Logo Search packages:      
Sourcecode: linux version File versions  Download package

af_irda.c

/*********************************************************************
 *
 * Filename:      af_irda.c
 * Version:       0.9
 * Description:   IrDA sockets implementation
 * Status:        Stable
 * Author:        Dag Brattli <dagb@cs.uit.no>
 * Created at:    Sun May 31 10:12:43 1998
 * Modified at:   Sat Dec 25 21:10:23 1999
 * Modified by:   Dag Brattli <dag@brattli.net>
 * Sources:       af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
 *
 *     Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
 *     Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
 *     All Rights Reserved.
 *
 *     This program is free software; you can redistribute it and/or
 *     modify it under the terms of the GNU General Public License as
 *     published by the Free Software Foundation; either version 2 of
 *     the License, or (at your option) any later version.
 *
 *     This program is distributed in the hope that it will be useful,
 *     but WITHOUT ANY WARRANTY; without even the implied warranty of
 *     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *     GNU General Public License for more details.
 *
 *     You should have received a copy of the GNU General Public License
 *     along with this program; if not, write to the Free Software
 *     Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 *     MA 02111-1307 USA
 *
 *     Linux-IrDA now supports four different types of IrDA sockets:
 *
 *     o SOCK_STREAM:    TinyTP connections with SAR disabled. The
 *                       max SDU size is 0 for conn. of this type
 *     o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
 *                       fragment the messages, but will preserve
 *                       the message boundaries
 *     o SOCK_DGRAM:     IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
 *                       (unreliable) transfers
 *                       IRDAPROTO_ULTRA: Connectionless and unreliable data
 *
 ********************************************************************/

#include <linux/capability.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/init.h>
#include <linux/net.h>
#include <linux/irda.h>
#include <linux/poll.h>

#include <asm/ioctls.h>       /* TIOCOUTQ, TIOCINQ */
#include <asm/uaccess.h>

#include <net/sock.h>
#include <net/tcp_states.h>

#include <net/irda/af_irda.h>

static int irda_create(struct net *net, struct socket *sock, int protocol);

static const struct proto_ops irda_stream_ops;
static const struct proto_ops irda_seqpacket_ops;
static const struct proto_ops irda_dgram_ops;

#ifdef CONFIG_IRDA_ULTRA
static const struct proto_ops irda_ultra_ops;
#define ULTRA_MAX_DATA 382
#endif /* CONFIG_IRDA_ULTRA */

#define IRDA_MAX_HEADER (TTP_MAX_HEADER)

/*
 * Function irda_data_indication (instance, sap, skb)
 *
 *    Received some data from TinyTP. Just queue it on the receive queue
 *
 */
static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
{
      struct irda_sock *self;
      struct sock *sk;
      int err;

      IRDA_DEBUG(3, "%s()\n", __FUNCTION__);

      self = instance;
      sk = instance;

      err = sock_queue_rcv_skb(sk, skb);
      if (err) {
            IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__);
            self->rx_flow = FLOW_STOP;

            /* When we return error, TTP will need to requeue the skb */
            return err;
      }

      return 0;
}

/*
 * Function irda_disconnect_indication (instance, sap, reason, skb)
 *
 *    Connection has been closed. Check reason to find out why
 *
 */
static void irda_disconnect_indication(void *instance, void *sap,
                               LM_REASON reason, struct sk_buff *skb)
{
      struct irda_sock *self;
      struct sock *sk;

      self = instance;

      IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);

      /* Don't care about it, but let's not leak it */
      if(skb)
            dev_kfree_skb(skb);

      sk = instance;
      if (sk == NULL) {
            IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
                     __FUNCTION__, self);
            return;
      }

      /* Prevent race conditions with irda_release() and irda_shutdown() */
      bh_lock_sock(sk);
      if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
            sk->sk_state     = TCP_CLOSE;
            sk->sk_shutdown |= SEND_SHUTDOWN;

            sk->sk_state_change(sk);

            /* Close our TSAP.
             * If we leave it open, IrLMP put it back into the list of
             * unconnected LSAPs. The problem is that any incoming request
             * can then be matched to this socket (and it will be, because
             * it is at the head of the list). This would prevent any
             * listening socket waiting on the same TSAP to get those
             * requests. Some apps forget to close sockets, or hang to it
             * a bit too long, so we may stay in this dead state long
             * enough to be noticed...
             * Note : all socket function do check sk->sk_state, so we are
             * safe...
             * Jean II
             */
            if (self->tsap) {
                  irttp_close_tsap(self->tsap);
                  self->tsap = NULL;
            }
      }
      bh_unlock_sock(sk);

      /* Note : once we are there, there is not much you want to do
       * with the socket anymore, apart from closing it.
       * For example, bind() and connect() won't reset sk->sk_err,
       * sk->sk_shutdown and sk->sk_flags to valid values...
       * Jean II
       */
}

/*
 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
 *
 *    Connections has been confirmed by the remote device
 *
 */
static void irda_connect_confirm(void *instance, void *sap,
                         struct qos_info *qos,
                         __u32 max_sdu_size, __u8 max_header_size,
                         struct sk_buff *skb)
{
      struct irda_sock *self;
      struct sock *sk;

      self = instance;

      IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);

      sk = instance;
      if (sk == NULL) {
            dev_kfree_skb(skb);
            return;
      }

      dev_kfree_skb(skb);
      // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);

      /* How much header space do we need to reserve */
      self->max_header_size = max_header_size;

      /* IrTTP max SDU size in transmit direction */
      self->max_sdu_size_tx = max_sdu_size;

      /* Find out what the largest chunk of data that we can transmit is */
      switch (sk->sk_type) {
      case SOCK_STREAM:
            if (max_sdu_size != 0) {
                  IRDA_ERROR("%s: max_sdu_size must be 0\n",
                           __FUNCTION__);
                  return;
            }
            self->max_data_size = irttp_get_max_seg_size(self->tsap);
            break;
      case SOCK_SEQPACKET:
            if (max_sdu_size == 0) {
                  IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
                           __FUNCTION__);
                  return;
            }
            self->max_data_size = max_sdu_size;
            break;
      default:
            self->max_data_size = irttp_get_max_seg_size(self->tsap);
      }

      IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
               self->max_data_size);

      memcpy(&self->qos_tx, qos, sizeof(struct qos_info));

      /* We are now connected! */
      sk->sk_state = TCP_ESTABLISHED;
      sk->sk_state_change(sk);
}

/*
 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
 *
 *    Incoming connection
 *
 */
static void irda_connect_indication(void *instance, void *sap,
                            struct qos_info *qos, __u32 max_sdu_size,
                            __u8 max_header_size, struct sk_buff *skb)
{
      struct irda_sock *self;
      struct sock *sk;

      self = instance;

      IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);

      sk = instance;
      if (sk == NULL) {
            dev_kfree_skb(skb);
            return;
      }

      /* How much header space do we need to reserve */
      self->max_header_size = max_header_size;

      /* IrTTP max SDU size in transmit direction */
      self->max_sdu_size_tx = max_sdu_size;

      /* Find out what the largest chunk of data that we can transmit is */
      switch (sk->sk_type) {
      case SOCK_STREAM:
            if (max_sdu_size != 0) {
                  IRDA_ERROR("%s: max_sdu_size must be 0\n",
                           __FUNCTION__);
                  kfree_skb(skb);
                  return;
            }
            self->max_data_size = irttp_get_max_seg_size(self->tsap);
            break;
      case SOCK_SEQPACKET:
            if (max_sdu_size == 0) {
                  IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
                           __FUNCTION__);
                  kfree_skb(skb);
                  return;
            }
            self->max_data_size = max_sdu_size;
            break;
      default:
            self->max_data_size = irttp_get_max_seg_size(self->tsap);
      }

      IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
               self->max_data_size);

      memcpy(&self->qos_tx, qos, sizeof(struct qos_info));

      skb_queue_tail(&sk->sk_receive_queue, skb);
      sk->sk_state_change(sk);
}

/*
 * Function irda_connect_response (handle)
 *
 *    Accept incoming connection
 *
 */
static void irda_connect_response(struct irda_sock *self)
{
      struct sk_buff *skb;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__);

      skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
                  GFP_ATOMIC);
      if (skb == NULL) {
            IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
                     __FUNCTION__);
            return;
      }

      /* Reserve space for MUX_CONTROL and LAP header */
      skb_reserve(skb, IRDA_MAX_HEADER);

      irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
}

/*
 * Function irda_flow_indication (instance, sap, flow)
 *
 *    Used by TinyTP to tell us if it can accept more data or not
 *
 */
static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
{
      struct irda_sock *self;
      struct sock *sk;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__);

      self = instance;
      sk = instance;
      BUG_ON(sk == NULL);

      switch (flow) {
      case FLOW_STOP:
            IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
                     __FUNCTION__);
            self->tx_flow = flow;
            break;
      case FLOW_START:
            self->tx_flow = flow;
            IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
                     __FUNCTION__);
            wake_up_interruptible(sk->sk_sleep);
            break;
      default:
            IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__);
            /* Unknown flow command, better stop */
            self->tx_flow = flow;
            break;
      }
}

