Logo Search packages:      
Sourcecode: linux version File versions  Download package

au1000_eth.c

/*
 *
 * Alchemy Au1x00 ethernet driver
 *
 * Copyright 2001-2003, 2006 MontaVista Software Inc.
 * Copyright 2002 TimeSys Corp.
 * Added ethtool/mii-tool support,
 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
 * or riemer@riemer-nt.de: fixed the link beat detection with
 * ioctls (SIOCGMIIPHY)
 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
 *  converted to use linux-2.6.x's PHY framework
 *
 * Author: MontaVista Software, Inc.
 *          ppopov@mvista.com or source@mvista.com
 *
 * ########################################################################
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License (Version 2) as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 *
 * ########################################################################
 *
 *
 */
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/ioport.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/phy.h>

#include <asm/cpu.h>
#include <asm/mipsregs.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/processor.h>

#include <au1000.h>
#include <prom.h>

#include "au1000_eth.h"

#ifdef AU1000_ETH_DEBUG
static int au1000_debug = 5;
#else
static int au1000_debug = 3;
#endif

#define DRV_NAME  "au1000_eth"
#define DRV_VERSION     "1.6"
#define DRV_AUTHOR      "Pete Popov <ppopov@embeddedalley.com>"
#define DRV_DESC  "Au1xxx on-chip Ethernet driver"

MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_LICENSE("GPL");

// prototypes
static void hard_stop(struct net_device *);
static void enable_rx_tx(struct net_device *dev);
static struct net_device * au1000_probe(int port_num);
static int au1000_init(struct net_device *);
static int au1000_open(struct net_device *);
static int au1000_close(struct net_device *);
static int au1000_tx(struct sk_buff *, struct net_device *);
static int au1000_rx(struct net_device *);
static irqreturn_t au1000_interrupt(int, void *);
static void au1000_tx_timeout(struct net_device *);
static void set_rx_mode(struct net_device *);
static int au1000_ioctl(struct net_device *, struct ifreq *, int);
static int mdio_read(struct net_device *, int, int);
static void mdio_write(struct net_device *, int, int, u16);
static void au1000_adjust_link(struct net_device *);
static void enable_mac(struct net_device *, int);

/*
 * Theory of operation
 *
 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
 * There are four receive and four transmit descriptors.  These
 * descriptors are not in memory; rather, they are just a set of
 * hardware registers.
 *
 * Since the Au1000 has a coherent data cache, the receive and
 * transmit buffers are allocated from the KSEG0 segment. The
 * hardware registers, however, are still mapped at KSEG1 to
 * make sure there's no out-of-order writes, and that all writes
 * complete immediately.
 */

/* These addresses are only used if yamon doesn't tell us what
 * the mac address is, and the mac address is not passed on the
 * command line.
 */
static unsigned char au1000_mac_addr[6] __devinitdata = {
      0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
};

struct au1000_private *au_macs[NUM_ETH_INTERFACES];

/*
 * board-specific configurations
 *
 * PHY detection algorithm
 *
 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
 * autodetected:
 *
 * mii_probe() first searches the current MAC's MII bus for a PHY,
 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
 * defined) PHY address not already claimed by another netdev.
 *
 * If nothing was found that way when searching for the 2nd ethernet
 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
 * the first MII bus is searched as well for an unclaimed PHY; this is
 * needed in case of a dual-PHY accessible only through the MAC0's MII
 * bus.
 *
 * Finally, if no PHY is found, then the corresponding ethernet
 * controller is not registered to the network subsystem.
 */

/* autodetection defaults */
#undef  AU1XXX_PHY_SEARCH_HIGHEST_ADDR
#define AU1XXX_PHY1_SEARCH_ON_MAC0

/* static PHY setup
 *
 * most boards PHY setup should be detectable properly with the
 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 * you have a switch attached, or want to use the PHY's interrupt
 * notification capabilities) you can provide a static PHY
 * configuration here
 *
 * IRQs may only be set, if a PHY address was configured
 * If a PHY address is given, also a bus id is required to be set
 *
 * ps: make sure the used irqs are configured properly in the board
 * specific irq-map
 */

#if defined(CONFIG_MIPS_BOSPORUS)
/*
 * Micrel/Kendin 5 port switch attached to MAC0,
 * MAC0 is associated with PHY address 5 (== WAN port)
 * MAC1 is not associated with any PHY, since it's connected directly
 * to the switch.
 * no interrupts are used
 */
# define AU1XXX_PHY_STATIC_CONFIG

