Logo Search packages:      
Sourcecode: linux version File versions  Download package

umem.c

/*
 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
 *
 * (C) 2001 San Mehat <nettwerk@valinux.com>
 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
 *
 * This driver for the Micro Memory PCI Memory Module with Battery Backup
 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
 *
 * This driver is released to the public under the terms of the
 *  GNU GENERAL PUBLIC LICENSE version 2
 * See the file COPYING for details.
 *
 * This driver provides a standard block device interface for Micro Memory(tm)
 * PCI based RAM boards.
 * 10/05/01: Phap Nguyen - Rebuilt the driver
 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
 *                       - use stand disk partitioning (so fdisk works).
 * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
 *                 - incorporate into main kernel
 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
 *                 - use spin_lock_bh instead of _irq
 *                 - Never block on make_request.  queue
 *                   bh's instead.
 *                 - unregister umem from devfs at mod unload
 *                 - Change version to 2.3
 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
 * 15May2002:NeilBrown   - convert to bio for 2.5
 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
 *                 - a sequence of writes that cover the card, and
 *                 - set initialised bit then.
 */

#undef DEBUG      /* #define DEBUG if you want debugging info (pr_debug) */
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>

#include <linux/fcntl.h>        /* O_ACCMODE */
#include <linux/hdreg.h>  /* HDIO_GETGEO */

#include "umem.h"

#include <asm/uaccess.h>
#include <asm/io.h>

#define MM_MAXCARDS 4
#define MM_RAHEAD 2      /* two sectors */
#define MM_BLKSIZE 1024  /* 1k blocks */
#define MM_HARDSECT 512  /* 512-byte hardware sectors */
#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */

/*
 * Version Information
 */

#define DRIVER_NAME     "umem"
#define DRIVER_VERSION  "v2.3"
#define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
#define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"

static int debug;
/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
#define HW_TRACE(x)

#define DEBUG_LED_ON_TRANSFER 0x01
#define DEBUG_BATTERY_POLLING 0x02

module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug bitmask");

static int pci_read_cmd = 0x0C;           /* Read Multiple */
module_param(pci_read_cmd, int, 0);
MODULE_PARM_DESC(pci_read_cmd, "PCI read command");

static int pci_write_cmd = 0x0F;    /* Write and Invalidate */
module_param(pci_write_cmd, int, 0);
MODULE_PARM_DESC(pci_write_cmd, "PCI write command");

static int pci_cmds;

static int major_nr;

#include <linux/blkdev.h>
#include <linux/blkpg.h>

struct cardinfo {
      struct pci_dev    *dev;

      unsigned char     __iomem *csr_remap;
      unsigned int      mm_size;  /* size in kbytes */

      unsigned int      init_size; /* initial segment, in sectors,
                            * that we know to
                            * have been written
                            */
      struct bio  *bio, *currentbio, **biotail;
      int         current_idx;
      sector_t    current_sector;

      struct request_queue *queue;

      struct mm_page {
            dma_addr_t        page_dma;
            struct mm_dma_desc      *desc;
            int               cnt, headcnt;
            struct bio        *bio, **biotail;
            int               idx;
      } mm_pages[2];
#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))

      int  Active, Ready;

      struct tasklet_struct   tasklet;
      unsigned int dma_status;

      struct {
            int         good;
            int         warned;
            unsigned long     last_change;
      } battery[2];

      spinlock_t  lock;
      int         check_batteries;

      int         flags;
};

static struct cardinfo cards[MM_MAXCARDS];
static struct block_device_operations mm_fops;
static struct timer_list battery_timer;

static int num_cards;

static struct gendisk *mm_gendisk[MM_MAXCARDS];

static void check_batteries(struct cardinfo *card);

static int get_userbit(struct cardinfo *card, int bit)
{
      unsigned char led;

      led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
      return led & bit;
}

static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
{
      unsigned char led;

      led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
      if (state)
            led |= bit;
      else
            led &= ~bit;
      writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);

      return 0;
}

/*
 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 */
static void set_led(struct cardinfo *card, int shift, unsigned char state)
{
      unsigned char led;

      led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
      if (state == LED_FLIP)
            led ^= (1<<shift);
      else {
            led &= ~(0x03 << shift);
            led |= (state << shift);
      }
      writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);

