);
      reg = adm1031_read_value(client, ADM1031_REG_PWM);
      adm1031_write_value(client, ADM1031_REG_PWM,
                      nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
                      : (data->pwm[nr] & 0xf) | (reg & 0xf0));
      mutex_unlock(&data->update_lock);
      return count;
}

#define pwm_reg(offset)                                     \
static ssize_t show_pwm_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
{                                                     \
      return show_pwm(dev, buf, offset - 1);                \
}                                                     \
static ssize_t set_pwm_##offset (struct device *dev, struct device_attribute *attr,             \
                         const char *buf, size_t count)           \
{                                                     \
      return set_pwm(dev, buf, count, offset - 1);          \
}                                                     \
static DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,                \
               show_pwm_##offset, set_pwm_##offset)

pwm_reg(1);
pwm_reg(2);

/* Fans */

/*
 * That function checks the cases where the fan reading is not
 * relevant.  It is used to provide 0 as fan reading when the fan is
 * not supposed to run
 */
static int trust_fan_readings(struct adm1031_data *data, int chan)
{
      int res = 0;

      if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
            switch (data->conf1 & 0x60) {
            case 0x00:  /* remote temp1 controls fan1 remote temp2 controls fan2 */
                  res = data->temp[chan+1] >=
                        AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
                  break;
            case 0x20:  /* remote temp1 controls both fans */
                  res =
                      data->temp[1] >=
                      AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
                  break;
            case 0x40:  /* remote temp2 controls both fans */
                  res =
                      data->temp[2] >=
                      AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
                  break;
            case 0x60:  /* max controls both fans */
                  res =
                      data->temp[0] >=
                      AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
                      || data->temp[1] >=
                      AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
                      || (data->chip_type == adm1031 
                        && data->temp[2] >=
                        AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
                  break;
            }
      } else {
            res = data->pwm[chan] > 0;
      }
      return res;
}


static ssize_t show_fan(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      int value;

      value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
                         FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
      return sprintf(buf, "%d\n", value);
}

static ssize_t show_fan_div(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
}
static ssize_t show_fan_min(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n",
                   FAN_FROM_REG(data->fan_min[nr],
                            FAN_DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t
set_fan_min(struct device *dev, const char *buf, size_t count, int nr)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1031_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      if (val) {
            data->fan_min[nr] = 
                  FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
      } else {
            data->fan_min[nr] = 0xff;
      }
      adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}
static ssize_t
set_fan_div(struct device *dev, const char *buf, size_t count, int nr)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1031_data *data = i2c_get_clientdata(client);
      int val = simple_strtol(buf, NULL, 10);
      u8 tmp;
      int old_div;
      int new_min;

      tmp = val == 8 ? 0xc0 :
            val == 4 ? 0x80 :
            val == 2 ? 0x40 : 
            val == 1 ? 0x00 :  
            0xff;
      if (tmp == 0xff)
            return -EINVAL;
      
      mutex_lock(&data->update_lock);
      old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
      data->fan_div[nr] = (tmp & 0xC0) | (0x3f & data->fan_div[nr]);
      new_min = data->fan_min[nr] * old_div / 
            FAN_DIV_FROM_REG(data->fan_div[nr]);
      data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
      data->fan[nr] = data->fan[nr] * old_div / 
            FAN_DIV_FROM_REG(data->fan_div[nr]);

      adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr), 
                      data->fan_div[nr]);
      adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), 
                      data->fan_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define fan_offset(offset)                                  \
static ssize_t show_fan_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
{                                                     \
      return show_fan(dev, buf, offset - 1);                \
}                                                     \
static ssize_t show_fan_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
{                                                     \
      return show_fan_min(dev, buf, offset - 1);                  \
}                                                     \
static ssize_t show_fan_##offset##_div (struct device *dev, struct device_attribute *attr, char *buf) \
{                                                     \
      return show_fan_div(dev, buf, offset - 1);                  \
}                                                     \
static ssize_t set_fan_##offset##_min (struct device *dev, struct device_attribute *attr,       \
      const char *buf, size_t count)                              \
{                                                     \
      return set_fan_min(dev, buf, count, offset - 1);            \
}                                                     \
static ssize_t set_fan_##offset##_div (struct device *dev, struct device_attribute *attr,       \
      const char *buf, size_t count)                              \
{                                                     \
      return set_fan_div(dev, buf, count, offset - 1);            \
}                                                     \
static DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan_##offset,     \
               NULL);                                 \
static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,          \
               show_fan_##offset##_min, set_fan_##offset##_min);  \
static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,          \
               show_fan_##offset##_div, set_fan_##offset##_div);  \
static DEVICE_ATTR(auto_fan##offset##_min_pwm, S_IRUGO | S_IWUSR, \
               show_pwm_##offset, set_pwm_##offset)

