Logo Search packages:      
Sourcecode: linux version File versions  Download package

aic94xx_hwi.c

/*
 * Aic94xx SAS/SATA driver hardware interface.
 *
 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
 *
 * This file is licensed under GPLv2.
 *
 * This file is part of the aic94xx driver.
 *
 * The aic94xx driver is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; version 2 of the
 * License.
 *
 * The aic94xx driver is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with the aic94xx driver; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/module.h>

#include "aic94xx.h"
#include "aic94xx_reg.h"
#include "aic94xx_hwi.h"
#include "aic94xx_seq.h"
#include "aic94xx_dump.h"

u32 MBAR0_SWB_SIZE;

/* ---------- Initialization ---------- */

static void asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
{
      extern char sas_addr_str[];
      /* If the user has specified a WWN it overrides other settings
       */
      if (sas_addr_str[0] != '\0')
            asd_destringify_sas_addr(asd_ha->hw_prof.sas_addr,
                               sas_addr_str);
      else if (asd_ha->hw_prof.sas_addr[0] != 0)
            asd_stringify_sas_addr(sas_addr_str, asd_ha->hw_prof.sas_addr);
}

static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
{
      int i;

      for (i = 0; i < ASD_MAX_PHYS; i++) {
            if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
                  continue;
            /* Set a phy's address only if it has none.
             */
            ASD_DPRINTK("setting phy%d addr to %llx\n", i,
                      SAS_ADDR(asd_ha->hw_prof.sas_addr));
            memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
                   asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
      }
}

/* ---------- PHY initialization ---------- */

static void asd_init_phy_identify(struct asd_phy *phy)
{
      phy->identify_frame = phy->id_frm_tok->vaddr;

      memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));

      phy->identify_frame->dev_type = SAS_END_DEV;
      if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
            phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
      if (phy->sas_phy.role & PHY_ROLE_TARGET)
            phy->identify_frame->target_bits = phy->sas_phy.tproto;
      memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
             SAS_ADDR_SIZE);
      phy->identify_frame->phy_id = phy->sas_phy.id;
}

static int asd_init_phy(struct asd_phy *phy)
{
      struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
      struct asd_sas_phy *sas_phy = &phy->sas_phy;

      sas_phy->enabled = 1;
      sas_phy->class = SAS;
      sas_phy->iproto = SAS_PROTO_ALL;
      sas_phy->tproto = 0;
      sas_phy->type = PHY_TYPE_PHYSICAL;
      sas_phy->role = PHY_ROLE_INITIATOR;
      sas_phy->oob_mode = OOB_NOT_CONNECTED;
      sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;

      phy->id_frm_tok = asd_alloc_coherent(asd_ha,
                                   sizeof(*phy->identify_frame),
                                   GFP_KERNEL);
      if (!phy->id_frm_tok) {
            asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
            return -ENOMEM;
      } else
            asd_init_phy_identify(phy);

      memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));

      return 0;
}

static void asd_init_ports(struct asd_ha_struct *asd_ha)
{
      int i;

      spin_lock_init(&asd_ha->asd_ports_lock);
      for (i = 0; i < ASD_MAX_PHYS; i++) {
            struct asd_port *asd_port = &asd_ha->asd_ports[i];

            memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
            memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
            asd_port->phy_mask = 0;
            asd_port->num_phys = 0;
      }
}

static int asd_init_phys(struct asd_ha_struct *asd_ha)
{
      u8 i;
      u8 phy_mask = asd_ha->hw_prof.enabled_phys;

      for (i = 0; i < ASD_MAX_PHYS; i++) {
            struct asd_phy *phy = &asd_ha->phys[i];

            phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
            phy->asd_port = NULL;

            phy->sas_phy.enabled = 0;
            phy->sas_phy.id = i;
            phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
            phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
            phy->sas_phy.ha = &asd_ha->sas_ha;
            phy->sas_phy.lldd_phy = phy;
      }

      /* Now enable and initialize only the enabled phys. */
      for_each_phy(phy_mask, phy_mask, i) {
            int err = asd_init_phy(&asd_ha->phys[i]);
            if (err)
                  return err;
      }

      return 0;
}

/* ---------- Sliding windows ---------- */

static int asd_init_sw(struct asd_ha_struct *asd_ha)
{
      struct pci_dev *pcidev = asd_ha->pcidev;
      int err;
      u32 v;

      /* Unlock MBARs */
      err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
      if (err) {
            asd_printk("couldn't access conf. space of %s\n",
                     pci_name(pcidev));
            goto Err;
      }
      if (v)
            err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
      if (err) {
            asd_printk("couldn't write to MBAR_KEY of %s\n",
                     pci_name(pcidev));
            goto Err;
      }