# define AU1XXX_PHY0_ADDR  5
# define AU1XXX_PHY0_BUSID 0
#  undef AU1XXX_PHY0_IRQ

#  undef AU1XXX_PHY1_ADDR
#  undef AU1XXX_PHY1_BUSID
#  undef AU1XXX_PHY1_IRQ
#endif

#if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
# error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
#endif

/*
 * MII operations
 */
static int mdio_read(struct net_device *dev, int phy_addr, int reg)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;
      volatile u32 *const mii_control_reg = &aup->mac->mii_control;
      volatile u32 *const mii_data_reg = &aup->mac->mii_data;
      u32 timedout = 20;
      u32 mii_control;

      while (*mii_control_reg & MAC_MII_BUSY) {
            mdelay(1);
            if (--timedout == 0) {
                  printk(KERN_ERR "%s: read_MII busy timeout!!\n",
                              dev->name);
                  return -1;
            }
      }

      mii_control = MAC_SET_MII_SELECT_REG(reg) |
            MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;

      *mii_control_reg = mii_control;

      timedout = 20;
      while (*mii_control_reg & MAC_MII_BUSY) {
            mdelay(1);
            if (--timedout == 0) {
                  printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
                              dev->name);
                  return -1;
            }
      }
      return (int)*mii_data_reg;
}

static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;
      volatile u32 *const mii_control_reg = &aup->mac->mii_control;
      volatile u32 *const mii_data_reg = &aup->mac->mii_data;
      u32 timedout = 20;
      u32 mii_control;

      while (*mii_control_reg & MAC_MII_BUSY) {
            mdelay(1);
            if (--timedout == 0) {
                  printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
                              dev->name);
                  return;
            }
      }

      mii_control = MAC_SET_MII_SELECT_REG(reg) |
            MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;

      *mii_data_reg = value;
      *mii_control_reg = mii_control;
}

static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
      /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
       * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
      struct net_device *const dev = bus->priv;

      enable_mac(dev, 0); /* make sure the MAC associated with this
                       * mii_bus is enabled */
      return mdio_read(dev, phy_addr, regnum);
}

static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
                   u16 value)
{
      struct net_device *const dev = bus->priv;

      enable_mac(dev, 0); /* make sure the MAC associated with this
                       * mii_bus is enabled */
      mdio_write(dev, phy_addr, regnum, value);
      return 0;
}

static int mdiobus_reset(struct mii_bus *bus)
{
      struct net_device *const dev = bus->priv;

      enable_mac(dev, 0); /* make sure the MAC associated with this
                       * mii_bus is enabled */
      return 0;
}

static int mii_probe (struct net_device *dev)
{
      struct au1000_private *const aup = (struct au1000_private *) dev->priv;
      struct phy_device *phydev = NULL;

#if defined(AU1XXX_PHY_STATIC_CONFIG)
      BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);

      if(aup->mac_id == 0) { /* get PHY0 */
# if defined(AU1XXX_PHY0_ADDR)
            phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR];
# else
            printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
                  dev->name);
            return 0;
# endif /* defined(AU1XXX_PHY0_ADDR) */
      } else if (aup->mac_id == 1) { /* get PHY1 */
# if defined(AU1XXX_PHY1_ADDR)
            phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR];
# else
            printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
                  dev->name);
            return 0;
# endif /* defined(AU1XXX_PHY1_ADDR) */
      }

#else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
      int phy_addr;

      /* find the first (lowest address) PHY on the current MAC's MII bus */
      for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
            if (aup->mii_bus.phy_map[phy_addr]) {
                  phydev = aup->mii_bus.phy_map[phy_addr];
# if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
                  break; /* break out with first one found */
# endif
            }

# if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
      /* try harder to find a PHY */
      if (!phydev && (aup->mac_id == 1)) {
            /* no PHY found, maybe we have a dual PHY? */
            printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
                  "let's see if it's attached to MAC0...\n");

            BUG_ON(!au_macs[0]);

            /* find the first (lowest address) non-attached PHY on
             * the MAC0 MII bus */
            for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
                  struct phy_device *const tmp_phydev =
                        au_macs[0]->mii_bus.phy_map[phy_addr];

                  if (!tmp_phydev)
                        continue; /* no PHY here... */

                  if (tmp_phydev->attached_dev)
                        continue; /* already claimed by MAC0 */

                  phydev = tmp_phydev;
                  break; /* found it */
            }
      }
# endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */

#endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
      if (!phydev) {
            printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
            return -1;
      }

      /* now we are supposed to have a proper phydev, to attach to... */
      BUG_ON(!phydev);
      BUG_ON(phydev->attached_dev);

      phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0,
                  PHY_INTERFACE_MODE_MII);

      if (IS_ERR(phydev)) {
            printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
            return PTR_ERR(phydev);
      }

      /* mask with MAC supported features */
      phydev->supported &= (SUPPORTED_10baseT_Half
                        | SUPPORTED_10baseT_Full
                        | SUPPORTED_100baseT_Half
                        | SUPPORTED_100baseT_Full
                        | SUPPORTED_Autoneg
                        /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
                        | SUPPORTED_MII
                        | SUPPORTED_TP);

      phydev->advertising = phydev->supported;

      aup->old_link = 0;
      aup->old_speed = 0;
      aup->old_duplex = -1;
      aup->phy_dev = phydev;

      printk(KERN_INFO "%s: attached PHY driver [%s] "
             "(mii_bus:phy_addr=%s, irq=%d)\n",
             dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);

      return 0;
}


/*
 * Buffer allocation/deallocation routines. The buffer descriptor returned
 * has the virtual and dma address of a buffer suitable for
 * both, receive and transmit operations.
 */
static db_dest_t *GetFreeDB(struct au1000_private *aup)
{
      db_dest_t *pDB;
      pDB = aup->pDBfree;

      if (pDB) {
            aup->pDBfree = pDB->pnext;
      }
      return pDB;
}

void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
{
      db_dest_t *pDBfree = aup->pDBfree;
      if (pDBfree)
            pDBfree->pnext = pDB;
      aup->pDBfree = pDB;
}

static void enable_rx_tx(struct net_device *dev)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;

      if (au1000_debug > 4)
            printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);

      aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
      au_sync_delay(10);
}

static void hard_stop(struct net_device *dev)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;

      if (au1000_debug > 4)
            printk(KERN_INFO "%s: hard stop\n", dev->name);

      aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
      au_sync_delay(10);
}

static void enable_mac(struct net_device *dev, int force_reset)
{
      unsigned long flags;
      struct au1000_private *aup = (struct au1000_private *) dev->priv;

      spin_lock_irqsave(&aup->lock, flags);

      if(force_reset || (!aup->mac_enabled)) {
            *aup->enable = MAC_EN_CLOCK_ENABLE;
            au_sync_delay(2);
            *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
                        | MAC_EN_CLOCK_ENABLE);
            au_sync_delay(2);

            aup->mac_enabled = 1;
      }

      spin_unlock_irqrestore(&aup->lock, flags);
}

static void reset_mac_unlocked(struct net_device *dev)
{
      struct au1000_private *const aup = (struct au1000_private *) dev->priv;
      int i;

      hard_stop(dev);

      *aup->enable = MAC_EN_CLOCK_ENABLE;
      au_sync_delay(2);
      *aup->enable = 0;
      au_sync_delay(2);

      aup->tx_full = 0;
      for (i = 0; i < NUM_RX_DMA; i++) {
            /* reset control bits */
            aup->rx_dma_ring[i]->buff_stat &= ~0xf;
      }
      for (i = 0; i < NUM_TX_DMA; i++) {
            /* reset control bits */
            aup->tx_dma_ring[i]->buff_stat &= ~0xf;
      }

      aup->mac_enabled = 0;

}

static void reset_mac(struct net_device *dev)
{
      struct au1000_private *const aup = (struct au1000_private *) dev->priv;
      unsigned long flags;

      if (au1000_debug > 4)
            printk(KERN_INFO "%s: reset mac, aup %x\n",
                   dev->name, (unsigned)aup);

      spin_lock_irqsave(&aup->lock, flags);

      reset_mac_unlocked (dev);

      spin_unlock_irqrestore(&aup->lock, flags);
}

/*
 * Setup the receive and transmit "rings".  These pointers are the addresses
 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 * these are not descriptors sitting in memory.
 */
static void
setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
{
      int i;

      for (i = 0; i < NUM_RX_DMA; i++) {
            aup->rx_dma_ring[i] =
                  (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
      }
      for (i = 0; i < NUM_TX_DMA; i++) {
            aup->tx_dma_ring[i] =
                  (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
      }
}

static struct {
      u32 base_addr;
      u32 macen_addr;
      int irq;
      struct net_device *dev;
} iflist[2] = {
#ifdef CONFIG_SOC_AU1000
      {AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
      {AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
#endif
#ifdef CONFIG_SOC_AU1100
      {AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
#endif
#ifdef CONFIG_SOC_AU1500
      {AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
      {AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
#endif
#ifdef CONFIG_SOC_AU1550
      {AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
      {AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
#endif
};

static int num_ifs;

