Logo Search packages:      
Sourcecode: linux version File versions  Download package

aty128fb.c

/* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
 *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
 *
 *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
 *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
 *
 *                Ani Joshi / Jeff Garzik
 *                      - Code cleanup
 *
 *                Michel Danzer <michdaen@iiic.ethz.ch>
 *                      - 15/16 bit cleanup
 *                      - fix panning
 *
 *                Benjamin Herrenschmidt
 *                      - pmac-specific PM stuff
 *                - various fixes & cleanups
 *
 *                Andreas Hundt <andi@convergence.de>
 *                      - FB_ACTIVATE fixes
 *
 *            Paul Mackerras <paulus@samba.org>
 *                - Convert to new framebuffer API,
 *                  fix colormap setting at 16 bits/pixel (565)
 *
 *            Paul Mundt 
 *                - PCI hotplug
 *
 *            Jon Smirl <jonsmirl@yahoo.com>
 *                - PCI ID update
 *                - replace ROM BIOS search
 *
 *  Based off of Geert's atyfb.c and vfb.c.
 *
 *  TODO:
 *          - monitor sensing (DDC)
 *              - virtual display
 *          - other platform support (only ppc/x86 supported)
 *          - hardware cursor support
 *
 *    Please cc: your patches to brad@neruo.com.
 */

/*
 * A special note of gratitude to ATI's devrel for providing documentation,
 * example code and hardware. Thanks Nitya.     -atong and brad
 */


#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/uaccess.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/backlight.h>
#include <asm/io.h>

#ifdef CONFIG_PPC_PMAC
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include "../macmodes.h"
#endif

#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif

#ifdef CONFIG_BOOTX_TEXT
#include <asm/btext.h>
#endif /* CONFIG_BOOTX_TEXT */

#ifdef CONFIG_MTRR
#include <asm/mtrr.h>
#endif

#include <video/aty128.h>

/* Debug flag */
#undef DEBUG

#ifdef DEBUG
#define DBG(fmt, args...)           printk(KERN_DEBUG "aty128fb: %s " fmt, __FUNCTION__, ##args);
#else
#define DBG(fmt, args...)
#endif

#ifndef CONFIG_PPC_PMAC
/* default mode */
static struct fb_var_screeninfo default_var __devinitdata = {
      /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
      640, 480, 640, 480, 0, 0, 8, 0,
      {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
      0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
      0, FB_VMODE_NONINTERLACED
};

#else /* CONFIG_PPC_PMAC */
/* default to 1024x768 at 75Hz on PPC - this will work
 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
static struct fb_var_screeninfo default_var = {
      /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
      1024, 768, 1024, 768, 0, 0, 8, 0,
      {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
      0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
      FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
      FB_VMODE_NONINTERLACED
};
#endif /* CONFIG_PPC_PMAC */

/* default modedb mode */
/* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
static struct fb_videomode defaultmode __devinitdata = {
      .refresh =  60,
      .xres =           640,
      .yres =           480,
      .pixclock = 39722,
      .left_margin =    48,
      .right_margin =   16,
      .upper_margin =   33,
      .lower_margin =   10,
      .hsync_len =      96,
      .vsync_len =      2,
      .sync =           0,
      .vmode =    FB_VMODE_NONINTERLACED
};

/* Chip generations */
enum {
      rage_128,
      rage_128_pci,
      rage_128_pro,
      rage_128_pro_pci,
      rage_M3,
      rage_M3_pci,
      rage_M4,
      rage_128_ultra,
};

/* Must match above enum */
static const char *r128_family[] __devinitdata = {
      "AGP",
      "PCI",
      "PRO AGP",
      "PRO PCI",
      "M3 AGP",
      "M3 PCI",
      "M4 AGP",
      "Ultra AGP",
};

/*
 * PCI driver prototypes
 */
static int aty128_probe(struct pci_dev *pdev,
                               const struct pci_device_id *ent);
static void aty128_remove(struct pci_dev *pdev);
static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
static int aty128_pci_resume(struct pci_dev *pdev);
static int aty128_do_resume(struct pci_dev *pdev);

/* supported Rage128 chipsets */
static struct pci_device_id aty128_pci_tbl[] = {
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
      { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
        PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
      { 0, }
};

MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);

static struct pci_driver aty128fb_driver = {
      .name       = "aty128fb",
      .id_table   = aty128_pci_tbl,
      .probe            = aty128_probe,
      .remove           = __devexit_p(aty128_remove),
      .suspend    = aty128_pci_suspend,
      .resume           = aty128_pci_resume,
};

/* packed BIOS settings */
#ifndef CONFIG_PPC
typedef struct {
      u8 clock_chip_type;
      u8 struct_size;
      u8 accelerator_entry;
      u8 VGA_entry;
      u16 VGA_table_offset;
      u16 POST_table_offset;
      u16 XCLK;
      u16 MCLK;
      u8 num_PLL_blocks;
      u8 size_PLL_blocks;
      u16 PCLK_ref_freq;
      u16 PCLK_ref_divider;
      u32 PCLK_min_freq;
      u32 PCLK_max_freq;
      u16 MCLK_ref_freq;
      u16 MCLK_ref_divider;
      u32 MCLK_min_freq;
      u32 MCLK_max_freq;
      u16 XCLK_ref_freq;
      u16 XCLK_ref_divider;
      u32 XCLK_min_freq;
      u32 XCLK_max_freq;
} __attribute__ ((packed)) PLL_BLOCK;
#endif /* !CONFIG_PPC */

/* onboard memory information */
struct aty128_meminfo {
      u8 ML;
      u8 MB;
      u8 Trcd;
      u8 Trp;
      u8 Twr;
      u8 CL;
      u8 Tr2w;
      u8 LoopLatency;
      u8 DspOn;
      u8 Rloop;
      const char *name;
};

/* various memory configurations */
static const struct aty128_meminfo sdr_128   =
      { 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
static const struct aty128_meminfo sdr_64    =
      { 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
static const struct aty128_meminfo sdr_sgram =
      { 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
static const struct aty128_meminfo ddr_sgram =
      { 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };

static struct fb_fix_screeninfo aty128fb_fix __devinitdata = {
      .id         = "ATY Rage128",
      .type       = FB_TYPE_PACKED_PIXELS,
      .visual           = FB_VISUAL_PSEUDOCOLOR,
      .xpanstep   = 8,
      .ypanstep   = 1,
      .mmio_len   = 0x2000,
      .accel            = FB_ACCEL_ATI_RAGE128,
};

static char *mode_option __devinitdata = NULL;

#ifdef CONFIG_PPC_PMAC
static int default_vmode __devinitdata = VMODE_1024_768_60;
static int default_cmode __devinitdata = CMODE_8;
#endif

static int default_crt_on __devinitdata = 0;
static int default_lcd_on __devinitdata = 1;

#ifdef CONFIG_MTRR
static int mtrr = 1;
#endif

#ifdef CONFIG_PMAC_BACKLIGHT
static int backlight __devinitdata = 1;
#else
static int backlight __devinitdata = 0;
#endif

/* PLL constants */
struct aty128_constants {
      u32 ref_clk;
      u32 ppll_min;
      u32 ppll_max;
      u32 ref_divider;
      u32 xclk;
      u32 fifo_width;
      u32 fifo_depth;
};

struct aty128_crtc {
      u32 gen_cntl;
      u32 h_total, h_sync_strt_wid;
      u32 v_total, v_sync_strt_wid;
      u32 pitch;
      u32 offset, offset_cntl;
      u32 xoffset, yoffset;
      u32 vxres, vyres;
      u32 depth, bpp;
};

struct aty128_pll {
      u32 post_divider;
      u32 feedback_divider;
      u32 vclk;
};

struct aty128_ddafifo {
      u32 dda_config;
      u32 dda_on_off;
};

/* register values for a specific mode */
struct aty128fb_par {
      struct aty128_crtc crtc;
      struct aty128_pll pll;
      struct aty128_ddafifo fifo_reg;
      u32 accel_flags;
      struct aty128_constants constants;  /* PLL and others      */
      void __iomem *regbase;              /* remapped mmio       */
      u32 vram_size;                      /* onboard video ram   */
      int chip_gen;
      const struct aty128_meminfo *mem;   /* onboard mem info    */
#ifdef CONFIG_MTRR
      struct { int vram; int vram_valid; } mtrr;
#endif
      int blitter_may_be_busy;
      int fifo_slots;                 /* free slots in FIFO (64 max) */

      int   pm_reg;
      int crt_on, lcd_on;
      struct pci_dev *pdev;
      struct fb_info *next;
      int   asleep;
      int   lock_blank;

      u8    red[32];          /* see aty128fb_setcolreg */
      u8    green[64];
      u8    blue[32];
      u32   pseudo_palette[16];     /* used for TRUECOLOR */
};