/*
 * Function irda_getvalue_confirm (obj_id, value, priv)
 *
 *    Got answer from remote LM-IAS, just pass object to requester...
 *
 * Note : duplicate from above, but we need our own version that
 * doesn't touch the dtsap_sel and save the full value structure...
 */
static void irda_getvalue_confirm(int result, __u16 obj_id,
                          struct ias_value *value, void *priv)
{
      struct irda_sock *self;

      self = (struct irda_sock *) priv;
      if (!self) {
            IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
            return;
      }

      IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);

      /* We probably don't need to make any more queries */
      iriap_close(self->iriap);
      self->iriap = NULL;

      /* Check if request succeeded */
      if (result != IAS_SUCCESS) {
            IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__,
                     result);

            self->errno = result;   /* We really need it later */

            /* Wake up any processes waiting for result */
            wake_up_interruptible(&self->query_wait);

            return;
      }

      /* Pass the object to the caller (so the caller must delete it) */
      self->ias_result = value;
      self->errno = 0;

      /* Wake up any processes waiting for result */
      wake_up_interruptible(&self->query_wait);
}

/*
 * Function irda_selective_discovery_indication (discovery)
 *
 *    Got a selective discovery indication from IrLMP.
 *
 * IrLMP is telling us that this node is new and matching our hint bit
 * filter. Wake up any process waiting for answer...
 */
static void irda_selective_discovery_indication(discinfo_t *discovery,
                                    DISCOVERY_MODE mode,
                                    void *priv)
{
      struct irda_sock *self;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__);

      self = (struct irda_sock *) priv;
      if (!self) {
            IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
            return;
      }

      /* Pass parameter to the caller */
      self->cachedaddr = discovery->daddr;

      /* Wake up process if its waiting for device to be discovered */
      wake_up_interruptible(&self->query_wait);
}

/*
 * Function irda_discovery_timeout (priv)
 *
 *    Timeout in the selective discovery process
 *
 * We were waiting for a node to be discovered, but nothing has come up
 * so far. Wake up the user and tell him that we failed...
 */
static void irda_discovery_timeout(u_long priv)
{
      struct irda_sock *self;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__);

      self = (struct irda_sock *) priv;
      BUG_ON(self == NULL);

      /* Nothing for the caller */
      self->cachelog = NULL;
      self->cachedaddr = 0;
      self->errno = -ETIME;

      /* Wake up process if its still waiting... */
      wake_up_interruptible(&self->query_wait);
}

/*
 * Function irda_open_tsap (self)
 *
 *    Open local Transport Service Access Point (TSAP)
 *
 */
static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
{
      notify_t notify;

      if (self->tsap) {
            IRDA_WARNING("%s: busy!\n", __FUNCTION__);
            return -EBUSY;
      }

      /* Initialize callbacks to be used by the IrDA stack */
      irda_notify_init(&notify);
      notify.connect_confirm       = irda_connect_confirm;
      notify.connect_indication    = irda_connect_indication;
      notify.disconnect_indication = irda_disconnect_indication;
      notify.data_indication       = irda_data_indication;
      notify.udata_indication      = irda_data_indication;
      notify.flow_indication       = irda_flow_indication;
      notify.instance = self;
      strncpy(notify.name, name, NOTIFY_MAX_NAME);

      self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
                             &notify);
      if (self->tsap == NULL) {
            IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
                     __FUNCTION__);
            return -ENOMEM;
      }
      /* Remember which TSAP selector we actually got */
      self->stsap_sel = self->tsap->stsap_sel;

      return 0;
}

/*
 * Function irda_open_lsap (self)
 *
 *    Open local Link Service Access Point (LSAP). Used for opening Ultra
 *    sockets
 */
#ifdef CONFIG_IRDA_ULTRA
static int irda_open_lsap(struct irda_sock *self, int pid)
{
      notify_t notify;

      if (self->lsap) {
            IRDA_WARNING("%s(), busy!\n", __FUNCTION__);
            return -EBUSY;
      }

      /* Initialize callbacks to be used by the IrDA stack */
      irda_notify_init(&notify);
      notify.udata_indication = irda_data_indication;
      notify.instance = self;
      strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);

      self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
      if (self->lsap == NULL) {
            IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__);
            return -ENOMEM;
      }

      return 0;
}
#endif /* CONFIG_IRDA_ULTRA */

/*
 * Function irda_find_lsap_sel (self, name)
 *
 *    Try to lookup LSAP selector in remote LM-IAS
 *
 * Basically, we start a IAP query, and then go to sleep. When the query
 * return, irda_getvalue_confirm will wake us up, and we can examine the
 * result of the query...
 * Note that in some case, the query fail even before we go to sleep,
 * creating some races...
 */
static int irda_find_lsap_sel(struct irda_sock *self, char *name)
{
      IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name);

      if (self->iriap) {
            IRDA_WARNING("%s(): busy with a previous query\n",
                       __FUNCTION__);
            return -EBUSY;
      }

      self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
                         irda_getvalue_confirm);
      if(self->iriap == NULL)
            return -ENOMEM;

      /* Treat unexpected wakeup as disconnect */
      self->errno = -EHOSTUNREACH;

      /* Query remote LM-IAS */
      iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
                              name, "IrDA:TinyTP:LsapSel");

      /* Wait for answer, if not yet finished (or failed) */
      if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
            /* Treat signals as disconnect */
            return -EHOSTUNREACH;

      /* Check what happened */
      if (self->errno)
      {
            /* Requested object/attribute doesn't exist */
            if((self->errno == IAS_CLASS_UNKNOWN) ||
               (self->errno == IAS_ATTRIB_UNKNOWN))
                  return (-EADDRNOTAVAIL);
            else
                  return (-EHOSTUNREACH);
      }

      /* Get the remote TSAP selector */
      switch (self->ias_result->type) {
      case IAS_INTEGER:
            IRDA_DEBUG(4, "%s() int=%d\n",
                     __FUNCTION__, self->ias_result->t.integer);

            if (self->ias_result->t.integer != -1)
                  self->dtsap_sel = self->ias_result->t.integer;
            else
                  self->dtsap_sel = 0;
            break;
      default:
            self->dtsap_sel = 0;
            IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__);
            break;
      }
      if (self->ias_result)
            irias_delete_value(self->ias_result);

      if (self->dtsap_sel)
            return 0;

      return -EADDRNOTAVAIL;
}

/*
 * Function irda_discover_daddr_and_lsap_sel (self, name)
 *
 *    This try to find a device with the requested service.
 *
 * It basically look into the discovery log. For each address in the list,
 * it queries the LM-IAS of the device to find if this device offer
 * the requested service.
 * If there is more than one node supporting the service, we complain
 * to the user (it should move devices around).
 * The, we set both the destination address and the lsap selector to point
 * on the service on the unique device we have found.
 *
 * Note : this function fails if there is more than one device in range,
 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
 * Moreover, we would need to wait the LAP disconnection...
 */
static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
{
      discinfo_t *discoveries;      /* Copy of the discovery log */
      int   number;                 /* Number of nodes in the log */
      int   i;
      int   err = -ENETUNREACH;
      __u32 daddr = DEV_ADDR_ANY;   /* Address we found the service on */
      __u8  dtsap_sel = 0x0;  /* TSAP associated with it */

      IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name);

      /* Ask lmp for the current discovery log
       * Note : we have to use irlmp_get_discoveries(), as opposed
       * to play with the cachelog directly, because while we are
       * making our ias query, le log might change... */
      discoveries = irlmp_get_discoveries(&number, self->mask.word,
                                  self->nslots);
      /* Check if the we got some results */
      if (discoveries == NULL)
            return -ENETUNREACH;    /* No nodes discovered */

      /*
       * Now, check all discovered devices (if any), and connect
       * client only about the services that the client is
       * interested in...
       */
      for(i = 0; i < number; i++) {
            /* Try the address in the log */
            self->daddr = discoveries[i].daddr;
            self->saddr = 0x0;
            IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
                     __FUNCTION__, self->daddr);

            /* Query remote LM-IAS for this service */
            err = irda_find_lsap_sel(self, name);
            switch (err) {
            case 0:
                  /* We found the requested service */
                  if(daddr != DEV_ADDR_ANY) {
                        IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
                                 __FUNCTION__, name);
                        self->daddr = DEV_ADDR_ANY;
                        kfree(discoveries);
                        return(-ENOTUNIQ);
                  }
                  /* First time we found that one, save it ! */
                  daddr = self->daddr;
                  dtsap_sel = self->dtsap_sel;
                  break;
            case -EADDRNOTAVAIL:
                  /* Requested service simply doesn't exist on this node */
                  break;
            default:
                  /* Something bad did happen :-( */
                  IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__);
                  self->daddr = DEV_ADDR_ANY;
                  kfree(discoveries);
                  return(-EHOSTUNREACH);
                  break;
            }
      }
      /* Cleanup our copy of the discovery log */
      kfree(discoveries);