      /* Set sliding windows A, B and C to point to proper internal
       * memory regions.
       */
      pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
      pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
                         REG_BASE_ADDR_CSEQCIO);
      pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
      asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
      asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
      asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
      MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
      if (!asd_ha->iospace) {
            /* MBAR1 will point to OCM (On Chip Memory) */
            pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
            asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
      }
      spin_lock_init(&asd_ha->iolock);
Err:
      return err;
}

/* ---------- SCB initialization ---------- */

/**
 * asd_init_scbs - manually allocate the first SCB.
 * @asd_ha: pointer to host adapter structure
 *
 * This allocates the very first SCB which would be sent to the
 * sequencer for execution.  Its bus address is written to
 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
 * the _next_ scb to be DMA-ed to the host adapter is read from the last
 * SCB DMA-ed to the host adapter, we have to always stay one step
 * ahead of the sequencer and keep one SCB already allocated.
 */
static int asd_init_scbs(struct asd_ha_struct *asd_ha)
{
      struct asd_seq_data *seq = &asd_ha->seq;
      int bitmap_bytes;

      /* allocate the index array and bitmap */
      asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
      asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
                                   sizeof(void *), GFP_KERNEL);
      if (!asd_ha->seq.tc_index_array)
            return -ENOMEM;

      bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
      bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
      asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
      if (!asd_ha->seq.tc_index_bitmap)
            return -ENOMEM;

      spin_lock_init(&seq->tc_index_lock);

      seq->next_scb.size = sizeof(struct scb);
      seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
                                   &seq->next_scb.dma_handle);
      if (!seq->next_scb.vaddr) {
            kfree(asd_ha->seq.tc_index_bitmap);
            kfree(asd_ha->seq.tc_index_array);
            asd_ha->seq.tc_index_bitmap = NULL;
            asd_ha->seq.tc_index_array = NULL;
            return -ENOMEM;
      }

      seq->pending = 0;
      spin_lock_init(&seq->pend_q_lock);
      INIT_LIST_HEAD(&seq->pend_q);

      return 0;
}

static inline void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
{
      asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
      asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
      ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
                asd_ha->hw_prof.max_scbs,
                asd_ha->hw_prof.max_ddbs);
}

/* ---------- Done List initialization ---------- */

static void asd_dl_tasklet_handler(unsigned long);

static int asd_init_dl(struct asd_ha_struct *asd_ha)
{
      asd_ha->seq.actual_dl
            = asd_alloc_coherent(asd_ha,
                       ASD_DL_SIZE * sizeof(struct done_list_struct),
                             GFP_KERNEL);
      if (!asd_ha->seq.actual_dl)
            return -ENOMEM;
      asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
      asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
      asd_ha->seq.dl_next = 0;
      tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
                 (unsigned long) asd_ha);

      return 0;
}

/* ---------- EDB and ESCB init ---------- */

static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
{
      struct asd_seq_data *seq = &asd_ha->seq;
      int i;

      seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
      if (!seq->edb_arr)
            return -ENOMEM;

      for (i = 0; i < seq->num_edbs; i++) {
            seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
                                         gfp_flags);
            if (!seq->edb_arr[i])
                  goto Err_unroll;
            memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
      }

      ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);

      return 0;

Err_unroll:
      for (i-- ; i >= 0; i--)
            asd_free_coherent(asd_ha, seq->edb_arr[i]);
      kfree(seq->edb_arr);
      seq->edb_arr = NULL;

      return -ENOMEM;
}

static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
                     gfp_t gfp_flags)
{
      struct asd_seq_data *seq = &asd_ha->seq;
      struct asd_ascb *escb;
      int i, escbs;

      seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
                        gfp_flags);
      if (!seq->escb_arr)
            return -ENOMEM;

      escbs = seq->num_escbs;
      escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
      if (!escb) {
            asd_printk("couldn't allocate list of escbs\n");
            goto Err;
      }
      seq->num_escbs -= escbs;  /* subtract what was not allocated */
      ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);

      for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
                                                 struct asd_ascb,
                                                 list)) {
            seq->escb_arr[i] = escb;
            escb->scb->header.opcode = EMPTY_SCB;
      }

      return 0;
Err:
      kfree(seq->escb_arr);
      seq->escb_arr = NULL;
      return -ENOMEM;

}

static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
{
      struct asd_seq_data *seq = &asd_ha->seq;
      int i, k, z = 0;

      for (i = 0; i < seq->num_escbs; i++) {
            struct asd_ascb *ascb = seq->escb_arr[i];
            struct empty_scb *escb = &ascb->scb->escb;

            ascb->edb_index = z;

            escb->num_valid = ASD_EDBS_PER_SCB;

            for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
                  struct sg_el *eb = &escb->eb[k];
                  struct asd_dma_tok *edb = seq->edb_arr[z++];

                  memset(eb, 0, sizeof(*eb));
                  eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
                  eb->size = cpu_to_le32(((u32) edb->size));
            }
      }
}