#define round_div(n, d) ((n+(d/2))/d)

static int aty128fb_check_var(struct fb_var_screeninfo *var,
                        struct fb_info *info);
static int aty128fb_set_par(struct fb_info *info);
static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
                        u_int transp, struct fb_info *info);
static int aty128fb_pan_display(struct fb_var_screeninfo *var,
                     struct fb_info *fb);
static int aty128fb_blank(int blank, struct fb_info *fb);
static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
static int aty128fb_sync(struct fb_info *info);

    /*
     *  Internal routines
     */

static int aty128_encode_var(struct fb_var_screeninfo *var,
                             const struct aty128fb_par *par);
static int aty128_decode_var(struct fb_var_screeninfo *var,
                             struct aty128fb_par *par);
#if 0
static void __devinit aty128_get_pllinfo(struct aty128fb_par *par,
                              void __iomem *bios);
static void __devinit __iomem *aty128_map_ROM(struct pci_dev *pdev, const struct aty128fb_par *par);
#endif
static void aty128_timings(struct aty128fb_par *par);
static void aty128_init_engine(struct aty128fb_par *par);
static void aty128_reset_engine(const struct aty128fb_par *par);
static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
static void wait_for_idle(struct aty128fb_par *par);
static u32 depth_to_dst(u32 depth);

#ifdef CONFIG_FB_ATY128_BACKLIGHT
static void aty128_bl_set_power(struct fb_info *info, int power);
#endif

#define BIOS_IN8(v)     (readb(bios + (v)))
#define BIOS_IN16(v)    (readb(bios + (v)) | \
                    (readb(bios + (v) + 1) << 8))
#define BIOS_IN32(v)    (readb(bios + (v)) | \
                    (readb(bios + (v) + 1) << 8) | \
                    (readb(bios + (v) + 2) << 16) | \
                    (readb(bios + (v) + 3) << 24))


static struct fb_ops aty128fb_ops = {
      .owner            = THIS_MODULE,
      .fb_check_var     = aty128fb_check_var,
      .fb_set_par = aty128fb_set_par,
      .fb_setcolreg     = aty128fb_setcolreg,
      .fb_pan_display = aty128fb_pan_display,
      .fb_blank   = aty128fb_blank,
      .fb_ioctl   = aty128fb_ioctl,
      .fb_sync    = aty128fb_sync,
      .fb_fillrect      = cfb_fillrect,
      .fb_copyarea      = cfb_copyarea,
      .fb_imageblit     = cfb_imageblit,
};

    /*
     * Functions to read from/write to the mmio registers
     *      - endian conversions may possibly be avoided by
     *    using the other register aperture. TODO.
     */
static inline u32 _aty_ld_le32(volatile unsigned int regindex, 
                         const struct aty128fb_par *par)
{
      return readl (par->regbase + regindex);
}

static inline void _aty_st_le32(volatile unsigned int regindex, u32 val, 
                        const struct aty128fb_par *par)
{
      writel (val, par->regbase + regindex);
}

static inline u8 _aty_ld_8(unsigned int regindex,
                     const struct aty128fb_par *par)
{
      return readb (par->regbase + regindex);
}

static inline void _aty_st_8(unsigned int regindex, u8 val,
                       const struct aty128fb_par *par)
{
      writeb (val, par->regbase + regindex);
}

#define aty_ld_le32(regindex)       _aty_ld_le32(regindex, par)
#define aty_st_le32(regindex, val)  _aty_st_le32(regindex, val, par)
#define aty_ld_8(regindex)          _aty_ld_8(regindex, par)
#define aty_st_8(regindex, val)           _aty_st_8(regindex, val, par)

    /*
     * Functions to read from/write to the pll registers
     */

#define aty_ld_pll(pll_index)       _aty_ld_pll(pll_index, par)
#define aty_st_pll(pll_index, val)  _aty_st_pll(pll_index, val, par)


static u32 _aty_ld_pll(unsigned int pll_index,
                   const struct aty128fb_par *par)
{       
      aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
      return aty_ld_le32(CLOCK_CNTL_DATA);
}

    
static void _aty_st_pll(unsigned int pll_index, u32 val,
                  const struct aty128fb_par *par)
{
      aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
      aty_st_le32(CLOCK_CNTL_DATA, val);
}


/* return true when the PLL has completed an atomic update */
static int aty_pll_readupdate(const struct aty128fb_par *par)
{
      return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
}


static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
{
      unsigned long timeout = jiffies + HZ/100; // should be more than enough
      int reset = 1;

      while (time_before(jiffies, timeout))
            if (aty_pll_readupdate(par)) {
                  reset = 0;
                  break;
            }

      if (reset)  /* reset engine?? */
            printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
}


/* tell PLL to update */
static void aty_pll_writeupdate(const struct aty128fb_par *par)
{
      aty_pll_wait_readupdate(par);

      aty_st_pll(PPLL_REF_DIV,
               aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
}


/* write to the scratch register to test r/w functionality */
static int __devinit register_test(const struct aty128fb_par *par)
{
      u32 val;
      int flag = 0;

      val = aty_ld_le32(BIOS_0_SCRATCH);

      aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
      if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
            aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);

            if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
                  flag = 1; 
      }

      aty_st_le32(BIOS_0_SCRATCH, val);   // restore value
      return flag;
}


/*
 * Accelerator engine functions
 */
static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
{
      int i;

      for (;;) {
            for (i = 0; i < 2000000; i++) {
                  par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
                  if (par->fifo_slots >= entries)
                        return;
            }
            aty128_reset_engine(par);
      }
}


static void wait_for_idle(struct aty128fb_par *par)
{
      int i;

      do_wait_for_fifo(64, par);

      for (;;) {
            for (i = 0; i < 2000000; i++) {
                  if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
                        aty128_flush_pixel_cache(par);
                        par->blitter_may_be_busy = 0;
                        return;
                  }
            }
            aty128_reset_engine(par);
      }
}


static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
{
      if (par->fifo_slots < entries)
            do_wait_for_fifo(64, par);
      par->fifo_slots -= entries;
}


static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
{
      int i;
      u32 tmp;

      tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
      tmp &= ~(0x00ff);
      tmp |= 0x00ff;
      aty_st_le32(PC_NGUI_CTLSTAT, tmp);

      for (i = 0; i < 2000000; i++)
            if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
                  break;
}


static void aty128_reset_engine(const struct aty128fb_par *par)
{
      u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;

      aty128_flush_pixel_cache(par);

      clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
      mclk_cntl = aty_ld_pll(MCLK_CNTL);

      aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);

      gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
      aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
      aty_ld_le32(GEN_RESET_CNTL);
      aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
      aty_ld_le32(GEN_RESET_CNTL);

      aty_st_pll(MCLK_CNTL, mclk_cntl);
      aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
      aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);

      /* use old pio mode */
      aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);

      DBG("engine reset");
}


static void aty128_init_engine(struct aty128fb_par *par)
{
      u32 pitch_value;

      wait_for_idle(par);

      /* 3D scaler not spoken here */
      wait_for_fifo(1, par);
      aty_st_le32(SCALE_3D_CNTL, 0x00000000);

      aty128_reset_engine(par);

      pitch_value = par->crtc.pitch;
      if (par->crtc.bpp == 24) {
            pitch_value = pitch_value * 3;
      }

      wait_for_fifo(4, par);
      /* setup engine offset registers */
      aty_st_le32(DEFAULT_OFFSET, 0x00000000);

      /* setup engine pitch registers */
      aty_st_le32(DEFAULT_PITCH, pitch_value);

      /* set the default scissor register to max dimensions */
      aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);

