Logo Search packages:      
Sourcecode: linux version File versions  Download package

atmel_usba_udc.c

/*
 * Driver for the Atmel USBA high speed USB device controller
 *
 * Copyright (C) 2005-2007 Atmel Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/delay.h>

#include <asm/gpio.h>
#include <asm/arch/board.h>

#include "atmel_usba_udc.h"


static struct usba_udc the_udc;

#ifdef CONFIG_USB_GADGET_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/uaccess.h>

static int queue_dbg_open(struct inode *inode, struct file *file)
{
      struct usba_ep *ep = inode->i_private;
      struct usba_request *req, *req_copy;
      struct list_head *queue_data;

      queue_data = kmalloc(sizeof(*queue_data), GFP_KERNEL);
      if (!queue_data)
            return -ENOMEM;
      INIT_LIST_HEAD(queue_data);

      spin_lock_irq(&ep->udc->lock);
      list_for_each_entry(req, &ep->queue, queue) {
            req_copy = kmalloc(sizeof(*req_copy), GFP_ATOMIC);
            if (!req_copy)
                  goto fail;
            memcpy(req_copy, req, sizeof(*req_copy));
            list_add_tail(&req_copy->queue, queue_data);
      }
      spin_unlock_irq(&ep->udc->lock);

      file->private_data = queue_data;
      return 0;

fail:
      spin_unlock_irq(&ep->udc->lock);
      list_for_each_entry_safe(req, req_copy, queue_data, queue) {
            list_del(&req->queue);
            kfree(req);
      }
      kfree(queue_data);
      return -ENOMEM;
}

/*
 * bbbbbbbb llllllll IZS sssss nnnn FDL\n\0
 *
 * b: buffer address
 * l: buffer length
 * I/i: interrupt/no interrupt
 * Z/z: zero/no zero
 * S/s: short ok/short not ok
 * s: status
 * n: nr_packets
 * F/f: submitted/not submitted to FIFO
 * D/d: using/not using DMA
 * L/l: last transaction/not last transaction
 */
static ssize_t queue_dbg_read(struct file *file, char __user *buf,
            size_t nbytes, loff_t *ppos)
{
      struct list_head *queue = file->private_data;
      struct usba_request *req, *tmp_req;
      size_t len, remaining, actual = 0;
      char tmpbuf[38];

      if (!access_ok(VERIFY_WRITE, buf, nbytes))
            return -EFAULT;

      mutex_lock(&file->f_dentry->d_inode->i_mutex);
      list_for_each_entry_safe(req, tmp_req, queue, queue) {
            len = snprintf(tmpbuf, sizeof(tmpbuf),
                        "%8p %08x %c%c%c %5d %c%c%c\n",
                        req->req.buf, req->req.length,
                        req->req.no_interrupt ? 'i' : 'I',
                        req->req.zero ? 'Z' : 'z',
                        req->req.short_not_ok ? 's' : 'S',
                        req->req.status,
                        req->submitted ? 'F' : 'f',
                        req->using_dma ? 'D' : 'd',
                        req->last_transaction ? 'L' : 'l');
            len = min(len, sizeof(tmpbuf));
            if (len > nbytes)
                  break;

            list_del(&req->queue);
            kfree(req);

            remaining = __copy_to_user(buf, tmpbuf, len);
            actual += len - remaining;
            if (remaining)
                  break;

            nbytes -= len;
            buf += len;
      }
      mutex_unlock(&file->f_dentry->d_inode->i_mutex);

      return actual;
}

static int queue_dbg_release(struct inode *inode, struct file *file)
{
      struct list_head *queue_data = file->private_data;
      struct usba_request *req, *tmp_req;

      list_for_each_entry_safe(req, tmp_req, queue_data, queue) {
            list_del(&req->queue);
            kfree(req);
      }
      kfree(queue_data);
      return 0;
}

static int regs_dbg_open(struct inode *inode, struct file *file)
{
      struct usba_udc *udc;
      unsigned int i;
      u32 *data;
      int ret = -ENOMEM;

      mutex_lock(&inode->i_mutex);
      udc = inode->i_private;
      data = kmalloc(inode->i_size, GFP_KERNEL);
      if (!data)
            goto out;

      spin_lock_irq(&udc->lock);
      for (i = 0; i < inode->i_size / 4; i++)
            data[i] = __raw_readl(udc->regs + i * 4);
      spin_unlock_irq(&udc->lock);

      file->private_data = data;
      ret = 0;

out:
      mutex_unlock(&inode->i_mutex);

      return ret;
}

static ssize_t regs_dbg_read(struct file *file, char __user *buf,
            size_t nbytes, loff_t *ppos)
{
      struct inode *inode = file->f_dentry->d_inode;
      int ret;

      mutex_lock(&inode->i_mutex);
      ret = simple_read_from_buffer(buf, nbytes, ppos,
                  file->private_data,
                  file->f_dentry->d_inode->i_size);
      mutex_unlock(&inode->i_mutex);

      return ret;
}

static int regs_dbg_release(struct inode *inode, struct file *file)
{
      kfree(file->private_data);
      return 0;
}

const struct file_operations queue_dbg_fops = {
      .owner            = THIS_MODULE,
      .open       = queue_dbg_open,
      .llseek           = no_llseek,
      .read       = queue_dbg_read,
      .release    = queue_dbg_release,
};

const struct file_operations regs_dbg_fops = {
      .owner            = THIS_MODULE,
      .open       = regs_dbg_open,
      .llseek           = generic_file_llseek,
      .read       = regs_dbg_read,
      .release    = regs_dbg_release,
};

static void usba_ep_init_debugfs(struct usba_udc *udc,
            struct usba_ep *ep)
{
      struct dentry *ep_root;

      ep_root = debugfs_create_dir(ep->ep.name, udc->debugfs_root);
      if (!ep_root)
            goto err_root;
      ep->debugfs_dir = ep_root;

      ep->debugfs_queue = debugfs_create_file("queue", 0400, ep_root,
                                    ep, &queue_dbg_fops);
      if (!ep->debugfs_queue)
            goto err_queue;

      if (ep->can_dma) {
            ep->debugfs_dma_status
                  = debugfs_create_u32("dma_status", 0400, ep_root,
                              &ep->last_dma_status);
            if (!ep->debugfs_dma_status)
                  goto err_dma_status;
      }
      if (ep_is_control(ep)) {
            ep->debugfs_state
                  = debugfs_create_u32("state", 0400, ep_root,
                              &ep->state);
            if (!ep->debugfs_state)
                  goto err_state;
      }

      return;

err_state:
      if (ep->can_dma)
            debugfs_remove(ep->debugfs_dma_status);
err_dma_status:
      debugfs_remove(ep->debugfs_queue);
err_queue:
      debugfs_remove(ep_root);
err_root:
      dev_err(&ep->udc->pdev->dev,
            "failed to create debugfs directory for %s\n", ep->ep.name);
}

static void usba_ep_cleanup_debugfs(struct usba_ep *ep)
{
      debugfs_remove(ep->debugfs_queue);
      debugfs_remove(ep->debugfs_dma_status);
      debugfs_remove(ep->debugfs_state);
      debugfs_remove(ep->debugfs_dir);
      ep->debugfs_dma_status = NULL;
      ep->debugfs_dir = NULL;
}

static void usba_init_debugfs(struct usba_udc *udc)
{
      struct dentry *root, *regs;
      struct resource *regs_resource;

      root = debugfs_create_dir(udc->gadget.name, NULL);
      if (IS_ERR(root) || !root)
            goto err_root;
      udc->debugfs_root = root;

      regs = debugfs_create_file("regs", 0400, root, udc, &regs_dbg_fops);
      if (!regs)
            goto err_regs;

      regs_resource = platform_get_resource(udc->pdev, IORESOURCE_MEM,
                        CTRL_IOMEM_ID);
      regs->d_inode->i_size = regs_resource->end - regs_resource->start + 1;
      udc->debugfs_regs = regs;

      usba_ep_init_debugfs(udc, to_usba_ep(udc->gadget.ep0));

      return;

err_regs:
      debugfs_remove(root);
err_root:
      udc->debugfs_root = NULL;
      dev_err(&udc->pdev->dev, "debugfs is not available\n");
}

static void usba_cleanup_debugfs(struct usba_udc *udc)
{
      usba_ep_cleanup_debugfs(to_usba_ep(udc->gadget.ep0));
      debugfs_remove(udc->debugfs_regs);
      debugfs_remove(udc->debugfs_root);
      udc->debugfs_regs = NULL;
      udc->debugfs_root = NULL;
}
#else
static inline void usba_ep_init_debugfs(struct usba_udc *udc,
                               struct usba_ep *ep)
{