/**
 * asd_init_escbs -- allocate and initialize empty scbs
 * @asd_ha: pointer to host adapter structure
 *
 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
 * They transport sense data, etc.
 */
static int asd_init_escbs(struct asd_ha_struct *asd_ha)
{
      struct asd_seq_data *seq = &asd_ha->seq;
      int err = 0;

      /* Allocate two empty data buffers (edb) per sequencer. */
      int edbs = 2*(1+asd_ha->hw_prof.num_phys);

      seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
      seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;

      err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
      if (err) {
            asd_printk("couldn't allocate edbs\n");
            return err;
      }

      err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
      if (err) {
            asd_printk("couldn't allocate escbs\n");
            return err;
      }

      asd_assign_edbs2escbs(asd_ha);
      /* In order to insure that normal SCBs do not overfill sequencer
       * memory and leave no space for escbs (halting condition),
       * we increment pending here by the number of escbs.  However,
       * escbs are never pending.
       */
      seq->pending   = seq->num_escbs;
      seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;

      return 0;
}

/* ---------- HW initialization ---------- */

/**
 * asd_chip_hardrst -- hard reset the chip
 * @asd_ha: pointer to host adapter structure
 *
 * This takes 16 cycles and is synchronous to CFCLK, which runs
 * at 200 MHz, so this should take at most 80 nanoseconds.
 */
int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
{
      int i;
      int count = 100;
      u32 reg;

      for (i = 0 ; i < 4 ; i++) {
            asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
      }

      do {
            udelay(1);
            reg = asd_read_reg_dword(asd_ha, CHIMINT);
            if (reg & HARDRSTDET) {
                  asd_write_reg_dword(asd_ha, CHIMINT,
                                  HARDRSTDET|PORRSTDET);
                  return 0;
            }
      } while (--count > 0);

      return -ENODEV;
}

/**
 * asd_init_chip -- initialize the chip
 * @asd_ha: pointer to host adapter structure
 *
 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
 * microcode and starts the sequencers.  The caller has to explicitly
 * enable HA interrupts with asd_enable_ints(asd_ha).
 */
static int asd_init_chip(struct asd_ha_struct *asd_ha)
{
      int err;

      err = asd_chip_hardrst(asd_ha);
      if (err) {
            asd_printk("couldn't hard reset %s\n",
                      pci_name(asd_ha->pcidev));
            goto out;
      }

      asd_disable_ints(asd_ha);

      err = asd_init_seqs(asd_ha);
      if (err) {
            asd_printk("couldn't init seqs for %s\n",
                     pci_name(asd_ha->pcidev));
            goto out;
      }

      err = asd_start_seqs(asd_ha);
      if (err) {
            asd_printk("coudln't start seqs for %s\n",
                     pci_name(asd_ha->pcidev));
            goto out;
      }
out:
      return err;
}

#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))

static int max_devs = 0;
module_param_named(max_devs, max_devs, int, S_IRUGO);
MODULE_PARM_DESC(max_devs, "\n"
      "\tMaximum number of SAS devices to support (not LUs).\n"
      "\tDefault: 2176, Maximum: 65663.\n");

static int max_cmnds = 0;
module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
MODULE_PARM_DESC(max_cmnds, "\n"
      "\tMaximum number of commands queuable.\n"
      "\tDefault: 512, Maximum: 66047.\n");

static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
{
      unsigned long dma_addr = OCM_BASE_ADDR;
      u32 d;

      dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
      asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
      d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
      d |= 4;
      asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
      asd_ha->hw_prof.max_ddbs += MAX_DEVS;
}

static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
{
      dma_addr_t dma_handle;
      unsigned long dma_addr;
      u32 d;
      int size;

      asd_extend_devctx_ocm(asd_ha);

      asd_ha->hw_prof.ddb_ext = NULL;
      if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
            max_devs = asd_ha->hw_prof.max_ddbs;
            return 0;
      }

      size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;

      asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
      if (!asd_ha->hw_prof.ddb_ext) {
            asd_printk("couldn't allocate memory for %d devices\n",
                     max_devs);
            max_devs = asd_ha->hw_prof.max_ddbs;
            return -ENOMEM;
      }
      dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
      dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
      dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
      dma_handle = (dma_addr_t) dma_addr;
      asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
      d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
      d &= ~4;
      asd_write_reg_dword(asd_ha, CTXDOMAIN, d);

      asd_ha->hw_prof.max_ddbs = max_devs;

      return 0;
}

static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
{
      dma_addr_t dma_handle;
      unsigned long dma_addr;
      u32 d;
      int size;

      asd_ha->hw_prof.scb_ext = NULL;
      if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
            max_cmnds = asd_ha->hw_prof.max_scbs;
            return 0;
      }

      size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;

      asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
      if (!asd_ha->hw_prof.scb_ext) {
            asd_printk("couldn't allocate memory for %d commands\n",
                     max_cmnds);
            max_cmnds = asd_ha->hw_prof.max_scbs;
            return -ENOMEM;
      }
      dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
      dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
      dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
      dma_handle = (dma_addr_t) dma_addr;
      asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
      d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
      d &= ~1;
      asd_write_reg_dword(asd_ha, CTXDOMAIN, d);