/*
 * Setup the base address and interrupt of the Au1xxx ethernet macs
 * based on cpu type and whether the interface is enabled in sys_pinfunc
 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
 */
static int __init au1000_init_module(void)
{
      int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
      struct net_device *dev;
      int i, found_one = 0;

      num_ifs = NUM_ETH_INTERFACES - ni;

      for(i = 0; i < num_ifs; i++) {
            dev = au1000_probe(i);
            iflist[i].dev = dev;
            if (dev)
                  found_one++;
      }
      if (!found_one)
            return -ENODEV;
      return 0;
}

/*
 * ethtool operations
 */

static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
      struct au1000_private *aup = (struct au1000_private *)dev->priv;

      if (aup->phy_dev)
            return phy_ethtool_gset(aup->phy_dev, cmd);

      return -EINVAL;
}

static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
      struct au1000_private *aup = (struct au1000_private *)dev->priv;

      if (!capable(CAP_NET_ADMIN))
            return -EPERM;

      if (aup->phy_dev)
            return phy_ethtool_sset(aup->phy_dev, cmd);

      return -EINVAL;
}

static void
au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
      struct au1000_private *aup = (struct au1000_private *)dev->priv;

      strcpy(info->driver, DRV_NAME);
      strcpy(info->version, DRV_VERSION);
      info->fw_version[0] = '\0';
      sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
      info->regdump_len = 0;
}

static const struct ethtool_ops au1000_ethtool_ops = {
      .get_settings = au1000_get_settings,
      .set_settings = au1000_set_settings,
      .get_drvinfo = au1000_get_drvinfo,
      .get_link = ethtool_op_get_link,
};

static struct net_device * au1000_probe(int port_num)
{
      static unsigned version_printed = 0;
      struct au1000_private *aup = NULL;
      struct net_device *dev = NULL;
      db_dest_t *pDB, *pDBfree;
      char ethaddr[6];
      int irq, i, err;
      u32 base, macen;

      if (port_num >= NUM_ETH_INTERFACES)
            return NULL;

      base  = CPHYSADDR(iflist[port_num].base_addr );
      macen = CPHYSADDR(iflist[port_num].macen_addr);
      irq = iflist[port_num].irq;

      if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
          !request_mem_region(macen, 4, "Au1x00 ENET"))
            return NULL;

      if (version_printed++ == 0)
            printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);

      dev = alloc_etherdev(sizeof(struct au1000_private));
      if (!dev) {
            printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
            return NULL;
      }

      if ((err = register_netdev(dev)) != 0) {
            printk(KERN_ERR "%s: Cannot register net device, error %d\n",
                        DRV_NAME, err);
            free_netdev(dev);
            return NULL;
      }

      printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
            dev->name, base, irq);

      aup = dev->priv;

      /* Allocate the data buffers */
      /* Snooping works fine with eth on all au1xxx */
      aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
                                    (NUM_TX_BUFFS + NUM_RX_BUFFS),
                                    &aup->dma_addr,   0);
      if (!aup->vaddr) {
            free_netdev(dev);
            release_mem_region( base, MAC_IOSIZE);
            release_mem_region(macen, 4);
            return NULL;
      }

      /* aup->mac is the base address of the MAC's registers */
      aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;

      /* Setup some variables for quick register address access */
      aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
      aup->mac_id = port_num;
      au_macs[port_num] = aup;

      if (port_num == 0) {
            if (prom_get_ethernet_addr(ethaddr) == 0)
                  memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
            else {
                  printk(KERN_INFO "%s: No MAC address found\n",
                               dev->name);
                        /* Use the hard coded MAC addresses */
            }

            setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
      } else if (port_num == 1)
            setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);

      /*
       * Assign to the Ethernet ports two consecutive MAC addresses
       * to match those that are printed on their stickers
       */
      memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
      dev->dev_addr[5] += port_num;