      /* set the drawing controls registers */
      aty_st_le32(DP_GUI_MASTER_CNTL,
                GMC_SRC_PITCH_OFFSET_DEFAULT          |
                GMC_DST_PITCH_OFFSET_DEFAULT          |
                GMC_SRC_CLIP_DEFAULT                  |
                GMC_DST_CLIP_DEFAULT                  |
                GMC_BRUSH_SOLIDCOLOR                  |
                (depth_to_dst(par->crtc.depth) << 8)  |
                GMC_SRC_DSTCOLOR                |
                GMC_BYTE_ORDER_MSB_TO_LSB       |
                GMC_DP_CONVERSION_TEMP_6500           |
                ROP3_PATCOPY                    |
                GMC_DP_SRC_RECT                       |
                GMC_3D_FCN_EN_CLR               |
                GMC_DST_CLR_CMP_FCN_CLEAR       |
                GMC_AUX_CLIP_CLEAR              |
                GMC_WRITE_MASK_SET);

      wait_for_fifo(8, par);
      /* clear the line drawing registers */
      aty_st_le32(DST_BRES_ERR, 0);
      aty_st_le32(DST_BRES_INC, 0);
      aty_st_le32(DST_BRES_DEC, 0);

      /* set brush color registers */
      aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
      aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */

      /* set source color registers */
      aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
      aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */

      /* default write mask */
      aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);

      /* Wait for all the writes to be completed before returning */
      wait_for_idle(par);
}


/* convert depth values to their register representation */
static u32 depth_to_dst(u32 depth)
{
      if (depth <= 8)
            return DST_8BPP;
      else if (depth <= 15)
            return DST_15BPP;
      else if (depth == 16)
            return DST_16BPP;
      else if (depth <= 24)
            return DST_24BPP;
      else if (depth <= 32)
            return DST_32BPP;

      return -EINVAL;
}

/*
 * PLL informations retreival
 */


#ifndef __sparc__
static void __iomem * __devinit aty128_map_ROM(const struct aty128fb_par *par, struct pci_dev *dev)
{
      u16 dptr;
      u8 rom_type;
      void __iomem *bios;
      size_t rom_size;

      /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
      unsigned int temp;
      temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
      temp &= 0x00ffffffu;
      temp |= 0x04 << 24;
      aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
      temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);

      bios = pci_map_rom(dev, &rom_size);

      if (!bios) {
            printk(KERN_ERR "aty128fb: ROM failed to map\n");
            return NULL;
      }

      /* Very simple test to make sure it appeared */
      if (BIOS_IN16(0) != 0xaa55) {
            printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
                  " be 0xaa55\n", BIOS_IN16(0));
            goto failed;
      }

      /* Look for the PCI data to check the ROM type */
      dptr = BIOS_IN16(0x18);

      /* Check the PCI data signature. If it's wrong, we still assume a normal x86 ROM
       * for now, until I've verified this works everywhere. The goal here is more
       * to phase out Open Firmware images.
       *
       * Currently, we only look at the first PCI data, we could iteratre and deal with
       * them all, and we should use fb_bios_start relative to start of image and not
       * relative start of ROM, but so far, I never found a dual-image ATI card
       *
       * typedef struct {
       *    u32   signature;  + 0x00
       *    u16   vendor;           + 0x04
       *    u16   device;           + 0x06
       *    u16   reserved_1; + 0x08
       *    u16   dlen;       + 0x0a
       *    u8    drevision;  + 0x0c
       *    u8    class_hi;   + 0x0d
       *    u16   class_lo;   + 0x0e
       *    u16   ilen;       + 0x10
       *    u16   irevision;  + 0x12
       *    u8    type;       + 0x14
       *    u8    indicator;  + 0x15
       *    u16   reserved_2; + 0x16
       * } pci_data_t;
       */
      if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
            printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
                   BIOS_IN32(dptr));
            goto anyway;
      }
      rom_type = BIOS_IN8(dptr + 0x14);
      switch(rom_type) {
      case 0:
            printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
            break;
      case 1:
            printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
            goto failed;
      case 2:
            printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
            goto failed;
      default:
            printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n", rom_type);
            goto failed;
      }
 anyway:
      return bios;

 failed:
      pci_unmap_rom(dev, bios);
      return NULL;
}

static void __devinit aty128_get_pllinfo(struct aty128fb_par *par, unsigned char __iomem *bios)
{
      unsigned int bios_hdr;
      unsigned int bios_pll;

      bios_hdr = BIOS_IN16(0x48);
      bios_pll = BIOS_IN16(bios_hdr + 0x30);
      
      par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
      par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
      par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
      par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
      par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);

      DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
                  par->constants.ppll_max, par->constants.ppll_min,
                  par->constants.xclk, par->constants.ref_divider,
                  par->constants.ref_clk);

}           

#ifdef CONFIG_X86
static void __iomem *  __devinit aty128_find_mem_vbios(struct aty128fb_par *par)
{
      /* I simplified this code as we used to miss the signatures in
       * a lot of case. It's now closer to XFree, we just don't check
       * for signatures at all... Something better will have to be done
       * if we end up having conflicts
       */
        u32  segstart;
        unsigned char __iomem *rom_base = NULL;
                                                
        for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
                rom_base = ioremap(segstart, 0x10000);
            if (rom_base == NULL)
                  return NULL;
            if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
                      break;
                iounmap(rom_base);
            rom_base = NULL;
        }
      return rom_base;
}
#endif
#endif /* ndef(__sparc__) */

/* fill in known card constants if pll_block is not available */
static void __devinit aty128_timings(struct aty128fb_par *par)
{
#ifdef CONFIG_PPC_OF
      /* instead of a table lookup, assume OF has properly
       * setup the PLL registers and use their values
       * to set the XCLK values and reference divider values */

      u32 x_mpll_ref_fb_div;
      u32 xclk_cntl;
      u32 Nx, M;
      unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
#endif

      if (!par->constants.ref_clk)
            par->constants.ref_clk = 2950;

#ifdef CONFIG_PPC_OF
      x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
      xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
      Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
      M  = x_mpll_ref_fb_div & 0x0000ff;

      par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
                              (M * PostDivSet[xclk_cntl]));

      par->constants.ref_divider =
            aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
#endif

      if (!par->constants.ref_divider) {
            par->constants.ref_divider = 0x3b;

            aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
            aty_pll_writeupdate(par);
      }
      aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
      aty_pll_writeupdate(par);

      /* from documentation */
      if (!par->constants.ppll_min)
            par->constants.ppll_min = 12500;
      if (!par->constants.ppll_max)
            par->constants.ppll_max = 25000;    /* 23000 on some cards? */
      if (!par->constants.xclk)
            par->constants.xclk = 0x1d4d;      /* same as mclk */

      par->constants.fifo_width = 128;
      par->constants.fifo_depth = 32;

      switch (aty_ld_le32(MEM_CNTL) & 0x3) {
      case 0:
            par->mem = &sdr_128;
            break;
      case 1:
            par->mem = &sdr_sgram;
            break;
      case 2:
            par->mem = &ddr_sgram;
            break;
      default:
            par->mem = &sdr_sgram;
      }
}



/*
 * CRTC programming
 */

/* Program the CRTC registers */
static void aty128_set_crtc(const struct aty128_crtc *crtc,
                      const struct aty128fb_par *par)
{
      aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
      aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
      aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
      aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
      aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
      aty_st_le32(CRTC_PITCH, crtc->pitch);
      aty_st_le32(CRTC_OFFSET, crtc->offset);
      aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
      /* Disable ATOMIC updating.  Is this the right place? */
      aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
}


static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
                        struct aty128_crtc *crtc,
                        const struct aty128fb_par *par)
{
      u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
      u32 left, right, upper, lower, hslen, vslen, sync, vmode;
      u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
      u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
      u32 depth, bytpp;
      u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };

      /* input */
      xres = var->xres;
      yres = var->yres;
      vxres   = var->xres_virtual;
      vyres   = var->yres_virtual;
      xoffset = var->xoffset;
      yoffset = var->yoffset;
      bpp   = var->bits_per_pixel;
      left  = var->left_margin;
      right = var->right_margin;
      upper = var->upper_margin;
      lower = var->lower_margin;
      hslen = var->hsync_len;
      vslen = var->vsync_len;
      sync  = var->sync;
      vmode = var->vmode;

      if (bpp != 16)
            depth = bpp;
      else
            depth = (var->green.length == 6) ? 16 : 15;

      /* check for mode eligibility
       * accept only non interlaced modes */
      if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
            return -EINVAL;

      /* convert (and round up) and validate */
      xres = (xres + 7) & ~7;
      xoffset = (xoffset + 7) & ~7;

      if (vxres < xres + xoffset)
            vxres = xres + xoffset;

      if (vyres < yres + yoffset)
            vyres = yres + yoffset;