      /* Check out what we found */
      if(daddr == DEV_ADDR_ANY) {
            IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
                     __FUNCTION__, name);
            self->daddr = DEV_ADDR_ANY;
            return(-EADDRNOTAVAIL);
      }

      /* Revert back to discovered device & service */
      self->daddr = daddr;
      self->saddr = 0x0;
      self->dtsap_sel = dtsap_sel;

      IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
               __FUNCTION__, name, self->daddr);

      return 0;
}

/*
 * Function irda_getname (sock, uaddr, uaddr_len, peer)
 *
 *    Return the our own, or peers socket address (sockaddr_irda)
 *
 */
static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
                  int *uaddr_len, int peer)
{
      struct sockaddr_irda saddr;
      struct sock *sk = sock->sk;
      struct irda_sock *self = irda_sk(sk);

      if (peer) {
            if (sk->sk_state != TCP_ESTABLISHED)
                  return -ENOTCONN;

            saddr.sir_family = AF_IRDA;
            saddr.sir_lsap_sel = self->dtsap_sel;
            saddr.sir_addr = self->daddr;
      } else {
            saddr.sir_family = AF_IRDA;
            saddr.sir_lsap_sel = self->stsap_sel;
            saddr.sir_addr = self->saddr;
      }

      IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel);
      IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr);

      /* uaddr_len come to us uninitialised */
      *uaddr_len = sizeof (struct sockaddr_irda);
      memcpy(uaddr, &saddr, *uaddr_len);

      return 0;
}

/*
 * Function irda_listen (sock, backlog)
 *
 *    Just move to the listen state
 *
 */
static int irda_listen(struct socket *sock, int backlog)
{
      struct sock *sk = sock->sk;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__);

      if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
          (sk->sk_type != SOCK_DGRAM))
            return -EOPNOTSUPP;

      if (sk->sk_state != TCP_LISTEN) {
            sk->sk_max_ack_backlog = backlog;
            sk->sk_state           = TCP_LISTEN;

            return 0;
      }

      return -EOPNOTSUPP;
}

/*
 * Function irda_bind (sock, uaddr, addr_len)
 *
 *    Used by servers to register their well known TSAP
 *
 */
static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
      struct sock *sk = sock->sk;
      struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
      struct irda_sock *self = irda_sk(sk);
      int err;

      IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);

      if (addr_len != sizeof(struct sockaddr_irda))
            return -EINVAL;

#ifdef CONFIG_IRDA_ULTRA
      /* Special care for Ultra sockets */
      if ((sk->sk_type == SOCK_DGRAM) &&
          (sk->sk_protocol == IRDAPROTO_ULTRA)) {
            self->pid = addr->sir_lsap_sel;
            if (self->pid & 0x80) {
                  IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
                  return -EOPNOTSUPP;
            }
            err = irda_open_lsap(self, self->pid);
            if (err < 0)
                  return err;

            /* Pretend we are connected */
            sock->state = SS_CONNECTED;
            sk->sk_state   = TCP_ESTABLISHED;

            return 0;
      }
#endif /* CONFIG_IRDA_ULTRA */

      self->ias_obj = irias_new_object(addr->sir_name, jiffies);
      if (self->ias_obj == NULL)
            return -ENOMEM;

      err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
      if (err < 0) {
            kfree(self->ias_obj->name);
            kfree(self->ias_obj);
            return err;
      }

      /*  Register with LM-IAS */
      irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
                         self->stsap_sel, IAS_KERNEL_ATTR);
      irias_insert_object(self->ias_obj);

      return 0;
}

/*
 * Function irda_accept (sock, newsock, flags)
 *
 *    Wait for incoming connection
 *
 */
static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
{
      struct sock *sk = sock->sk;
      struct irda_sock *new, *self = irda_sk(sk);
      struct sock *newsk;
      struct sk_buff *skb;
      int err;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__);

      err = irda_create(sk->sk_net, newsock, sk->sk_protocol);
      if (err)
            return err;

      if (sock->state != SS_UNCONNECTED)
            return -EINVAL;

      if ((sk = sock->sk) == NULL)
            return -EINVAL;

      if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
          (sk->sk_type != SOCK_DGRAM))
            return -EOPNOTSUPP;

      if (sk->sk_state != TCP_LISTEN)
            return -EINVAL;

      /*
       *    The read queue this time is holding sockets ready to use
       *    hooked into the SABM we saved
       */

      /*
       * We can perform the accept only if there is incoming data
       * on the listening socket.
       * So, we will block the caller until we receive any data.
       * If the caller was waiting on select() or poll() before
       * calling us, the data is waiting for us ;-)
       * Jean II
       */
      while (1) {
            skb = skb_dequeue(&sk->sk_receive_queue);
            if (skb)
                  break;

            /* Non blocking operation */
            if (flags & O_NONBLOCK)
                  return -EWOULDBLOCK;

            err = wait_event_interruptible(*(sk->sk_sleep),
                              skb_peek(&sk->sk_receive_queue));
            if (err)
                  return err;
      }

      newsk = newsock->sk;
      if (newsk == NULL)
            return -EIO;

      newsk->sk_state = TCP_ESTABLISHED;

      new = irda_sk(newsk);

      /* Now attach up the new socket */
      new->tsap = irttp_dup(self->tsap, new);
      if (!new->tsap) {
            IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
            kfree_skb(skb);
            return -1;
      }

      new->stsap_sel = new->tsap->stsap_sel;
      new->dtsap_sel = new->tsap->dtsap_sel;
      new->saddr = irttp_get_saddr(new->tsap);
      new->daddr = irttp_get_daddr(new->tsap);

      new->max_sdu_size_tx = self->max_sdu_size_tx;
      new->max_sdu_size_rx = self->max_sdu_size_rx;
      new->max_data_size   = self->max_data_size;
      new->max_header_size = self->max_header_size;

      memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));

      /* Clean up the original one to keep it in listen state */
      irttp_listen(self->tsap);

      /* Wow ! What is that ? Jean II */
      skb->sk = NULL;
      skb->destructor = NULL;
      kfree_skb(skb);
      sk->sk_ack_backlog--;

      newsock->state = SS_CONNECTED;

      irda_connect_response(new);

      return 0;
}

/*
 * Function irda_connect (sock, uaddr, addr_len, flags)
 *
 *    Connect to a IrDA device
 *
 * The main difference with a "standard" connect is that with IrDA we need
 * to resolve the service name into a TSAP selector (in TCP, port number
 * doesn't have to be resolved).
 * Because of this service name resoltion, we can offer "auto-connect",
 * where we connect to a service without specifying a destination address.
 *
 * Note : by consulting "errno", the user space caller may learn the cause
 * of the failure. Most of them are visible in the function, others may come
 * from subroutines called and are listed here :
 *    o EBUSY : already processing a connect
 *    o EHOSTUNREACH : bad addr->sir_addr argument
 *    o EADDRNOTAVAIL : bad addr->sir_name argument
 *    o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
 *    o ENETUNREACH : no node found on the network (auto-connect)
 */
static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
                  int addr_len, int flags)
{
      struct sock *sk = sock->sk;
      struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
      struct irda_sock *self = irda_sk(sk);
      int err;

      IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);

      /* Don't allow connect for Ultra sockets */
      if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
            return -ESOCKTNOSUPPORT;

      if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
            sock->state = SS_CONNECTED;
            return 0;   /* Connect completed during a ERESTARTSYS event */
      }

      if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
            sock->state = SS_UNCONNECTED;
            return -ECONNREFUSED;
      }

      if (sk->sk_state == TCP_ESTABLISHED)
            return -EISCONN;      /* No reconnect on a seqpacket socket */

      sk->sk_state   = TCP_CLOSE;
      sock->state = SS_UNCONNECTED;

      if (addr_len != sizeof(struct sockaddr_irda))
            return -EINVAL;

      /* Check if user supplied any destination device address */
      if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
            /* Try to find one suitable */
            err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
            if (err) {
                  IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__);
                  return err;
            }
      } else {
            /* Use the one provided by the user */
            self->daddr = addr->sir_addr;
            IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr);

            /* If we don't have a valid service name, we assume the
             * user want to connect on a specific LSAP. Prevent
             * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
            if((addr->sir_name[0] != '\0') ||
               (addr->sir_lsap_sel >= 0x70)) {
                  /* Query remote LM-IAS using service name */
                  err = irda_find_lsap_sel(self, addr->sir_name);
                  if (err) {
                        IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
                        return err;
                  }
            } else {
                  /* Directly connect to the remote LSAP
                   * specified by the sir_lsap field.
                   * Please use with caution, in IrDA LSAPs are
                   * dynamic and there is no "well-known" LSAP. */
                  self->dtsap_sel = addr->sir_lsap_sel;
            }
      }

      /* Check if we have opened a local TSAP */
      if (!self->tsap)
            irda_open_tsap(self, LSAP_ANY, addr->sir_name);