      *aup->enable = 0;
      aup->mac_enabled = 0;

      aup->mii_bus.priv = dev;
      aup->mii_bus.read = mdiobus_read;
      aup->mii_bus.write = mdiobus_write;
      aup->mii_bus.reset = mdiobus_reset;
      aup->mii_bus.name = "au1000_eth_mii";
      aup->mii_bus.id = aup->mac_id;
      aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
      for(i = 0; i < PHY_MAX_ADDR; ++i)
            aup->mii_bus.irq[i] = PHY_POLL;

      /* if known, set corresponding PHY IRQs */
#if defined(AU1XXX_PHY_STATIC_CONFIG)
# if defined(AU1XXX_PHY0_IRQ)
      if (AU1XXX_PHY0_BUSID == aup->mii_bus.id)
            aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
# endif
# if defined(AU1XXX_PHY1_IRQ)
      if (AU1XXX_PHY1_BUSID == aup->mii_bus.id)
            aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
# endif
#endif
      mdiobus_register(&aup->mii_bus);

      if (mii_probe(dev) != 0) {
            goto err_out;
      }

      pDBfree = NULL;
      /* setup the data buffer descriptors and attach a buffer to each one */
      pDB = aup->db;
      for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
            pDB->pnext = pDBfree;
            pDBfree = pDB;
            pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
            pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
            pDB++;
      }
      aup->pDBfree = pDBfree;

      for (i = 0; i < NUM_RX_DMA; i++) {
            pDB = GetFreeDB(aup);
            if (!pDB) {
                  goto err_out;
            }
            aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
            aup->rx_db_inuse[i] = pDB;
      }
      for (i = 0; i < NUM_TX_DMA; i++) {
            pDB = GetFreeDB(aup);
            if (!pDB) {
                  goto err_out;
            }
            aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
            aup->tx_dma_ring[i]->len = 0;
            aup->tx_db_inuse[i] = pDB;
      }

      spin_lock_init(&aup->lock);
      dev->base_addr = base;
      dev->irq = irq;
      dev->open = au1000_open;
      dev->hard_start_xmit = au1000_tx;
      dev->stop = au1000_close;
      dev->set_multicast_list = &set_rx_mode;
      dev->do_ioctl = &au1000_ioctl;
      SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
      dev->tx_timeout = au1000_tx_timeout;
      dev->watchdog_timeo = ETH_TX_TIMEOUT;

      /*
       * The boot code uses the ethernet controller, so reset it to start
       * fresh.  au1000_init() expects that the device is in reset state.
       */
      reset_mac(dev);

      return dev;

err_out:
      /* here we should have a valid dev plus aup-> register addresses
       * so we can reset the mac properly.*/
      reset_mac(dev);

      for (i = 0; i < NUM_RX_DMA; i++) {
            if (aup->rx_db_inuse[i])
                  ReleaseDB(aup, aup->rx_db_inuse[i]);
      }
      for (i = 0; i < NUM_TX_DMA; i++) {
            if (aup->tx_db_inuse[i])
                  ReleaseDB(aup, aup->tx_db_inuse[i]);
      }
      dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
                       (void *)aup->vaddr, aup->dma_addr);
      unregister_netdev(dev);
      free_netdev(dev);
      release_mem_region( base, MAC_IOSIZE);
      release_mem_region(macen, 4);
      return NULL;
}

/*
 * Initialize the interface.
 *
 * When the device powers up, the clocks are disabled and the
 * mac is in reset state.  When the interface is closed, we
 * do the same -- reset the device and disable the clocks to
 * conserve power. Thus, whenever au1000_init() is called,
 * the device should already be in reset state.
 */
static int au1000_init(struct net_device *dev)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;
      u32 flags;
      int i;
      u32 control;

      if (au1000_debug > 4)
            printk("%s: au1000_init\n", dev->name);

      /* bring the device out of reset */
      enable_mac(dev, 1);

      spin_lock_irqsave(&aup->lock, flags);

      aup->mac->control = 0;
      aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
      aup->tx_tail = aup->tx_head;
      aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;

      aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
      aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
            dev->dev_addr[1]<<8 | dev->dev_addr[0];

      for (i = 0; i < NUM_RX_DMA; i++) {
            aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
      }
      au_sync();

      control = MAC_RX_ENABLE | MAC_TX_ENABLE;
#ifndef CONFIG_CPU_LITTLE_ENDIAN
      control |= MAC_BIG_ENDIAN;
#endif
      if (aup->phy_dev) {
            if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
                  control |= MAC_FULL_DUPLEX;
            else
                  control |= MAC_DISABLE_RX_OWN;
      } else { /* PHY-less op, assume full-duplex */
            control |= MAC_FULL_DUPLEX;
      }

      aup->mac->control = control;
      aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
      au_sync();

      spin_unlock_irqrestore(&aup->lock, flags);
      return 0;
}

static void
au1000_adjust_link(struct net_device *dev)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;
      struct phy_device *phydev = aup->phy_dev;
      unsigned long flags;

      int status_change = 0;

