Logo Search packages:      
Sourcecode: linux version File versions  Download package

af_rose.c

/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
 * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
 * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
 * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
 */

#include <linux/capability.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/stat.h>
#include <net/net_namespace.h>
#include <net/ax25.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <linux/fcntl.h>
#include <linux/termios.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <net/rose.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <net/tcp_states.h>
#include <net/ip.h>
#include <net/arp.h>

static int rose_ndevs = 10;

int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
int sysctl_rose_call_request_timeout    = ROSE_DEFAULT_T1;
int sysctl_rose_reset_request_timeout   = ROSE_DEFAULT_T2;
int sysctl_rose_clear_request_timeout   = ROSE_DEFAULT_T3;
int sysctl_rose_no_activity_timeout     = ROSE_DEFAULT_IDLE;
int sysctl_rose_ack_hold_back_timeout   = ROSE_DEFAULT_HB;
int sysctl_rose_routing_control         = ROSE_DEFAULT_ROUTING;
int sysctl_rose_link_fail_timeout       = ROSE_DEFAULT_FAIL_TIMEOUT;
int sysctl_rose_maximum_vcs             = ROSE_DEFAULT_MAXVC;
int sysctl_rose_window_size             = ROSE_DEFAULT_WINDOW_SIZE;

static HLIST_HEAD(rose_list);
static DEFINE_SPINLOCK(rose_list_lock);

static struct proto_ops rose_proto_ops;

ax25_address rose_callsign;

/*
 * ROSE network devices are virtual network devices encapsulating ROSE
 * frames into AX.25 which will be sent through an AX.25 device, so form a
 * special "super class" of normal net devices; split their locks off into a
 * separate class since they always nest.
 */
static struct lock_class_key rose_netdev_xmit_lock_key;

/*
 *    Convert a ROSE address into text.
 */
const char *rose2asc(const rose_address *addr)
{
      static char buffer[11];

      if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
          addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
          addr->rose_addr[4] == 0x00) {
            strcpy(buffer, "*");
      } else {
            sprintf(buffer, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
                                    addr->rose_addr[1] & 0xFF,
                                    addr->rose_addr[2] & 0xFF,
                                    addr->rose_addr[3] & 0xFF,
                                    addr->rose_addr[4] & 0xFF);
      }

      return buffer;
}

/*
 *    Compare two ROSE addresses, 0 == equal.
 */
int rosecmp(rose_address *addr1, rose_address *addr2)
{
      int i;

      for (i = 0; i < 5; i++)
            if (addr1->rose_addr[i] != addr2->rose_addr[i])
                  return 1;

      return 0;
}

/*
 *    Compare two ROSE addresses for only mask digits, 0 == equal.
 */
int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
{
      int i, j;

      if (mask > 10)
            return 1;

      for (i = 0; i < mask; i++) {
            j = i / 2;

            if ((i % 2) != 0) {
                  if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
                        return 1;
            } else {
                  if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
                        return 1;
            }
      }

      return 0;
}

/*
 *    Socket removal during an interrupt is now safe.
 */
static void rose_remove_socket(struct sock *sk)
{
      spin_lock_bh(&rose_list_lock);
      sk_del_node_init(sk);
      spin_unlock_bh(&rose_list_lock);
}

/*
 *    Kill all bound sockets on a broken link layer connection to a
 *    particular neighbour.
 */
void rose_kill_by_neigh(struct rose_neigh *neigh)
{
      struct sock *s;
      struct hlist_node *node;

      spin_lock_bh(&rose_list_lock);
      sk_for_each(s, node, &rose_list) {
            struct rose_sock *rose = rose_sk(s);

            if (rose->neighbour == neigh) {
                  rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
                  rose->neighbour->use--;
                  rose->neighbour = NULL;
            }
      }
      spin_unlock_bh(&rose_list_lock);
}

/*
 *    Kill all bound sockets on a dropped device.
 */
static void rose_kill_by_device(struct net_device *dev)
{
      struct sock *s;
      struct hlist_node *node;

      spin_lock_bh(&rose_list_lock);
      sk_for_each(s, node, &rose_list) {
            struct rose_sock *rose = rose_sk(s);

            if (rose->device == dev) {
                  rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
                  rose->neighbour->use--;
                  rose->device = NULL;
            }
      }
      spin_unlock_bh(&rose_list_lock);
}

/*
 *    Handle device status changes.
 */
static int rose_device_event(struct notifier_block *this, unsigned long event,
      void *ptr)
{
      struct net_device *dev = (struct net_device *)ptr;

      if (dev->nd_net != &init_net)
            return NOTIFY_DONE;

      if (event != NETDEV_DOWN)
            return NOTIFY_DONE;

      switch (dev->type) {
      case ARPHRD_ROSE:
            rose_kill_by_device(dev);
            break;
      case ARPHRD_AX25:
            rose_link_device_down(dev);
            rose_rt_device_down(dev);
            break;
      }

      return NOTIFY_DONE;
}

/*
 *    Add a socket to the bound sockets list.
 */
static void rose_insert_socket(struct sock *sk)
{

      spin_lock_bh(&rose_list_lock);
      sk_add_node(sk, &rose_list);
      spin_unlock_bh(&rose_list_lock);
}