      /* Move to connecting socket, start sending Connect Requests */
      sock->state = SS_CONNECTING;
      sk->sk_state   = TCP_SYN_SENT;

      /* Connect to remote device */
      err = irttp_connect_request(self->tsap, self->dtsap_sel,
                            self->saddr, self->daddr, NULL,
                            self->max_sdu_size_rx, NULL);
      if (err) {
            IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
            return err;
      }

      /* Now the loop */
      if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
            return -EINPROGRESS;

      if (wait_event_interruptible(*(sk->sk_sleep),
                             (sk->sk_state != TCP_SYN_SENT)))
            return -ERESTARTSYS;

      if (sk->sk_state != TCP_ESTABLISHED) {
            sock->state = SS_UNCONNECTED;
            err = sock_error(sk);
            return err? err : -ECONNRESET;
      }

      sock->state = SS_CONNECTED;

      /* At this point, IrLMP has assigned our source address */
      self->saddr = irttp_get_saddr(self->tsap);

      return 0;
}

static struct proto irda_proto = {
      .name   = "IRDA",
      .owner        = THIS_MODULE,
      .obj_size = sizeof(struct irda_sock),
};

/*
 * Function irda_create (sock, protocol)
 *
 *    Create IrDA socket
 *
 */
static int irda_create(struct net *net, struct socket *sock, int protocol)
{
      struct sock *sk;
      struct irda_sock *self;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__);

      if (net != &init_net)
            return -EAFNOSUPPORT;

      /* Check for valid socket type */
      switch (sock->type) {
      case SOCK_STREAM:     /* For TTP connections with SAR disabled */
      case SOCK_SEQPACKET:  /* For TTP connections with SAR enabled */
      case SOCK_DGRAM:      /* For TTP Unitdata or LMP Ultra transfers */
            break;
      default:
            return -ESOCKTNOSUPPORT;
      }

      /* Allocate networking socket */
      sk = sk_alloc(net, PF_IRDA, GFP_ATOMIC, &irda_proto);
      if (sk == NULL)
            return -ENOMEM;

      self = irda_sk(sk);
      IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self);

      init_waitqueue_head(&self->query_wait);

      /* Initialise networking socket struct */
      sock_init_data(sock, sk);     /* Note : set sk->sk_refcnt to 1 */
      sk->sk_family = PF_IRDA;
      sk->sk_protocol = protocol;

      switch (sock->type) {
      case SOCK_STREAM:
            sock->ops = &irda_stream_ops;
            self->max_sdu_size_rx = TTP_SAR_DISABLE;
            break;
      case SOCK_SEQPACKET:
            sock->ops = &irda_seqpacket_ops;
            self->max_sdu_size_rx = TTP_SAR_UNBOUND;
            break;
      case SOCK_DGRAM:
            switch (protocol) {
#ifdef CONFIG_IRDA_ULTRA
            case IRDAPROTO_ULTRA:
                  sock->ops = &irda_ultra_ops;
                  /* Initialise now, because we may send on unbound
                   * sockets. Jean II */
                  self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
                  self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
                  break;
#endif /* CONFIG_IRDA_ULTRA */
            case IRDAPROTO_UNITDATA:
                  sock->ops = &irda_dgram_ops;
                  /* We let Unitdata conn. be like seqpack conn. */
                  self->max_sdu_size_rx = TTP_SAR_UNBOUND;
                  break;
            default:
                  return -ESOCKTNOSUPPORT;
            }
            break;
      default:
            return -ESOCKTNOSUPPORT;
      }

      /* Register as a client with IrLMP */
      self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
      self->mask.word = 0xffff;
      self->rx_flow = self->tx_flow = FLOW_START;
      self->nslots = DISCOVERY_DEFAULT_SLOTS;
      self->daddr = DEV_ADDR_ANY;   /* Until we get connected */
      self->saddr = 0x0;            /* so IrLMP assign us any link */
      return 0;
}

/*
 * Function irda_destroy_socket (self)
 *
 *    Destroy socket
 *
 */
static void irda_destroy_socket(struct irda_sock *self)
{
      IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);

      /* Unregister with IrLMP */
      irlmp_unregister_client(self->ckey);
      irlmp_unregister_service(self->skey);

      /* Unregister with LM-IAS */
      if (self->ias_obj) {
            irias_delete_object(self->ias_obj);
            self->ias_obj = NULL;
      }

      if (self->iriap) {
            iriap_close(self->iriap);
            self->iriap = NULL;
      }

      if (self->tsap) {
            irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
            irttp_close_tsap(self->tsap);
            self->tsap = NULL;
      }
#ifdef CONFIG_IRDA_ULTRA
      if (self->lsap) {
            irlmp_close_lsap(self->lsap);
            self->lsap = NULL;
      }
#endif /* CONFIG_IRDA_ULTRA */
}

/*
 * Function irda_release (sock)
 */
static int irda_release(struct socket *sock)
{
      struct sock *sk = sock->sk;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__);

      if (sk == NULL)
            return 0;

      lock_sock(sk);
      sk->sk_state       = TCP_CLOSE;
      sk->sk_shutdown   |= SEND_SHUTDOWN;
      sk->sk_state_change(sk);

      /* Destroy IrDA socket */
      irda_destroy_socket(irda_sk(sk));

      sock_orphan(sk);
      sock->sk   = NULL;
      release_sock(sk);

      /* Purge queues (see sock_init_data()) */
      skb_queue_purge(&sk->sk_receive_queue);

      /* Destroy networking socket if we are the last reference on it,
       * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
      sock_put(sk);

      /* Notes on socket locking and deallocation... - Jean II
       * In theory we should put pairs of sock_hold() / sock_put() to
       * prevent the socket to be destroyed whenever there is an
       * outstanding request or outstanding incoming packet or event.
       *
       * 1) This may include IAS request, both in connect and getsockopt.
       * Unfortunately, the situation is a bit more messy than it looks,
       * because we close iriap and kfree(self) above.
       *
       * 2) This may include selective discovery in getsockopt.
       * Same stuff as above, irlmp registration and self are gone.
       *
       * Probably 1 and 2 may not matter, because it's all triggered
       * by a process and the socket layer already prevent the
       * socket to go away while a process is holding it, through
       * sockfd_put() and fput()...
       *
       * 3) This may include deferred TSAP closure. In particular,
       * we may receive a late irda_disconnect_indication()
       * Fortunately, (tsap_cb *)->close_pend should protect us
       * from that.
       *
       * I did some testing on SMP, and it looks solid. And the socket
       * memory leak is now gone... - Jean II
       */

      return 0;
}

/*
 * Function irda_sendmsg (iocb, sock, msg, len)
 *
 *    Send message down to TinyTP. This function is used for both STREAM and
 *    SEQPACK services. This is possible since it forces the client to
 *    fragment the message if necessary
 */
static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
                  struct msghdr *msg, size_t len)
{
      struct sock *sk = sock->sk;
      struct irda_sock *self;
      struct sk_buff *skb;
      int err = -EPIPE;

      IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);

      /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
      if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_EOR | MSG_CMSG_COMPAT |
                         MSG_NOSIGNAL))
            return -EINVAL;

      if (sk->sk_shutdown & SEND_SHUTDOWN)
            goto out_err;

      if (sk->sk_state != TCP_ESTABLISHED)
            return -ENOTCONN;

      self = irda_sk(sk);

      /* Check if IrTTP is wants us to slow down */

      if (wait_event_interruptible(*(sk->sk_sleep),
          (self->tx_flow != FLOW_STOP  ||  sk->sk_state != TCP_ESTABLISHED)))
            return -ERESTARTSYS;

      /* Check if we are still connected */
      if (sk->sk_state != TCP_ESTABLISHED)
            return -ENOTCONN;

      /* Check that we don't send out too big frames */
      if (len > self->max_data_size) {
            IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
                     __FUNCTION__, len, self->max_data_size);
            len = self->max_data_size;
      }

      skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
                          msg->msg_flags & MSG_DONTWAIT, &err);
      if (!skb)
            goto out_err;

      skb_reserve(skb, self->max_header_size + 16);
      skb_reset_transport_header(skb);
      skb_put(skb, len);
      err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
      if (err) {
            kfree_skb(skb);
            goto out_err;
      }

      /*
       * Just send the message to TinyTP, and let it deal with possible
       * errors. No need to duplicate all that here
       */
      err = irttp_data_request(self->tsap, skb);
      if (err) {
            IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
            goto out_err;
      }
      /* Tell client how much data we actually sent */
      return len;

 out_err:
      return sk_stream_error(sk, msg->msg_flags, err);

}

/*
 * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
 *
 *    Try to receive message and copy it to user. The frame is discarded
 *    after being read, regardless of how much the user actually read
 */
static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
                        struct msghdr *msg, size_t size, int flags)
{
      struct sock *sk = sock->sk;
      struct irda_sock *self = irda_sk(sk);
      struct sk_buff *skb;
      size_t copied;
      int err;