      BUG_ON(!aup->phy_dev);

      spin_lock_irqsave(&aup->lock, flags);

      if (phydev->link && (aup->old_speed != phydev->speed)) {
            // speed changed

            switch(phydev->speed) {
            case SPEED_10:
            case SPEED_100:
                  break;
            default:
                  printk(KERN_WARNING
                         "%s: Speed (%d) is not 10/100 ???\n",
                         dev->name, phydev->speed);
                  break;
            }

            aup->old_speed = phydev->speed;

            status_change = 1;
      }

      if (phydev->link && (aup->old_duplex != phydev->duplex)) {
            // duplex mode changed

            /* switching duplex mode requires to disable rx and tx! */
            hard_stop(dev);

            if (DUPLEX_FULL == phydev->duplex)
                  aup->mac->control = ((aup->mac->control
                                   | MAC_FULL_DUPLEX)
                                   & ~MAC_DISABLE_RX_OWN);
            else
                  aup->mac->control = ((aup->mac->control
                                    & ~MAC_FULL_DUPLEX)
                                   | MAC_DISABLE_RX_OWN);
            au_sync_delay(1);

            enable_rx_tx(dev);
            aup->old_duplex = phydev->duplex;

            status_change = 1;
      }

      if(phydev->link != aup->old_link) {
            // link state changed

            if (phydev->link) // link went up
                  netif_schedule(dev);
            else { // link went down
                  aup->old_speed = 0;
                  aup->old_duplex = -1;
            }

            aup->old_link = phydev->link;
            status_change = 1;
      }

      spin_unlock_irqrestore(&aup->lock, flags);

      if (status_change) {
            if (phydev->link)
                  printk(KERN_INFO "%s: link up (%d/%s)\n",
                         dev->name, phydev->speed,
                         DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
            else
                  printk(KERN_INFO "%s: link down\n", dev->name);
      }
}

static int au1000_open(struct net_device *dev)
{
      int retval;
      struct au1000_private *aup = (struct au1000_private *) dev->priv;

      if (au1000_debug > 4)
            printk("%s: open: dev=%p\n", dev->name, dev);

      if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
                              dev->name, dev))) {
            printk(KERN_ERR "%s: unable to get IRQ %d\n",
                        dev->name, dev->irq);
            return retval;
      }

      if ((retval = au1000_init(dev))) {
            printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
            free_irq(dev->irq, dev);
            return retval;
      }

      if (aup->phy_dev) {
            /* cause the PHY state machine to schedule a link state check */
            aup->phy_dev->state = PHY_CHANGELINK;
            phy_start(aup->phy_dev);
      }

      netif_start_queue(dev);

      if (au1000_debug > 4)
            printk("%s: open: Initialization done.\n", dev->name);

      return 0;
}

static int au1000_close(struct net_device *dev)
{
      unsigned long flags;
      struct au1000_private *const aup = (struct au1000_private *) dev->priv;

      if (au1000_debug > 4)
            printk("%s: close: dev=%p\n", dev->name, dev);

      if (aup->phy_dev)
            phy_stop(aup->phy_dev);

      spin_lock_irqsave(&aup->lock, flags);

      reset_mac_unlocked (dev);

      /* stop the device */
      netif_stop_queue(dev);