      /* convert depth into ATI register depth */
      dst = depth_to_dst(depth);

      if (dst == -EINVAL) {
            printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
            return -EINVAL;
      }

      /* convert register depth to bytes per pixel */
      bytpp = mode_bytpp[dst];

      /* make sure there is enough video ram for the mode */
      if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
            printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
            return -EINVAL;
      }

      h_disp = (xres >> 3) - 1;
      h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;

      v_disp = yres - 1;
      v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;

      /* check to make sure h_total and v_total are in range */
      if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
            printk(KERN_ERR "aty128fb: invalid width ranges\n");
            return -EINVAL;
      }

      h_sync_wid = (hslen + 7) >> 3;
      if (h_sync_wid == 0)
            h_sync_wid = 1;
      else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
            h_sync_wid = 0x3f;

      h_sync_strt = (h_disp << 3) + right;

      v_sync_wid = vslen;
      if (v_sync_wid == 0)
            v_sync_wid = 1;
      else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
            v_sync_wid = 0x1f;
    
      v_sync_strt = v_disp + lower;

      h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
      v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
    
      c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;

      crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);

      crtc->h_total = h_total | (h_disp << 16);
      crtc->v_total = v_total | (v_disp << 16);

      crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
              (h_sync_pol << 23);
      crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
                (v_sync_pol << 23);

      crtc->pitch = vxres >> 3;

      crtc->offset = 0;

      if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
            crtc->offset_cntl = 0x00010000;
      else
            crtc->offset_cntl = 0;

      crtc->vxres = vxres;
      crtc->vyres = vyres;
      crtc->xoffset = xoffset;
      crtc->yoffset = yoffset;
      crtc->depth = depth;
      crtc->bpp = bpp;

      return 0;
}


static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
{

      /* fill in pixel info */
      var->red.msb_right = 0;
      var->green.msb_right = 0;
      var->blue.offset = 0;
      var->blue.msb_right = 0;
      var->transp.offset = 0;
      var->transp.length = 0;
      var->transp.msb_right = 0;
      switch (pix_width) {
      case CRTC_PIX_WIDTH_8BPP:
            var->bits_per_pixel = 8;
            var->red.offset = 0;
            var->red.length = 8;
            var->green.offset = 0;
            var->green.length = 8;
            var->blue.length = 8;
            break;
      case CRTC_PIX_WIDTH_15BPP:
            var->bits_per_pixel = 16;
            var->red.offset = 10;
            var->red.length = 5;
            var->green.offset = 5;
            var->green.length = 5;
            var->blue.length = 5;
            break;
      case CRTC_PIX_WIDTH_16BPP:
            var->bits_per_pixel = 16;
            var->red.offset = 11;
            var->red.length = 5;
            var->green.offset = 5;
            var->green.length = 6;
            var->blue.length = 5;
            break;
      case CRTC_PIX_WIDTH_24BPP:
            var->bits_per_pixel = 24;
            var->red.offset = 16;
            var->red.length = 8;
            var->green.offset = 8;
            var->green.length = 8;
            var->blue.length = 8;
            break;
      case CRTC_PIX_WIDTH_32BPP:
            var->bits_per_pixel = 32;
            var->red.offset = 16;
            var->red.length = 8;
            var->green.offset = 8;
            var->green.length = 8;
            var->blue.length = 8;
            var->transp.offset = 24;
            var->transp.length = 8;
            break;
      default:
            printk(KERN_ERR "aty128fb: Invalid pixel width\n");
            return -EINVAL;
      }

      return 0;
}


static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
                        struct fb_var_screeninfo *var)
{
      u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
      u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
      u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
      u32 pix_width;

      /* fun with masking */
      h_total     = crtc->h_total & 0x1ff;
      h_disp      = (crtc->h_total >> 16) & 0xff;
      h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
      h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
      h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
      h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
      v_total     = crtc->v_total & 0x7ff;
      v_disp      = (crtc->v_total >> 16) & 0x7ff;
      v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
      v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
      v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
      c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
      pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;

      /* do conversions */
      xres  = (h_disp + 1) << 3;
      yres  = v_disp + 1;
      left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
      right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
      hslen = h_sync_wid << 3;
      upper = v_total - v_sync_strt - v_sync_wid;
      lower = v_sync_strt - v_disp;
      vslen = v_sync_wid;
      sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
            (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
            (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);

      aty128_pix_width_to_var(pix_width, var);

      var->xres = xres;
      var->yres = yres;
      var->xres_virtual = crtc->vxres;
      var->yres_virtual = crtc->vyres;
      var->xoffset = crtc->xoffset;
      var->yoffset = crtc->yoffset;
      var->left_margin  = left;
      var->right_margin = right;
      var->upper_margin = upper;
      var->lower_margin = lower;
      var->hsync_len = hslen;
      var->vsync_len = vslen;
      var->sync  = sync;
      var->vmode = FB_VMODE_NONINTERLACED;

      return 0;
}

static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
{
      if (on) {
            aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) | CRT_CRTC_ON);
            aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) | DAC_PALETTE2_SNOOP_EN));
      } else
            aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) & ~CRT_CRTC_ON);
}

static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
{
      u32 reg;
#ifdef CONFIG_FB_ATY128_BACKLIGHT
      struct fb_info *info = pci_get_drvdata(par->pdev);
#endif

      if (on) {
            reg = aty_ld_le32(LVDS_GEN_CNTL);
            reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
            reg &= ~LVDS_DISPLAY_DIS;
            aty_st_le32(LVDS_GEN_CNTL, reg);
#ifdef CONFIG_FB_ATY128_BACKLIGHT
            aty128_bl_set_power(info, FB_BLANK_UNBLANK);
#endif      
      } else {
#ifdef CONFIG_FB_ATY128_BACKLIGHT
            aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
#endif      
            reg = aty_ld_le32(LVDS_GEN_CNTL);
            reg |= LVDS_DISPLAY_DIS;
            aty_st_le32(LVDS_GEN_CNTL, reg);
            mdelay(100);
            reg &= ~(LVDS_ON /*| LVDS_EN*/);
            aty_st_le32(LVDS_GEN_CNTL, reg);
      }
}

static void aty128_set_pll(struct aty128_pll *pll, const struct aty128fb_par *par)
{
      u32 div3;

      unsigned char post_conv[] =   /* register values for post dividers */
        { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };

      /* select PPLL_DIV_3 */
      aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));

      /* reset PLL */
      aty_st_pll(PPLL_CNTL,
               aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);

      /* write the reference divider */
      aty_pll_wait_readupdate(par);
      aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
      aty_pll_writeupdate(par);

      div3 = aty_ld_pll(PPLL_DIV_3);
      div3 &= ~PPLL_FB3_DIV_MASK;
      div3 |= pll->feedback_divider;
      div3 &= ~PPLL_POST3_DIV_MASK;
      div3 |= post_conv[pll->post_divider] << 16;

      /* write feedback and post dividers */
      aty_pll_wait_readupdate(par);
      aty_st_pll(PPLL_DIV_3, div3);
      aty_pll_writeupdate(par);

      aty_pll_wait_readupdate(par);
      aty_st_pll(HTOTAL_CNTL, 0);   /* no horiz crtc adjustment */
      aty_pll_writeupdate(par);

      /* clear the reset, just in case */
      aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
}


static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
                       const struct aty128fb_par *par)
{
      const struct aty128_constants c = par->constants;
      unsigned char post_dividers[] = {1,2,4,8,3,6,12};
      u32 output_freq;
      u32 vclk;        /* in .01 MHz */
      int i = 0;
      u32 n, d;

      vclk = 100000000 / period_in_ps;    /* convert units to 10 kHz */

      /* adjust pixel clock if necessary */
      if (vclk > c.ppll_max)
            vclk = c.ppll_max;
      if (vclk * 12 < c.ppll_min)
            vclk = c.ppll_min/12;

      pll->post_divider = -1;

      /* now, find an acceptable divider */
      for (i = 0; i < sizeof(post_dividers); i++) {
            output_freq = post_dividers[i] * vclk;
            if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
                  pll->post_divider = post_dividers[i];
                  break;
            }
      }

      if (pll->post_divider < 0)
            return -EINVAL;

      /* calculate feedback divider */
      n = c.ref_divider * output_freq;
      d = c.ref_clk;

      pll->feedback_divider = round_div(n, d);
      pll->vclk = vclk;