      IRDA_DEBUG(4, "%s()\n", __FUNCTION__);

      if ((err = sock_error(sk)) < 0)
            return err;

      skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
                        flags & MSG_DONTWAIT, &err);
      if (!skb)
            return err;

      skb_reset_transport_header(skb);
      copied = skb->len;

      if (copied > size) {
            IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
                     __FUNCTION__, copied, size);
            copied = size;
            msg->msg_flags |= MSG_TRUNC;
      }
      skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);

      skb_free_datagram(sk, skb);

      /*
       *  Check if we have previously stopped IrTTP and we know
       *  have more free space in our rx_queue. If so tell IrTTP
       *  to start delivering frames again before our rx_queue gets
       *  empty
       */
      if (self->rx_flow == FLOW_STOP) {
            if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
                  IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
                  self->rx_flow = FLOW_START;
                  irttp_flow_request(self->tsap, FLOW_START);
            }
      }

      return copied;
}

/*
 * Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
 */
static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
                         struct msghdr *msg, size_t size, int flags)
{
      struct sock *sk = sock->sk;
      struct irda_sock *self = irda_sk(sk);
      int noblock = flags & MSG_DONTWAIT;
      size_t copied = 0;
      int target, err;
      long timeo;

      IRDA_DEBUG(3, "%s()\n", __FUNCTION__);

      if ((err = sock_error(sk)) < 0)
            return err;

      if (sock->flags & __SO_ACCEPTCON)
            return(-EINVAL);

      if (flags & MSG_OOB)
            return -EOPNOTSUPP;

      target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
      timeo = sock_rcvtimeo(sk, noblock);

      msg->msg_namelen = 0;

      do {
            int chunk;
            struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);

            if (skb == NULL) {
                  DEFINE_WAIT(wait);
                  int ret = 0;

                  if (copied >= target)
                        break;

                  prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);

                  /*
                   *    POSIX 1003.1g mandates this order.
                   */
                  ret = sock_error(sk);
                  if (ret)
                        ;
                  else if (sk->sk_shutdown & RCV_SHUTDOWN)
                        ;
                  else if (noblock)
                        ret = -EAGAIN;
                  else if (signal_pending(current))
                        ret = sock_intr_errno(timeo);
                  else if (sk->sk_state != TCP_ESTABLISHED)
                        ret = -ENOTCONN;
                  else if (skb_peek(&sk->sk_receive_queue) == NULL)
                        /* Wait process until data arrives */
                        schedule();

                  finish_wait(sk->sk_sleep, &wait);

                  if (ret)
                        return ret;
                  if (sk->sk_shutdown & RCV_SHUTDOWN)
                        break;

                  continue;
            }

            chunk = min_t(unsigned int, skb->len, size);
            if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
                  skb_queue_head(&sk->sk_receive_queue, skb);
                  if (copied == 0)
                        copied = -EFAULT;
                  break;
            }
            copied += chunk;
            size -= chunk;

            /* Mark read part of skb as used */
            if (!(flags & MSG_PEEK)) {
                  skb_pull(skb, chunk);

                  /* put the skb back if we didn't use it up.. */
                  if (skb->len) {
                        IRDA_DEBUG(1, "%s(), back on q!\n",
                                 __FUNCTION__);
                        skb_queue_head(&sk->sk_receive_queue, skb);
                        break;
                  }

                  kfree_skb(skb);
            } else {
                  IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__);

                  /* put message back and return */
                  skb_queue_head(&sk->sk_receive_queue, skb);
                  break;
            }
      } while (size);

      /*
       *  Check if we have previously stopped IrTTP and we know
       *  have more free space in our rx_queue. If so tell IrTTP
       *  to start delivering frames again before our rx_queue gets
       *  empty
       */
      if (self->rx_flow == FLOW_STOP) {
            if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
                  IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
                  self->rx_flow = FLOW_START;
                  irttp_flow_request(self->tsap, FLOW_START);
            }
      }

      return copied;
}

/*
 * Function irda_sendmsg_dgram (iocb, sock, msg, len)
 *
 *    Send message down to TinyTP for the unreliable sequenced
 *    packet service...
 *
 */
static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
                        struct msghdr *msg, size_t len)
{
      struct sock *sk = sock->sk;
      struct irda_sock *self;
      struct sk_buff *skb;
      int err;

      IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);

      if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
            return -EINVAL;

      if (sk->sk_shutdown & SEND_SHUTDOWN) {
            send_sig(SIGPIPE, current, 0);
            return -EPIPE;
      }

      if (sk->sk_state != TCP_ESTABLISHED)
            return -ENOTCONN;

      self = irda_sk(sk);

      /*
       * Check that we don't send out too big frames. This is an unreliable
       * service, so we have no fragmentation and no coalescence
       */
      if (len > self->max_data_size) {
            IRDA_DEBUG(0, "%s(), Warning to much data! "
                     "Chopping frame from %zd to %d bytes!\n",
                     __FUNCTION__, len, self->max_data_size);
            len = self->max_data_size;
      }

      skb = sock_alloc_send_skb(sk, len + self->max_header_size,
                          msg->msg_flags & MSG_DONTWAIT, &err);
      if (!skb)
            return -ENOBUFS;

      skb_reserve(skb, self->max_header_size);
      skb_reset_transport_header(skb);

      IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
      skb_put(skb, len);
      err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
      if (err) {
            kfree_skb(skb);
            return err;
      }

      /*
       * Just send the message to TinyTP, and let it deal with possible
       * errors. No need to duplicate all that here
       */
      err = irttp_udata_request(self->tsap, skb);
      if (err) {
            IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
            return err;
      }
      return len;
}

/*
 * Function irda_sendmsg_ultra (iocb, sock, msg, len)
 *
 *    Send message down to IrLMP for the unreliable Ultra
 *    packet service...
 */
#ifdef CONFIG_IRDA_ULTRA
static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
                        struct msghdr *msg, size_t len)
{
      struct sock *sk = sock->sk;
      struct irda_sock *self;
      __u8 pid = 0;
      int bound = 0;
      struct sk_buff *skb;
      int err;

      IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);

      if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
            return -EINVAL;

      if (sk->sk_shutdown & SEND_SHUTDOWN) {
            send_sig(SIGPIPE, current, 0);
            return -EPIPE;
      }

      self = irda_sk(sk);

      /* Check if an address was specified with sendto. Jean II */
      if (msg->msg_name) {
            struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
            /* Check address, extract pid. Jean II */
            if (msg->msg_namelen < sizeof(*addr))
                  return -EINVAL;
            if (addr->sir_family != AF_IRDA)
                  return -EINVAL;

            pid = addr->sir_lsap_sel;
            if (pid & 0x80) {
                  IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
                  return -EOPNOTSUPP;
            }
      } else {
            /* Check that the socket is properly bound to an Ultra
             * port. Jean II */
            if ((self->lsap == NULL) ||
                (sk->sk_state != TCP_ESTABLISHED)) {
                  IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
                           __FUNCTION__);
                  return -ENOTCONN;
            }
            /* Use PID from socket */
            bound = 1;
      }

      /*
       * Check that we don't send out too big frames. This is an unreliable
       * service, so we have no fragmentation and no coalescence
       */
      if (len > self->max_data_size) {
            IRDA_DEBUG(0, "%s(), Warning to much data! "
                     "Chopping frame from %zd to %d bytes!\n",
                     __FUNCTION__, len, self->max_data_size);
            len = self->max_data_size;
      }

      skb = sock_alloc_send_skb(sk, len + self->max_header_size,
                          msg->msg_flags & MSG_DONTWAIT, &err);
      if (!skb)
            return -ENOBUFS;

      skb_reserve(skb, self->max_header_size);
      skb_reset_transport_header(skb);

      IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
      skb_put(skb, len);
      err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
      if (err) {
            kfree_skb(skb);
            return err;
      }

      err = irlmp_connless_data_request((bound ? self->lsap : NULL),
                                skb, pid);
      if (err) {
            IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
            return err;
      }
      return len;
}
#endif /* CONFIG_IRDA_ULTRA */

/*
 * Function irda_shutdown (sk, how)
 */
static int irda_shutdown(struct socket *sock, int how)
{
      struct sock *sk = sock->sk;
      struct irda_sock *self = irda_sk(sk);

      IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self);

      sk->sk_state       = TCP_CLOSE;
      sk->sk_shutdown   |= SEND_SHUTDOWN;
      sk->sk_state_change(sk);

      if (self->iriap) {
            iriap_close(self->iriap);
            self->iriap = NULL;
      }

      if (self->tsap) {
            irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
            irttp_close_tsap(self->tsap);
            self->tsap = NULL;
      }

      /* A few cleanup so the socket look as good as new... */
      self->rx_flow = self->tx_flow = FLOW_START;     /* needed ??? */
      self->daddr = DEV_ADDR_ANY;   /* Until we get re-connected */
      self->saddr = 0x0;            /* so IrLMP assign us any link */

      return 0;
}

/*
 * Function irda_poll (file, sock, wait)
 */
static unsigned int irda_poll(struct file * file, struct socket *sock,
                        poll_table *wait)
{
      struct sock *sk = sock->sk;
      struct irda_sock *self = irda_sk(sk);
      unsigned int mask;