/*
 *    Find a socket that wants to accept the Call Request we just
 *    received.
 */
static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
{
      struct sock *s;
      struct hlist_node *node;

      spin_lock_bh(&rose_list_lock);
      sk_for_each(s, node, &rose_list) {
            struct rose_sock *rose = rose_sk(s);

            if (!rosecmp(&rose->source_addr, addr) &&
                !ax25cmp(&rose->source_call, call) &&
                !rose->source_ndigis && s->sk_state == TCP_LISTEN)
                  goto found;
      }

      sk_for_each(s, node, &rose_list) {
            struct rose_sock *rose = rose_sk(s);

            if (!rosecmp(&rose->source_addr, addr) &&
                !ax25cmp(&rose->source_call, &null_ax25_address) &&
                s->sk_state == TCP_LISTEN)
                  goto found;
      }
      s = NULL;
found:
      spin_unlock_bh(&rose_list_lock);
      return s;
}

/*
 *    Find a connected ROSE socket given my LCI and device.
 */
struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
{
      struct sock *s;
      struct hlist_node *node;

      spin_lock_bh(&rose_list_lock);
      sk_for_each(s, node, &rose_list) {
            struct rose_sock *rose = rose_sk(s);

            if (rose->lci == lci && rose->neighbour == neigh)
                  goto found;
      }
      s = NULL;
found:
      spin_unlock_bh(&rose_list_lock);
      return s;
}

/*
 *    Find a unique LCI for a given device.
 */
unsigned int rose_new_lci(struct rose_neigh *neigh)
{
      int lci;

      if (neigh->dce_mode) {
            for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
                  if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
                        return lci;
      } else {
            for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
                  if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
                        return lci;
      }

      return 0;
}

/*
 *    Deferred destroy.
 */
void rose_destroy_socket(struct sock *);

/*
 *    Handler for deferred kills.
 */
static void rose_destroy_timer(unsigned long data)
{
      rose_destroy_socket((struct sock *)data);
}

/*
 *    This is called from user mode and the timers. Thus it protects itself
 *    against interrupt users but doesn't worry about being called during
 *    work.  Once it is removed from the queue no interrupt or bottom half
 *    will touch it and we are (fairly 8-) ) safe.
 */
void rose_destroy_socket(struct sock *sk)
{
      struct sk_buff *skb;

      rose_remove_socket(sk);
      rose_stop_heartbeat(sk);
      rose_stop_idletimer(sk);
      rose_stop_timer(sk);

      rose_clear_queues(sk);        /* Flush the queues */

      while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
            if (skb->sk != sk) {    /* A pending connection */
                  /* Queue the unaccepted socket for death */
                  sock_set_flag(skb->sk, SOCK_DEAD);
                  rose_start_heartbeat(skb->sk);
                  rose_sk(skb->sk)->state = ROSE_STATE_0;
            }

            kfree_skb(skb);
      }

      if (atomic_read(&sk->sk_wmem_alloc) ||
          atomic_read(&sk->sk_rmem_alloc)) {
            /* Defer: outstanding buffers */
            init_timer(&sk->sk_timer);
            sk->sk_timer.expires  = jiffies + 10 * HZ;
            sk->sk_timer.function = rose_destroy_timer;
            sk->sk_timer.data     = (unsigned long)sk;
            add_timer(&sk->sk_timer);
      } else
            sock_put(sk);
}

/*
 *    Handling for system calls applied via the various interfaces to a
 *    ROSE socket object.
 */

static int rose_setsockopt(struct socket *sock, int level, int optname,
      char __user *optval, int optlen)
{
      struct sock *sk = sock->sk;
      struct rose_sock *rose = rose_sk(sk);
      int opt;

      if (level != SOL_ROSE)
            return -ENOPROTOOPT;

      if (optlen < sizeof(int))
            return -EINVAL;

      if (get_user(opt, (int __user *)optval))
            return -EFAULT;

      switch (optname) {
      case ROSE_DEFER:
            rose->defer = opt ? 1 : 0;
            return 0;

      case ROSE_T1:
            if (opt < 1)
                  return -EINVAL;
            rose->t1 = opt * HZ;
            return 0;

      case ROSE_T2:
            if (opt < 1)
                  return -EINVAL;
            rose->t2 = opt * HZ;
            return 0;

      case ROSE_T3:
            if (opt < 1)
                  return -EINVAL;
            rose->t3 = opt * HZ;
            return 0;

      case ROSE_HOLDBACK:
            if (opt < 1)
                  return -EINVAL;
            rose->hb = opt * HZ;
            return 0;

      case ROSE_IDLE:
            if (opt < 0)
                  return -EINVAL;
            rose->idle = opt * 60 * HZ;
            return 0;

      case ROSE_QBITINCL:
            rose->qbitincl = opt ? 1 : 0;
            return 0;

      default:
            return -ENOPROTOOPT;
      }
}

static int rose_getsockopt(struct socket *sock, int level, int optname,
      char __user *optval, int __user *optlen)
{
      struct sock *sk = sock->sk;
      struct rose_sock *rose = rose_sk(sk);
      int val = 0;
      int len;

      if (level != SOL_ROSE)
            return -ENOPROTOOPT;

      if (get_user(len, optlen))
            return -EFAULT;

      if (len < 0)
            return -EINVAL;

      switch (optname) {
      case ROSE_DEFER:
            val = rose->defer;
            break;

      case ROSE_T1:
            val = rose->t1 / HZ;
            break;

      case ROSE_T2:
            val = rose->t2 / HZ;
            break;

      case ROSE_T3:
            val = rose->t3 / HZ;
            break;

      case ROSE_HOLDBACK:
            val = rose->hb / HZ;
            break;

      case ROSE_IDLE:
            val = rose->idle / (60 * HZ);
            break;

      case ROSE_QBITINCL:
            val = rose->qbitincl;
            break;