}

static inline void usba_ep_cleanup_debugfs(struct usba_ep *ep)
{

}

static inline void usba_init_debugfs(struct usba_udc *udc)
{

}

static inline void usba_cleanup_debugfs(struct usba_udc *udc)
{

}
#endif

static int vbus_is_present(struct usba_udc *udc)
{
      if (udc->vbus_pin != -1)
            return gpio_get_value(udc->vbus_pin);

      /* No Vbus detection: Assume always present */
      return 1;
}

static void copy_to_fifo(void __iomem *fifo, const void *buf, int len)
{
      unsigned long tmp;

      DBG(DBG_FIFO, "copy to FIFO (len %d):\n", len);
      for (; len > 0; len -= 4, buf += 4, fifo += 4) {
            tmp = *(unsigned long *)buf;
            if (len >= 4) {
                  DBG(DBG_FIFO, "  -> %08lx\n", tmp);
                  __raw_writel(tmp, fifo);
            } else {
                  do {
                        DBG(DBG_FIFO, "  -> %02lx\n", tmp >> 24);
                        __raw_writeb(tmp >> 24, fifo);
                        fifo++;
                        tmp <<= 8;
                  } while (--len);
                  break;
            }
      }
}

static void copy_from_fifo(void *buf, void __iomem *fifo, int len)
{
      union {
            unsigned long *w;
            unsigned char *b;
      } p;
      unsigned long tmp;

      DBG(DBG_FIFO, "copy from FIFO (len %d):\n", len);
      for (p.w = buf; len > 0; len -= 4, p.w++, fifo += 4) {
            if (len >= 4) {
                  tmp = __raw_readl(fifo);
                  *p.w = tmp;
                  DBG(DBG_FIFO, "  -> %08lx\n", tmp);
            } else {
                  do {
                        tmp = __raw_readb(fifo);
                        *p.b = tmp;
                        DBG(DBG_FIFO, " -> %02lx\n", tmp);
                        fifo++, p.b++;
                  } while (--len);
            }
      }
}

static void next_fifo_transaction(struct usba_ep *ep, struct usba_request *req)
{
      unsigned int transaction_len;

      transaction_len = req->req.length - req->req.actual;
      req->last_transaction = 1;
      if (transaction_len > ep->ep.maxpacket) {
            transaction_len = ep->ep.maxpacket;
            req->last_transaction = 0;
      } else if (transaction_len == ep->ep.maxpacket && req->req.zero)
            req->last_transaction = 0;

      DBG(DBG_QUEUE, "%s: submit_transaction, req %p (length %d)%s\n",
            ep->ep.name, req, transaction_len,
            req->last_transaction ? ", done" : "");

      copy_to_fifo(ep->fifo, req->req.buf + req->req.actual, transaction_len);
      usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
      req->req.actual += transaction_len;
}

static void submit_request(struct usba_ep *ep, struct usba_request *req)
{
      DBG(DBG_QUEUE, "%s: submit_request: req %p (length %d)\n",
            ep->ep.name, req, req->req.length);

      req->req.actual = 0;
      req->submitted = 1;

      if (req->using_dma) {
            if (req->req.length == 0) {
                  usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
                  return;
            }

            if (req->req.zero)
                  usba_ep_writel(ep, CTL_ENB, USBA_SHORT_PACKET);
            else
                  usba_ep_writel(ep, CTL_DIS, USBA_SHORT_PACKET);

            usba_dma_writel(ep, ADDRESS, req->req.dma);
            usba_dma_writel(ep, CONTROL, req->ctrl);
      } else {
            next_fifo_transaction(ep, req);
            if (req->last_transaction) {
                  usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
                  usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
            } else {
                  usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
                  usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
            }
      }
}

static void submit_next_request(struct usba_ep *ep)
{
      struct usba_request *req;

      if (list_empty(&ep->queue)) {
            usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY | USBA_RX_BK_RDY);
            return;
      }

      req = list_entry(ep->queue.next, struct usba_request, queue);
      if (!req->submitted)
            submit_request(ep, req);
}

static void send_status(struct usba_udc *udc, struct usba_ep *ep)
{
      ep->state = STATUS_STAGE_IN;
      usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
      usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
}

static void receive_data(struct usba_ep *ep)
{
      struct usba_udc *udc = ep->udc;
      struct usba_request *req;
      unsigned long status;
      unsigned int bytecount, nr_busy;
      int is_complete = 0;

      status = usba_ep_readl(ep, STA);
      nr_busy = USBA_BFEXT(BUSY_BANKS, status);

      DBG(DBG_QUEUE, "receive data: nr_busy=%u\n", nr_busy);

      while (nr_busy > 0) {
            if (list_empty(&ep->queue)) {
                  usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
                  break;
            }
            req = list_entry(ep->queue.next,
                         struct usba_request, queue);

            bytecount = USBA_BFEXT(BYTE_COUNT, status);

            if (status & (1 << 31))
                  is_complete = 1;
            if (req->req.actual + bytecount >= req->req.length) {
                  is_complete = 1;
                  bytecount = req->req.length - req->req.actual;
            }

            copy_from_fifo(req->req.buf + req->req.actual,
                        ep->fifo, bytecount);
            req->req.actual += bytecount;

            usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);

            if (is_complete) {
                  DBG(DBG_QUEUE, "%s: request done\n", ep->ep.name);
                  req->req.status = 0;
                  list_del_init(&req->queue);
                  usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
                  spin_unlock(&udc->lock);
                  req->req.complete(&ep->ep, &req->req);
                  spin_lock(&udc->lock);
            }

            status = usba_ep_readl(ep, STA);
            nr_busy = USBA_BFEXT(BUSY_BANKS, status);

            if (is_complete && ep_is_control(ep)) {
                  send_status(udc, ep);
                  break;
            }
      }
}

static void
request_complete(struct usba_ep *ep, struct usba_request *req, int status)
{
      struct usba_udc *udc = ep->udc;

      WARN_ON(!list_empty(&req->queue));

      if (req->req.status == -EINPROGRESS)
            req->req.status = status;

      if (req->mapped) {
            dma_unmap_single(
                  &udc->pdev->dev, req->req.dma, req->req.length,
                  ep->is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
            req->req.dma = DMA_ADDR_INVALID;
            req->mapped = 0;
      }

      DBG(DBG_GADGET | DBG_REQ,
            "%s: req %p complete: status %d, actual %u\n",
            ep->ep.name, req, req->req.status, req->req.actual);

      spin_unlock(&udc->lock);
      req->req.complete(&ep->ep, &req->req);
      spin_lock(&udc->lock);
}

static void
request_complete_list(struct usba_ep *ep, struct list_head *list, int status)
{
      struct usba_request *req, *tmp_req;

      list_for_each_entry_safe(req, tmp_req, list, queue) {
            list_del_init(&req->queue);
            request_complete(ep, req, status);
      }
}

static int
usba_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc)
{
      struct usba_ep *ep = to_usba_ep(_ep);
      struct usba_udc *udc = ep->udc;
      unsigned long flags, ept_cfg, maxpacket;
      unsigned int nr_trans;

      DBG(DBG_GADGET, "%s: ep_enable: desc=%p\n", ep->ep.name, desc);

      maxpacket = le16_to_cpu(desc->wMaxPacketSize) & 0x7ff;

      if (((desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK) != ep->index)
                  || ep->index == 0
                  || desc->bDescriptorType != USB_DT_ENDPOINT
                  || maxpacket == 0
                  || maxpacket > ep->fifo_size) {
            DBG(DBG_ERR, "ep_enable: Invalid argument");
            return -EINVAL;
      }

      ep->is_isoc = 0;
      ep->is_in = 0;

      if (maxpacket <= 8)
            ept_cfg = USBA_BF(EPT_SIZE, USBA_EPT_SIZE_8);
      else
            /* LSB is bit 1, not 0 */
            ept_cfg = USBA_BF(EPT_SIZE, fls(maxpacket - 1) - 3);