}

#ifdef MM_DIAG
static void dump_regs(struct cardinfo *card)
{
      unsigned char *p;
      int i, i1;

      p = card->csr_remap;
      for (i = 0; i < 8; i++) {
            printk(KERN_DEBUG "%p   ", p);

            for (i1 = 0; i1 < 16; i1++)
                  printk("%02x ", *p++);

            printk("\n");
      }
}
#endif

static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
{
      dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
      if (dmastat & DMASCR_ANY_ERR)
            printk(KERN_CONT "ANY_ERR ");
      if (dmastat & DMASCR_MBE_ERR)
            printk(KERN_CONT "MBE_ERR ");
      if (dmastat & DMASCR_PARITY_ERR_REP)
            printk(KERN_CONT "PARITY_ERR_REP ");
      if (dmastat & DMASCR_PARITY_ERR_DET)
            printk(KERN_CONT "PARITY_ERR_DET ");
      if (dmastat & DMASCR_SYSTEM_ERR_SIG)
            printk(KERN_CONT "SYSTEM_ERR_SIG ");
      if (dmastat & DMASCR_TARGET_ABT)
            printk(KERN_CONT "TARGET_ABT ");
      if (dmastat & DMASCR_MASTER_ABT)
            printk(KERN_CONT "MASTER_ABT ");
      if (dmastat & DMASCR_CHAIN_COMPLETE)
            printk(KERN_CONT "CHAIN_COMPLETE ");
      if (dmastat & DMASCR_DMA_COMPLETE)
            printk(KERN_CONT "DMA_COMPLETE ");
      printk("\n");
}

/*
 * Theory of request handling
 *
 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
 * We have two pages of mm_dma_desc, holding about 64 descriptors
 * each.  These are allocated at init time.
 * One page is "Ready" and is either full, or can have request added.
 * The other page might be "Active", which DMA is happening on it.
 *
 * Whenever IO on the active page completes, the Ready page is activated
 * and the ex-Active page is clean out and made Ready.
 * Otherwise the Ready page is only activated when it becomes full, or
 * when mm_unplug_device is called via the unplug_io_fn.
 *
 * If a request arrives while both pages a full, it is queued, and b_rdev is
 * overloaded to record whether it was a read or a write.
 *
 * The interrupt handler only polls the device to clear the interrupt.
 * The processing of the result is done in a tasklet.
 */

static void mm_start_io(struct cardinfo *card)
{
      /* we have the lock, we know there is
       * no IO active, and we know that card->Active
       * is set
       */
      struct mm_dma_desc *desc;
      struct mm_page *page;
      int offset;

      /* make the last descriptor end the chain */
      page = &card->mm_pages[card->Active];
      pr_debug("start_io: %d %d->%d\n",
            card->Active, page->headcnt, page->cnt - 1);
      desc = &page->desc[page->cnt-1];

      desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
      desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
      desc->sem_control_bits = desc->control_bits;


      if (debug & DEBUG_LED_ON_TRANSFER)
            set_led(card, LED_REMOVE, LED_ON);

      desc = &page->desc[page->headcnt];
      writel(0, card->csr_remap + DMA_PCI_ADDR);
      writel(0, card->csr_remap + DMA_PCI_ADDR + 4);

      writel(0, card->csr_remap + DMA_LOCAL_ADDR);
      writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);

      writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
      writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);

      writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
      writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);

      offset = ((char *)desc) - ((char *)page->desc);
      writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
             card->csr_remap + DMA_DESCRIPTOR_ADDR);
      /* Force the value to u64 before shifting otherwise >> 32 is undefined C
       * and on some ports will do nothing ! */
      writel(cpu_to_le32(((u64)page->page_dma)>>32),
             card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);