      default:
            return -ENOPROTOOPT;
      }

      len = min_t(unsigned int, len, sizeof(int));

      if (put_user(len, optlen))
            return -EFAULT;

      return copy_to_user(optval, &val, len) ? -EFAULT : 0;
}

static int rose_listen(struct socket *sock, int backlog)
{
      struct sock *sk = sock->sk;

      if (sk->sk_state != TCP_LISTEN) {
            struct rose_sock *rose = rose_sk(sk);

            rose->dest_ndigis = 0;
            memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
            memset(&rose->dest_call, 0, AX25_ADDR_LEN);
            memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
            sk->sk_max_ack_backlog = backlog;
            sk->sk_state           = TCP_LISTEN;
            return 0;
      }

      return -EOPNOTSUPP;
}

static struct proto rose_proto = {
      .name   = "ROSE",
      .owner        = THIS_MODULE,
      .obj_size = sizeof(struct rose_sock),
};

static int rose_create(struct net *net, struct socket *sock, int protocol)
{
      struct sock *sk;
      struct rose_sock *rose;

      if (net != &init_net)
            return -EAFNOSUPPORT;

      if (sock->type != SOCK_SEQPACKET || protocol != 0)
            return -ESOCKTNOSUPPORT;

      sk = sk_alloc(net, PF_ROSE, GFP_ATOMIC, &rose_proto);
      if (sk == NULL)
            return -ENOMEM;

      rose = rose_sk(sk);

      sock_init_data(sock, sk);

      skb_queue_head_init(&rose->ack_queue);
#ifdef M_BIT
      skb_queue_head_init(&rose->frag_queue);
      rose->fraglen    = 0;
#endif

      sock->ops    = &rose_proto_ops;
      sk->sk_protocol = protocol;

      init_timer(&rose->timer);
      init_timer(&rose->idletimer);

      rose->t1   = msecs_to_jiffies(sysctl_rose_call_request_timeout);
      rose->t2   = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
      rose->t3   = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
      rose->hb   = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
      rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);

      rose->state = ROSE_STATE_0;

      return 0;
}

static struct sock *rose_make_new(struct sock *osk)
{
      struct sock *sk;
      struct rose_sock *rose, *orose;

      if (osk->sk_type != SOCK_SEQPACKET)
            return NULL;

      sk = sk_alloc(osk->sk_net, PF_ROSE, GFP_ATOMIC, &rose_proto);
      if (sk == NULL)
            return NULL;

      rose = rose_sk(sk);

      sock_init_data(NULL, sk);

      skb_queue_head_init(&rose->ack_queue);
#ifdef M_BIT
      skb_queue_head_init(&rose->frag_queue);
      rose->fraglen  = 0;
#endif

      sk->sk_type     = osk->sk_type;
      sk->sk_socket   = osk->sk_socket;
      sk->sk_priority = osk->sk_priority;
      sk->sk_protocol = osk->sk_protocol;
      sk->sk_rcvbuf   = osk->sk_rcvbuf;
      sk->sk_sndbuf   = osk->sk_sndbuf;
      sk->sk_state    = TCP_ESTABLISHED;
      sk->sk_sleep    = osk->sk_sleep;
      sock_copy_flags(sk, osk);

      init_timer(&rose->timer);
      init_timer(&rose->idletimer);

      orose       = rose_sk(osk);
      rose->t1    = orose->t1;
      rose->t2    = orose->t2;
      rose->t3    = orose->t3;
      rose->hb    = orose->hb;
      rose->idle  = orose->idle;
      rose->defer = orose->defer;
      rose->device      = orose->device;
      rose->qbitincl    = orose->qbitincl;

      return sk;
}

static int rose_release(struct socket *sock)
{
      struct sock *sk = sock->sk;
      struct rose_sock *rose;

      if (sk == NULL) return 0;

      rose = rose_sk(sk);

      switch (rose->state) {
      case ROSE_STATE_0:
            rose_disconnect(sk, 0, -1, -1);
            rose_destroy_socket(sk);
            break;

      case ROSE_STATE_2:
            rose->neighbour->use--;
            rose_disconnect(sk, 0, -1, -1);
            rose_destroy_socket(sk);
            break;

      case ROSE_STATE_1:
      case ROSE_STATE_3:
      case ROSE_STATE_4:
      case ROSE_STATE_5:
            rose_clear_queues(sk);
            rose_stop_idletimer(sk);
            rose_write_internal(sk, ROSE_CLEAR_REQUEST);
            rose_start_t3timer(sk);
            rose->state  = ROSE_STATE_2;
            sk->sk_state    = TCP_CLOSE;
            sk->sk_shutdown |= SEND_SHUTDOWN;
            sk->sk_state_change(sk);
            sock_set_flag(sk, SOCK_DEAD);
            sock_set_flag(sk, SOCK_DESTROY);
            break;

      default:
            break;
      }

      sock->sk = NULL;

      return 0;
}

static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
      struct sock *sk = sock->sk;
      struct rose_sock *rose = rose_sk(sk);
      struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
      struct net_device *dev;
      ax25_address *source;
      ax25_uid_assoc *user;
      int n;

      if (!sock_flag(sk, SOCK_ZAPPED))
            return -EINVAL;

      if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
            return -EINVAL;

      if (addr->srose_family != AF_ROSE)
            return -EINVAL;

      if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
            return -EINVAL;

      if (addr->srose_ndigis > ROSE_MAX_DIGIS)
            return -EINVAL;