      DBG(DBG_HW, "%s: EPT_SIZE = %lu (maxpacket = %lu)\n",
                  ep->ep.name, ept_cfg, maxpacket);

      if ((desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
            ep->is_in = 1;
            ept_cfg |= USBA_EPT_DIR_IN;
      }

      switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
      case USB_ENDPOINT_XFER_CONTROL:
            ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_CONTROL);
            ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_ONE);
            break;
      case USB_ENDPOINT_XFER_ISOC:
            if (!ep->can_isoc) {
                  DBG(DBG_ERR, "ep_enable: %s is not isoc capable\n",
                              ep->ep.name);
                  return -EINVAL;
            }

            /*
             * Bits 11:12 specify number of _additional_
             * transactions per microframe.
             */
            nr_trans = ((le16_to_cpu(desc->wMaxPacketSize) >> 11) & 3) + 1;
            if (nr_trans > 3)
                  return -EINVAL;

            ep->is_isoc = 1;
            ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_ISO);

            /*
             * Do triple-buffering on high-bandwidth iso endpoints.
             */
            if (nr_trans > 1 && ep->nr_banks == 3)
                  ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_TRIPLE);
            else
                  ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_DOUBLE);
            ept_cfg |= USBA_BF(NB_TRANS, nr_trans);
            break;
      case USB_ENDPOINT_XFER_BULK:
            ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK);
            ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_DOUBLE);
            break;
      case USB_ENDPOINT_XFER_INT:
            ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_INT);
            ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_DOUBLE);
            break;
      }

      spin_lock_irqsave(&ep->udc->lock, flags);

      if (ep->desc) {
            spin_unlock_irqrestore(&ep->udc->lock, flags);
            DBG(DBG_ERR, "ep%d already enabled\n", ep->index);
            return -EBUSY;
      }

      ep->desc = desc;
      ep->ep.maxpacket = maxpacket;

      usba_ep_writel(ep, CFG, ept_cfg);
      usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);

      if (ep->can_dma) {
            u32 ctrl;

            usba_writel(udc, INT_ENB,
                        (usba_readl(udc, INT_ENB)
                              | USBA_BF(EPT_INT, 1 << ep->index)
                              | USBA_BF(DMA_INT, 1 << ep->index)));
            ctrl = USBA_AUTO_VALID | USBA_INTDIS_DMA;
            usba_ep_writel(ep, CTL_ENB, ctrl);
      } else {
            usba_writel(udc, INT_ENB,
                        (usba_readl(udc, INT_ENB)
                              | USBA_BF(EPT_INT, 1 << ep->index)));
      }

      spin_unlock_irqrestore(&udc->lock, flags);

      DBG(DBG_HW, "EPT_CFG%d after init: %#08lx\n", ep->index,
                  (unsigned long)usba_ep_readl(ep, CFG));
      DBG(DBG_HW, "INT_ENB after init: %#08lx\n",
                  (unsigned long)usba_readl(udc, INT_ENB));

      return 0;
}

static int usba_ep_disable(struct usb_ep *_ep)
{
      struct usba_ep *ep = to_usba_ep(_ep);
      struct usba_udc *udc = ep->udc;
      LIST_HEAD(req_list);
      unsigned long flags;

      DBG(DBG_GADGET, "ep_disable: %s\n", ep->ep.name);

      spin_lock_irqsave(&udc->lock, flags);

      if (!ep->desc) {
            spin_unlock_irqrestore(&udc->lock, flags);
            DBG(DBG_ERR, "ep_disable: %s not enabled\n", ep->ep.name);
            return -EINVAL;
      }
      ep->desc = NULL;

      list_splice_init(&ep->queue, &req_list);
      if (ep->can_dma) {
            usba_dma_writel(ep, CONTROL, 0);
            usba_dma_writel(ep, ADDRESS, 0);
            usba_dma_readl(ep, STATUS);
      }
      usba_ep_writel(ep, CTL_DIS, USBA_EPT_ENABLE);
      usba_writel(udc, INT_ENB,
                  usba_readl(udc, INT_ENB)
                  & ~USBA_BF(EPT_INT, 1 << ep->index));

      request_complete_list(ep, &req_list, -ESHUTDOWN);

      spin_unlock_irqrestore(&udc->lock, flags);

      return 0;
}

static struct usb_request *
usba_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
      struct usba_request *req;

      DBG(DBG_GADGET, "ep_alloc_request: %p, 0x%x\n", _ep, gfp_flags);

      req = kzalloc(sizeof(*req), gfp_flags);
      if (!req)
            return NULL;

      INIT_LIST_HEAD(&req->queue);
      req->req.dma = DMA_ADDR_INVALID;

      return &req->req;
}

static void
usba_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
      struct usba_request *req = to_usba_req(_req);

      DBG(DBG_GADGET, "ep_free_request: %p, %p\n", _ep, _req);

      kfree(req);
}

static int queue_dma(struct usba_udc *udc, struct usba_ep *ep,
            struct usba_request *req, gfp_t gfp_flags)
{
      unsigned long flags;
      int ret;

      DBG(DBG_DMA, "%s: req l/%u d/%08x %c%c%c\n",
            ep->ep.name, req->req.length, req->req.dma,
            req->req.zero ? 'Z' : 'z',
            req->req.short_not_ok ? 'S' : 's',
            req->req.no_interrupt ? 'I' : 'i');

      if (req->req.length > 0x10000) {
            /* Lengths from 0 to 65536 (inclusive) are supported */
            DBG(DBG_ERR, "invalid request length %u\n", req->req.length);
            return -EINVAL;
      }

      req->using_dma = 1;

      if (req->req.dma == DMA_ADDR_INVALID) {
            req->req.dma = dma_map_single(
                  &udc->pdev->dev, req->req.buf, req->req.length,
                  ep->is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
            req->mapped = 1;
      } else {
            dma_sync_single_for_device(
                  &udc->pdev->dev, req->req.dma, req->req.length,
                  ep->is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
            req->mapped = 0;
      }

      req->ctrl = USBA_BF(DMA_BUF_LEN, req->req.length)
                  | USBA_DMA_CH_EN | USBA_DMA_END_BUF_IE
                  | USBA_DMA_END_TR_EN | USBA_DMA_END_TR_IE;

      if (ep->is_in)
            req->ctrl |= USBA_DMA_END_BUF_EN;

      /*
       * Add this request to the queue and submit for DMA if
       * possible. Check if we're still alive first -- we may have
       * received a reset since last time we checked.
       */
      ret = -ESHUTDOWN;
      spin_lock_irqsave(&udc->lock, flags);
      if (ep->desc) {
            if (list_empty(&ep->queue))
                  submit_request(ep, req);

            list_add_tail(&req->queue, &ep->queue);
            ret = 0;
      }
      spin_unlock_irqrestore(&udc->lock, flags);

      return ret;
}

static int
usba_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
      struct usba_request *req = to_usba_req(_req);
      struct usba_ep *ep = to_usba_ep(_ep);
      struct usba_udc *udc = ep->udc;
      unsigned long flags;
      int ret;

      DBG(DBG_GADGET | DBG_QUEUE | DBG_REQ, "%s: queue req %p, len %u\n",
                  ep->ep.name, req, _req->length);

      if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN || !ep->desc)
            return -ESHUTDOWN;

      req->submitted = 0;
      req->using_dma = 0;
      req->last_transaction = 0;

      _req->status = -EINPROGRESS;
      _req->actual = 0;

      if (ep->can_dma)
            return queue_dma(udc, ep, req, gfp_flags);