      asd_ha->hw_prof.max_scbs = max_cmnds;

      return 0;
}

/**
 * asd_init_ctxmem -- initialize context memory
 * asd_ha: pointer to host adapter structure
 *
 * This function sets the maximum number of SCBs and
 * DDBs which can be used by the sequencer.  This is normally
 * 512 and 128 respectively.  If support for more SCBs or more DDBs
 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
 * initialized here to extend context memory to point to host memory,
 * thus allowing unlimited support for SCBs and DDBs -- only limited
 * by host memory.
 */
static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
{
      int bitmap_bytes;

      asd_get_max_scb_ddb(asd_ha);
      asd_extend_devctx(asd_ha);
      asd_extend_cmdctx(asd_ha);

      /* The kernel wants bitmaps to be unsigned long sized. */
      bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
      bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
      asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
      if (!asd_ha->hw_prof.ddb_bitmap)
            return -ENOMEM;
      spin_lock_init(&asd_ha->hw_prof.ddb_lock);

      return 0;
}

int asd_init_hw(struct asd_ha_struct *asd_ha)
{
      int err;
      u32 v;

      err = asd_init_sw(asd_ha);
      if (err)
            return err;

      err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
      if (err) {
            asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
                     pci_name(asd_ha->pcidev));
            return err;
      }
      pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
                              v | SC_TMR_DIS);
      if (err) {
            asd_printk("couldn't disable split completion timer of %s\n",
                     pci_name(asd_ha->pcidev));
            return err;
      }

      err = asd_read_ocm(asd_ha);
      if (err) {
            asd_printk("couldn't read ocm(%d)\n", err);
            /* While suspicios, it is not an error that we
             * couldn't read the OCM. */
      }

      err = asd_read_flash(asd_ha);
      if (err) {
            asd_printk("couldn't read flash(%d)\n", err);
            /* While suspicios, it is not an error that we
             * couldn't read FLASH memory.
             */
      }

      asd_init_ctxmem(asd_ha);

      asd_get_user_sas_addr(asd_ha);
      if (!asd_ha->hw_prof.sas_addr[0]) {
            asd_printk("No SAS Address provided for %s\n",
                     pci_name(asd_ha->pcidev));
            err = -ENODEV;
            goto Out;
      }

      asd_propagate_sas_addr(asd_ha);

      err = asd_init_phys(asd_ha);
      if (err) {
            asd_printk("couldn't initialize phys for %s\n",
                      pci_name(asd_ha->pcidev));
            goto Out;
      }

      asd_init_ports(asd_ha);

      err = asd_init_scbs(asd_ha);
      if (err) {
            asd_printk("couldn't initialize scbs for %s\n",
                      pci_name(asd_ha->pcidev));
            goto Out;
      }

      err = asd_init_dl(asd_ha);
      if (err) {
            asd_printk("couldn't initialize the done list:%d\n",
                      err);
            goto Out;
      }

      err = asd_init_escbs(asd_ha);
      if (err) {
            asd_printk("couldn't initialize escbs\n");
            goto Out;
      }

      err = asd_init_chip(asd_ha);
      if (err) {
            asd_printk("couldn't init the chip\n");
            goto Out;
      }
Out:
      return err;
}

/* ---------- Chip reset ---------- */

/**
 * asd_chip_reset -- reset the host adapter, etc
 * @asd_ha: pointer to host adapter structure of interest
 *
 * Called from the ISR.  Hard reset the chip.  Let everything
 * timeout.  This should be no different than hot-unplugging the
 * host adapter.  Once everything times out we'll init the chip with
 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
 * XXX finish.
 */
static void asd_chip_reset(struct asd_ha_struct *asd_ha)
{
      struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;

      ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
      asd_chip_hardrst(asd_ha);
      sas_ha->notify_ha_event(sas_ha, HAE_RESET);
}

/* ---------- Done List Routines ---------- */

static void asd_dl_tasklet_handler(unsigned long data)
{
      struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
      struct asd_seq_data *seq = &asd_ha->seq;
      unsigned long flags;

      while (1) {
            struct done_list_struct *dl = &seq->dl[seq->dl_next];
            struct asd_ascb *ascb;

            if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
                  break;

            /* find the aSCB */
            spin_lock_irqsave(&seq->tc_index_lock, flags);
            ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
            spin_unlock_irqrestore(&seq->tc_index_lock, flags);
            if (unlikely(!ascb)) {
                  ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
                  goto next_1;
            } else if (ascb->scb->header.opcode == EMPTY_SCB) {
                  goto out;
            } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
                  goto next_1;
            }
            spin_lock_irqsave(&seq->pend_q_lock, flags);
            list_del_init(&ascb->list);
            seq->pending--;
            spin_unlock_irqrestore(&seq->pend_q_lock, flags);
      out:
            ascb->tasklet_complete(ascb, dl);

      next_1:
            seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
            if (!seq->dl_next)
                  seq->dl_toggle ^= DL_TOGGLE_MASK;
      }
}