      if ((dev = rose_dev_get(&addr->srose_addr)) == NULL) {
            SOCK_DEBUG(sk, "ROSE: bind failed: invalid address\n");
            return -EADDRNOTAVAIL;
      }

      source = &addr->srose_call;

      user = ax25_findbyuid(current->euid);
      if (user) {
            rose->source_call = user->call;
            ax25_uid_put(user);
      } else {
            if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
                  return -EACCES;
            rose->source_call   = *source;
      }

      rose->source_addr   = addr->srose_addr;
      rose->device        = dev;
      rose->source_ndigis = addr->srose_ndigis;

      if (addr_len == sizeof(struct full_sockaddr_rose)) {
            struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
            for (n = 0 ; n < addr->srose_ndigis ; n++)
                  rose->source_digis[n] = full_addr->srose_digis[n];
      } else {
            if (rose->source_ndigis == 1) {
                  rose->source_digis[0] = addr->srose_digi;
            }
      }

      rose_insert_socket(sk);

      sock_reset_flag(sk, SOCK_ZAPPED);
      SOCK_DEBUG(sk, "ROSE: socket is bound\n");
      return 0;
}

static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
{
      struct sock *sk = sock->sk;
      struct rose_sock *rose = rose_sk(sk);
      struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
      unsigned char cause, diagnostic;
      struct net_device *dev;
      ax25_uid_assoc *user;
      int n, err = 0;

      if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
            return -EINVAL;

      if (addr->srose_family != AF_ROSE)
            return -EINVAL;

      if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
            return -EINVAL;

      if (addr->srose_ndigis > ROSE_MAX_DIGIS)
            return -EINVAL;

      /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
      if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
            return -EINVAL;

      lock_sock(sk);

      if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
            /* Connect completed during a ERESTARTSYS event */
            sock->state = SS_CONNECTED;
            goto out_release;
      }

      if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
            sock->state = SS_UNCONNECTED;
            err = -ECONNREFUSED;
            goto out_release;
      }

      if (sk->sk_state == TCP_ESTABLISHED) {
            /* No reconnect on a seqpacket socket */
            err = -EISCONN;
            goto out_release;
      }

      sk->sk_state   = TCP_CLOSE;
      sock->state = SS_UNCONNECTED;

      rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
                               &diagnostic);
      if (!rose->neighbour)
            return -ENETUNREACH;

      rose->lci = rose_new_lci(rose->neighbour);
      if (!rose->lci) {
            err = -ENETUNREACH;
            goto out_release;
      }

      if (sock_flag(sk, SOCK_ZAPPED)) {   /* Must bind first - autobinding in this may or may not work */
            sock_reset_flag(sk, SOCK_ZAPPED);

            if ((dev = rose_dev_first()) == NULL) {
                  err = -ENETUNREACH;
                  goto out_release;
            }

            user = ax25_findbyuid(current->euid);
            if (!user) {
                  err = -EINVAL;
                  goto out_release;
            }

            memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
            rose->source_call = user->call;
            rose->device      = dev;
            ax25_uid_put(user);

            rose_insert_socket(sk);       /* Finish the bind */
      }
rose_try_next_neigh:
      rose->dest_addr   = addr->srose_addr;
      rose->dest_call   = addr->srose_call;
      rose->rand        = ((long)rose & 0xFFFF) + rose->lci;
      rose->dest_ndigis = addr->srose_ndigis;

      if (addr_len == sizeof(struct full_sockaddr_rose)) {
            struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
            for (n = 0 ; n < addr->srose_ndigis ; n++)
                  rose->dest_digis[n] = full_addr->srose_digis[n];
      } else {
            if (rose->dest_ndigis == 1) {
                  rose->dest_digis[0] = addr->srose_digi;
            }
      }

      /* Move to connecting socket, start sending Connect Requests */
      sock->state   = SS_CONNECTING;
      sk->sk_state     = TCP_SYN_SENT;

      rose->state = ROSE_STATE_1;

      rose->neighbour->use++;

      rose_write_internal(sk, ROSE_CALL_REQUEST);
      rose_start_heartbeat(sk);
      rose_start_t1timer(sk);

      /* Now the loop */
      if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
            err = -EINPROGRESS;
            goto out_release;
      }

      /*
       * A Connect Ack with Choke or timeout or failed routing will go to
       * closed.
       */
      if (sk->sk_state == TCP_SYN_SENT) {
            DEFINE_WAIT(wait);

            for (;;) {
                  prepare_to_wait(sk->sk_sleep, &wait,
                              TASK_INTERRUPTIBLE);
                  if (sk->sk_state != TCP_SYN_SENT)
                        break;
                  if (!signal_pending(current)) {
                        release_sock(sk);
                        schedule();
                        lock_sock(sk);
                        continue;
                  }
                  err = -ERESTARTSYS;
                  break;
            }
            finish_wait(sk->sk_sleep, &wait);

            if (err)
                  goto out_release;
      }

      if (sk->sk_state != TCP_ESTABLISHED) {
      /* Try next neighbour */
            rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause, &diagnostic);
            if (rose->neighbour)
                  goto rose_try_next_neigh;

            /* No more neighbours */
            sock->state = SS_UNCONNECTED;
            err = sock_error(sk);   /* Always set at this point */
            goto out_release;
      }

      sock->state = SS_CONNECTED;

out_release:
      release_sock(sk);

      return err;
}

static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
{
      struct sk_buff *skb;
      struct sock *newsk;
      DEFINE_WAIT(wait);
      struct sock *sk;
      int err = 0;

      if ((sk = sock->sk) == NULL)
            return -EINVAL;

      lock_sock(sk);
      if (sk->sk_type != SOCK_SEQPACKET) {
            err = -EOPNOTSUPP;
            goto out_release;
      }

      if (sk->sk_state != TCP_LISTEN) {
            err = -EINVAL;
            goto out_release;
      }