      /* May have received a reset since last time we checked */
      ret = -ESHUTDOWN;
      spin_lock_irqsave(&udc->lock, flags);
      if (ep->desc) {
            list_add_tail(&req->queue, &ep->queue);

            if (ep->is_in || (ep_is_control(ep)
                        && (ep->state == DATA_STAGE_IN
                              || ep->state == STATUS_STAGE_IN)))
                  usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
            else
                  usba_ep_writel(ep, CTL_ENB, USBA_RX_BK_RDY);
            ret = 0;
      }
      spin_unlock_irqrestore(&udc->lock, flags);

      return ret;
}

static void
usba_update_req(struct usba_ep *ep, struct usba_request *req, u32 status)
{
      req->req.actual = req->req.length - USBA_BFEXT(DMA_BUF_LEN, status);
}

static int stop_dma(struct usba_ep *ep, u32 *pstatus)
{
      unsigned int timeout;
      u32 status;

      /*
       * Stop the DMA controller. When writing both CH_EN
       * and LINK to 0, the other bits are not affected.
       */
      usba_dma_writel(ep, CONTROL, 0);

      /* Wait for the FIFO to empty */
      for (timeout = 40; timeout; --timeout) {
            status = usba_dma_readl(ep, STATUS);
            if (!(status & USBA_DMA_CH_EN))
                  break;
            udelay(1);
      }

      if (pstatus)
            *pstatus = status;

      if (timeout == 0) {
            dev_err(&ep->udc->pdev->dev,
                  "%s: timed out waiting for DMA FIFO to empty\n",
                  ep->ep.name);
            return -ETIMEDOUT;
      }

      return 0;
}

static int usba_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
      struct usba_ep *ep = to_usba_ep(_ep);
      struct usba_udc *udc = ep->udc;
      struct usba_request *req = to_usba_req(_req);
      unsigned long flags;
      u32 status;

      DBG(DBG_GADGET | DBG_QUEUE, "ep_dequeue: %s, req %p\n",
                  ep->ep.name, req);

      spin_lock_irqsave(&udc->lock, flags);

      if (req->using_dma) {
            /*
             * If this request is currently being transferred,
             * stop the DMA controller and reset the FIFO.
             */
            if (ep->queue.next == &req->queue) {
                  status = usba_dma_readl(ep, STATUS);
                  if (status & USBA_DMA_CH_EN)
                        stop_dma(ep, &status);

#ifdef CONFIG_USB_GADGET_DEBUG_FS
                  ep->last_dma_status = status;
#endif

                  usba_writel(udc, EPT_RST, 1 << ep->index);

                  usba_update_req(ep, req, status);
            }
      }

      /*
       * Errors should stop the queue from advancing until the
       * completion function returns.
       */
      list_del_init(&req->queue);

      request_complete(ep, req, -ECONNRESET);

      /* Process the next request if any */
      submit_next_request(ep);
      spin_unlock_irqrestore(&udc->lock, flags);

      return 0;
}

static int usba_ep_set_halt(struct usb_ep *_ep, int value)
{
      struct usba_ep *ep = to_usba_ep(_ep);
      struct usba_udc *udc = ep->udc;
      unsigned long flags;
      int ret = 0;

      DBG(DBG_GADGET, "endpoint %s: %s HALT\n", ep->ep.name,
                  value ? "set" : "clear");

      if (!ep->desc) {
            DBG(DBG_ERR, "Attempted to halt uninitialized ep %s\n",
                        ep->ep.name);
            return -ENODEV;
      }
      if (ep->is_isoc) {
            DBG(DBG_ERR, "Attempted to halt isochronous ep %s\n",
                        ep->ep.name);
            return -ENOTTY;
      }

      spin_lock_irqsave(&udc->lock, flags);

      /*
       * We can't halt IN endpoints while there are still data to be
       * transferred
       */
      if (!list_empty(&ep->queue)
                  || ((value && ep->is_in && (usba_ep_readl(ep, STA)
                              & USBA_BF(BUSY_BANKS, -1L))))) {
            ret = -EAGAIN;
      } else {
            if (value)
                  usba_ep_writel(ep, SET_STA, USBA_FORCE_STALL);
            else
                  usba_ep_writel(ep, CLR_STA,
                              USBA_FORCE_STALL | USBA_TOGGLE_CLR);
            usba_ep_readl(ep, STA);
      }

      spin_unlock_irqrestore(&udc->lock, flags);

      return ret;
}

static int usba_ep_fifo_status(struct usb_ep *_ep)
{
      struct usba_ep *ep = to_usba_ep(_ep);

      return USBA_BFEXT(BYTE_COUNT, usba_ep_readl(ep, STA));
}

static void usba_ep_fifo_flush(struct usb_ep *_ep)
{
      struct usba_ep *ep = to_usba_ep(_ep);
      struct usba_udc *udc = ep->udc;

      usba_writel(udc, EPT_RST, 1 << ep->index);
}

static const struct usb_ep_ops usba_ep_ops = {
      .enable           = usba_ep_enable,
      .disable    = usba_ep_disable,
      .alloc_request    = usba_ep_alloc_request,
      .free_request     = usba_ep_free_request,
      .queue            = usba_ep_queue,
      .dequeue    = usba_ep_dequeue,
      .set_halt   = usba_ep_set_halt,
      .fifo_status      = usba_ep_fifo_status,
      .fifo_flush = usba_ep_fifo_flush,
};

static int usba_udc_get_frame(struct usb_gadget *gadget)
{
      struct usba_udc *udc = to_usba_udc(gadget);

      return USBA_BFEXT(FRAME_NUMBER, usba_readl(udc, FNUM));
}

static int usba_udc_wakeup(struct usb_gadget *gadget)
{
      struct usba_udc *udc = to_usba_udc(gadget);
      unsigned long flags;
      u32 ctrl;
      int ret = -EINVAL;

      spin_lock_irqsave(&udc->lock, flags);
      if (udc->devstatus & (1 << USB_DEVICE_REMOTE_WAKEUP)) {
            ctrl = usba_readl(udc, CTRL);
            usba_writel(udc, CTRL, ctrl | USBA_REMOTE_WAKE_UP);
            ret = 0;
      }
      spin_unlock_irqrestore(&udc->lock, flags);

      return ret;
}

static int
usba_udc_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered)
{
      struct usba_udc *udc = to_usba_udc(gadget);
      unsigned long flags;

      spin_lock_irqsave(&udc->lock, flags);
      if (is_selfpowered)
            udc->devstatus |= 1 << USB_DEVICE_SELF_POWERED;
      else
            udc->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED);
      spin_unlock_irqrestore(&udc->lock, flags);

      return 0;
}

static const struct usb_gadget_ops usba_udc_ops = {
      .get_frame        = usba_udc_get_frame,
      .wakeup                 = usba_udc_wakeup,
      .set_selfpowered  = usba_udc_set_selfpowered,
};

#define EP(nam, idx, maxpkt, maxbk, dma, isoc)              \
{                                               \
      .ep   = {                                 \
            .ops        = &usba_ep_ops,               \
            .name       = nam,                        \
            .maxpacket  = maxpkt,               \
      },                                        \
      .udc        = &the_udc,                   \
      .queue            = LIST_HEAD_INIT(usba_ep[idx].queue),     \
      .fifo_size  = maxpkt,                     \
      .nr_banks   = maxbk,                      \
      .index            = idx,                              \
      .can_dma    = dma,                              \
      .can_isoc   = isoc,                             \
}

static struct usba_ep usba_ep[] = {
      EP("ep0", 0, 64, 1, 0, 0),
      EP("ep1in-bulk", 1, 512, 2, 1, 1),
      EP("ep2out-bulk", 2, 512, 2, 1, 1),
      EP("ep3in-int", 3, 64, 3, 1, 0),
      EP("ep4out-int", 4, 64, 3, 1, 0),
      EP("ep5in-iso", 5, 1024, 3, 1, 1),
      EP("ep6out-iso", 6, 1024, 3, 1, 1),
};
#undef EP

static struct usb_endpoint_descriptor usba_ep0_desc = {
      .bLength = USB_DT_ENDPOINT_SIZE,
      .bDescriptorType = USB_DT_ENDPOINT,
      .bEndpointAddress = 0,
      .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
      .wMaxPacketSize = __constant_cpu_to_le16(64),
      /* FIXME: I have no idea what to put here */
      .bInterval = 1,
};

static void nop_release(struct device *dev)
{

}

static struct usba_udc the_udc = {
      .gadget     = {
            .ops        = &usba_udc_ops,
            .ep0        = &usba_ep[0].ep,
            .ep_list    = LIST_HEAD_INIT(the_udc.gadget.ep_list),
            .is_dualspeed     = 1,
            .name       = "atmel_usba_udc",
            .dev  = {
                  .bus_id           = "gadget",
                  .release    = nop_release,
            },
      },