      /* disable the interrupt */
      free_irq(dev->irq, dev);
      spin_unlock_irqrestore(&aup->lock, flags);

      return 0;
}

static void __exit au1000_cleanup_module(void)
{
      int i, j;
      struct net_device *dev;
      struct au1000_private *aup;

      for (i = 0; i < num_ifs; i++) {
            dev = iflist[i].dev;
            if (dev) {
                  aup = (struct au1000_private *) dev->priv;
                  unregister_netdev(dev);
                  for (j = 0; j < NUM_RX_DMA; j++)
                        if (aup->rx_db_inuse[j])
                              ReleaseDB(aup, aup->rx_db_inuse[j]);
                  for (j = 0; j < NUM_TX_DMA; j++)
                        if (aup->tx_db_inuse[j])
                              ReleaseDB(aup, aup->tx_db_inuse[j]);
                  dma_free_noncoherent(NULL, MAX_BUF_SIZE *
                                   (NUM_TX_BUFFS + NUM_RX_BUFFS),
                                   (void *)aup->vaddr, aup->dma_addr);
                  release_mem_region(dev->base_addr, MAC_IOSIZE);
                  release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4);
                  free_netdev(dev);
            }
      }
}

static void update_tx_stats(struct net_device *dev, u32 status)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;
      struct net_device_stats *ps = &dev->stats;

      if (status & TX_FRAME_ABORTED) {
            if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
                  if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
                        /* any other tx errors are only valid
                         * in half duplex mode */
                        ps->tx_errors++;
                        ps->tx_aborted_errors++;
                  }
            }
            else {
                  ps->tx_errors++;
                  ps->tx_aborted_errors++;
                  if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
                        ps->tx_carrier_errors++;
            }
      }
}


/*
 * Called from the interrupt service routine to acknowledge
 * the TX DONE bits.  This is a must if the irq is setup as
 * edge triggered.
 */
static void au1000_tx_ack(struct net_device *dev)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;
      volatile tx_dma_t *ptxd;

      ptxd = aup->tx_dma_ring[aup->tx_tail];

      while (ptxd->buff_stat & TX_T_DONE) {
            update_tx_stats(dev, ptxd->status);
            ptxd->buff_stat &= ~TX_T_DONE;
            ptxd->len = 0;
            au_sync();

            aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
            ptxd = aup->tx_dma_ring[aup->tx_tail];

            if (aup->tx_full) {
                  aup->tx_full = 0;
                  netif_wake_queue(dev);
            }
      }
}


/*
 * Au1000 transmit routine.
 */
static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;
      struct net_device_stats *ps = &dev->stats;
      volatile tx_dma_t *ptxd;
      u32 buff_stat;
      db_dest_t *pDB;
      int i;

      if (au1000_debug > 5)
            printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
                        dev->name, (unsigned)aup, skb->len,
                        skb->data, aup->tx_head);

      ptxd = aup->tx_dma_ring[aup->tx_head];
      buff_stat = ptxd->buff_stat;
      if (buff_stat & TX_DMA_ENABLE) {
            /* We've wrapped around and the transmitter is still busy */
            netif_stop_queue(dev);
            aup->tx_full = 1;
            return 1;
      }
      else if (buff_stat & TX_T_DONE) {
            update_tx_stats(dev, ptxd->status);
            ptxd->len = 0;
      }

      if (aup->tx_full) {
            aup->tx_full = 0;
            netif_wake_queue(dev);
      }

      pDB = aup->tx_db_inuse[aup->tx_head];
      skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
      if (skb->len < ETH_ZLEN) {
            for (i=skb->len; i<ETH_ZLEN; i++) {
                  ((char *)pDB->vaddr)[i] = 0;
            }
            ptxd->len = ETH_ZLEN;
      }
      else
            ptxd->len = skb->len;

      ps->tx_packets++;
      ps->tx_bytes += ptxd->len;

      ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
      au_sync();
      dev_kfree_skb(skb);
      aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
      dev->trans_start = jiffies;
      return 0;
}

static inline void update_rx_stats(struct net_device *dev, u32 status)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;
      struct net_device_stats *ps = &dev->stats;

      ps->rx_packets++;
      if (status & RX_MCAST_FRAME)
            ps->multicast++;

      if (status & RX_ERROR) {
            ps->rx_errors++;
            if (status & RX_MISSED_FRAME)
                  ps->rx_missed_errors++;
            if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
                  ps->rx_length_errors++;
            if (status & RX_CRC_ERROR)
                  ps->rx_crc_errors++;
            if (status & RX_COLL)
                  ps->collisions++;
      }
      else
            ps->rx_bytes += status & RX_FRAME_LEN_MASK;

}

/*
 * Au1000 receive routine.
 */
static int au1000_rx(struct net_device *dev)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;
      struct sk_buff *skb;
      volatile rx_dma_t *prxd;
      u32 buff_stat, status;
      db_dest_t *pDB;
      u32   frmlen;

      if (au1000_debug > 5)
            printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);

      prxd = aup->rx_dma_ring[aup->rx_head];
      buff_stat = prxd->buff_stat;
      while (buff_stat & RX_T_DONE)  {
            status = prxd->status;
            pDB = aup->rx_db_inuse[aup->rx_head];
            update_rx_stats(dev, status);
            if (!(status & RX_ERROR))  {