      DBG("post %d feedback %d vlck %d output %d ref_divider %d "
          "vclk_per: %d\n", pll->post_divider,
          pll->feedback_divider, vclk, output_freq,
          c.ref_divider, period_in_ps);

      return 0;
}


static int aty128_pll_to_var(const struct aty128_pll *pll, struct fb_var_screeninfo *var)
{
      var->pixclock = 100000000 / pll->vclk;

      return 0;
}


static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
                      const struct aty128fb_par *par)
{
      aty_st_le32(DDA_CONFIG, dsp->dda_config);
      aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
}


static int aty128_ddafifo(struct aty128_ddafifo *dsp,
                    const struct aty128_pll *pll,
                    u32 depth,
                    const struct aty128fb_par *par)
{
      const struct aty128_meminfo *m = par->mem;
      u32 xclk = par->constants.xclk;
      u32 fifo_width = par->constants.fifo_width;
      u32 fifo_depth = par->constants.fifo_depth;
      s32 x, b, p, ron, roff;
      u32 n, d, bpp;

      /* round up to multiple of 8 */
      bpp = (depth+7) & ~7;

      n = xclk * fifo_width;
      d = pll->vclk * bpp;
      x = round_div(n, d);

      ron = 4 * m->MB +
            3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
            2 * m->Trp +
            m->Twr +
            m->CL +
            m->Tr2w +
            x;

      DBG("x %x\n", x);

      b = 0;
      while (x) {
            x >>= 1;
            b++;
      }
      p = b + 1;

      ron <<= (11 - p);

      n <<= (11 - p);
      x = round_div(n, d);
      roff = x * (fifo_depth - 4);

      if ((ron + m->Rloop) >= roff) {
            printk(KERN_ERR "aty128fb: Mode out of range!\n");
            return -EINVAL;
      }

      DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
          p, m->Rloop, x, ron, roff);

      dsp->dda_config = p << 16 | m->Rloop << 20 | x;
      dsp->dda_on_off = ron << 16 | roff;

      return 0;
}


/*
 * This actually sets the video mode.
 */
static int aty128fb_set_par(struct fb_info *info)
{ 
      struct aty128fb_par *par = info->par;
      u32 config;
      int err;

      if ((err = aty128_decode_var(&info->var, par)) != 0)
            return err;

      if (par->blitter_may_be_busy)
            wait_for_idle(par);

      /* clear all registers that may interfere with mode setting */
      aty_st_le32(OVR_CLR, 0);
      aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
      aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
      aty_st_le32(OV0_SCALE_CNTL, 0);
      aty_st_le32(MPP_TB_CONFIG, 0);
      aty_st_le32(MPP_GP_CONFIG, 0);
      aty_st_le32(SUBPIC_CNTL, 0);
      aty_st_le32(VIPH_CONTROL, 0);
      aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
      aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
      aty_st_le32(CAP0_TRIG_CNTL, 0);
      aty_st_le32(CAP1_TRIG_CNTL, 0);

      aty_st_8(CRTC_EXT_CNTL + 1, 4);     /* turn video off */

      aty128_set_crtc(&par->crtc, par);
      aty128_set_pll(&par->pll, par);
      aty128_set_fifo(&par->fifo_reg, par);

      config = aty_ld_le32(CONFIG_CNTL) & ~3;

#if defined(__BIG_ENDIAN)
      if (par->crtc.bpp == 32)
            config |= 2;      /* make aperture do 32 bit swapping */
      else if (par->crtc.bpp == 16)
            config |= 1;      /* make aperture do 16 bit swapping */
#endif

      aty_st_le32(CONFIG_CNTL, config);
      aty_st_8(CRTC_EXT_CNTL + 1, 0);     /* turn the video back on */

      info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
      info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
            : FB_VISUAL_DIRECTCOLOR;

      if (par->chip_gen == rage_M3) {
            aty128_set_crt_enable(par, par->crt_on);
            aty128_set_lcd_enable(par, par->lcd_on);
      }
      if (par->accel_flags & FB_ACCELF_TEXT)
            aty128_init_engine(par);

#ifdef CONFIG_BOOTX_TEXT
      btext_update_display(info->fix.smem_start,
                       (((par->crtc.h_total>>16) & 0xff)+1)*8,
                       ((par->crtc.v_total>>16) & 0x7ff)+1,
                       par->crtc.bpp,
                       par->crtc.vxres*par->crtc.bpp/8);
#endif /* CONFIG_BOOTX_TEXT */

      return 0;
}

/*
 *  encode/decode the User Defined Part of the Display
 */

static int aty128_decode_var(struct fb_var_screeninfo *var, struct aty128fb_par *par)
{
      int err;
      struct aty128_crtc crtc;
      struct aty128_pll pll;
      struct aty128_ddafifo fifo_reg;

      if ((err = aty128_var_to_crtc(var, &crtc, par)))
            return err;

      if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
            return err;

      if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
            return err;

      par->crtc = crtc;
      par->pll = pll;
      par->fifo_reg = fifo_reg;
      par->accel_flags = var->accel_flags;

      return 0;
}


static int aty128_encode_var(struct fb_var_screeninfo *var,
                       const struct aty128fb_par *par)
{
      int err;

      if ((err = aty128_crtc_to_var(&par->crtc, var)))
            return err;

      if ((err = aty128_pll_to_var(&par->pll, var)))
            return err;

      var->nonstd = 0;
      var->activate = 0;

      var->height = -1;
      var->width = -1;
      var->accel_flags = par->accel_flags;

      return 0;
}           


static int aty128fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
      struct aty128fb_par par;
      int err;

      par = *(struct aty128fb_par *)info->par;
      if ((err = aty128_decode_var(var, &par)) != 0)
            return err;
      aty128_encode_var(var, &par);
      return 0;
}


/*
 *  Pan or Wrap the Display
 */
static int aty128fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fb) 
{
      struct aty128fb_par *par = fb->par;
      u32 xoffset, yoffset;
      u32 offset;
      u32 xres, yres;

      xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
      yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;

      xoffset = (var->xoffset +7) & ~7;
      yoffset = var->yoffset;

      if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
            return -EINVAL;

      par->crtc.xoffset = xoffset;
      par->crtc.yoffset = yoffset;

      offset = ((yoffset * par->crtc.vxres + xoffset)*(par->crtc.bpp >> 3)) & ~7;

      if (par->crtc.bpp == 24)
            offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */

      aty_st_le32(CRTC_OFFSET, offset);

      return 0;
}


/*
 *  Helper function to store a single palette register
 */
static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
                    struct aty128fb_par *par)
{
      if (par->chip_gen == rage_M3) {
#if 0
            /* Note: For now, on M3, we set palette on both heads, which may
             * be useless. Can someone with a M3 check this ?
             * 
             * This code would still be useful if using the second CRTC to 
             * do mirroring
             */

            aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PALETTE_ACCESS_CNTL);
            aty_st_8(PALETTE_INDEX, regno);
            aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
#endif
            aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & ~DAC_PALETTE_ACCESS_CNTL);
      }

      aty_st_8(PALETTE_INDEX, regno);
      aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
}

static int aty128fb_sync(struct fb_info *info)
{
      struct aty128fb_par *par = info->par;

      if (par->blitter_may_be_busy)
            wait_for_idle(par);
      return 0;
}

#ifndef MODULE
static int __devinit aty128fb_setup(char *options)
{
      char *this_opt;

      if (!options || !*options)
            return 0;

      while ((this_opt = strsep(&options, ",")) != NULL) {
            if (!strncmp(this_opt, "lcd:", 4)) {
                  default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
                  continue;
            } else if (!strncmp(this_opt, "crt:", 4)) {
                  default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
                  continue;
            } else if (!strncmp(this_opt, "backlight:", 10)) {
                  backlight = simple_strtoul(this_opt+10, NULL, 0);
                  continue;
            }
#ifdef CONFIG_MTRR
            if(!strncmp(this_opt, "nomtrr", 6)) {
                  mtrr = 0;
                  continue;
            }
#endif
#ifdef CONFIG_PPC_PMAC
            /* vmode and cmode deprecated */
            if (!strncmp(this_opt, "vmode:", 6)) {
                  unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
                  if (vmode > 0 && vmode <= VMODE_MAX)
                        default_vmode = vmode;
                  continue;
            } else if (!strncmp(this_opt, "cmode:", 6)) {
                  unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
                  switch (cmode) {
                  case 0:
                  case 8:
                        default_cmode = CMODE_8;
                        break;
                  case 15:
                  case 16:
                        default_cmode = CMODE_16;
                        break;
                  case 24:
                  case 32:
                        default_cmode = CMODE_32;
                        break;
                  }
                  continue;
            }
#endif /* CONFIG_PPC_PMAC */
            mode_option = this_opt;
      }
      return 0;
}
#endif  /*  MODULE  */