      .lock = SPIN_LOCK_UNLOCKED,
};

/*
 * Called with interrupts disabled and udc->lock held.
 */
static void reset_all_endpoints(struct usba_udc *udc)
{
      struct usba_ep *ep;
      struct usba_request *req, *tmp_req;

      usba_writel(udc, EPT_RST, ~0UL);

      ep = to_usba_ep(udc->gadget.ep0);
      list_for_each_entry_safe(req, tmp_req, &ep->queue, queue) {
            list_del_init(&req->queue);
            request_complete(ep, req, -ECONNRESET);
      }

      list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
            if (ep->desc) {
                  spin_unlock(&udc->lock);
                  usba_ep_disable(&ep->ep);
                  spin_lock(&udc->lock);
            }
      }
}

static struct usba_ep *get_ep_by_addr(struct usba_udc *udc, u16 wIndex)
{
      struct usba_ep *ep;

      if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
            return to_usba_ep(udc->gadget.ep0);

      list_for_each_entry (ep, &udc->gadget.ep_list, ep.ep_list) {
            u8 bEndpointAddress;

            if (!ep->desc)
                  continue;
            bEndpointAddress = ep->desc->bEndpointAddress;
            if ((wIndex ^ bEndpointAddress) & USB_DIR_IN)
                  continue;
            if ((bEndpointAddress & USB_ENDPOINT_NUMBER_MASK)
                        == (wIndex & USB_ENDPOINT_NUMBER_MASK))
                  return ep;
      }

      return NULL;
}

/* Called with interrupts disabled and udc->lock held */
static inline void set_protocol_stall(struct usba_udc *udc, struct usba_ep *ep)
{
      usba_ep_writel(ep, SET_STA, USBA_FORCE_STALL);
      ep->state = WAIT_FOR_SETUP;
}

static inline int is_stalled(struct usba_udc *udc, struct usba_ep *ep)
{
      if (usba_ep_readl(ep, STA) & USBA_FORCE_STALL)
            return 1;
      return 0;
}

static inline void set_address(struct usba_udc *udc, unsigned int addr)
{
      u32 regval;

      DBG(DBG_BUS, "setting address %u...\n", addr);
      regval = usba_readl(udc, CTRL);
      regval = USBA_BFINS(DEV_ADDR, addr, regval);
      usba_writel(udc, CTRL, regval);
}

static int do_test_mode(struct usba_udc *udc)
{
      static const char test_packet_buffer[] = {
            /* JKJKJKJK * 9 */
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            /* JJKKJJKK * 8 */
            0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
            /* JJKKJJKK * 8 */
            0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE,
            /* JJJJJJJKKKKKKK * 8 */
            0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
            0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
            /* JJJJJJJK * 8 */
            0x7F, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD,
            /* {JKKKKKKK * 10}, JK */
            0xFC, 0x7E, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD, 0x7E
      };
      struct usba_ep *ep;
      struct device *dev = &udc->pdev->dev;
      int test_mode;

      test_mode = udc->test_mode;

      /* Start from a clean slate */
      reset_all_endpoints(udc);

      switch (test_mode) {
      case 0x0100:
            /* Test_J */
            usba_writel(udc, TST, USBA_TST_J_MODE);
            dev_info(dev, "Entering Test_J mode...\n");
            break;
      case 0x0200:
            /* Test_K */
            usba_writel(udc, TST, USBA_TST_K_MODE);
            dev_info(dev, "Entering Test_K mode...\n");
            break;
      case 0x0300:
            /*
             * Test_SE0_NAK: Force high-speed mode and set up ep0
             * for Bulk IN transfers
             */
            ep = &usba_ep[0];
            usba_writel(udc, TST,
                        USBA_BF(SPEED_CFG, USBA_SPEED_CFG_FORCE_HIGH));
            usba_ep_writel(ep, CFG,
                        USBA_BF(EPT_SIZE, USBA_EPT_SIZE_64)
                        | USBA_EPT_DIR_IN
                        | USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK)
                        | USBA_BF(BK_NUMBER, 1));
            if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) {
                  set_protocol_stall(udc, ep);
                  dev_err(dev, "Test_SE0_NAK: ep0 not mapped\n");
            } else {
                  usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
                  dev_info(dev, "Entering Test_SE0_NAK mode...\n");
            }
            break;
      case 0x0400:
            /* Test_Packet */
            ep = &usba_ep[0];
            usba_ep_writel(ep, CFG,
                        USBA_BF(EPT_SIZE, USBA_EPT_SIZE_64)
                        | USBA_EPT_DIR_IN
                        | USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK)
                        | USBA_BF(BK_NUMBER, 1));
            if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) {
                  set_protocol_stall(udc, ep);
                  dev_err(dev, "Test_Packet: ep0 not mapped\n");
            } else {
                  usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
                  usba_writel(udc, TST, USBA_TST_PKT_MODE);
                  copy_to_fifo(ep->fifo, test_packet_buffer,
                              sizeof(test_packet_buffer));
                  usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
                  dev_info(dev, "Entering Test_Packet mode...\n");
            }
            break;
      default:
            dev_err(dev, "Invalid test mode: 0x%04x\n", test_mode);
            return -EINVAL;
      }

      return 0;
}

/* Avoid overly long expressions */
static inline bool feature_is_dev_remote_wakeup(struct usb_ctrlrequest *crq)
{
      if (crq->wValue == __constant_cpu_to_le16(USB_DEVICE_REMOTE_WAKEUP))
            return true;
      return false;
}

static inline bool feature_is_dev_test_mode(struct usb_ctrlrequest *crq)
{
      if (crq->wValue == __constant_cpu_to_le16(USB_DEVICE_TEST_MODE))
            return true;
      return false;
}

static inline bool feature_is_ep_halt(struct usb_ctrlrequest *crq)
{
      if (crq->wValue == __constant_cpu_to_le16(USB_ENDPOINT_HALT))
            return true;
      return false;
}

static int handle_ep0_setup(struct usba_udc *udc, struct usba_ep *ep,
            struct usb_ctrlrequest *crq)
{
      int retval = 0;;

      switch (crq->bRequest) {
      case USB_REQ_GET_STATUS: {
            u16 status;

            if (crq->bRequestType == (USB_DIR_IN | USB_RECIP_DEVICE)) {
                  status = cpu_to_le16(udc->devstatus);
            } else if (crq->bRequestType
                        == (USB_DIR_IN | USB_RECIP_INTERFACE)) {
                  status = __constant_cpu_to_le16(0);
            } else if (crq->bRequestType
                        == (USB_DIR_IN | USB_RECIP_ENDPOINT)) {
                  struct usba_ep *target;

                  target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
                  if (!target)
                        goto stall;

                  status = 0;
                  if (is_stalled(udc, target))
                        status |= __constant_cpu_to_le16(1);
            } else
                  goto delegate;