      /*
       *    The write queue this time is holding sockets ready to use
       *    hooked into the SABM we saved
       */
      for (;;) {
            prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);

            skb = skb_dequeue(&sk->sk_receive_queue);
            if (skb)
                  break;

            if (flags & O_NONBLOCK) {
                  err = -EWOULDBLOCK;
                  break;
            }
            if (!signal_pending(current)) {
                  release_sock(sk);
                  schedule();
                  lock_sock(sk);
                  continue;
            }
            err = -ERESTARTSYS;
            break;
      }
      finish_wait(sk->sk_sleep, &wait);
      if (err)
            goto out_release;

      newsk = skb->sk;
      newsk->sk_socket = newsock;
      newsk->sk_sleep = &newsock->wait;

      /* Now attach up the new socket */
      skb->sk = NULL;
      kfree_skb(skb);
      sk->sk_ack_backlog--;
      newsock->sk = newsk;

out_release:
      release_sock(sk);

      return err;
}

static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
      int *uaddr_len, int peer)
{
      struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
      struct sock *sk = sock->sk;
      struct rose_sock *rose = rose_sk(sk);
      int n;

      if (peer != 0) {
            if (sk->sk_state != TCP_ESTABLISHED)
                  return -ENOTCONN;
            srose->srose_family = AF_ROSE;
            srose->srose_addr   = rose->dest_addr;
            srose->srose_call   = rose->dest_call;
            srose->srose_ndigis = rose->dest_ndigis;
            for (n = 0; n < rose->dest_ndigis; n++)
                  srose->srose_digis[n] = rose->dest_digis[n];
      } else {
            srose->srose_family = AF_ROSE;
            srose->srose_addr   = rose->source_addr;
            srose->srose_call   = rose->source_call;
            srose->srose_ndigis = rose->source_ndigis;
            for (n = 0; n < rose->source_ndigis; n++)
                  srose->srose_digis[n] = rose->source_digis[n];
      }

      *uaddr_len = sizeof(struct full_sockaddr_rose);
      return 0;
}

int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
{
      struct sock *sk;
      struct sock *make;
      struct rose_sock *make_rose;
      struct rose_facilities_struct facilities;
      int n, len;

      skb->sk = NULL;         /* Initially we don't know who it's for */

      /*
       *    skb->data points to the rose frame start
       */
      memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));

      len  = (((skb->data[3] >> 4) & 0x0F) + 1) / 2;
      len += (((skb->data[3] >> 0) & 0x0F) + 1) / 2;
      if (!rose_parse_facilities(skb->data + len + 4, &facilities)) {
            rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
            return 0;
      }

      sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);

      /*
       * We can't accept the Call Request.
       */
      if (sk == NULL || sk_acceptq_is_full(sk) ||
          (make = rose_make_new(sk)) == NULL) {
            rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
            return 0;
      }

      skb->sk     = make;
      make->sk_state = TCP_ESTABLISHED;
      make_rose = rose_sk(make);

      make_rose->lci           = lci;
      make_rose->dest_addr     = facilities.dest_addr;
      make_rose->dest_call     = facilities.dest_call;
      make_rose->dest_ndigis   = facilities.dest_ndigis;
      for (n = 0 ; n < facilities.dest_ndigis ; n++)
            make_rose->dest_digis[n] = facilities.dest_digis[n];
      make_rose->source_addr   = facilities.source_addr;
      make_rose->source_call   = facilities.source_call;
      make_rose->source_ndigis = facilities.source_ndigis;
      for (n = 0 ; n < facilities.source_ndigis ; n++)
            make_rose->source_digis[n]= facilities.source_digis[n];
      make_rose->neighbour     = neigh;
      make_rose->device        = dev;
      make_rose->facilities    = facilities;

      make_rose->neighbour->use++;

      if (rose_sk(sk)->defer) {
            make_rose->state = ROSE_STATE_5;
      } else {
            rose_write_internal(make, ROSE_CALL_ACCEPTED);
            make_rose->state = ROSE_STATE_3;
            rose_start_idletimer(make);
      }

      make_rose->condition = 0x00;
      make_rose->vs        = 0;
      make_rose->va        = 0;
      make_rose->vr        = 0;
      make_rose->vl        = 0;
      sk->sk_ack_backlog++;

      rose_insert_socket(make);

      skb_queue_head(&sk->sk_receive_queue, skb);

      rose_start_heartbeat(make);

      if (!sock_flag(sk, SOCK_DEAD))
            sk->sk_data_ready(sk, skb->len);

      return 1;
}

static int rose_sendmsg(struct kiocb *iocb, struct socket *sock,
                  struct msghdr *msg, size_t len)
{
      struct sock *sk = sock->sk;
      struct rose_sock *rose = rose_sk(sk);
      struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name;
      int err;
      struct full_sockaddr_rose srose;
      struct sk_buff *skb;
      unsigned char *asmptr;
      int n, size, qbit = 0;

      if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
            return -EINVAL;

      if (sock_flag(sk, SOCK_ZAPPED))
            return -EADDRNOTAVAIL;

      if (sk->sk_shutdown & SEND_SHUTDOWN) {
            send_sig(SIGPIPE, current, 0);
            return -EPIPE;
      }

      if (rose->neighbour == NULL || rose->device == NULL)
            return -ENETUNREACH;