      IRDA_DEBUG(4, "%s()\n", __FUNCTION__);

      poll_wait(file, sk->sk_sleep, wait);
      mask = 0;

      /* Exceptional events? */
      if (sk->sk_err)
            mask |= POLLERR;
      if (sk->sk_shutdown & RCV_SHUTDOWN) {
            IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
            mask |= POLLHUP;
      }

      /* Readable? */
      if (!skb_queue_empty(&sk->sk_receive_queue)) {
            IRDA_DEBUG(4, "Socket is readable\n");
            mask |= POLLIN | POLLRDNORM;
      }

      /* Connection-based need to check for termination and startup */
      switch (sk->sk_type) {
      case SOCK_STREAM:
            if (sk->sk_state == TCP_CLOSE) {
                  IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
                  mask |= POLLHUP;
            }

            if (sk->sk_state == TCP_ESTABLISHED) {
                  if ((self->tx_flow == FLOW_START) &&
                      sock_writeable(sk))
                  {
                        mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
                  }
            }
            break;
      case SOCK_SEQPACKET:
            if ((self->tx_flow == FLOW_START) &&
                sock_writeable(sk))
            {
                  mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
            }
            break;
      case SOCK_DGRAM:
            if (sock_writeable(sk))
                  mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
            break;
      default:
            break;
      }
      return mask;
}

/*
 * Function irda_ioctl (sock, cmd, arg)
 */
static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
      struct sock *sk = sock->sk;

      IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd);

      switch (cmd) {
      case TIOCOUTQ: {
            long amount;
            amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
            if (amount < 0)
                  amount = 0;
            if (put_user(amount, (unsigned int __user *)arg))
                  return -EFAULT;
            return 0;
      }

      case TIOCINQ: {
            struct sk_buff *skb;
            long amount = 0L;
            /* These two are safe on a single CPU system as only user tasks fiddle here */
            if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
                  amount = skb->len;
            if (put_user(amount, (unsigned int __user *)arg))
                  return -EFAULT;
            return 0;
      }

      case SIOCGSTAMP:
            if (sk != NULL)
                  return sock_get_timestamp(sk, (struct timeval __user *)arg);
            return -EINVAL;

      case SIOCGIFADDR:
      case SIOCSIFADDR:
      case SIOCGIFDSTADDR:
      case SIOCSIFDSTADDR:
      case SIOCGIFBRDADDR:
      case SIOCSIFBRDADDR:
      case SIOCGIFNETMASK:
      case SIOCSIFNETMASK:
      case SIOCGIFMETRIC:
      case SIOCSIFMETRIC:
            return -EINVAL;
      default:
            IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__);
            return -ENOIOCTLCMD;
      }

      /*NOTREACHED*/
      return 0;
}

#ifdef CONFIG_COMPAT
/*
 * Function irda_ioctl (sock, cmd, arg)
 */
static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
      /*
       * All IRDA's ioctl are standard ones.
       */
      return -ENOIOCTLCMD;
}
#endif

/*
 * Function irda_setsockopt (sock, level, optname, optval, optlen)
 *
 *    Set some options for the socket
 *
 */
static int irda_setsockopt(struct socket *sock, int level, int optname,
                     char __user *optval, int optlen)
{
      struct sock *sk = sock->sk;
      struct irda_sock *self = irda_sk(sk);
      struct irda_ias_set    *ias_opt;
      struct ias_object      *ias_obj;
      struct ias_attrib *     ias_attr;   /* Attribute in IAS object */
      int opt, free_ias = 0;

      IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);

      if (level != SOL_IRLMP)
            return -ENOPROTOOPT;

      switch (optname) {
      case IRLMP_IAS_SET:
            /* The user want to add an attribute to an existing IAS object
             * (in the IAS database) or to create a new object with this
             * attribute.
             * We first query IAS to know if the object exist, and then
             * create the right attribute...
             */

            if (optlen != sizeof(struct irda_ias_set))
                  return -EINVAL;

            ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
            if (ias_opt == NULL)
                  return -ENOMEM;

            /* Copy query to the driver. */
            if (copy_from_user(ias_opt, optval, optlen)) {
                  kfree(ias_opt);
                  return -EFAULT;
            }

            /* Find the object we target.
             * If the user gives us an empty string, we use the object
             * associated with this socket. This will workaround
             * duplicated class name - Jean II */
            if(ias_opt->irda_class_name[0] == '\0') {
                  if(self->ias_obj == NULL) {
                        kfree(ias_opt);
                        return -EINVAL;
                  }
                  ias_obj = self->ias_obj;
            } else
                  ias_obj = irias_find_object(ias_opt->irda_class_name);

            /* Only ROOT can mess with the global IAS database.
             * Users can only add attributes to the object associated
             * with the socket they own - Jean II */
            if((!capable(CAP_NET_ADMIN)) &&
               ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
                  kfree(ias_opt);
                  return -EPERM;
            }

            /* If the object doesn't exist, create it */
            if(ias_obj == (struct ias_object *) NULL) {
                  /* Create a new object */
                  ias_obj = irias_new_object(ias_opt->irda_class_name,
                                       jiffies);
                  if (ias_obj == NULL) {
                        kfree(ias_opt);
                        return -ENOMEM;
                  }
                  free_ias = 1;
            }

            /* Do we have the attribute already ? */
            if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
                  kfree(ias_opt);
                  if (free_ias) {
                        kfree(ias_obj->name);
                        kfree(ias_obj);
                  }
                  return -EINVAL;
            }

            /* Look at the type */
            switch(ias_opt->irda_attrib_type) {
            case IAS_INTEGER:
                  /* Add an integer attribute */
                  irias_add_integer_attrib(
                        ias_obj,
                        ias_opt->irda_attrib_name,
                        ias_opt->attribute.irda_attrib_int,
                        IAS_USER_ATTR);
                  break;
            case IAS_OCT_SEQ:
                  /* Check length */
                  if(ias_opt->attribute.irda_attrib_octet_seq.len >
                     IAS_MAX_OCTET_STRING) {
                        kfree(ias_opt);
                        if (free_ias) {
                              kfree(ias_obj->name);
                              kfree(ias_obj);
                        }

                        return -EINVAL;
                  }
                  /* Add an octet sequence attribute */
                  irias_add_octseq_attrib(
                        ias_obj,
                        ias_opt->irda_attrib_name,
                        ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
                        ias_opt->attribute.irda_attrib_octet_seq.len,
                        IAS_USER_ATTR);
                  break;
            case IAS_STRING:
                  /* Should check charset & co */
                  /* Check length */
                  /* The length is encoded in a __u8, and
                   * IAS_MAX_STRING == 256, so there is no way
                   * userspace can pass us a string too large.
                   * Jean II */
                  /* NULL terminate the string (avoid troubles) */
                  ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
                  /* Add a string attribute */
                  irias_add_string_attrib(
                        ias_obj,
                        ias_opt->irda_attrib_name,
                        ias_opt->attribute.irda_attrib_string.string,
                        IAS_USER_ATTR);
                  break;
            default :
                  kfree(ias_opt);
                  if (free_ias) {
                        kfree(ias_obj->name);
                        kfree(ias_obj);
                  }
                  return -EINVAL;
            }
            irias_insert_object(ias_obj);
            kfree(ias_opt);
            break;
      case IRLMP_IAS_DEL:
            /* The user want to delete an object from our local IAS
             * database. We just need to query the IAS, check is the
             * object is not owned by the kernel and delete it.
             */

            if (optlen != sizeof(struct irda_ias_set))
                  return -EINVAL;

            ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
            if (ias_opt == NULL)
                  return -ENOMEM;

            /* Copy query to the driver. */
            if (copy_from_user(ias_opt, optval, optlen)) {
                  kfree(ias_opt);
                  return -EFAULT;
            }

            /* Find the object we target.
             * If the user gives us an empty string, we use the object
             * associated with this socket. This will workaround
             * duplicated class name - Jean II */
            if(ias_opt->irda_class_name[0] == '\0')
                  ias_obj = self->ias_obj;
            else
                  ias_obj = irias_find_object(ias_opt->irda_class_name);
            if(ias_obj == (struct ias_object *) NULL) {
                  kfree(ias_opt);
                  return -EINVAL;
            }

            /* Only ROOT can mess with the global IAS database.
             * Users can only del attributes from the object associated
             * with the socket they own - Jean II */
            if((!capable(CAP_NET_ADMIN)) &&
               ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
                  kfree(ias_opt);
                  return -EPERM;
            }

            /* Find the attribute (in the object) we target */
            ias_attr = irias_find_attrib(ias_obj,
                                   ias_opt->irda_attrib_name);
            if(ias_attr == (struct ias_attrib *) NULL) {
                  kfree(ias_opt);
                  return -EINVAL;
            }

            /* Check is the user space own the object */
            if(ias_attr->value->owner != IAS_USER_ATTR) {
                  IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__);
                  kfree(ias_opt);
                  return -EPERM;
            }