/* ---------- Interrupt Service Routines ---------- */

/**
 * asd_process_donelist_isr -- schedule processing of done list entries
 * @asd_ha: pointer to host adapter structure
 */
static inline void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
{
      tasklet_schedule(&asd_ha->seq.dl_tasklet);
}

/**
 * asd_com_sas_isr -- process device communication interrupt (COMINT)
 * @asd_ha: pointer to host adapter structure
 */
static inline void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
{
      u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);

      /* clear COMSTAT int */
      asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);

      if (comstat & CSBUFPERR) {
            asd_printk("%s: command/status buffer dma parity error\n",
                     pci_name(asd_ha->pcidev));
      } else if (comstat & CSERR) {
            int i;
            u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
            dmaerr &= 0xFF;
            asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
                     "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
                     pci_name(asd_ha->pcidev),
                     dmaerr,
                     asd_read_reg_dword(asd_ha, CSDMAADR),
                     asd_read_reg_dword(asd_ha, CSDMAADR+4));
            asd_printk("CSBUFFER:\n");
            for (i = 0; i < 8; i++) {
                  asd_printk("%08x %08x %08x %08x\n",
                           asd_read_reg_dword(asd_ha, CSBUFFER),
                           asd_read_reg_dword(asd_ha, CSBUFFER+4),
                           asd_read_reg_dword(asd_ha, CSBUFFER+8),
                           asd_read_reg_dword(asd_ha, CSBUFFER+12));
            }
            asd_dump_seq_state(asd_ha, 0);
      } else if (comstat & OVLYERR) {
            u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
            dmaerr = (dmaerr >> 8) & 0xFF;
            asd_printk("%s: overlay dma error:0x%x\n",
                     pci_name(asd_ha->pcidev),
                     dmaerr);
      }
      asd_chip_reset(asd_ha);
}

static inline void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
{
      static const char *halt_code[256] = {
            "UNEXPECTED_INTERRUPT0",
            "UNEXPECTED_INTERRUPT1",
            "UNEXPECTED_INTERRUPT2",
            "UNEXPECTED_INTERRUPT3",
            "UNEXPECTED_INTERRUPT4",
            "UNEXPECTED_INTERRUPT5",
            "UNEXPECTED_INTERRUPT6",
            "UNEXPECTED_INTERRUPT7",
            "UNEXPECTED_INTERRUPT8",
            "UNEXPECTED_INTERRUPT9",
            "UNEXPECTED_INTERRUPT10",
            [11 ... 19] = "unknown[11,19]",
            "NO_FREE_SCB_AVAILABLE",
            "INVALID_SCB_OPCODE",
            "INVALID_MBX_OPCODE",
            "INVALID_ATA_STATE",
            "ATA_QUEUE_FULL",
            "ATA_TAG_TABLE_FAULT",
            "ATA_TAG_MASK_FAULT",
            "BAD_LINK_QUEUE_STATE",
            "DMA2CHIM_QUEUE_ERROR",
            "EMPTY_SCB_LIST_FULL",
            "unknown[30]",
            "IN_USE_SCB_ON_FREE_LIST",
            "BAD_OPEN_WAIT_STATE",
            "INVALID_STP_AFFILIATION",
            "unknown[34]",
            "EXEC_QUEUE_ERROR",
            "TOO_MANY_EMPTIES_NEEDED",
            "EMPTY_REQ_QUEUE_ERROR",
            "Q_MONIRTT_MGMT_ERROR",
            "TARGET_MODE_FLOW_ERROR",
            "DEVICE_QUEUE_NOT_FOUND",
            "START_IRTT_TIMER_ERROR",
            "ABORT_TASK_ILLEGAL_REQ",
            [43 ... 255] = "unknown[43,255]"
      };

      if (dchstatus & CSEQINT) {
            u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);

            if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
                  asd_printk("%s: CSEQ arp2int:0x%x\n",
                           pci_name(asd_ha->pcidev),
                           arp2int);
            } else if (arp2int & ARP2HALTC)
                  asd_printk("%s: CSEQ halted: %s\n",
                           pci_name(asd_ha->pcidev),
                           halt_code[(arp2int>>16)&0xFF]);
            else
                  asd_printk("%s: CARP2INT:0x%x\n",
                           pci_name(asd_ha->pcidev),
                           arp2int);
      }
      if (dchstatus & LSEQINT_MASK) {
            int lseq;
            u8  lseq_mask = dchstatus & LSEQINT_MASK;

            for_each_sequencer(lseq_mask, lseq_mask, lseq) {
                  u32 arp2int = asd_read_reg_dword(asd_ha,
                                           LmARP2INT(lseq));
                  if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
                               | ARP2CIOPERR)) {
                        asd_printk("%s: LSEQ%d arp2int:0x%x\n",
                                 pci_name(asd_ha->pcidev),
                                 lseq, arp2int);
                        /* XXX we should only do lseq reset */
                  } else if (arp2int & ARP2HALTC)
                        asd_printk("%s: LSEQ%d halted: %s\n",
                                 pci_name(asd_ha->pcidev),
                                 lseq,halt_code[(arp2int>>16)&0xFF]);
                  else
                        asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
                                 pci_name(asd_ha->pcidev), lseq,
                                 arp2int);
            }
      }
      asd_chip_reset(asd_ha);
}