      if (usrose != NULL) {
            if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
                  return -EINVAL;
            memset(&srose, 0, sizeof(struct full_sockaddr_rose));
            memcpy(&srose, usrose, msg->msg_namelen);
            if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
                ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
                  return -EISCONN;
            if (srose.srose_ndigis != rose->dest_ndigis)
                  return -EISCONN;
            if (srose.srose_ndigis == rose->dest_ndigis) {
                  for (n = 0 ; n < srose.srose_ndigis ; n++)
                        if (ax25cmp(&rose->dest_digis[n],
                                  &srose.srose_digis[n]))
                              return -EISCONN;
            }
            if (srose.srose_family != AF_ROSE)
                  return -EINVAL;
      } else {
            if (sk->sk_state != TCP_ESTABLISHED)
                  return -ENOTCONN;

            srose.srose_family = AF_ROSE;
            srose.srose_addr   = rose->dest_addr;
            srose.srose_call   = rose->dest_call;
            srose.srose_ndigis = rose->dest_ndigis;
            for (n = 0 ; n < rose->dest_ndigis ; n++)
                  srose.srose_digis[n] = rose->dest_digis[n];
      }

      SOCK_DEBUG(sk, "ROSE: sendto: Addresses built.\n");

      /* Build a packet */
      SOCK_DEBUG(sk, "ROSE: sendto: building packet.\n");
      size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;

      if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
            return err;

      skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);

      /*
       *    Put the data on the end
       */
      SOCK_DEBUG(sk, "ROSE: Appending user data\n");

      skb_reset_transport_header(skb);
      skb_put(skb, len);

      err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
      if (err) {
            kfree_skb(skb);
            return err;
      }

      /*
       *    If the Q BIT Include socket option is in force, the first
       *    byte of the user data is the logical value of the Q Bit.
       */
      if (rose->qbitincl) {
            qbit = skb->data[0];
            skb_pull(skb, 1);
      }

      /*
       *    Push down the ROSE header
       */
      asmptr = skb_push(skb, ROSE_MIN_LEN);

      SOCK_DEBUG(sk, "ROSE: Building Network Header.\n");

      /* Build a ROSE Network header */
      asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
      asmptr[1] = (rose->lci >> 0) & 0xFF;
      asmptr[2] = ROSE_DATA;

      if (qbit)
            asmptr[0] |= ROSE_Q_BIT;

      SOCK_DEBUG(sk, "ROSE: Built header.\n");

      SOCK_DEBUG(sk, "ROSE: Transmitting buffer\n");

      if (sk->sk_state != TCP_ESTABLISHED) {
            kfree_skb(skb);
            return -ENOTCONN;
      }

#ifdef M_BIT
#define ROSE_PACLEN (256-ROSE_MIN_LEN)
      if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
            unsigned char header[ROSE_MIN_LEN];
            struct sk_buff *skbn;
            int frontlen;
            int lg;

            /* Save a copy of the Header */
            skb_copy_from_linear_data(skb, header, ROSE_MIN_LEN);
            skb_pull(skb, ROSE_MIN_LEN);

            frontlen = skb_headroom(skb);

            while (skb->len > 0) {
                  if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
                        kfree_skb(skb);
                        return err;
                  }

                  skbn->sk   = sk;
                  skbn->free = 1;
                  skbn->arp  = 1;

                  skb_reserve(skbn, frontlen);

                  lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;

                  /* Copy the user data */
                  skb_copy_from_linear_data(skb, skb_put(skbn, lg), lg);
                  skb_pull(skb, lg);

                  /* Duplicate the Header */
                  skb_push(skbn, ROSE_MIN_LEN);
                  skb_copy_to_linear_data(skbn, header, ROSE_MIN_LEN);

                  if (skb->len > 0)
                        skbn->data[2] |= M_BIT;

                  skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
            }

            skb->free = 1;
            kfree_skb(skb);
      } else {
            skb_queue_tail(&sk->sk_write_queue, skb);       /* Throw it on the queue */
      }
#else
      skb_queue_tail(&sk->sk_write_queue, skb); /* Shove it onto the queue */
#endif

      rose_kick(sk);

      return len;
}


static int rose_recvmsg(struct kiocb *iocb, struct socket *sock,
                  struct msghdr *msg, size_t size, int flags)
{
      struct sock *sk = sock->sk;
      struct rose_sock *rose = rose_sk(sk);
      struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name;
      size_t copied;
      unsigned char *asmptr;
      struct sk_buff *skb;
      int n, er, qbit;

      /*
       * This works for seqpacket too. The receiver has ordered the queue for
       * us! We do one quick check first though
       */
      if (sk->sk_state != TCP_ESTABLISHED)
            return -ENOTCONN;

      /* Now we can treat all alike */
      if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
            return er;

      qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;

      skb_pull(skb, ROSE_MIN_LEN);

      if (rose->qbitincl) {
            asmptr  = skb_push(skb, 1);
            *asmptr = qbit;
      }

      skb_reset_transport_header(skb);
      copied     = skb->len;

      if (copied > size) {
            copied = size;
            msg->msg_flags |= MSG_TRUNC;
      }

      skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);