      /* Go, go, go */
      writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
             card->csr_remap + DMA_STATUS_CTRL);
}

static int add_bio(struct cardinfo *card);

static void activate(struct cardinfo *card)
{
      /* if No page is Active, and Ready is
       * not empty, then switch Ready page
       * to active and start IO.
       * Then add any bh's that are available to Ready
       */

      do {
            while (add_bio(card))
                  ;

            if (card->Active == -1 &&
                card->mm_pages[card->Ready].cnt > 0) {
                  card->Active = card->Ready;
                  card->Ready = 1-card->Ready;
                  mm_start_io(card);
            }

      } while (card->Active == -1 && add_bio(card));
}

static inline void reset_page(struct mm_page *page)
{
      page->cnt = 0;
      page->headcnt = 0;
      page->bio = NULL;
      page->biotail = &page->bio;
}

static void mm_unplug_device(struct request_queue *q)
{
      struct cardinfo *card = q->queuedata;
      unsigned long flags;

      spin_lock_irqsave(&card->lock, flags);
      if (blk_remove_plug(q))
            activate(card);
      spin_unlock_irqrestore(&card->lock, flags);
}

/*
 * If there is room on Ready page, take
 * one bh off list and add it.
 * return 1 if there was room, else 0.
 */
static int add_bio(struct cardinfo *card)
{
      struct mm_page *p;
      struct mm_dma_desc *desc;
      dma_addr_t dma_handle;
      int offset;
      struct bio *bio;
      struct bio_vec *vec;
      int idx;
      int rw;
      int len;

      bio = card->currentbio;
      if (!bio && card->bio) {
            card->currentbio = card->bio;
            card->current_idx = card->bio->bi_idx;
            card->current_sector = card->bio->bi_sector;
            card->bio = card->bio->bi_next;
            if (card->bio == NULL)
                  card->biotail = &card->bio;
            card->currentbio->bi_next = NULL;
            return 1;
      }
      if (!bio)
            return 0;
      idx = card->current_idx;

      rw = bio_rw(bio);
      if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
            return 0;

      vec = bio_iovec_idx(bio, idx);
      len = vec->bv_len;
      dma_handle = pci_map_page(card->dev,
                          vec->bv_page,
                          vec->bv_offset,
                          len,
                          (rw == READ) ?
                          PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);

      p = &card->mm_pages[card->Ready];
      desc = &p->desc[p->cnt];
      p->cnt++;
      if (p->bio == NULL)
            p->idx = idx;
      if ((p->biotail) != &bio->bi_next) {
            *(p->biotail) = bio;
            p->biotail = &(bio->bi_next);
            bio->bi_next = NULL;
      }

      desc->data_dma_handle = dma_handle;

      desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
      desc->local_addr = cpu_to_le64(card->current_sector << 9);
      desc->transfer_size = cpu_to_le32(len);
      offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
      desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
      desc->zero1 = desc->zero2 = 0;
      offset = (((char *)(desc+1)) - ((char *)p->desc));
      desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
      desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
                               DMASCR_PARITY_INT_EN|
                               DMASCR_CHAIN_EN |
                               DMASCR_SEM_EN |
                               pci_cmds);
      if (rw == WRITE)
            desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
      desc->sem_control_bits = desc->control_bits;

      card->current_sector += (len >> 9);
      idx++;
      card->current_idx = idx;
      if (idx >= bio->bi_vcnt)
            card->currentbio = NULL;

      return 1;
}

static void process_page(unsigned long data)
{
      /* check if any of the requests in the page are DMA_COMPLETE,
       * and deal with them appropriately.
       * If we find a descriptor without DMA_COMPLETE in the semaphore, then
       * dma must have hit an error on that descriptor, so use dma_status
       * instead and assume that all following descriptors must be re-tried.
       */
      struct mm_page *page;
      struct bio *return_bio = NULL;
      struct cardinfo *card = (struct cardinfo *)data;
      unsigned int dma_status = card->dma_status;