            /* Write directly to the FIFO. No queueing is done. */
            if (crq->wLength != __constant_cpu_to_le16(sizeof(status)))
                  goto stall;
            ep->state = DATA_STAGE_IN;
            __raw_writew(status, ep->fifo);
            usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
            break;
      }

      case USB_REQ_CLEAR_FEATURE: {
            if (crq->bRequestType == USB_RECIP_DEVICE) {
                  if (feature_is_dev_remote_wakeup(crq))
                        udc->devstatus
                              &= ~(1 << USB_DEVICE_REMOTE_WAKEUP);
                  else
                        /* Can't CLEAR_FEATURE TEST_MODE */
                        goto stall;
            } else if (crq->bRequestType == USB_RECIP_ENDPOINT) {
                  struct usba_ep *target;

                  if (crq->wLength != __constant_cpu_to_le16(0)
                              || !feature_is_ep_halt(crq))
                        goto stall;
                  target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
                  if (!target)
                        goto stall;

                  usba_ep_writel(target, CLR_STA, USBA_FORCE_STALL);
                  if (target->index != 0)
                        usba_ep_writel(target, CLR_STA,
                                    USBA_TOGGLE_CLR);
            } else {
                  goto delegate;
            }

            send_status(udc, ep);
            break;
      }

      case USB_REQ_SET_FEATURE: {
            if (crq->bRequestType == USB_RECIP_DEVICE) {
                  if (feature_is_dev_test_mode(crq)) {
                        send_status(udc, ep);
                        ep->state = STATUS_STAGE_TEST;
                        udc->test_mode = le16_to_cpu(crq->wIndex);
                        return 0;
                  } else if (feature_is_dev_remote_wakeup(crq)) {
                        udc->devstatus |= 1 << USB_DEVICE_REMOTE_WAKEUP;
                  } else {
                        goto stall;
                  }
            } else if (crq->bRequestType == USB_RECIP_ENDPOINT) {
                  struct usba_ep *target;

                  if (crq->wLength != __constant_cpu_to_le16(0)
                              || !feature_is_ep_halt(crq))
                        goto stall;

                  target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
                  if (!target)
                        goto stall;

                  usba_ep_writel(target, SET_STA, USBA_FORCE_STALL);
            } else
                  goto delegate;

            send_status(udc, ep);
            break;
      }

      case USB_REQ_SET_ADDRESS:
            if (crq->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE))
                  goto delegate;

            set_address(udc, le16_to_cpu(crq->wValue));
            send_status(udc, ep);
            ep->state = STATUS_STAGE_ADDR;
            break;

      default:
delegate:
            spin_unlock(&udc->lock);
            retval = udc->driver->setup(&udc->gadget, crq);
            spin_lock(&udc->lock);
      }

      return retval;

stall:
      printk(KERN_ERR
            "udc: %s: Invalid setup request: %02x.%02x v%04x i%04x l%d, "
            "halting endpoint...\n",
            ep->ep.name, crq->bRequestType, crq->bRequest,
            le16_to_cpu(crq->wValue), le16_to_cpu(crq->wIndex),
            le16_to_cpu(crq->wLength));
      set_protocol_stall(udc, ep);
      return -1;
}

static void usba_control_irq(struct usba_udc *udc, struct usba_ep *ep)
{
      struct usba_request *req;
      u32 epstatus;
      u32 epctrl;

restart:
      epstatus = usba_ep_readl(ep, STA);
      epctrl = usba_ep_readl(ep, CTL);

      DBG(DBG_INT, "%s [%d]: s/%08x c/%08x\n",
                  ep->ep.name, ep->state, epstatus, epctrl);

      req = NULL;
      if (!list_empty(&ep->queue))
            req = list_entry(ep->queue.next,
                         struct usba_request, queue);

      if ((epctrl & USBA_TX_PK_RDY) && !(epstatus & USBA_TX_PK_RDY)) {
            if (req->submitted)
                  next_fifo_transaction(ep, req);
            else
                  submit_request(ep, req);

            if (req->last_transaction) {
                  usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
                  usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
            }
            goto restart;
      }
      if ((epstatus & epctrl) & USBA_TX_COMPLETE) {
            usba_ep_writel(ep, CLR_STA, USBA_TX_COMPLETE);

            switch (ep->state) {
            case DATA_STAGE_IN:
                  usba_ep_writel(ep, CTL_ENB, USBA_RX_BK_RDY);
                  usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
                  ep->state = STATUS_STAGE_OUT;
                  break;
            case STATUS_STAGE_ADDR:
                  /* Activate our new address */
                  usba_writel(udc, CTRL, (usba_readl(udc, CTRL)
                                    | USBA_FADDR_EN));
                  usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
                  ep->state = WAIT_FOR_SETUP;
                  break;
            case STATUS_STAGE_IN:
                  if (req) {
                        list_del_init(&req->queue);
                        request_complete(ep, req, 0);
                        submit_next_request(ep);
                  }
                  usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
                  ep->state = WAIT_FOR_SETUP;
                  break;
            case STATUS_STAGE_TEST:
                  usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
                  ep->state = WAIT_FOR_SETUP;
                  if (do_test_mode(udc))
                        set_protocol_stall(udc, ep);
                  break;
            default:
                  printk(KERN_ERR
                        "udc: %s: TXCOMP: Invalid endpoint state %d, "
                        "halting endpoint...\n",
                        ep->ep.name, ep->state);
                  set_protocol_stall(udc, ep);
                  break;
            }

            goto restart;
      }
      if ((epstatus & epctrl) & USBA_RX_BK_RDY) {
            switch (ep->state) {
            case STATUS_STAGE_OUT:
                  usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
                  usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);

                  if (req) {
                        list_del_init(&req->queue);
                        request_complete(ep, req, 0);
                  }
                  ep->state = WAIT_FOR_SETUP;
                  break;

            case DATA_STAGE_OUT:
                  receive_data(ep);
                  break;

            default:
                  usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
                  usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
                  printk(KERN_ERR
                        "udc: %s: RXRDY: Invalid endpoint state %d, "
                        "halting endpoint...\n",
                        ep->ep.name, ep->state);
                  set_protocol_stall(udc, ep);
                  break;
            }

            goto restart;
      }
      if (epstatus & USBA_RX_SETUP) {
            union {
                  struct usb_ctrlrequest crq;
                  unsigned long data[2];
            } crq;
            unsigned int pkt_len;
            int ret;

            if (ep->state != WAIT_FOR_SETUP) {
                  /*
                   * Didn't expect a SETUP packet at this
                   * point. Clean up any pending requests (which
                   * may be successful).
                   */
                  int status = -EPROTO;

                  /*
                   * RXRDY and TXCOMP are dropped when SETUP
                   * packets arrive.  Just pretend we received
                   * the status packet.
                   */
                  if (ep->state == STATUS_STAGE_OUT
                              || ep->state == STATUS_STAGE_IN) {
                        usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
                        status = 0;
                  }

                  if (req) {
                        list_del_init(&req->queue);
                        request_complete(ep, req, status);
                  }
            }

            pkt_len = USBA_BFEXT(BYTE_COUNT, usba_ep_readl(ep, STA));
            DBG(DBG_HW, "Packet length: %u\n", pkt_len);
            if (pkt_len != sizeof(crq)) {
                  printk(KERN_WARNING "udc: Invalid packet length %u "
                        "(expected %lu)\n", pkt_len, sizeof(crq));
                  set_protocol_stall(udc, ep);
                  return;
            }

            DBG(DBG_FIFO, "Copying ctrl request from 0x%p:\n", ep->fifo);
            copy_from_fifo(crq.data, ep->fifo, sizeof(crq));

            /* Free up one bank in the FIFO so that we can
             * generate or receive a reply right away. */
            usba_ep_writel(ep, CLR_STA, USBA_RX_SETUP);

            /* printk(KERN_DEBUG "setup: %d: %02x.%02x\n",
                  ep->state, crq.crq.bRequestType,
                  crq.crq.bRequest); */

            if (crq.crq.bRequestType & USB_DIR_IN) {
                  /*
                   * The USB 2.0 spec states that "if wLength is
                   * zero, there is no data transfer phase."
                   * However, testusb #14 seems to actually
                   * expect a data phase even if wLength = 0...
                   */
                  ep->state = DATA_STAGE_IN;
            } else {
                  if (crq.crq.wLength != __constant_cpu_to_le16(0))
                        ep->state = DATA_STAGE_OUT;
                  else
                        ep->state = STATUS_STAGE_IN;
            }

            ret = -1;
            if (ep->index == 0)
                  ret = handle_ep0_setup(udc, ep, &crq.crq);
            else {
                  spin_unlock(&udc->lock);
                  ret = udc->driver->setup(&udc->gadget, &crq.crq);
                  spin_lock(&udc->lock);
            }

            DBG(DBG_BUS, "req %02x.%02x, length %d, state %d, ret %d\n",
                  crq.crq.bRequestType, crq.crq.bRequest,
                  le16_to_cpu(crq.crq.wLength), ep->state, ret);

            if (ret < 0) {
                  /* Let the host know that we failed */
                  set_protocol_stall(udc, ep);
            }
      }
}

static void usba_ep_irq(struct usba_udc *udc, struct usba_ep *ep)
{
      struct usba_request *req;
      u32 epstatus;
      u32 epctrl;

      epstatus = usba_ep_readl(ep, STA);
      epctrl = usba_ep_readl(ep, CTL);