fan_offset(1);
fan_offset(2);


/* Temps */
static ssize_t show_temp(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      int ext;
      ext = nr == 0 ?
          ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
          (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
      return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
}
static ssize_t show_temp_min(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
}
static ssize_t show_temp_max(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
}
static ssize_t show_temp_crit(struct device *dev, char *buf, int nr)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
}
static ssize_t
set_temp_min(struct device *dev, const char *buf, size_t count, int nr)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1031_data *data = i2c_get_clientdata(client);
      int val;

      val = simple_strtol(buf, NULL, 10);
      val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
      mutex_lock(&data->update_lock);
      data->temp_min[nr] = TEMP_TO_REG(val);
      adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
                      data->temp_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}
static ssize_t
set_temp_max(struct device *dev, const char *buf, size_t count, int nr)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1031_data *data = i2c_get_clientdata(client);
      int val;

      val = simple_strtol(buf, NULL, 10);
      val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
      mutex_lock(&data->update_lock);
      data->temp_max[nr] = TEMP_TO_REG(val);
      adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
                      data->temp_max[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}
static ssize_t
set_temp_crit(struct device *dev, const char *buf, size_t count, int nr)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1031_data *data = i2c_get_clientdata(client);
      int val;

      val = simple_strtol(buf, NULL, 10);
      val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
      mutex_lock(&data->update_lock);
      data->temp_crit[nr] = TEMP_TO_REG(val);
      adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
                      data->temp_crit[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define temp_reg(offset)                                          \
static ssize_t show_temp_##offset (struct device *dev, struct device_attribute *attr, char *buf)            \
{                                                           \
      return show_temp(dev, buf, offset - 1);                     \
}                                                           \
static ssize_t show_temp_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf)            \
{                                                           \
      return show_temp_min(dev, buf, offset - 1);                       \
}                                                           \
static ssize_t show_temp_##offset##_max (struct device *dev, struct device_attribute *attr, char *buf)            \
{                                                           \
      return show_temp_max(dev, buf, offset - 1);                       \
}                                                           \
static ssize_t show_temp_##offset##_crit (struct device *dev, struct device_attribute *attr, char *buf)     \
{                                                           \
      return show_temp_crit(dev, buf, offset - 1);                \
}                                                           \
static ssize_t set_temp_##offset##_min (struct device *dev, struct device_attribute *attr,                  \
                              const char *buf, size_t count)            \
{                                                           \
      return set_temp_min(dev, buf, count, offset - 1);                 \
}                                                           \
static ssize_t set_temp_##offset##_max (struct device *dev, struct device_attribute *attr,                  \
                              const char *buf, size_t count)            \
{                                                           \
      return set_temp_max(dev, buf, count, offset - 1);                 \
}                                                           \
static ssize_t set_temp_##offset##_crit (struct device *dev, struct device_attribute *attr,                 \
                               const char *buf, size_t count)           \
{                                                           \
      return set_temp_crit(dev, buf, count, offset - 1);                \
}                                                           \
static DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp_##offset,         \
               NULL);                                       \
static DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,               \
               show_temp_##offset##_min, set_temp_##offset##_min);            \
static DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,               \
               show_temp_##offset##_max, set_temp_##offset##_max);            \
static DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,              \
               show_temp_##offset##_crit, set_temp_##offset##_crit)

temp_reg(1);
temp_reg(2);
temp_reg(3);