            /* Remove the attribute (and maybe the object) */
            irias_delete_attrib(ias_obj, ias_attr, 1);
            kfree(ias_opt);
            break;
      case IRLMP_MAX_SDU_SIZE:
            if (optlen < sizeof(int))
                  return -EINVAL;

            if (get_user(opt, (int __user *)optval))
                  return -EFAULT;

            /* Only possible for a seqpacket service (TTP with SAR) */
            if (sk->sk_type != SOCK_SEQPACKET) {
                  IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
                           __FUNCTION__, opt);
                  self->max_sdu_size_rx = opt;
            } else {
                  IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
                             __FUNCTION__);
                  return -ENOPROTOOPT;
            }
            break;
      case IRLMP_HINTS_SET:
            if (optlen < sizeof(int))
                  return -EINVAL;

            /* The input is really a (__u8 hints[2]), easier as an int */
            if (get_user(opt, (int __user *)optval))
                  return -EFAULT;

            /* Unregister any old registration */
            if (self->skey)
                  irlmp_unregister_service(self->skey);

            self->skey = irlmp_register_service((__u16) opt);
            break;
      case IRLMP_HINT_MASK_SET:
            /* As opposed to the previous case which set the hint bits
             * that we advertise, this one set the filter we use when
             * making a discovery (nodes which don't match any hint
             * bit in the mask are not reported).
             */
            if (optlen < sizeof(int))
                  return -EINVAL;

            /* The input is really a (__u8 hints[2]), easier as an int */
            if (get_user(opt, (int __user *)optval))
                  return -EFAULT;

            /* Set the new hint mask */
            self->mask.word = (__u16) opt;
            /* Mask out extension bits */
            self->mask.word &= 0x7f7f;
            /* Check if no bits */
            if(!self->mask.word)
                  self->mask.word = 0xFFFF;

            break;
      default:
            return -ENOPROTOOPT;
      }
      return 0;
}

/*
 * Function irda_extract_ias_value(ias_opt, ias_value)
 *
 *    Translate internal IAS value structure to the user space representation
 *
 * The external representation of IAS values, as we exchange them with
 * user space program is quite different from the internal representation,
 * as stored in the IAS database (because we need a flat structure for
 * crossing kernel boundary).
 * This function transform the former in the latter. We also check
 * that the value type is valid.
 */
static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
                          struct ias_value *ias_value)
{
      /* Look at the type */
      switch (ias_value->type) {
      case IAS_INTEGER:
            /* Copy the integer */
            ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
            break;
      case IAS_OCT_SEQ:
            /* Set length */
            ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
            /* Copy over */
            memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
                   ias_value->t.oct_seq, ias_value->len);
            break;
      case IAS_STRING:
            /* Set length */
            ias_opt->attribute.irda_attrib_string.len = ias_value->len;
            ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
            /* Copy over */
            memcpy(ias_opt->attribute.irda_attrib_string.string,
                   ias_value->t.string, ias_value->len);
            /* NULL terminate the string (avoid troubles) */
            ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
            break;
      case IAS_MISSING:
      default :
            return -EINVAL;
      }

      /* Copy type over */
      ias_opt->irda_attrib_type = ias_value->type;

      return 0;
}

/*
 * Function irda_getsockopt (sock, level, optname, optval, optlen)
 */
static int irda_getsockopt(struct socket *sock, int level, int optname,
                     char __user *optval, int __user *optlen)
{
      struct sock *sk = sock->sk;
      struct irda_sock *self = irda_sk(sk);
      struct irda_device_list list;
      struct irda_device_info *discoveries;
      struct irda_ias_set *   ias_opt;    /* IAS get/query params */
      struct ias_object *     ias_obj;    /* Object in IAS */
      struct ias_attrib *     ias_attr;   /* Attribute in IAS object */
      int daddr = DEV_ADDR_ANY;     /* Dest address for IAS queries */
      int val = 0;
      int len = 0;
      int err;
      int offset, total;

      IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);

      if (level != SOL_IRLMP)
            return -ENOPROTOOPT;

      if (get_user(len, optlen))
            return -EFAULT;

      if(len < 0)
            return -EINVAL;

      switch (optname) {
      case IRLMP_ENUMDEVICES:
            /* Ask lmp for the current discovery log */
            discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
                                        self->nslots);
            /* Check if the we got some results */
            if (discoveries == NULL)
                  return -EAGAIN;         /* Didn't find any devices */
            err = 0;

            /* Write total list length back to client */
            if (copy_to_user(optval, &list,
                         sizeof(struct irda_device_list) -
                         sizeof(struct irda_device_info)))
                  err = -EFAULT;

            /* Offset to first device entry */
            offset = sizeof(struct irda_device_list) -
                  sizeof(struct irda_device_info);

            /* Copy the list itself - watch for overflow */
            if(list.len > 2048)
            {
                  err = -EINVAL;
                  goto bed;
            }
            total = offset + (list.len * sizeof(struct irda_device_info));
            if (total > len)
                  total = len;
            if (copy_to_user(optval+offset, discoveries, total - offset))
                  err = -EFAULT;

            /* Write total number of bytes used back to client */
            if (put_user(total, optlen))
                  err = -EFAULT;
bed:
            /* Free up our buffer */
            kfree(discoveries);
            if (err)
                  return err;
            break;
      case IRLMP_MAX_SDU_SIZE:
            val = self->max_data_size;
            len = sizeof(int);
            if (put_user(len, optlen))
                  return -EFAULT;

            if (copy_to_user(optval, &val, len))
                  return -EFAULT;
            break;
      case IRLMP_IAS_GET:
            /* The user want an object from our local IAS database.
             * We just need to query the IAS and return the value
             * that we found */

            /* Check that the user has allocated the right space for us */
            if (len != sizeof(struct irda_ias_set))
                  return -EINVAL;

            ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
            if (ias_opt == NULL)
                  return -ENOMEM;

            /* Copy query to the driver. */
            if (copy_from_user(ias_opt, optval, len)) {
                  kfree(ias_opt);
                  return -EFAULT;
            }

            /* Find the object we target.
             * If the user gives us an empty string, we use the object
             * associated with this socket. This will workaround
             * duplicated class name - Jean II */
            if(ias_opt->irda_class_name[0] == '\0')
                  ias_obj = self->ias_obj;
            else
                  ias_obj = irias_find_object(ias_opt->irda_class_name);
            if(ias_obj == (struct ias_object *) NULL) {
                  kfree(ias_opt);
                  return -EINVAL;
            }

            /* Find the attribute (in the object) we target */
            ias_attr = irias_find_attrib(ias_obj,
                                   ias_opt->irda_attrib_name);
            if(ias_attr == (struct ias_attrib *) NULL) {
                  kfree(ias_opt);
                  return -EINVAL;
            }

            /* Translate from internal to user structure */
            err = irda_extract_ias_value(ias_opt, ias_attr->value);
            if(err) {
                  kfree(ias_opt);
                  return err;
            }

            /* Copy reply to the user */
            if (copy_to_user(optval, ias_opt,
                         sizeof(struct irda_ias_set))) {
                  kfree(ias_opt);
                  return -EFAULT;
            }
            /* Note : don't need to put optlen, we checked it */
            kfree(ias_opt);
            break;
      case IRLMP_IAS_QUERY:
            /* The user want an object from a remote IAS database.
             * We need to use IAP to query the remote database and
             * then wait for the answer to come back. */

            /* Check that the user has allocated the right space for us */
            if (len != sizeof(struct irda_ias_set))
                  return -EINVAL;

            ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
            if (ias_opt == NULL)
                  return -ENOMEM;

            /* Copy query to the driver. */
            if (copy_from_user(ias_opt, optval, len)) {
                  kfree(ias_opt);
                  return -EFAULT;
            }

            /* At this point, there are two cases...
             * 1) the socket is connected - that's the easy case, we
             *    just query the device we are connected to...
             * 2) the socket is not connected - the user doesn't want
             *    to connect and/or may not have a valid service name
             *    (so can't create a fake connection). In this case,
             *    we assume that the user pass us a valid destination
             *    address in the requesting structure...
             */
            if(self->daddr != DEV_ADDR_ANY) {
                  /* We are connected - reuse known daddr */
                  daddr = self->daddr;
            } else {
                  /* We are not connected, we must specify a valid
                   * destination address */
                  daddr = ias_opt->daddr;
                  if((!daddr) || (daddr == DEV_ADDR_ANY)) {
                        kfree(ias_opt);
                        return -EINVAL;
                  }
            }

            /* Check that we can proceed with IAP */
            if (self->iriap) {
                  IRDA_WARNING("%s: busy with a previous query\n",
                             __FUNCTION__);
                  kfree(ias_opt);
                  return -EBUSY;
            }

            self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
                               irda_getvalue_confirm);

            if (self->iriap == NULL) {
                  kfree(ias_opt);
                  return -ENOMEM;
            }

            /* Treat unexpected wakeup as disconnect */
            self->errno = -EHOSTUNREACH;