      spin_lock_bh(&card->lock);
      if (card->Active < 0)
            goto out_unlock;
      page = &card->mm_pages[card->Active];

      while (page->headcnt < page->cnt) {
            struct bio *bio = page->bio;
            struct mm_dma_desc *desc = &page->desc[page->headcnt];
            int control = le32_to_cpu(desc->sem_control_bits);
            int last = 0;
            int idx;

            if (!(control & DMASCR_DMA_COMPLETE)) {
                  control = dma_status;
                  last = 1;
            }
            page->headcnt++;
            idx = page->idx;
            page->idx++;
            if (page->idx >= bio->bi_vcnt) {
                  page->bio = bio->bi_next;
                  if (page->bio)
                        page->idx = page->bio->bi_idx;
            }

            pci_unmap_page(card->dev, desc->data_dma_handle,
                         bio_iovec_idx(bio, idx)->bv_len,
                         (control & DMASCR_TRANSFER_READ) ?
                        PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
            if (control & DMASCR_HARD_ERROR) {
                  /* error */
                  clear_bit(BIO_UPTODATE, &bio->bi_flags);
                  dev_printk(KERN_WARNING, &card->dev->dev,
                        "I/O error on sector %d/%d\n",
                        le32_to_cpu(desc->local_addr)>>9,
                        le32_to_cpu(desc->transfer_size));
                  dump_dmastat(card, control);
            } else if (test_bit(BIO_RW, &bio->bi_rw) &&
                     le32_to_cpu(desc->local_addr) >> 9 ==
                        card->init_size) {
                  card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
                  if (card->init_size >> 1 >= card->mm_size) {
                        dev_printk(KERN_INFO, &card->dev->dev,
                              "memory now initialised\n");
                        set_userbit(card, MEMORY_INITIALIZED, 1);
                  }
            }
            if (bio != page->bio) {
                  bio->bi_next = return_bio;
                  return_bio = bio;
            }

            if (last)
                  break;
      }

      if (debug & DEBUG_LED_ON_TRANSFER)
            set_led(card, LED_REMOVE, LED_OFF);

      if (card->check_batteries) {
            card->check_batteries = 0;
            check_batteries(card);
      }
      if (page->headcnt >= page->cnt) {
            reset_page(page);
            card->Active = -1;
            activate(card);
      } else {
            /* haven't finished with this one yet */
            pr_debug("do some more\n");
            mm_start_io(card);
      }
 out_unlock:
      spin_unlock_bh(&card->lock);

      while (return_bio) {
            struct bio *bio = return_bio;

            return_bio = bio->bi_next;
            bio->bi_next = NULL;
            bio_endio(bio, 0);
      }
}

static int mm_make_request(struct request_queue *q, struct bio *bio)
{
      struct cardinfo *card = q->queuedata;
      pr_debug("mm_make_request %llu %u\n",
             (unsigned long long)bio->bi_sector, bio->bi_size);

      spin_lock_irq(&card->lock);
      *card->biotail = bio;
      bio->bi_next = NULL;
      card->biotail = &bio->bi_next;
      blk_plug_device(q);
      spin_unlock_irq(&card->lock);

      return 0;
}

static irqreturn_t mm_interrupt(int irq, void *__card)
{
      struct cardinfo *card = (struct cardinfo *) __card;
      unsigned int dma_status;
      unsigned short cfg_status;

HW_TRACE(0x30);

      dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));

      if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
            /* interrupt wasn't for me ... */
            return IRQ_NONE;
      }

      /* clear COMPLETION interrupts */
      if (card->flags & UM_FLAG_NO_BYTE_STATUS)
            writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
                   card->csr_remap + DMA_STATUS_CTRL);
      else
            writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
                   card->csr_remap + DMA_STATUS_CTRL + 2);