/* Backlight */
#ifdef CONFIG_FB_ATY128_BACKLIGHT
#define MAX_LEVEL 0xFF

static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
            int level)
{
      struct fb_info *info = pci_get_drvdata(par->pdev);
      int atylevel;

      /* Get and convert the value */
      /* No locking of bl_curve since we read a single value */
      atylevel = MAX_LEVEL -
            (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);

      if (atylevel < 0)
            atylevel = 0;
      else if (atylevel > MAX_LEVEL)
            atylevel = MAX_LEVEL;

      return atylevel;
}

/* We turn off the LCD completely instead of just dimming the backlight.
 * This provides greater power saving and the display is useless without
 * backlight anyway
 */
#define BACKLIGHT_LVDS_OFF
/* That one prevents proper CRT output with LCD off */
#undef BACKLIGHT_DAC_OFF

static int aty128_bl_update_status(struct backlight_device *bd)
{
      struct aty128fb_par *par = bl_get_data(bd);
      unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
      int level;

      if (bd->props.power != FB_BLANK_UNBLANK ||
          bd->props.fb_blank != FB_BLANK_UNBLANK ||
          !par->lcd_on)
            level = 0;
      else
            level = bd->props.brightness;

      reg |= LVDS_BL_MOD_EN | LVDS_BLON;
      if (level > 0) {
            reg |= LVDS_DIGION;
            if (!(reg & LVDS_ON)) {
                  reg &= ~LVDS_BLON;
                  aty_st_le32(LVDS_GEN_CNTL, reg);
                  aty_ld_le32(LVDS_GEN_CNTL);
                  mdelay(10);
                  reg |= LVDS_BLON;
                  aty_st_le32(LVDS_GEN_CNTL, reg);
            }
            reg &= ~LVDS_BL_MOD_LEVEL_MASK;
            reg |= (aty128_bl_get_level_brightness(par, level) << LVDS_BL_MOD_LEVEL_SHIFT);
#ifdef BACKLIGHT_LVDS_OFF
            reg |= LVDS_ON | LVDS_EN;
            reg &= ~LVDS_DISPLAY_DIS;
#endif
            aty_st_le32(LVDS_GEN_CNTL, reg);
#ifdef BACKLIGHT_DAC_OFF
            aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
#endif
      } else {
            reg &= ~LVDS_BL_MOD_LEVEL_MASK;
            reg |= (aty128_bl_get_level_brightness(par, 0) << LVDS_BL_MOD_LEVEL_SHIFT);
#ifdef BACKLIGHT_LVDS_OFF
            reg |= LVDS_DISPLAY_DIS;
            aty_st_le32(LVDS_GEN_CNTL, reg);
            aty_ld_le32(LVDS_GEN_CNTL);
            udelay(10);
            reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
#endif
            aty_st_le32(LVDS_GEN_CNTL, reg);
#ifdef BACKLIGHT_DAC_OFF
            aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
#endif
      }

      return 0;
}

static int aty128_bl_get_brightness(struct backlight_device *bd)
{
      return bd->props.brightness;
}

static struct backlight_ops aty128_bl_data = {
      .get_brightness   = aty128_bl_get_brightness,
      .update_status    = aty128_bl_update_status,
};

static void aty128_bl_set_power(struct fb_info *info, int power)
{
      if (info->bl_dev) {
            info->bl_dev->props.power = power;
            backlight_update_status(info->bl_dev);
      }
}

static void aty128_bl_init(struct aty128fb_par *par)
{
      struct fb_info *info = pci_get_drvdata(par->pdev);
      struct backlight_device *bd;
      char name[12];

      /* Could be extended to Rage128Pro LVDS output too */
      if (par->chip_gen != rage_M3)
            return;

#ifdef CONFIG_PMAC_BACKLIGHT
      if (!pmac_has_backlight_type("ati"))
            return;
#endif

      snprintf(name, sizeof(name), "aty128bl%d", info->node);

      bd = backlight_device_register(name, info->dev, par, &aty128_bl_data);
      if (IS_ERR(bd)) {
            info->bl_dev = NULL;
            printk(KERN_WARNING "aty128: Backlight registration failed\n");
            goto error;
      }

      info->bl_dev = bd;
      fb_bl_default_curve(info, 0,
             63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
            219 * FB_BACKLIGHT_MAX / MAX_LEVEL);

      bd->props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
      bd->props.brightness = bd->props.max_brightness;
      bd->props.power = FB_BLANK_UNBLANK;
      backlight_update_status(bd);

      printk("aty128: Backlight initialized (%s)\n", name);

      return;

error:
      return;
}

static void aty128_bl_exit(struct backlight_device *bd)
{
      backlight_device_unregister(bd);
      printk("aty128: Backlight unloaded\n");
}
#endif /* CONFIG_FB_ATY128_BACKLIGHT */

/*
 *  Initialisation
 */

#ifdef CONFIG_PPC_PMAC
static void aty128_early_resume(void *data)
{
        struct aty128fb_par *par = data;

      if (try_acquire_console_sem())
            return;
      aty128_do_resume(par->pdev);
      release_console_sem();
}
#endif /* CONFIG_PPC_PMAC */

static int __devinit aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
{
      struct fb_info *info = pci_get_drvdata(pdev);
      struct aty128fb_par *par = info->par;
      struct fb_var_screeninfo var;
      char video_card[DEVICE_NAME_SIZE];
      u8 chip_rev;
      u32 dac;

      /* Get the chip revision */
      chip_rev = (aty_ld_le32(CONFIG_CNTL) >> 16) & 0x1F;

      strcpy(video_card, "Rage128 XX ");
      video_card[8] = ent->device >> 8;
      video_card[9] = ent->device & 0xFF;

      /* range check to make sure */
      if (ent->driver_data < ARRAY_SIZE(r128_family))
          strncat(video_card, r128_family[ent->driver_data], sizeof(video_card));

      printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);

      if (par->vram_size % (1024 * 1024) == 0)
            printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
      else
            printk("%dk %s\n", par->vram_size / 1024, par->mem->name);

      par->chip_gen = ent->driver_data;

      /* fill in info */
      info->fbops = &aty128fb_ops;
      info->flags = FBINFO_FLAG_DEFAULT;

      par->lcd_on = default_lcd_on;
      par->crt_on = default_crt_on;

      var = default_var;
#ifdef CONFIG_PPC_PMAC
      if (machine_is(powermac)) {
            /* Indicate sleep capability */
            if (par->chip_gen == rage_M3) {
                  pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
                  pmac_set_early_video_resume(aty128_early_resume, par);
            }

            /* Find default mode */
            if (mode_option) {
                  if (!mac_find_mode(&var, info, mode_option, 8))
                        var = default_var;
            } else {
                  if (default_vmode <= 0 || default_vmode > VMODE_MAX)
                        default_vmode = VMODE_1024_768_60;

                  /* iMacs need that resolution
                   * PowerMac2,1 first r128 iMacs
                   * PowerMac2,2 summer 2000 iMacs
                   * PowerMac4,1 january 2001 iMacs "flower power"
                   */
                  if (machine_is_compatible("PowerMac2,1") ||
                      machine_is_compatible("PowerMac2,2") ||
                      machine_is_compatible("PowerMac4,1"))
                        default_vmode = VMODE_1024_768_75;

                  /* iBook SE */
                  if (machine_is_compatible("PowerBook2,2"))
                        default_vmode = VMODE_800_600_60;

                  /* PowerBook Firewire (Pismo), iBook Dual USB */
                  if (machine_is_compatible("PowerBook3,1") ||
                      machine_is_compatible("PowerBook4,1"))
                        default_vmode = VMODE_1024_768_60;