      if (srose != NULL) {
            srose->srose_family = AF_ROSE;
            srose->srose_addr   = rose->dest_addr;
            srose->srose_call   = rose->dest_call;
            srose->srose_ndigis = rose->dest_ndigis;
            if (msg->msg_namelen >= sizeof(struct full_sockaddr_rose)) {
                  struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name;
                  for (n = 0 ; n < rose->dest_ndigis ; n++)
                        full_srose->srose_digis[n] = rose->dest_digis[n];
                  msg->msg_namelen = sizeof(struct full_sockaddr_rose);
            } else {
                  if (rose->dest_ndigis >= 1) {
                        srose->srose_ndigis = 1;
                        srose->srose_digi = rose->dest_digis[0];
                  }
                  msg->msg_namelen = sizeof(struct sockaddr_rose);
            }
      }

      skb_free_datagram(sk, skb);

      return copied;
}


static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
      struct sock *sk = sock->sk;
      struct rose_sock *rose = rose_sk(sk);
      void __user *argp = (void __user *)arg;

      switch (cmd) {
      case TIOCOUTQ: {
            long amount;
            amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
            if (amount < 0)
                  amount = 0;
            return put_user(amount, (unsigned int __user *) argp);
      }

      case TIOCINQ: {
            struct sk_buff *skb;
            long amount = 0L;
            /* These two are safe on a single CPU system as only user tasks fiddle here */
            if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
                  amount = skb->len;
            return put_user(amount, (unsigned int __user *) argp);
      }

      case SIOCGSTAMP:
            return sock_get_timestamp(sk, (struct timeval __user *) argp);

      case SIOCGSTAMPNS:
            return sock_get_timestampns(sk, (struct timespec __user *) argp);

      case SIOCGIFADDR:
      case SIOCSIFADDR:
      case SIOCGIFDSTADDR:
      case SIOCSIFDSTADDR:
      case SIOCGIFBRDADDR:
      case SIOCSIFBRDADDR:
      case SIOCGIFNETMASK:
      case SIOCSIFNETMASK:
      case SIOCGIFMETRIC:
      case SIOCSIFMETRIC:
            return -EINVAL;

      case SIOCADDRT:
      case SIOCDELRT:
      case SIOCRSCLRRT:
            if (!capable(CAP_NET_ADMIN))
                  return -EPERM;
            return rose_rt_ioctl(cmd, argp);

      case SIOCRSGCAUSE: {
            struct rose_cause_struct rose_cause;
            rose_cause.cause      = rose->cause;
            rose_cause.diagnostic = rose->diagnostic;
            return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
      }

      case SIOCRSSCAUSE: {
            struct rose_cause_struct rose_cause;
            if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
                  return -EFAULT;
            rose->cause      = rose_cause.cause;
            rose->diagnostic = rose_cause.diagnostic;
            return 0;
      }

      case SIOCRSSL2CALL:
            if (!capable(CAP_NET_ADMIN)) return -EPERM;
            if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
                  ax25_listen_release(&rose_callsign, NULL);
            if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
                  return -EFAULT;
            if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
                  return ax25_listen_register(&rose_callsign, NULL);

            return 0;

      case SIOCRSGL2CALL:
            return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;

      case SIOCRSACCEPT:
            if (rose->state == ROSE_STATE_5) {
                  rose_write_internal(sk, ROSE_CALL_ACCEPTED);
                  rose_start_idletimer(sk);
                  rose->condition = 0x00;
                  rose->vs        = 0;
                  rose->va        = 0;
                  rose->vr        = 0;
                  rose->vl        = 0;
                  rose->state     = ROSE_STATE_3;
            }
            return 0;

      default:
            return -ENOIOCTLCMD;
      }

      return 0;
}

#ifdef CONFIG_PROC_FS
static void *rose_info_start(struct seq_file *seq, loff_t *pos)
{
      int i;
      struct sock *s;
      struct hlist_node *node;

      spin_lock_bh(&rose_list_lock);
      if (*pos == 0)
            return SEQ_START_TOKEN;

      i = 1;
      sk_for_each(s, node, &rose_list) {
            if (i == *pos)
                  return s;
            ++i;
      }
      return NULL;
}

static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
{
      ++*pos;

      return (v == SEQ_START_TOKEN) ? sk_head(&rose_list)
            : sk_next((struct sock *)v);
}

static void rose_info_stop(struct seq_file *seq, void *v)
{
      spin_unlock_bh(&rose_list_lock);
}

static int rose_info_show(struct seq_file *seq, void *v)
{
      char buf[11];

      if (v == SEQ_START_TOKEN)
            seq_puts(seq,
                   "dest_addr  dest_call src_addr   src_call  dev   lci neigh st vs vr va   t  t1  t2  t3  hb    idle Snd-Q Rcv-Q inode\n");

      else {
            struct sock *s = v;
            struct rose_sock *rose = rose_sk(s);
            const char *devname, *callsign;
            const struct net_device *dev = rose->device;

            if (!dev)
                  devname = "???";
            else
                  devname = dev->name;

            seq_printf(seq, "%-10s %-9s ",
                  rose2asc(&rose->dest_addr),
                  ax2asc(buf, &rose->dest_call));

            if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
                  callsign = "??????-?";
            else
                  callsign = ax2asc(buf, &rose->source_call);

            seq_printf(seq,
                     "%-10s %-9s %-5s %3.3X %05d  %d  %d  %d  %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
                  rose2asc(&rose->source_addr),
                  callsign,
                  devname,
                  rose->lci & 0x0FFF,
                  (rose->neighbour) ? rose->neighbour->number : 0,
                  rose->state,
                  rose->vs,
                  rose->vr,
                  rose->va,
                  ax25_display_timer(&rose->timer) / HZ,
                  rose->t1 / HZ,
                  rose->t2 / HZ,
                  rose->t3 / HZ,
                  rose->hb / HZ,
                  ax25_display_timer(&rose->idletimer) / (60 * HZ),
                  rose->idle / (60 * HZ),
                  atomic_read(&s->sk_wmem_alloc),
                  atomic_read(&s->sk_rmem_alloc),
                  s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
      }