      /* log errors and clear interrupt status */
      if (dma_status & DMASCR_ANY_ERR) {
            unsigned int      data_log1, data_log2;
            unsigned int      addr_log1, addr_log2;
            unsigned char     stat, count, syndrome, check;

            stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);

            data_log1 = le32_to_cpu(readl(card->csr_remap +
                                    ERROR_DATA_LOG));
            data_log2 = le32_to_cpu(readl(card->csr_remap +
                                    ERROR_DATA_LOG + 4));
            addr_log1 = le32_to_cpu(readl(card->csr_remap +
                                    ERROR_ADDR_LOG));
            addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);

            count = readb(card->csr_remap + ERROR_COUNT);
            syndrome = readb(card->csr_remap + ERROR_SYNDROME);
            check = readb(card->csr_remap + ERROR_CHECK);

            dump_dmastat(card, dma_status);

            if (stat & 0x01)
                  dev_printk(KERN_ERR, &card->dev->dev,
                        "Memory access error detected (err count %d)\n",
                        count);
            if (stat & 0x02)
                  dev_printk(KERN_ERR, &card->dev->dev,
                        "Multi-bit EDC error\n");

            dev_printk(KERN_ERR, &card->dev->dev,
                  "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
                  addr_log2, addr_log1, data_log2, data_log1);
            dev_printk(KERN_ERR, &card->dev->dev,
                  "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
                  check, syndrome);

            writeb(0, card->csr_remap + ERROR_COUNT);
      }

      if (dma_status & DMASCR_PARITY_ERR_REP) {
            dev_printk(KERN_ERR, &card->dev->dev,
                  "PARITY ERROR REPORTED\n");
            pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
            pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
      }

      if (dma_status & DMASCR_PARITY_ERR_DET) {
            dev_printk(KERN_ERR, &card->dev->dev,
                  "PARITY ERROR DETECTED\n");
            pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
            pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
      }

      if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
            dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
            pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
            pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
      }

      if (dma_status & DMASCR_TARGET_ABT) {
            dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
            pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
            pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
      }

      if (dma_status & DMASCR_MASTER_ABT) {
            dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
            pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
            pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
      }

      /* and process the DMA descriptors */
      card->dma_status = dma_status;
      tasklet_schedule(&card->tasklet);

HW_TRACE(0x36);

      return IRQ_HANDLED;
}

/*
 * If both batteries are good, no LED
 * If either battery has been warned, solid LED
 * If both batteries are bad, flash the LED quickly
 * If either battery is bad, flash the LED semi quickly
 */
static void set_fault_to_battery_status(struct cardinfo *card)
{
      if (card->battery[0].good && card->battery[1].good)
            set_led(card, LED_FAULT, LED_OFF);
      else if (card->battery[0].warned || card->battery[1].warned)
            set_led(card, LED_FAULT, LED_ON);
      else if (!card->battery[0].good && !card->battery[1].good)
            set_led(card, LED_FAULT, LED_FLASH_7_0);
      else
            set_led(card, LED_FAULT, LED_FLASH_3_5);
}

static void init_battery_timer(void);

static int check_battery(struct cardinfo *card, int battery, int status)
{
      if (status != card->battery[battery].good) {
            card->battery[battery].good = !card->battery[battery].good;
            card->battery[battery].last_change = jiffies;

            if (card->battery[battery].good) {
                  dev_printk(KERN_ERR, &card->dev->dev,
                        "Battery %d now good\n", battery + 1);
                  card->battery[battery].warned = 0;
            } else
                  dev_printk(KERN_ERR, &card->dev->dev,
                        "Battery %d now FAILED\n", battery + 1);

            return 1;
      } else if (!card->battery[battery].good &&
               !card->battery[battery].warned &&
               time_after_eq(jiffies, card->battery[battery].last_change +
                         (HZ * 60 * 60 * 5))) {
            dev_printk(KERN_ERR, &card->dev->dev,
                  "Battery %d still FAILED after 5 hours\n", battery + 1);
            card->battery[battery].warned = 1;

            return 1;
      }

      return 0;
}

static void check_batteries(struct cardinfo *card)
{
      /* NOTE: this must *never* be called while the card
       * is doing (bus-to-card) DMA, or you will need the
       * reset switch
       */
      unsigned char status;
      int ret1, ret2;

      status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
      if (debug & DEBUG_BATTERY_POLLING)
            dev_printk(KERN_DEBUG, &card->dev->dev,
                  "checking battery status, 1 = %s, 2 = %s\n",
                   (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
                   (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");

      ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
      ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));

      if (ret1 || ret2)
            set_fault_to_battery_status(card);
}

static void check_all_batteries(unsigned long ptr)
{
      int i;

      for (i = 0; i < num_cards; i++)
            if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
                  struct cardinfo *card = &cards[i];
                  spin_lock_bh(&card->lock);
                  if (card->Active >= 0)
                        card->check_batteries = 1;
                  else
                        check_batteries(card);
                  spin_unlock_bh(&card->lock);
            }

      init_battery_timer();
}

static void init_battery_timer(void)
{
      init_timer(&battery_timer);
      battery_timer.function = check_all_batteries;
      battery_timer.expires = jiffies + (HZ * 60);
      add_timer(&battery_timer);
}

static void del_battery_timer(void)
{
      del_timer(&battery_timer);
}

/*
 * Note no locks taken out here.  In a worst case scenario, we could drop
 * a chunk of system memory.  But that should never happen, since validation
 * happens at open or mount time, when locks are held.
 *
 *    That's crap, since doing that while some partitions are opened
 * or mounted will give you really nasty results.
 */
static int mm_revalidate(struct gendisk *disk)
{
      struct cardinfo *card = disk->private_data;
      set_capacity(disk, card->mm_size << 1);
      return 0;
}

static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
      struct cardinfo *card = bdev->bd_disk->private_data;
      int size = card->mm_size * (1024 / MM_HARDSECT);

      /*
       * get geometry: we have to fake one...  trim the size to a
       * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
       * whatever cylinders.
       */
      geo->heads     = 64;
      geo->sectors   = 32;
      geo->cylinders = size / (geo->heads * geo->sectors);
      return 0;
}

/*
 * Future support for removable devices
 */
static int mm_check_change(struct gendisk *disk)
{
/*  struct cardinfo *dev = disk->private_data; */
      return 0;
}

static struct block_device_operations mm_fops = {
      .owner            = THIS_MODULE,
      .getgeo           = mm_getgeo,
      .revalidate_disk = mm_revalidate,
      .media_changed    = mm_check_change,
};

static int __devinit mm_pci_probe(struct pci_dev *dev,
                        const struct pci_device_id *id)
{
      int ret = -ENODEV;
      struct cardinfo *card = &cards[num_cards];
      unsigned char     mem_present;
      unsigned char     batt_status;
      unsigned int      saved_bar, data;
      unsigned long     csr_base;
      unsigned long     csr_len;
      int         magic_number;
      static int  printed_version;

      if (!printed_version++)
            printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");

      ret = pci_enable_device(dev);
      if (ret)
            return ret;

      pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
      pci_set_master(dev);

      card->dev         = dev;

      csr_base = pci_resource_start(dev, 0);
      csr_len  = pci_resource_len(dev, 0);
      if (!csr_base || !csr_len)
            return -ENODEV;

      dev_printk(KERN_INFO, &dev->dev,
        "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");

      if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
          pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
            dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
            return  -ENOMEM;
      }

      ret = pci_request_regions(dev, DRIVER_NAME);
      if (ret) {
            dev_printk(KERN_ERR, &card->dev->dev,
                  "Unable to request memory region\n");
            goto failed_req_csr;
      }

      card->csr_remap = ioremap_nocache(csr_base, csr_len);
      if (!card->csr_remap) {
            dev_printk(KERN_ERR, &card->dev->dev,
                  "Unable to remap memory region\n");
            ret = -ENOMEM;

            goto failed_remap_csr;
      }

      dev_printk(KERN_INFO, &card->dev->dev,
            "CSR 0x%08lx -> 0x%p (0x%lx)\n",
             csr_base, card->csr_remap, csr_len);