      DBG(DBG_INT, "%s: interrupt, status: 0x%08x\n", ep->ep.name, epstatus);

      while ((epctrl & USBA_TX_PK_RDY) && !(epstatus & USBA_TX_PK_RDY)) {
            DBG(DBG_BUS, "%s: TX PK ready\n", ep->ep.name);

            if (list_empty(&ep->queue)) {
                  dev_warn(&udc->pdev->dev, "ep_irq: queue empty\n");
                  usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
                  return;
            }

            req = list_entry(ep->queue.next, struct usba_request, queue);

            if (req->using_dma) {
                  /* Send a zero-length packet */
                  usba_ep_writel(ep, SET_STA,
                              USBA_TX_PK_RDY);
                  usba_ep_writel(ep, CTL_DIS,
                              USBA_TX_PK_RDY);
                  list_del_init(&req->queue);
                  submit_next_request(ep);
                  request_complete(ep, req, 0);
            } else {
                  if (req->submitted)
                        next_fifo_transaction(ep, req);
                  else
                        submit_request(ep, req);

                  if (req->last_transaction) {
                        list_del_init(&req->queue);
                        submit_next_request(ep);
                        request_complete(ep, req, 0);
                  }
            }

            epstatus = usba_ep_readl(ep, STA);
            epctrl = usba_ep_readl(ep, CTL);
      }
      if ((epstatus & epctrl) & USBA_RX_BK_RDY) {
            DBG(DBG_BUS, "%s: RX data ready\n", ep->ep.name);
            receive_data(ep);
            usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
      }
}

static void usba_dma_irq(struct usba_udc *udc, struct usba_ep *ep)
{
      struct usba_request *req;
      u32 status, control, pending;

      status = usba_dma_readl(ep, STATUS);
      control = usba_dma_readl(ep, CONTROL);
#ifdef CONFIG_USB_GADGET_DEBUG_FS
      ep->last_dma_status = status;
#endif
      pending = status & control;
      DBG(DBG_INT | DBG_DMA, "dma irq, s/%#08x, c/%#08x\n", status, control);

      if (status & USBA_DMA_CH_EN) {
            dev_err(&udc->pdev->dev,
                  "DMA_CH_EN is set after transfer is finished!\n");
            dev_err(&udc->pdev->dev,
                  "status=%#08x, pending=%#08x, control=%#08x\n",
                  status, pending, control);

            /*
             * try to pretend nothing happened. We might have to
             * do something here...
             */
      }

      if (list_empty(&ep->queue))
            /* Might happen if a reset comes along at the right moment */
            return;

      if (pending & (USBA_DMA_END_TR_ST | USBA_DMA_END_BUF_ST)) {
            req = list_entry(ep->queue.next, struct usba_request, queue);
            usba_update_req(ep, req, status);

            list_del_init(&req->queue);
            submit_next_request(ep);
            request_complete(ep, req, 0);
      }
}

static irqreturn_t usba_udc_irq(int irq, void *devid)
{
      struct usba_udc *udc = devid;
      u32 status;
      u32 dma_status;
      u32 ep_status;

      spin_lock(&udc->lock);

      status = usba_readl(udc, INT_STA);
      DBG(DBG_INT, "irq, status=%#08x\n", status);

      if (status & USBA_DET_SUSPEND) {
            usba_writel(udc, INT_CLR, USBA_DET_SUSPEND);
            DBG(DBG_BUS, "Suspend detected\n");
            if (udc->gadget.speed != USB_SPEED_UNKNOWN
                        && udc->driver && udc->driver->suspend) {
                  spin_unlock(&udc->lock);
                  udc->driver->suspend(&udc->gadget);
                  spin_lock(&udc->lock);
            }
      }

      if (status & USBA_WAKE_UP) {
            usba_writel(udc, INT_CLR, USBA_WAKE_UP);
            DBG(DBG_BUS, "Wake Up CPU detected\n");
      }

      if (status & USBA_END_OF_RESUME) {
            usba_writel(udc, INT_CLR, USBA_END_OF_RESUME);
            DBG(DBG_BUS, "Resume detected\n");
            if (udc->gadget.speed != USB_SPEED_UNKNOWN
                        && udc->driver && udc->driver->resume) {
                  spin_unlock(&udc->lock);
                  udc->driver->resume(&udc->gadget);
                  spin_lock(&udc->lock);
            }
      }

      dma_status = USBA_BFEXT(DMA_INT, status);
      if (dma_status) {
            int i;

            for (i = 1; i < USBA_NR_ENDPOINTS; i++)
                  if (dma_status & (1 << i))
                        usba_dma_irq(udc, &usba_ep[i]);
      }

      ep_status = USBA_BFEXT(EPT_INT, status);
      if (ep_status) {
            int i;

            for (i = 0; i < USBA_NR_ENDPOINTS; i++)
                  if (ep_status & (1 << i)) {
                        if (ep_is_control(&usba_ep[i]))
                              usba_control_irq(udc, &usba_ep[i]);
                        else
                              usba_ep_irq(udc, &usba_ep[i]);
                  }
      }

      if (status & USBA_END_OF_RESET) {
            struct usba_ep *ep0;

            usba_writel(udc, INT_CLR, USBA_END_OF_RESET);
            reset_all_endpoints(udc);

            if (status & USBA_HIGH_SPEED) {
                  DBG(DBG_BUS, "High-speed bus reset detected\n");
                  udc->gadget.speed = USB_SPEED_HIGH;
            } else {
                  DBG(DBG_BUS, "Full-speed bus reset detected\n");
                  udc->gadget.speed = USB_SPEED_FULL;
            }

            ep0 = &usba_ep[0];
            ep0->desc = &usba_ep0_desc;
            ep0->state = WAIT_FOR_SETUP;
            usba_ep_writel(ep0, CFG,
                        (USBA_BF(EPT_SIZE, EP0_EPT_SIZE)
                        | USBA_BF(EPT_TYPE, USBA_EPT_TYPE_CONTROL)
                        | USBA_BF(BK_NUMBER, USBA_BK_NUMBER_ONE)));
            usba_ep_writel(ep0, CTL_ENB,
                        USBA_EPT_ENABLE | USBA_RX_SETUP);
            usba_writel(udc, INT_ENB,
                        (usba_readl(udc, INT_ENB)
                        | USBA_BF(EPT_INT, 1)
                        | USBA_DET_SUSPEND
                        | USBA_END_OF_RESUME));

            if (!(usba_ep_readl(ep0, CFG) & USBA_EPT_MAPPED))
                  dev_warn(&udc->pdev->dev,
                         "WARNING: EP0 configuration is invalid!\n");
      }

      spin_unlock(&udc->lock);

      return IRQ_HANDLED;
}

static irqreturn_t usba_vbus_irq(int irq, void *devid)
{
      struct usba_udc *udc = devid;
      int vbus;

      /* debounce */
      udelay(10);

      spin_lock(&udc->lock);

      /* May happen if Vbus pin toggles during probe() */
      if (!udc->driver)
            goto out;

      vbus = gpio_get_value(udc->vbus_pin);
      if (vbus != udc->vbus_prev) {
            if (vbus) {
                  usba_writel(udc, CTRL, USBA_EN_USBA);
                  usba_writel(udc, INT_ENB, USBA_END_OF_RESET);
            } else {
                  udc->gadget.speed = USB_SPEED_UNKNOWN;
                  reset_all_endpoints(udc);
                  usba_writel(udc, CTRL, 0);
                  spin_unlock(&udc->lock);
                  udc->driver->disconnect(&udc->gadget);
                  spin_lock(&udc->lock);
            }
            udc->vbus_prev = vbus;
      }

out:
      spin_unlock(&udc->lock);

      return IRQ_HANDLED;
}

int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
      struct usba_udc *udc = &the_udc;
      unsigned long flags;
      int ret;

      if (!udc->pdev)
            return -ENODEV;

      spin_lock_irqsave(&udc->lock, flags);
      if (udc->driver) {
            spin_unlock_irqrestore(&udc->lock, flags);
            return -EBUSY;
      }

      udc->devstatus = 1 << USB_DEVICE_SELF_POWERED;
      udc->driver = driver;
      udc->gadget.dev.driver = &driver->driver;
      spin_unlock_irqrestore(&udc->lock, flags);

      clk_enable(udc->pclk);
      clk_enable(udc->hclk);

      ret = driver->bind(&udc->gadget);
      if (ret) {
            DBG(DBG_ERR, "Could not bind to driver %s: error %d\n",
                  driver->driver.name, ret);
            goto err_driver_bind;
      }