            /* Query remote LM-IAS */
            iriap_getvaluebyclass_request(self->iriap,
                                    self->saddr, daddr,
                                    ias_opt->irda_class_name,
                                    ias_opt->irda_attrib_name);

            /* Wait for answer, if not yet finished (or failed) */
            if (wait_event_interruptible(self->query_wait,
                                   (self->iriap == NULL))) {
                  /* pending request uses copy of ias_opt-content
                   * we can free it regardless! */
                  kfree(ias_opt);
                  /* Treat signals as disconnect */
                  return -EHOSTUNREACH;
            }

            /* Check what happened */
            if (self->errno)
            {
                  kfree(ias_opt);
                  /* Requested object/attribute doesn't exist */
                  if((self->errno == IAS_CLASS_UNKNOWN) ||
                     (self->errno == IAS_ATTRIB_UNKNOWN))
                        return (-EADDRNOTAVAIL);
                  else
                        return (-EHOSTUNREACH);
            }

            /* Translate from internal to user structure */
            err = irda_extract_ias_value(ias_opt, self->ias_result);
            if (self->ias_result)
                  irias_delete_value(self->ias_result);
            if (err) {
                  kfree(ias_opt);
                  return err;
            }

            /* Copy reply to the user */
            if (copy_to_user(optval, ias_opt,
                         sizeof(struct irda_ias_set))) {
                  kfree(ias_opt);
                  return -EFAULT;
            }
            /* Note : don't need to put optlen, we checked it */
            kfree(ias_opt);
            break;
      case IRLMP_WAITDEVICE:
            /* This function is just another way of seeing life ;-)
             * IRLMP_ENUMDEVICES assumes that you have a static network,
             * and that you just want to pick one of the devices present.
             * On the other hand, in here we assume that no device is
             * present and that at some point in the future a device will
             * come into range. When this device arrive, we just wake
             * up the caller, so that he has time to connect to it before
             * the device goes away...
             * Note : once the node has been discovered for more than a
             * few second, it won't trigger this function, unless it
             * goes away and come back changes its hint bits (so we
             * might call it IRLMP_WAITNEWDEVICE).
             */

            /* Check that the user is passing us an int */
            if (len != sizeof(int))
                  return -EINVAL;
            /* Get timeout in ms (max time we block the caller) */
            if (get_user(val, (int __user *)optval))
                  return -EFAULT;

            /* Tell IrLMP we want to be notified */
            irlmp_update_client(self->ckey, self->mask.word,
                            irda_selective_discovery_indication,
                            NULL, (void *) self);

            /* Do some discovery (and also return cached results) */
            irlmp_discovery_request(self->nslots);

            /* Wait until a node is discovered */
            if (!self->cachedaddr) {
                  int ret = 0;

                  IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__);

                  /* Set watchdog timer to expire in <val> ms. */
                  self->errno = 0;
                  init_timer(&self->watchdog);
                  self->watchdog.function = irda_discovery_timeout;
                  self->watchdog.data = (unsigned long) self;
                  self->watchdog.expires = jiffies + (val * HZ/1000);
                  add_timer(&(self->watchdog));

                  /* Wait for IR-LMP to call us back */
                  __wait_event_interruptible(self->query_wait,
                        (self->cachedaddr != 0 || self->errno == -ETIME),
                                       ret);

                  /* If watchdog is still activated, kill it! */
                  if(timer_pending(&(self->watchdog)))
                        del_timer(&(self->watchdog));

                  IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__);

                  if (ret != 0)
                        return ret;
            }
            else
                  IRDA_DEBUG(1, "%s(), found immediately !\n",
                           __FUNCTION__);

            /* Tell IrLMP that we have been notified */
            irlmp_update_client(self->ckey, self->mask.word,
                            NULL, NULL, NULL);

            /* Check if the we got some results */
            if (!self->cachedaddr)
                  return -EAGAIN;         /* Didn't find any devices */
            daddr = self->cachedaddr;
            /* Cleanup */
            self->cachedaddr = 0;

            /* We return the daddr of the device that trigger the
             * wakeup. As irlmp pass us only the new devices, we
             * are sure that it's not an old device.
             * If the user want more details, he should query
             * the whole discovery log and pick one device...
             */
            if (put_user(daddr, (int __user *)optval))
                  return -EFAULT;

            break;
      default:
            return -ENOPROTOOPT;
      }

      return 0;
}

static struct net_proto_family irda_family_ops = {
      .family = PF_IRDA,
      .create = irda_create,
      .owner      = THIS_MODULE,
};

static const struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = {
      .family =   PF_IRDA,
      .owner =    THIS_MODULE,
      .release =  irda_release,
      .bind =           irda_bind,
      .connect =  irda_connect,
      .socketpair =     sock_no_socketpair,
      .accept =   irda_accept,
      .getname =  irda_getname,
      .poll =           irda_poll,
      .ioctl =    irda_ioctl,
#ifdef CONFIG_COMPAT
      .compat_ioctl =   irda_compat_ioctl,
#endif
      .listen =   irda_listen,
      .shutdown = irda_shutdown,
      .setsockopt =     irda_setsockopt,
      .getsockopt =     irda_getsockopt,
      .sendmsg =  irda_sendmsg,
      .recvmsg =  irda_recvmsg_stream,
      .mmap =           sock_no_mmap,
      .sendpage = sock_no_sendpage,
};

static const struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = {
      .family =   PF_IRDA,
      .owner =    THIS_MODULE,
      .release =  irda_release,
      .bind =           irda_bind,
      .connect =  irda_connect,
      .socketpair =     sock_no_socketpair,
      .accept =   irda_accept,
      .getname =  irda_getname,
      .poll =           datagram_poll,
      .ioctl =    irda_ioctl,
#ifdef CONFIG_COMPAT
      .compat_ioctl =   irda_compat_ioctl,
#endif
      .listen =   irda_listen,
      .shutdown = irda_shutdown,
      .setsockopt =     irda_setsockopt,
      .getsockopt =     irda_getsockopt,
      .sendmsg =  irda_sendmsg,
      .recvmsg =  irda_recvmsg_dgram,
      .mmap =           sock_no_mmap,
      .sendpage = sock_no_sendpage,
};

static const struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = {
      .family =   PF_IRDA,
      .owner =    THIS_MODULE,
      .release =  irda_release,
      .bind =           irda_bind,
      .connect =  irda_connect,
      .socketpair =     sock_no_socketpair,
      .accept =   irda_accept,
      .getname =  irda_getname,
      .poll =           datagram_poll,
      .ioctl =    irda_ioctl,
#ifdef CONFIG_COMPAT
      .compat_ioctl =   irda_compat_ioctl,
#endif
      .listen =   irda_listen,
      .shutdown = irda_shutdown,
      .setsockopt =     irda_setsockopt,
      .getsockopt =     irda_getsockopt,
      .sendmsg =  irda_sendmsg_dgram,
      .recvmsg =  irda_recvmsg_dgram,
      .mmap =           sock_no_mmap,
      .sendpage = sock_no_sendpage,
};

#ifdef CONFIG_IRDA_ULTRA
static const struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = {
      .family =   PF_IRDA,
      .owner =    THIS_MODULE,
      .release =  irda_release,
      .bind =           irda_bind,
      .connect =  sock_no_connect,
      .socketpair =     sock_no_socketpair,
      .accept =   sock_no_accept,
      .getname =  irda_getname,
      .poll =           datagram_poll,
      .ioctl =    irda_ioctl,
#ifdef CONFIG_COMPAT
      .compat_ioctl =   irda_compat_ioctl,
#endif
      .listen =   sock_no_listen,
      .shutdown = irda_shutdown,
      .setsockopt =     irda_setsockopt,
      .getsockopt =     irda_getsockopt,
      .sendmsg =  irda_sendmsg_ultra,
      .recvmsg =  irda_recvmsg_dgram,
      .mmap =           sock_no_mmap,
      .sendpage = sock_no_sendpage,
};
#endif /* CONFIG_IRDA_ULTRA */

SOCKOPS_WRAP(irda_stream, PF_IRDA);
SOCKOPS_WRAP(irda_seqpacket, PF_IRDA);
SOCKOPS_WRAP(irda_dgram, PF_IRDA);
#ifdef CONFIG_IRDA_ULTRA
SOCKOPS_WRAP(irda_ultra, PF_IRDA);
#endif /* CONFIG_IRDA_ULTRA */

/*
 * Function irsock_init (pro)
 *
 *    Initialize IrDA protocol
 *
 */
int __init irsock_init(void)
{
      int rc = proto_register(&irda_proto, 0);

      if (rc == 0)
            rc = sock_register(&irda_family_ops);

      return rc;
}

/*
 * Function irsock_cleanup (void)
 *
 *    Remove IrDA protocol
 *
 */
void irsock_cleanup(void)
{
      sock_unregister(PF_IRDA);
      proto_unregister(&irda_proto);
}

Generated by  Doxygen 1.6.0   Back to index