      switch (card->dev->device) {
      case 0x5415:
            card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
            magic_number = 0x59;
            break;

      case 0x5425:
            card->flags |= UM_FLAG_NO_BYTE_STATUS;
            magic_number = 0x5C;
            break;

      case 0x6155:
            card->flags |= UM_FLAG_NO_BYTE_STATUS |
                        UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
            magic_number = 0x99;
            break;

      default:
            magic_number = 0x100;
            break;
      }

      if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
            dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
            ret = -ENOMEM;
            goto failed_magic;
      }

      card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
                                    PAGE_SIZE * 2,
                                    &card->mm_pages[0].page_dma);
      card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
                                    PAGE_SIZE * 2,
                                    &card->mm_pages[1].page_dma);
      if (card->mm_pages[0].desc == NULL ||
          card->mm_pages[1].desc == NULL) {
            dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
            goto failed_alloc;
      }
      reset_page(&card->mm_pages[0]);
      reset_page(&card->mm_pages[1]);
      card->Ready = 0;  /* page 0 is ready */
      card->Active = -1;      /* no page is active */
      card->bio = NULL;
      card->biotail = &card->bio;

      card->queue = blk_alloc_queue(GFP_KERNEL);
      if (!card->queue)
            goto failed_alloc;

      blk_queue_make_request(card->queue, mm_make_request);
      card->queue->queuedata = card;
      card->queue->unplug_fn = mm_unplug_device;

      tasklet_init(&card->tasklet, process_page, (unsigned long)card);

      card->check_batteries = 0;

      mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
      switch (mem_present) {
      case MEM_128_MB:
            card->mm_size = 1024 * 128;
            break;
      case MEM_256_MB:
            card->mm_size = 1024 * 256;
            break;
      case MEM_512_MB:
            card->mm_size = 1024 * 512;
            break;
      case MEM_1_GB:
            card->mm_size = 1024 * 1024;
            break;
      case MEM_2_GB:
            card->mm_size = 1024 * 2048;
            break;
      default:
            card->mm_size = 0;
            break;
      }

      /* Clear the LED's we control */
      set_led(card, LED_REMOVE, LED_OFF);
      set_led(card, LED_FAULT, LED_OFF);

      batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);

      card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
      card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
      card->battery[0].last_change = card->battery[1].last_change = jiffies;

      if (card->flags & UM_FLAG_NO_BATT)
            dev_printk(KERN_INFO, &card->dev->dev,
                  "Size %d KB\n", card->mm_size);
      else {
            dev_printk(KERN_INFO, &card->dev->dev,
                  "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
                   card->mm_size,
                   batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
                   card->battery[0].good ? "OK" : "FAILURE",
                   batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
                   card->battery[1].good ? "OK" : "FAILURE");

            set_fault_to_battery_status(card);
      }

      pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
      data = 0xffffffff;
      pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
      pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
      pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
      data &= 0xfffffff0;
      data = ~data;
      data += 1;

      if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
                  card)) {
            dev_printk(KERN_ERR, &card->dev->dev,
                  "Unable to allocate IRQ\n");
            ret = -ENODEV;
            goto failed_req_irq;
      }

      dev_printk(KERN_INFO, &card->dev->dev,
            "Window size %d bytes, IRQ %d\n", data, dev->irq);

      spin_lock_init(&card->lock);

      pci_set_drvdata(dev, card);

      if (pci_write_cmd != 0x0F)    /* If not Memory Write & Invalidate */
            pci_write_cmd = 0x07;   /* then Memory Write command */

      if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
            unsigned short cfg_command;
            pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
            cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
            pci_write_config_word(dev, PCI_COMMAND, cfg_command);
      }
      pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);

      num_cards++;

      if (!get_userbit(card, MEMORY_INITIALIZED)) {
            dev_printk(KERN_INFO, &card->dev->dev,
              "memory NOT initialized. Consider over-writing whole device.\n");
            card->init_size = 0;
      } else {
            dev_printk(KERN_INFO, &card->dev->dev,
                  "memory already initialized\n");
            card->init_size = card->mm_size;
      }