/**
 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
 * @asd_ha: pointer to host adapter structure
 */
static inline void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
{
      u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);

      if (dchstatus & CFIFTOERR) {
            asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
            asd_chip_reset(asd_ha);
      } else
            asd_arp2_err(asd_ha, dchstatus);
}

/**
 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
 * @asd_ha: pointer to host adapter structure
 */
static inline void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
{
      u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);

      if (!(stat0r & ASIERR)) {
            asd_printk("hmm, EXSI interrupted but no error?\n");
            return;
      }

      if (stat0r & ASIFMTERR) {
            asd_printk("ASI SEEPROM format error for %s\n",
                     pci_name(asd_ha->pcidev));
      } else if (stat0r & ASISEECHKERR) {
            u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
            asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
                     stat1r & CHECKSUM_MASK,
                     pci_name(asd_ha->pcidev));
      } else {
            u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);

            if (!(statr & CPI2ASIMSTERR_MASK)) {
                  ASD_DPRINTK("hmm, ASIERR?\n");
                  return;
            } else {
                  u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
                  u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);

                  asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
                           "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
                           "master id: 0x%x, master err: 0x%x\n",
                           pci_name(asd_ha->pcidev),
                           addr, data,
                           (statr & CPI2ASIBYTECNT_MASK) >> 16,
                           (statr & CPI2ASIBYTEEN_MASK) >> 12,
                           (statr & CPI2ASITARGERR_MASK) >> 8,
                           (statr & CPI2ASITARGMID_MASK) >> 4,
                           (statr & CPI2ASIMSTERR_MASK));
            }
      }
      asd_chip_reset(asd_ha);
}

/**
 * asd_hst_pcix_isr -- process host interface interrupts
 * @asd_ha: pointer to host adapter structure
 *
 * Asserted on PCIX errors: target abort, etc.
 */
static inline void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
{
      u16 status;
      u32 pcix_status;
      u32 ecc_status;

      pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
      pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
      pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);

      if (status & PCI_STATUS_DETECTED_PARITY)
            asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
      else if (status & PCI_STATUS_REC_MASTER_ABORT)
            asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
      else if (status & PCI_STATUS_REC_TARGET_ABORT)
            asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
      else if (status & PCI_STATUS_PARITY)
            asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
      else if (pcix_status & RCV_SCE) {
            asd_printk("received split completion error for %s\n",
                     pci_name(asd_ha->pcidev));
            pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
            /* XXX: Abort task? */
            return;
      } else if (pcix_status & UNEXP_SC) {
            asd_printk("unexpected split completion for %s\n",
                     pci_name(asd_ha->pcidev));
            pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
            /* ignore */
            return;
      } else if (pcix_status & SC_DISCARD)
            asd_printk("split completion discarded for %s\n",
                     pci_name(asd_ha->pcidev));
      else if (ecc_status & UNCOR_ECCERR)
            asd_printk("uncorrectable ECC error for %s\n",
                     pci_name(asd_ha->pcidev));
      asd_chip_reset(asd_ha);
}

/**
 * asd_hw_isr -- host adapter interrupt service routine
 * @irq: ignored
 * @dev_id: pointer to host adapter structure
 *
 * The ISR processes done list entries and level 3 error handling.
 */
irqreturn_t asd_hw_isr(int irq, void *dev_id)
{
      struct asd_ha_struct *asd_ha = dev_id;
      u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);

      if (!chimint)
            return IRQ_NONE;

      asd_write_reg_dword(asd_ha, CHIMINT, chimint);
      (void) asd_read_reg_dword(asd_ha, CHIMINT);

      if (chimint & DLAVAIL)
            asd_process_donelist_isr(asd_ha);
      if (chimint & COMINT)
            asd_com_sas_isr(asd_ha);
      if (chimint & DEVINT)
            asd_dch_sas_isr(asd_ha);
      if (chimint & INITERR)
            asd_rbi_exsi_isr(asd_ha);
      if (chimint & HOSTERR)
            asd_hst_pcix_isr(asd_ha);

      return IRQ_HANDLED;
}

/* ---------- SCB handling ---------- */

static inline struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
                                    gfp_t gfp_flags)
{
      extern struct kmem_cache *asd_ascb_cache;
      struct asd_seq_data *seq = &asd_ha->seq;
      struct asd_ascb *ascb;
      unsigned long flags;

      ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);

      if (ascb) {
            ascb->dma_scb.size = sizeof(struct scb);
            ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
                                         gfp_flags,
                                        &ascb->dma_scb.dma_handle);
            if (!ascb->dma_scb.vaddr) {
                  kmem_cache_free(asd_ascb_cache, ascb);
                  return NULL;
            }
            memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
            asd_init_ascb(asd_ha, ascb);

            spin_lock_irqsave(&seq->tc_index_lock, flags);
            ascb->tc_index = asd_tc_index_get(seq, ascb);
            spin_unlock_irqrestore(&seq->tc_index_lock, flags);
            if (ascb->tc_index == -1)
                  goto undo;

            ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
      }

      return ascb;
undo:
      dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
                  ascb->dma_scb.dma_handle);
      kmem_cache_free(asd_ascb_cache, ascb);
      ASD_DPRINTK("no index for ascb\n");
      return NULL;
}

/**
 * asd_ascb_alloc_list -- allocate a list of aSCBs
 * @asd_ha: pointer to host adapter structure
 * @num: pointer to integer number of aSCBs
 * @gfp_flags: GFP_ flags.
 *
 * This is the only function which is used to allocate aSCBs.
 * It can allocate one or many. If more than one, then they form
 * a linked list in two ways: by their list field of the ascb struct
 * and by the next_scb field of the scb_header.
 *
 * Returns NULL if no memory was available, else pointer to a list
 * of ascbs.  When this function returns, @num would be the number
 * of SCBs which were not able to be allocated, 0 if all requested
 * were able to be allocated.
 */
struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
                             *asd_ha, int *num,
                             gfp_t gfp_flags)
{
      struct asd_ascb *first = NULL;

      for ( ; *num > 0; --*num) {
            struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);

            if (!ascb)
                  break;
            else if (!first)
                  first = ascb;
            else {
                  struct asd_ascb *last = list_entry(first->list.prev,
                                             struct asd_ascb,
                                             list);
                  list_add_tail(&ascb->list, &first->list);
                  last->scb->header.next_scb =
                        cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
            }
      }

      return first;
}

/**
 * asd_swap_head_scb -- swap the head scb
 * @asd_ha: pointer to host adapter structure
 * @ascb: pointer to the head of an ascb list
 *
 * The sequencer knows the DMA address of the next SCB to be DMAed to
 * the host adapter, from initialization or from the last list DMAed.
 * seq->next_scb keeps the address of this SCB.  The sequencer will
 * DMA to the host adapter this list of SCBs.  But the head (first
 * element) of this list is not known to the sequencer.  Here we swap
 * the head of the list with the known SCB (memcpy()).
 * Only one memcpy() is required per list so it is in our interest
 * to keep the list of SCB as long as possible so that the ratio
 * of number of memcpy calls to the number of SCB DMA-ed is as small
 * as possible.
 *
 * LOCKING: called with the pending list lock held.
 */
static inline void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
                             struct asd_ascb *ascb)
{
      struct asd_seq_data *seq = &asd_ha->seq;
      struct asd_ascb *last = list_entry(ascb->list.prev,
                                 struct asd_ascb,
                                 list);
      struct asd_dma_tok t = ascb->dma_scb;

      memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
      ascb->dma_scb = seq->next_scb;
      ascb->scb = ascb->dma_scb.vaddr;
      seq->next_scb = t;
      last->scb->header.next_scb =
            cpu_to_le64(((u64)seq->next_scb.dma_handle));
}

/**
 * asd_start_timers -- (add and) start timers of SCBs
 * @list: pointer to struct list_head of the scbs
 * @to: timeout in jiffies
 *
 * If an SCB in the @list has no timer function, assign the default
 * one,  then start the timer of the SCB.  This function is
 * intended to be called from asd_post_ascb_list(), just prior to
 * posting the SCBs to the sequencer.
 */
static inline void asd_start_scb_timers(struct list_head *list)
{
      struct asd_ascb *ascb;
      list_for_each_entry(ascb, list, list) {
            if (!ascb->uldd_timer) {
                  ascb->timer.data = (unsigned long) ascb;
                  ascb->timer.function = asd_ascb_timedout;
                  ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
                  add_timer(&ascb->timer);
            }
      }
}

/**
 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
 * @asd_ha: pointer to a host adapter structure
 * @ascb: pointer to the first aSCB in the list
 * @num: number of aSCBs in the list (to be posted)
 *
 * See queueing comment in asd_post_escb_list().
 *
 * Additional note on queuing: In order to minimize the ratio of memcpy()
 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
 * in one go.
 * Two cases are possible:
 *    A) can_queue >= num,
 *    B) can_queue < num.
 * Case A: we can send the whole batch at once.  Increment "pending"
 * in the beginning of this function, when it is checked, in order to
 * eliminate races when this function is called by multiple processes.
 * Case B: should never happen if the managing layer considers
 * lldd_queue_size.
 */
int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
                   int num)
{
      unsigned long flags;
      LIST_HEAD(list);
      int can_queue;

      spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
      can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
      if (can_queue >= num)
            asd_ha->seq.pending += num;
      else
            can_queue = 0;

      if (!can_queue) {
            spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
            asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
            return -SAS_QUEUE_FULL;
      }

      asd_swap_head_scb(asd_ha, ascb);