/* Alarms */
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct adm1031_data *data = adm1031_update_device(dev);
      return sprintf(buf, "%d\n", data->alarm);
}

static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);


static int adm1031_attach_adapter(struct i2c_adapter *adapter)
{
      if (!(adapter->class & I2C_CLASS_HWMON))
            return 0;
      return i2c_probe(adapter, &addr_data, adm1031_detect);
}

static struct attribute *adm1031_attributes[] = {
      &dev_attr_fan1_input.attr,
      &dev_attr_fan1_div.attr,
      &dev_attr_fan1_min.attr,
      &dev_attr_pwm1.attr,
      &dev_attr_auto_fan1_channel.attr,
      &dev_attr_temp1_input.attr,
      &dev_attr_temp1_min.attr,
      &dev_attr_temp1_max.attr,
      &dev_attr_temp1_crit.attr,
      &dev_attr_temp2_input.attr,
      &dev_attr_temp2_min.attr,
      &dev_attr_temp2_max.attr,
      &dev_attr_temp2_crit.attr,

      &dev_attr_auto_temp1_off.attr,
      &dev_attr_auto_temp1_min.attr,
      &dev_attr_auto_temp1_max.attr,

      &dev_attr_auto_temp2_off.attr,
      &dev_attr_auto_temp2_min.attr,
      &dev_attr_auto_temp2_max.attr,

      &dev_attr_auto_fan1_min_pwm.attr,

      &dev_attr_alarms.attr,

      NULL
};

static const struct attribute_group adm1031_group = {
      .attrs = adm1031_attributes,
};

static struct attribute *adm1031_attributes_opt[] = {
      &dev_attr_fan2_input.attr,
      &dev_attr_fan2_div.attr,
      &dev_attr_fan2_min.attr,
      &dev_attr_pwm2.attr,
      &dev_attr_auto_fan2_channel.attr,
      &dev_attr_temp3_input.attr,
      &dev_attr_temp3_min.attr,
      &dev_attr_temp3_max.attr,
      &dev_attr_temp3_crit.attr,
      &dev_attr_auto_temp3_off.attr,
      &dev_attr_auto_temp3_min.attr,
      &dev_attr_auto_temp3_max.attr,
      &dev_attr_auto_fan2_min_pwm.attr,
      NULL
};

static const struct attribute_group adm1031_group_opt = {
      .attrs = adm1031_attributes_opt,
};

/* This function is called by i2c_probe */
static int adm1031_detect(struct i2c_adapter *adapter, int address, int kind)
{
      struct i2c_client *new_client;
      struct adm1031_data *data;
      int err = 0;
      const char *name = "";

      if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
            goto exit;

      if (!(data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL))) {
            err = -ENOMEM;
            goto exit;
      }

      new_client = &data->client;
      i2c_set_clientdata(new_client, data);
      new_client->addr = address;
      new_client->adapter = adapter;
      new_client->driver = &adm1031_driver;
      new_client->flags = 0;

      if (kind < 0) {
            int id, co;
            id = i2c_smbus_read_byte_data(new_client, 0x3d);
            co = i2c_smbus_read_byte_data(new_client, 0x3e);

            if (!((id == 0x31 || id == 0x30) && co == 0x41))
                  goto exit_free;
            kind = (id == 0x30) ? adm1030 : adm1031;
      }

      if (kind <= 0)
            kind = adm1031;

      /* Given the detected chip type, set the chip name and the
       * auto fan control helper table. */
      if (kind == adm1030) {
            name = "adm1030";
            data->chan_select_table = &auto_channel_select_table_adm1030;
      } else if (kind == adm1031) {
            name = "adm1031";
            data->chan_select_table = &auto_channel_select_table_adm1031;
      }
      data->chip_type = kind;

      strlcpy(new_client->name, name, I2C_NAME_SIZE);
      data->valid = 0;
      mutex_init(&data->update_lock);

      /* Tell the I2C layer a new client has arrived */
      if ((err = i2c_attach_client(new_client)))
            goto exit_free;

      /* Initialize the ADM1031 chip */
      adm1031_init_client(new_client);