                  /* PowerBook Titanium */
                  if (machine_is_compatible("PowerBook3,2"))
                        default_vmode = VMODE_1152_768_60;
      
                  if (default_cmode > 16) 
                      default_cmode = CMODE_32;
                  else if (default_cmode > 8) 
                      default_cmode = CMODE_16;
                  else 
                      default_cmode = CMODE_8;

                  if (mac_vmode_to_var(default_vmode, default_cmode, &var))
                        var = default_var;
            }
      } else
#endif /* CONFIG_PPC_PMAC */
      {
            if (mode_option)
                  if (fb_find_mode(&var, info, mode_option, NULL, 
                               0, &defaultmode, 8) == 0)
                        var = default_var;
      }

      var.accel_flags &= ~FB_ACCELF_TEXT;
//    var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */

      if (aty128fb_check_var(&var, info)) {
            printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
            return 0;
      }

      /* setup the DAC the way we like it */
      dac = aty_ld_le32(DAC_CNTL);
      dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
      dac |= DAC_MASK;
      if (par->chip_gen == rage_M3)
            dac |= DAC_PALETTE2_SNOOP_EN;
      aty_st_le32(DAC_CNTL, dac);

      /* turn off bus mastering, just in case */
      aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);

      info->var = var;
      fb_alloc_cmap(&info->cmap, 256, 0);

      var.activate = FB_ACTIVATE_NOW;

      aty128_init_engine(par);

      par->pm_reg = pci_find_capability(pdev, PCI_CAP_ID_PM);
      par->pdev = pdev;
      par->asleep = 0;
      par->lock_blank = 0;

#ifdef CONFIG_FB_ATY128_BACKLIGHT
      if (backlight)
            aty128_bl_init(par);
#endif

      if (register_framebuffer(info) < 0)
            return 0;

      printk(KERN_INFO "fb%d: %s frame buffer device on %s\n",
             info->node, info->fix.id, video_card);

      return 1;   /* success! */
}

#ifdef CONFIG_PCI
/* register a card    ++ajoshi */
static int __devinit aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
      unsigned long fb_addr, reg_addr;
      struct aty128fb_par *par;
      struct fb_info *info;
      int err;
#ifndef __sparc__
      void __iomem *bios = NULL;
#endif

      /* Enable device in PCI config */
      if ((err = pci_enable_device(pdev))) {
            printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
                        err);
            return -ENODEV;
      }

      fb_addr = pci_resource_start(pdev, 0);
      if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
                        "aty128fb FB")) {
            printk(KERN_ERR "aty128fb: cannot reserve frame "
                        "buffer memory\n");
            return -ENODEV;
      }

      reg_addr = pci_resource_start(pdev, 2);
      if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
                        "aty128fb MMIO")) {
            printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
            goto err_free_fb;
      }

      /* We have the resources. Now virtualize them */
      info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
      if (info == NULL) {
            printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
            goto err_free_mmio;
      }
      par = info->par;

      info->pseudo_palette = par->pseudo_palette;

      /* Virtualize mmio region */
      info->fix.mmio_start = reg_addr;
      par->regbase = ioremap(reg_addr, pci_resource_len(pdev, 2));
      if (!par->regbase)
            goto err_free_info;

      /* Grab memory size from the card */
      // How does this relate to the resource length from the PCI hardware?
      par->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;

      /* Virtualize the framebuffer */
      info->screen_base = ioremap(fb_addr, par->vram_size);
      if (!info->screen_base)
            goto err_unmap_out;

      /* Set up info->fix */
      info->fix = aty128fb_fix;
      info->fix.smem_start = fb_addr;
      info->fix.smem_len = par->vram_size;
      info->fix.mmio_start = reg_addr;

      /* If we can't test scratch registers, something is seriously wrong */
      if (!register_test(par)) {
            printk(KERN_ERR "aty128fb: Can't write to video register!\n");
            goto err_out;
      }

#ifndef __sparc__
      bios = aty128_map_ROM(par, pdev);
#ifdef CONFIG_X86
      if (bios == NULL)
            bios = aty128_find_mem_vbios(par);
#endif
      if (bios == NULL)
            printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
      else {
            printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
            aty128_get_pllinfo(par, bios);
            pci_unmap_rom(pdev, bios);
      }
#endif /* __sparc__ */

      aty128_timings(par);
      pci_set_drvdata(pdev, info);

      if (!aty128_init(pdev, ent))
            goto err_out;

#ifdef CONFIG_MTRR
      if (mtrr) {
            par->mtrr.vram = mtrr_add(info->fix.smem_start,
                        par->vram_size, MTRR_TYPE_WRCOMB, 1);
            par->mtrr.vram_valid = 1;
            /* let there be speed */
            printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
      }
#endif /* CONFIG_MTRR */
      return 0;

err_out:
      iounmap(info->screen_base);
err_unmap_out:
      iounmap(par->regbase);
err_free_info:
      framebuffer_release(info);
err_free_mmio:
      release_mem_region(pci_resource_start(pdev, 2),
                  pci_resource_len(pdev, 2));
err_free_fb:
      release_mem_region(pci_resource_start(pdev, 0),
                  pci_resource_len(pdev, 0));
      return -ENODEV;
}

static void __devexit aty128_remove(struct pci_dev *pdev)
{
      struct fb_info *info = pci_get_drvdata(pdev);
      struct aty128fb_par *par;

      if (!info)
            return;

      par = info->par;

      unregister_framebuffer(info);

#ifdef CONFIG_FB_ATY128_BACKLIGHT
      aty128_bl_exit(info->bl_dev);
#endif

#ifdef CONFIG_MTRR
      if (par->mtrr.vram_valid)
            mtrr_del(par->mtrr.vram, info->fix.smem_start,
                   par->vram_size);
#endif /* CONFIG_MTRR */
      iounmap(par->regbase);
      iounmap(info->screen_base);

      release_mem_region(pci_resource_start(pdev, 0),
                     pci_resource_len(pdev, 0));
      release_mem_region(pci_resource_start(pdev, 2),
                     pci_resource_len(pdev, 2));
      framebuffer_release(info);
}
#endif /* CONFIG_PCI */



    /*
     *  Blank the display.
     */
static int aty128fb_blank(int blank, struct fb_info *fb)
{
      struct aty128fb_par *par = fb->par;
      u8 state;

      if (par->lock_blank || par->asleep)
            return 0;

      switch (blank) {
      case FB_BLANK_NORMAL:
            state = 4;
            break;
      case FB_BLANK_VSYNC_SUSPEND:
            state = 6;
            break;
      case FB_BLANK_HSYNC_SUSPEND:
            state = 5;
            break;
      case FB_BLANK_POWERDOWN:
            state = 7;
            break;
      case FB_BLANK_UNBLANK:
      default:
            state = 0;
            break;
      }
      aty_st_8(CRTC_EXT_CNTL+1, state);

      if (par->chip_gen == rage_M3) {
            aty128_set_crt_enable(par, par->crt_on && !blank);
            aty128_set_lcd_enable(par, par->lcd_on && !blank);
      }

      return 0;
}

/*
 *  Set a single color register. The values supplied are already
 *  rounded down to the hardware's capabilities (according to the
 *  entries in the var structure). Return != 0 for invalid regno.
 */
static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
                        u_int transp, struct fb_info *info)
{
      struct aty128fb_par *par = info->par;

      if (regno > 255
          || (par->crtc.depth == 16 && regno > 63)
          || (par->crtc.depth == 15 && regno > 31))
            return 1;

      red >>= 8;
      green >>= 8;
      blue >>= 8;

      if (regno < 16) {
            int i;
            u32 *pal = info->pseudo_palette;

            switch (par->crtc.depth) {
            case 15:
                  pal[regno] = (regno << 10) | (regno << 5) | regno;
                  break;
            case 16:
                  pal[regno] = (regno << 11) | (regno << 6) | regno;
                  break;
            case 24:
                  pal[regno] = (regno << 16) | (regno << 8) | regno;
                  break;
            case 32:
                  i = (regno << 8) | regno;
                  pal[regno] = (i << 16) | i;
                  break;
            }
      }

      if (par->crtc.depth == 16 && regno > 0) {
            /*
             * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
             * have 32 slots for R and B values but 64 slots for G values.
             * Thus the R and B values go in one slot but the G value
             * goes in a different slot, and we have to avoid disturbing
             * the other fields in the slots we touch.
             */
            par->green[regno] = green;
            if (regno < 32) {
                  par->red[regno] = red;
                  par->blue[regno] = blue;
                  aty128_st_pal(regno * 8, red, par->green[regno*2],
                              blue, par);
            }
            red = par->red[regno/2];
            blue = par->blue[regno/2];
            regno <<= 2;
      } else if (par->crtc.bpp == 16)
            regno <<= 3;
      aty128_st_pal(regno, red, green, blue, par);

      return 0;
}

#define ATY_MIRROR_LCD_ON     0x00000001
#define ATY_MIRROR_CRT_ON     0x00000002