      return 0;
}

static const struct seq_operations rose_info_seqops = {
      .start = rose_info_start,
      .next = rose_info_next,
      .stop = rose_info_stop,
      .show = rose_info_show,
};

static int rose_info_open(struct inode *inode, struct file *file)
{
      return seq_open(file, &rose_info_seqops);
}

static const struct file_operations rose_info_fops = {
      .owner = THIS_MODULE,
      .open = rose_info_open,
      .read = seq_read,
      .llseek = seq_lseek,
      .release = seq_release,
};
#endif      /* CONFIG_PROC_FS */

static struct net_proto_family rose_family_ops = {
      .family           =     PF_ROSE,
      .create           =     rose_create,
      .owner            =     THIS_MODULE,
};

static struct proto_ops rose_proto_ops = {
      .family           =     PF_ROSE,
      .owner            =     THIS_MODULE,
      .release    =     rose_release,
      .bind       =     rose_bind,
      .connect    =     rose_connect,
      .socketpair =     sock_no_socketpair,
      .accept           =     rose_accept,
      .getname    =     rose_getname,
      .poll       =     datagram_poll,
      .ioctl            =     rose_ioctl,
      .listen           =     rose_listen,
      .shutdown   =     sock_no_shutdown,
      .setsockopt =     rose_setsockopt,
      .getsockopt =     rose_getsockopt,
      .sendmsg    =     rose_sendmsg,
      .recvmsg    =     rose_recvmsg,
      .mmap       =     sock_no_mmap,
      .sendpage   =     sock_no_sendpage,
};

static struct notifier_block rose_dev_notifier = {
      .notifier_call    =     rose_device_event,
};

static struct net_device **dev_rose;

static struct ax25_protocol rose_pid = {
      .pid  = AX25_P_ROSE,
      .func = rose_route_frame
};

static struct ax25_linkfail rose_linkfail_notifier = {
      .func = rose_link_failed
};

static int __init rose_proto_init(void)
{
      int i;
      int rc;

      if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
            printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
            rc = -EINVAL;
            goto out;
      }

      rc = proto_register(&rose_proto, 0);
      if (rc != 0)
            goto out;

      rose_callsign = null_ax25_address;

      dev_rose = kzalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
      if (dev_rose == NULL) {
            printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
            rc = -ENOMEM;
            goto out_proto_unregister;
      }

      for (i = 0; i < rose_ndevs; i++) {
            struct net_device *dev;
            char name[IFNAMSIZ];

            sprintf(name, "rose%d", i);
            dev = alloc_netdev(sizeof(struct net_device_stats),
                           name, rose_setup);
            if (!dev) {
                  printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
                  rc = -ENOMEM;
                  goto fail;
            }
            rc = register_netdev(dev);
            if (rc) {
                  printk(KERN_ERR "ROSE: netdevice registration failed\n");
                  free_netdev(dev);
                  goto fail;
            }
            lockdep_set_class(&dev->_xmit_lock, &rose_netdev_xmit_lock_key);
            dev_rose[i] = dev;
      }

      sock_register(&rose_family_ops);
      register_netdevice_notifier(&rose_dev_notifier);

      ax25_register_pid(&rose_pid);
      ax25_linkfail_register(&rose_linkfail_notifier);

#ifdef CONFIG_SYSCTL
      rose_register_sysctl();
#endif
      rose_loopback_init();

      rose_add_loopback_neigh();

      proc_net_fops_create(&init_net, "rose", S_IRUGO, &rose_info_fops);
      proc_net_fops_create(&init_net, "rose_neigh", S_IRUGO, &rose_neigh_fops);
      proc_net_fops_create(&init_net, "rose_nodes", S_IRUGO, &rose_nodes_fops);
      proc_net_fops_create(&init_net, "rose_routes", S_IRUGO, &rose_routes_fops);
out:
      return rc;
fail:
      while (--i >= 0) {
            unregister_netdev(dev_rose[i]);
            free_netdev(dev_rose[i]);
      }
      kfree(dev_rose);
out_proto_unregister:
      proto_unregister(&rose_proto);
      goto out;
}
module_init(rose_proto_init);

module_param(rose_ndevs, int, 0);
MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");

MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
MODULE_LICENSE("GPL");
MODULE_ALIAS_NETPROTO(PF_ROSE);

static void __exit rose_exit(void)
{
      int i;

      proc_net_remove(&init_net, "rose");
      proc_net_remove(&init_net, "rose_neigh");
      proc_net_remove(&init_net, "rose_nodes");
      proc_net_remove(&init_net, "rose_routes");
      rose_loopback_clear();

      rose_rt_free();

      ax25_protocol_release(AX25_P_ROSE);
      ax25_linkfail_release(&rose_linkfail_notifier);

      if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
            ax25_listen_release(&rose_callsign, NULL);

#ifdef CONFIG_SYSCTL
      rose_unregister_sysctl();
#endif
      unregister_netdevice_notifier(&rose_dev_notifier);

      sock_unregister(PF_ROSE);

      for (i = 0; i < rose_ndevs; i++) {
            struct net_device *dev = dev_rose[i];

            if (dev) {
                  unregister_netdev(dev);
                  free_netdev(dev);
            }
      }

      kfree(dev_rose);
      proto_unregister(&rose_proto);
}

module_exit(rose_exit);

Generated by  Doxygen 1.6.0   Back to index