      /* Enable ECC */
      writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);

      return 0;

 failed_req_irq:
 failed_alloc:
      if (card->mm_pages[0].desc)
            pci_free_consistent(card->dev, PAGE_SIZE*2,
                            card->mm_pages[0].desc,
                            card->mm_pages[0].page_dma);
      if (card->mm_pages[1].desc)
            pci_free_consistent(card->dev, PAGE_SIZE*2,
                            card->mm_pages[1].desc,
                            card->mm_pages[1].page_dma);
 failed_magic:
      iounmap(card->csr_remap);
 failed_remap_csr:
      pci_release_regions(dev);
 failed_req_csr:

      return ret;
}

static void mm_pci_remove(struct pci_dev *dev)
{
      struct cardinfo *card = pci_get_drvdata(dev);

      tasklet_kill(&card->tasklet);
      free_irq(dev->irq, card);
      iounmap(card->csr_remap);

      if (card->mm_pages[0].desc)
            pci_free_consistent(card->dev, PAGE_SIZE*2,
                            card->mm_pages[0].desc,
                            card->mm_pages[0].page_dma);
      if (card->mm_pages[1].desc)
            pci_free_consistent(card->dev, PAGE_SIZE*2,
                            card->mm_pages[1].desc,
                            card->mm_pages[1].page_dma);
      blk_cleanup_queue(card->queue);

      pci_release_regions(dev);
      pci_disable_device(dev);
}

static const struct pci_device_id mm_pci_ids[] = {
    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
    {
      .vendor     =     0x8086,
      .device     =     0xB555,
      .subvendor =      0x1332,
      .subdevice =      0x5460,
      .class =    0x050000,
      .class_mask =     0,
    }, { /* end: all zeroes */ }
};

MODULE_DEVICE_TABLE(pci, mm_pci_ids);

static struct pci_driver mm_pci_driver = {
      .name       = DRIVER_NAME,
      .id_table   = mm_pci_ids,
      .probe            = mm_pci_probe,
      .remove           = mm_pci_remove,
};

static int __init mm_init(void)
{
      int retval, i;
      int err;

      retval = pci_register_driver(&mm_pci_driver);
      if (retval)
            return -ENOMEM;

      err = major_nr = register_blkdev(0, DRIVER_NAME);
      if (err < 0) {
            pci_unregister_driver(&mm_pci_driver);
            return -EIO;
      }

      for (i = 0; i < num_cards; i++) {
            mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
            if (!mm_gendisk[i])
                  goto out;
      }

      for (i = 0; i < num_cards; i++) {
            struct gendisk *disk = mm_gendisk[i];
            sprintf(disk->disk_name, "umem%c", 'a'+i);
            spin_lock_init(&cards[i].lock);
            disk->major = major_nr;
            disk->first_minor  = i << MM_SHIFT;
            disk->fops = &mm_fops;
            disk->private_data = &cards[i];
            disk->queue = cards[i].queue;
            set_capacity(disk, cards[i].mm_size << 1);
            add_disk(disk);
      }

      init_battery_timer();
      printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
/* printk("mm_init: Done. 10-19-01 9:00\n"); */
      return 0;

out:
      pci_unregister_driver(&mm_pci_driver);
      unregister_blkdev(major_nr, DRIVER_NAME);
      while (i--)
            put_disk(mm_gendisk[i]);
      return -ENOMEM;
}

static void __exit mm_cleanup(void)
{
      int i;

      del_battery_timer();

      for (i = 0; i < num_cards ; i++) {
            del_gendisk(mm_gendisk[i]);
            put_disk(mm_gendisk[i]);
      }

      pci_unregister_driver(&mm_pci_driver);

      unregister_blkdev(major_nr, DRIVER_NAME);
}

module_init(mm_init);
module_exit(mm_cleanup);

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index