/* out param: u32*      backlight value: 0 to 15 */
#define FBIO_ATY128_GET_MIRROR      _IOR('@', 1, __u32)
/* in param: u32* backlight value: 0 to 15 */
#define FBIO_ATY128_SET_MIRROR      _IOW('@', 2, __u32)

static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
{
      struct aty128fb_par *par = info->par;
      u32 value;
      int rc;
    
      switch (cmd) {
      case FBIO_ATY128_SET_MIRROR:
            if (par->chip_gen != rage_M3)
                  return -EINVAL;
            rc = get_user(value, (__u32 __user *)arg);
            if (rc)
                  return rc;
            par->lcd_on = (value & 0x01) != 0;
            par->crt_on = (value & 0x02) != 0;
            if (!par->crt_on && !par->lcd_on)
                  par->lcd_on = 1;
            aty128_set_crt_enable(par, par->crt_on);  
            aty128_set_lcd_enable(par, par->lcd_on);  
            return 0;
      case FBIO_ATY128_GET_MIRROR:
            if (par->chip_gen != rage_M3)
                  return -EINVAL;
            value = (par->crt_on << 1) | par->lcd_on;
            return put_user(value, (__u32 __user *)arg);
      }
      return -EINVAL;
}

#if 0
    /*
     *  Accelerated functions
     */

static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
                           u_int width, u_int height,
                           struct fb_info_aty128 *par)
{
    u32 save_dp_datatype, save_dp_cntl, dstval;

    if (!width || !height)
        return;

    dstval = depth_to_dst(par->current_par.crtc.depth);
    if (dstval == DST_24BPP) {
        srcx *= 3;
        dstx *= 3;
        width *= 3;
    } else if (dstval == -EINVAL) {
        printk("aty128fb: invalid depth or RGBA\n");
        return;
    }

    wait_for_fifo(2, par);
    save_dp_datatype = aty_ld_le32(DP_DATATYPE);
    save_dp_cntl     = aty_ld_le32(DP_CNTL);

    wait_for_fifo(6, par);
    aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
    aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
    aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
    aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);

    aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
    aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);

    par->blitter_may_be_busy = 1;

    wait_for_fifo(2, par);
    aty_st_le32(DP_DATATYPE, save_dp_datatype);
    aty_st_le32(DP_CNTL, save_dp_cntl); 
}


    /*
     * Text mode accelerated functions
     */

static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy, int dx,
                  int height, int width)
{
    sx     *= fontwidth(p);
    sy     *= fontheight(p);
    dx     *= fontwidth(p);
    dy     *= fontheight(p);
    width  *= fontwidth(p);
    height *= fontheight(p);

    aty128_rectcopy(sx, sy, dx, dy, width, height,
                  (struct fb_info_aty128 *)p->fb_info);
}
#endif /* 0 */

static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
{
      u32   pmgt;
      u16   pwr_command;
      struct pci_dev *pdev = par->pdev;

      if (!par->pm_reg)
            return;
            
      /* Set the chip into the appropriate suspend mode (we use D2,
       * D3 would require a complete re-initialisation of the chip,
       * including PCI config registers, clocks, AGP configuration, ...)
       */
      if (suspend) {
            /* Make sure CRTC2 is reset. Remove that the day we decide to
             * actually use CRTC2 and replace it with real code for disabling
             * the CRTC2 output during sleep
             */
            aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
                  ~(CRTC2_EN));

            /* Set the power management mode to be PCI based */
            /* Use this magic value for now */
            pmgt = 0x0c005407;
            aty_st_pll(POWER_MANAGEMENT, pmgt);
            (void)aty_ld_pll(POWER_MANAGEMENT);
            aty_st_le32(BUS_CNTL1, 0x00000010);
            aty_st_le32(MEM_POWER_MISC, 0x0c830000);
            mdelay(100);
            pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
            /* Switch PCI power management to D2 */
            pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL,
                  (pwr_command & ~PCI_PM_CTRL_STATE_MASK) | 2);
            pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
      } else {
            /* Switch back PCI power management to D0 */
            mdelay(100);
            pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL, 0);
            pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
            mdelay(100);
      }
}

static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
      struct fb_info *info = pci_get_drvdata(pdev);
      struct aty128fb_par *par = info->par;

      /* We don't do anything but D2, for now we return 0, but
       * we may want to change that. How do we know if the BIOS
       * can properly take care of D3 ? Also, with swsusp, we
       * know we'll be rebooted, ...
       */
#ifndef CONFIG_PPC_PMAC
      /* HACK ALERT ! Once I find a proper way to say to each driver
       * individually what will happen with it's PCI slot, I'll change
       * that. On laptops, the AGP slot is just unclocked, so D2 is
       * expected, while on desktops, the card is powered off
       */
      return 0;
#endif /* CONFIG_PPC_PMAC */
       
      if (state.event == pdev->dev.power.power_state.event)
            return 0;

      printk(KERN_DEBUG "aty128fb: suspending...\n");
      
      acquire_console_sem();

      fb_set_suspend(info, 1);

      /* Make sure engine is reset */
      wait_for_idle(par);
      aty128_reset_engine(par);
      wait_for_idle(par);

      /* Blank display and LCD */
      aty128fb_blank(FB_BLANK_POWERDOWN, info);

      /* Sleep */
      par->asleep = 1;
      par->lock_blank = 1;

#ifdef CONFIG_PPC_PMAC
      /* On powermac, we have hooks to properly suspend/resume AGP now,
       * use them here. We'll ultimately need some generic support here,
       * but the generic code isn't quite ready for that yet
       */
      pmac_suspend_agp_for_card(pdev);
#endif /* CONFIG_PPC_PMAC */

      /* We need a way to make sure the fbdev layer will _not_ touch the
       * framebuffer before we put the chip to suspend state. On 2.4, I
       * used dummy fb ops, 2.5 need proper support for this at the
       * fbdev level
       */
      if (state.event != PM_EVENT_ON)
            aty128_set_suspend(par, 1);

      release_console_sem();

      pdev->dev.power.power_state = state;

      return 0;
}

static int aty128_do_resume(struct pci_dev *pdev)
{
      struct fb_info *info = pci_get_drvdata(pdev);
      struct aty128fb_par *par = info->par;

      if (pdev->dev.power.power_state.event == PM_EVENT_ON)
            return 0;

      /* Wakeup chip */
      aty128_set_suspend(par, 0);
      par->asleep = 0;

      /* Restore display & engine */
      aty128_reset_engine(par);
      wait_for_idle(par);
      aty128fb_set_par(info);
      fb_pan_display(info, &info->var);
      fb_set_cmap(&info->cmap, info);

      /* Refresh */
      fb_set_suspend(info, 0);

      /* Unblank */
      par->lock_blank = 0;
      aty128fb_blank(0, info);

#ifdef CONFIG_PPC_PMAC
      /* On powermac, we have hooks to properly suspend/resume AGP now,
       * use them here. We'll ultimately need some generic support here,
       * but the generic code isn't quite ready for that yet
       */
      pmac_resume_agp_for_card(pdev);
#endif /* CONFIG_PPC_PMAC */

      pdev->dev.power.power_state = PMSG_ON;

      printk(KERN_DEBUG "aty128fb: resumed !\n");

      return 0;
}

static int aty128_pci_resume(struct pci_dev *pdev)
{
      int rc;

      acquire_console_sem();
      rc = aty128_do_resume(pdev);
      release_console_sem();

      return rc;
}


static int __devinit aty128fb_init(void)
{
#ifndef MODULE
      char *option = NULL;

      if (fb_get_options("aty128fb", &option))
            return -ENODEV;
      aty128fb_setup(option);
#endif

      return pci_register_driver(&aty128fb_driver);
}

static void __exit aty128fb_exit(void)
{
      pci_unregister_driver(&aty128fb_driver);
}

module_init(aty128fb_init);

module_exit(aty128fb_exit);

MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
MODULE_LICENSE("GPL");
module_param(mode_option, charp, 0);
MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
#ifdef CONFIG_MTRR
module_param_named(nomtrr, mtrr, invbool, 0);
MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
#endif


Generated by  Doxygen 1.6.0   Back to index