      /* Register sysfs hooks */
      if ((err = sysfs_create_group(&new_client->dev.kobj, &adm1031_group)))
            goto exit_detach;

      if (kind == adm1031) {
            if ((err = sysfs_create_group(&new_client->dev.kobj,
                                    &adm1031_group_opt)))
                  goto exit_remove;
      }

      data->hwmon_dev = hwmon_device_register(&new_client->dev);
      if (IS_ERR(data->hwmon_dev)) {
            err = PTR_ERR(data->hwmon_dev);
            goto exit_remove;
      }

      return 0;

exit_remove:
      sysfs_remove_group(&new_client->dev.kobj, &adm1031_group);
      sysfs_remove_group(&new_client->dev.kobj, &adm1031_group_opt);
exit_detach:
      i2c_detach_client(new_client);
exit_free:
      kfree(data);
exit:
      return err;
}

static int adm1031_detach_client(struct i2c_client *client)
{
      struct adm1031_data *data = i2c_get_clientdata(client);
      int ret;

      hwmon_device_unregister(data->hwmon_dev);
      sysfs_remove_group(&client->dev.kobj, &adm1031_group);
      sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
      if ((ret = i2c_detach_client(client)) != 0) {
            return ret;
      }
      kfree(data);
      return 0;
}

static void adm1031_init_client(struct i2c_client *client)
{
      unsigned int read_val;
      unsigned int mask;
      struct adm1031_data *data = i2c_get_clientdata(client);

      mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
      if (data->chip_type == adm1031) {
            mask |= (ADM1031_CONF2_PWM2_ENABLE |
                  ADM1031_CONF2_TACH2_ENABLE);
      } 
      /* Initialize the ADM1031 chip (enables fan speed reading ) */
      read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
      if ((read_val | mask) != read_val) {
          adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
      }

      read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
      if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
          adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
                        ADM1031_CONF1_MONITOR_ENABLE);
      }

}

static struct adm1031_data *adm1031_update_device(struct device *dev)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct adm1031_data *data = i2c_get_clientdata(client);
      int chan;

      mutex_lock(&data->update_lock);

      if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
          || !data->valid) {

            dev_dbg(&client->dev, "Starting adm1031 update\n");
            for (chan = 0;
                 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
                  u8 oldh, newh;

                  oldh =
                      adm1031_read_value(client, ADM1031_REG_TEMP(chan));
                  data->ext_temp[chan] =
                      adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
                  newh =
                      adm1031_read_value(client, ADM1031_REG_TEMP(chan));
                  if (newh != oldh) {
                        data->ext_temp[chan] =
                            adm1031_read_value(client,
                                           ADM1031_REG_EXT_TEMP);
#ifdef DEBUG
                        oldh =
                            adm1031_read_value(client,
                                           ADM1031_REG_TEMP(chan));

                        /* oldh is actually newer */
                        if (newh != oldh)
                              dev_warn(&client->dev,
                                     "Remote temperature may be "
                                     "wrong.\n");
#endif
                  }
                  data->temp[chan] = newh;

                  data->temp_min[chan] =
                      adm1031_read_value(client,
                                     ADM1031_REG_TEMP_MIN(chan));
                  data->temp_max[chan] =
                      adm1031_read_value(client,
                                     ADM1031_REG_TEMP_MAX(chan));
                  data->temp_crit[chan] =
                      adm1031_read_value(client,
                                     ADM1031_REG_TEMP_CRIT(chan));
                  data->auto_temp[chan] =
                      adm1031_read_value(client,
                                     ADM1031_REG_AUTO_TEMP(chan));

            }

            data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
            data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);

            data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
                       | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
                        << 8);
            if (data->chip_type == adm1030) {
                  data->alarm &= 0xc0ff;
            }
            
            for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
                  data->fan_div[chan] =
                      adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
                  data->fan_min[chan] =
                      adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
                  data->fan[chan] =
                      adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
                  data->pwm[chan] =
                      0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >> 
                           (4*chan));
            }
            data->last_updated = jiffies;
            data->valid = 1;
      }

      mutex_unlock(&data->update_lock);

      return data;
}

static int __init sensors_adm1031_init(void)
{
      return i2c_add_driver(&adm1031_driver);
}

static void __exit sensors_adm1031_exit(void)
{
      i2c_del_driver(&adm1031_driver);
}

MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
MODULE_LICENSE("GPL");

module_init(sensors_adm1031_init);
module_exit(sensors_adm1031_exit);

Generated by  Doxygen 1.6.0   Back to index