      __list_add(&list, ascb->list.prev, &ascb->list);

      asd_start_scb_timers(&list);

      asd_ha->seq.scbpro += num;
      list_splice_init(&list, asd_ha->seq.pend_q.prev);
      asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
      spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);

      return 0;
}

/**
 * asd_post_escb_list -- post a list of 1 or more empty scb
 * @asd_ha: pointer to a host adapter structure
 * @ascb: pointer to the first empty SCB in the list
 * @num: number of aSCBs in the list (to be posted)
 *
 * This is essentially the same as asd_post_ascb_list, but we do not
 * increment pending, add those to the pending list or get indexes.
 * See asd_init_escbs() and asd_init_post_escbs().
 *
 * Since sending a list of ascbs is a superset of sending a single
 * ascb, this function exists to generalize this.  More specifically,
 * when sending a list of those, we want to do only a _single_
 * memcpy() at swap head, as opposed to for each ascb sent (in the
 * case of sending them one by one).  That is, we want to minimize the
 * ratio of memcpy() operations to the number of ascbs sent.  The same
 * logic applies to asd_post_ascb_list().
 */
int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
                   int num)
{
      unsigned long flags;

      spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
      asd_swap_head_scb(asd_ha, ascb);
      asd_ha->seq.scbpro += num;
      asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
      spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);

      return 0;
}

/* ---------- LED ---------- */

/**
 * asd_turn_led -- turn on/off an LED
 * @asd_ha: pointer to host adapter structure
 * @phy_id: the PHY id whose LED we want to manupulate
 * @op: 1 to turn on, 0 to turn off
 */
void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
{
      if (phy_id < ASD_MAX_PHYS) {
            u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
            if (op)
                  v |= LEDPOL;
            else
                  v &= ~LEDPOL;
            asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
      }
}

/**
 * asd_control_led -- enable/disable an LED on the board
 * @asd_ha: pointer to host adapter structure
 * @phy_id: integer, the phy id
 * @op: integer, 1 to enable, 0 to disable the LED
 *
 * First we output enable the LED, then we set the source
 * to be an external module.
 */
void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
{
      if (phy_id < ASD_MAX_PHYS) {
            u32 v;

            v = asd_read_reg_dword(asd_ha, GPIOOER);
            if (op)
                  v |= (1 << phy_id);
            else
                  v &= ~(1 << phy_id);
            asd_write_reg_dword(asd_ha, GPIOOER, v);

            v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
            if (op)
                  v |= (1 << phy_id);
            else
                  v &= ~(1 << phy_id);
            asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
      }
}

/* ---------- PHY enable ---------- */

static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
{
      struct asd_phy *phy = &asd_ha->phys[phy_id];

      asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
      asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
                     HOTPLUG_DELAY_TIMEOUT);

      /* Get defaults from manuf. sector */
      /* XXX we need defaults for those in case MS is broken. */
      asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
                     phy->phy_desc->phy_control_0);
      asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
                     phy->phy_desc->phy_control_1);
      asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
                     phy->phy_desc->phy_control_2);
      asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
                     phy->phy_desc->phy_control_3);

      asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
                      ASD_COMINIT_TIMEOUT);

      asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
                     phy->id_frm_tok->dma_handle);

      asd_control_led(asd_ha, phy_id, 1);

      return 0;
}

int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
{
      u8  phy_m;
      u8  i;
      int num = 0, k;
      struct asd_ascb *ascb;
      struct asd_ascb *ascb_list;

      if (!phy_mask) {
            asd_printk("%s called with phy_mask of 0!?\n", __FUNCTION__);
            return 0;
      }

      for_each_phy(phy_mask, phy_m, i) {
            num++;
            asd_enable_phy(asd_ha, i);
      }

      k = num;
      ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
      if (!ascb_list) {
            asd_printk("no memory for control phy ascb list\n");
            return -ENOMEM;
      }
      num -= k;

      ascb = ascb_list;
      for_each_phy(phy_mask, phy_m, i) {
            asd_build_control_phy(ascb, i, ENABLE_PHY);
            ascb = list_entry(ascb->list.next, struct asd_ascb, list);
      }
      ASD_DPRINTK("posting %d control phy scbs\n", num);
      k = asd_post_ascb_list(asd_ha, ascb_list, num);
      if (k)
            asd_ascb_free_list(ascb_list);

      return k;
}

Generated by  Doxygen 1.6.0   Back to index