      DBG(DBG_GADGET, "registered driver `%s'\n", driver->driver.name);

      udc->vbus_prev = 0;
      if (udc->vbus_pin != -1)
            enable_irq(gpio_to_irq(udc->vbus_pin));

      /* If Vbus is present, enable the controller and wait for reset */
      spin_lock_irqsave(&udc->lock, flags);
      if (vbus_is_present(udc) && udc->vbus_prev == 0) {
            usba_writel(udc, CTRL, USBA_EN_USBA);
            usba_writel(udc, INT_ENB, USBA_END_OF_RESET);
      }
      spin_unlock_irqrestore(&udc->lock, flags);

      return 0;

err_driver_bind:
      udc->driver = NULL;
      udc->gadget.dev.driver = NULL;
      return ret;
}
EXPORT_SYMBOL(usb_gadget_register_driver);

int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
      struct usba_udc *udc = &the_udc;
      unsigned long flags;

      if (!udc->pdev)
            return -ENODEV;
      if (driver != udc->driver)
            return -EINVAL;

      if (udc->vbus_pin != -1)
            disable_irq(gpio_to_irq(udc->vbus_pin));

      spin_lock_irqsave(&udc->lock, flags);
      udc->gadget.speed = USB_SPEED_UNKNOWN;
      reset_all_endpoints(udc);
      spin_unlock_irqrestore(&udc->lock, flags);

      /* This will also disable the DP pullup */
      usba_writel(udc, CTRL, 0);

      driver->unbind(&udc->gadget);
      udc->gadget.dev.driver = NULL;
      udc->driver = NULL;

      clk_disable(udc->hclk);
      clk_disable(udc->pclk);

      DBG(DBG_GADGET, "unregistered driver `%s'\n", driver->driver.name);

      return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);

static int __init usba_udc_probe(struct platform_device *pdev)
{
      struct usba_platform_data *pdata = pdev->dev.platform_data;
      struct resource *regs, *fifo;
      struct clk *pclk, *hclk;
      struct usba_udc *udc = &the_udc;
      int irq, ret, i;

      regs = platform_get_resource(pdev, IORESOURCE_MEM, CTRL_IOMEM_ID);
      fifo = platform_get_resource(pdev, IORESOURCE_MEM, FIFO_IOMEM_ID);
      if (!regs || !fifo)
            return -ENXIO;

      irq = platform_get_irq(pdev, 0);
      if (irq < 0)
            return irq;

      pclk = clk_get(&pdev->dev, "pclk");
      if (IS_ERR(pclk))
            return PTR_ERR(pclk);
      hclk = clk_get(&pdev->dev, "hclk");
      if (IS_ERR(hclk)) {
            ret = PTR_ERR(hclk);
            goto err_get_hclk;
      }

      udc->pdev = pdev;
      udc->pclk = pclk;
      udc->hclk = hclk;
      udc->vbus_pin = -1;

      ret = -ENOMEM;
      udc->regs = ioremap(regs->start, regs->end - regs->start + 1);
      if (!udc->regs) {
            dev_err(&pdev->dev, "Unable to map I/O memory, aborting.\n");
            goto err_map_regs;
      }
      dev_info(&pdev->dev, "MMIO registers at 0x%08lx mapped at %p\n",
             (unsigned long)regs->start, udc->regs);
      udc->fifo = ioremap(fifo->start, fifo->end - fifo->start + 1);
      if (!udc->fifo) {
            dev_err(&pdev->dev, "Unable to map FIFO, aborting.\n");
            goto err_map_fifo;
      }
      dev_info(&pdev->dev, "FIFO at 0x%08lx mapped at %p\n",
             (unsigned long)fifo->start, udc->fifo);

      device_initialize(&udc->gadget.dev);
      udc->gadget.dev.parent = &pdev->dev;
      udc->gadget.dev.dma_mask = pdev->dev.dma_mask;

      platform_set_drvdata(pdev, udc);

      /* Make sure we start from a clean slate */
      clk_enable(pclk);
      usba_writel(udc, CTRL, 0);
      clk_disable(pclk);

      INIT_LIST_HEAD(&usba_ep[0].ep.ep_list);
      usba_ep[0].ep_regs = udc->regs + USBA_EPT_BASE(0);
      usba_ep[0].dma_regs = udc->regs + USBA_DMA_BASE(0);
      usba_ep[0].fifo = udc->fifo + USBA_FIFO_BASE(0);
      for (i = 1; i < ARRAY_SIZE(usba_ep); i++) {
            struct usba_ep *ep = &usba_ep[i];

            ep->ep_regs = udc->regs + USBA_EPT_BASE(i);
            ep->dma_regs = udc->regs + USBA_DMA_BASE(i);
            ep->fifo = udc->fifo + USBA_FIFO_BASE(i);

            list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
      }

      ret = request_irq(irq, usba_udc_irq, 0, "atmel_usba_udc", udc);
      if (ret) {
            dev_err(&pdev->dev, "Cannot request irq %d (error %d)\n",
                  irq, ret);
            goto err_request_irq;
      }
      udc->irq = irq;

      ret = device_add(&udc->gadget.dev);
      if (ret) {
            dev_dbg(&pdev->dev, "Could not add gadget: %d\n", ret);
            goto err_device_add;
      }

      if (pdata && pdata->vbus_pin != GPIO_PIN_NONE) {
            if (!gpio_request(pdata->vbus_pin, "atmel_usba_udc")) {
                  udc->vbus_pin = pdata->vbus_pin;

                  ret = request_irq(gpio_to_irq(udc->vbus_pin),
                              usba_vbus_irq, 0,
                              "atmel_usba_udc", udc);
                  if (ret) {
                        gpio_free(udc->vbus_pin);
                        udc->vbus_pin = -1;
                        dev_warn(&udc->pdev->dev,
                               "failed to request vbus irq; "
                               "assuming always on\n");
                  } else {
                        disable_irq(gpio_to_irq(udc->vbus_pin));
                  }
            }
      }

      usba_init_debugfs(udc);
      for (i = 1; i < ARRAY_SIZE(usba_ep); i++)
            usba_ep_init_debugfs(udc, &usba_ep[i]);

      return 0;

err_device_add:
      free_irq(irq, udc);
err_request_irq:
      iounmap(udc->fifo);
err_map_fifo:
      iounmap(udc->regs);
err_map_regs:
      clk_put(hclk);
err_get_hclk:
      clk_put(pclk);

      platform_set_drvdata(pdev, NULL);

      return ret;
}

static int __exit usba_udc_remove(struct platform_device *pdev)
{
      struct usba_udc *udc;
      int i;

      udc = platform_get_drvdata(pdev);

      for (i = 1; i < ARRAY_SIZE(usba_ep); i++)
            usba_ep_cleanup_debugfs(&usba_ep[i]);
      usba_cleanup_debugfs(udc);

      if (udc->vbus_pin != -1)
            gpio_free(udc->vbus_pin);

      free_irq(udc->irq, udc);
      iounmap(udc->fifo);
      iounmap(udc->regs);
      clk_put(udc->hclk);
      clk_put(udc->pclk);

      device_unregister(&udc->gadget.dev);

      return 0;
}

static struct platform_driver udc_driver = {
      .remove           = __exit_p(usba_udc_remove),
      .driver           = {
            .name       = "atmel_usba_udc",
      },
};

static int __init udc_init(void)
{
      return platform_driver_probe(&udc_driver, usba_udc_probe);
}
module_init(udc_init);

static void __exit udc_exit(void)
{
      platform_driver_unregister(&udc_driver);
}
module_exit(udc_exit);

MODULE_DESCRIPTION("Atmel USBA UDC driver");
MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index