                  /* good frame */
                  frmlen = (status & RX_FRAME_LEN_MASK);
                  frmlen -= 4; /* Remove FCS */
                  skb = dev_alloc_skb(frmlen + 2);
                  if (skb == NULL) {
                        printk(KERN_ERR
                               "%s: Memory squeeze, dropping packet.\n",
                               dev->name);
                        dev->stats.rx_dropped++;
                        continue;
                  }
                  skb_reserve(skb, 2);    /* 16 byte IP header align */
                  skb_copy_to_linear_data(skb,
                        (unsigned char *)pDB->vaddr, frmlen);
                  skb_put(skb, frmlen);
                  skb->protocol = eth_type_trans(skb, dev);
                  netif_rx(skb);    /* pass the packet to upper layers */
            }
            else {
                  if (au1000_debug > 4) {
                        if (status & RX_MISSED_FRAME)
                              printk("rx miss\n");
                        if (status & RX_WDOG_TIMER)
                              printk("rx wdog\n");
                        if (status & RX_RUNT)
                              printk("rx runt\n");
                        if (status & RX_OVERLEN)
                              printk("rx overlen\n");
                        if (status & RX_COLL)
                              printk("rx coll\n");
                        if (status & RX_MII_ERROR)
                              printk("rx mii error\n");
                        if (status & RX_CRC_ERROR)
                              printk("rx crc error\n");
                        if (status & RX_LEN_ERROR)
                              printk("rx len error\n");
                        if (status & RX_U_CNTRL_FRAME)
                              printk("rx u control frame\n");
                        if (status & RX_MISSED_FRAME)
                              printk("rx miss\n");
                  }
            }
            prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
            aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
            au_sync();

            /* next descriptor */
            prxd = aup->rx_dma_ring[aup->rx_head];
            buff_stat = prxd->buff_stat;
            dev->last_rx = jiffies;
      }
      return 0;
}


/*
 * Au1000 interrupt service routine.
 */
static irqreturn_t au1000_interrupt(int irq, void *dev_id)
{
      struct net_device *dev = (struct net_device *) dev_id;

      if (dev == NULL) {
            printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
            return IRQ_RETVAL(1);
      }

      /* Handle RX interrupts first to minimize chance of overrun */

      au1000_rx(dev);
      au1000_tx_ack(dev);
      return IRQ_RETVAL(1);
}


/*
 * The Tx ring has been full longer than the watchdog timeout
 * value. The transmitter must be hung?
 */
static void au1000_tx_timeout(struct net_device *dev)
{
      printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
      reset_mac(dev);
      au1000_init(dev);
      dev->trans_start = jiffies;
      netif_wake_queue(dev);
}

static void set_rx_mode(struct net_device *dev)
{
      struct au1000_private *aup = (struct au1000_private *) dev->priv;

      if (au1000_debug > 4)
            printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);

      if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous. */
            aup->mac->control |= MAC_PROMISCUOUS;
      } else if ((dev->flags & IFF_ALLMULTI)  ||
                     dev->mc_count > MULTICAST_FILTER_LIMIT) {
            aup->mac->control |= MAC_PASS_ALL_MULTI;
            aup->mac->control &= ~MAC_PROMISCUOUS;
            printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
      } else {
            int i;
            struct dev_mc_list *mclist;
            u32 mc_filter[2]; /* Multicast hash filter */

            mc_filter[1] = mc_filter[0] = 0;
            for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
                   i++, mclist = mclist->next) {
                  set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
                              (long *)mc_filter);
            }
            aup->mac->multi_hash_high = mc_filter[1];
            aup->mac->multi_hash_low = mc_filter[0];
            aup->mac->control &= ~MAC_PROMISCUOUS;
            aup->mac->control |= MAC_HASH_MODE;
      }
}

static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
      struct au1000_private *aup = (struct au1000_private *)dev->priv;

      if (!netif_running(dev)) return -EINVAL;

      if (!aup->phy_dev) return -EINVAL; // PHY not controllable

      return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
}

module_init(au1000_init_module);
module_exit(au1000_cleanup_module);

Generated by  Doxygen 1.6.0   Back to index