Logo Search packages:      
Sourcecode: linux version File versions  Download package

cafe_ccic.c

/*
 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
 * multifunction chip.  Currently works with the Omnivision OV7670
 * sensor.
 *
 * The data sheet for this device can be found at:
 *    http://www.marvell.com/products/pcconn/88ALP01.jsp
 *
 * Copyright 2006 One Laptop Per Child Association, Inc.
 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
 *
 * Written by Jonathan Corbet, corbet@lwn.net.
 *
 * This file may be distributed under the terms of the GNU General
 * Public License, version 2.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/pci.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/videodev2.h>
#include <media/v4l2-common.h>
#include <media/v4l2-chip-ident.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/list.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/debugfs.h>
#include <linux/jiffies.h>
#include <linux/vmalloc.h>

#include <asm/uaccess.h>
#include <asm/io.h>

#include "cafe_ccic-regs.h"

#define CAFE_VERSION 0x000002


/*
 * Parameters.
 */
MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("Video");

/*
 * Internal DMA buffer management.  Since the controller cannot do S/G I/O,
 * we must have physically contiguous buffers to bring frames into.
 * These parameters control how many buffers we use, whether we
 * allocate them at load time (better chance of success, but nails down
 * memory) or when somebody tries to use the camera (riskier), and,
 * for load-time allocation, how big they should be.
 *
 * The controller can cycle through three buffers.  We could use
 * more by flipping pointers around, but it probably makes little
 * sense.
 */

#define MAX_DMA_BUFS 3
static int alloc_bufs_at_read = 0;
module_param(alloc_bufs_at_read, bool, 0444);
MODULE_PARM_DESC(alloc_bufs_at_read,
            "Non-zero value causes DMA buffers to be allocated when the "
            "video capture device is read, rather than at module load "
            "time.  This saves memory, but decreases the chances of "
            "successfully getting those buffers.");

static int n_dma_bufs = 3;
module_param(n_dma_bufs, uint, 0644);
MODULE_PARM_DESC(n_dma_bufs,
            "The number of DMA buffers to allocate.  Can be either two "
            "(saves memory, makes timing tighter) or three.");

static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2;  /* Worst case */
module_param(dma_buf_size, uint, 0444);
MODULE_PARM_DESC(dma_buf_size,
            "The size of the allocated DMA buffers.  If actual operating "
            "parameters require larger buffers, an attempt to reallocate "
            "will be made.");

static int min_buffers = 1;
module_param(min_buffers, uint, 0644);
MODULE_PARM_DESC(min_buffers,
            "The minimum number of streaming I/O buffers we are willing "
            "to work with.");

static int max_buffers = 10;
module_param(max_buffers, uint, 0644);
MODULE_PARM_DESC(max_buffers,
            "The maximum number of streaming I/O buffers an application "
            "will be allowed to allocate.  These buffers are big and live "
            "in vmalloc space.");

static int flip = 0;
module_param(flip, bool, 0444);
MODULE_PARM_DESC(flip,
            "If set, the sensor will be instructed to flip the image "
            "vertically.");


enum cafe_state {
      S_NOTREADY, /* Not yet initialized */
      S_IDLE,           /* Just hanging around */
      S_FLAKED,   /* Some sort of problem */
      S_SINGLEREAD,     /* In read() */
      S_SPECREAD,       /* Speculative read (for future read()) */
      S_STREAMING /* Streaming data */
};

/*
 * Tracking of streaming I/O buffers.
 */
struct cafe_sio_buffer {
      struct list_head list;
      struct v4l2_buffer v4lbuf;
      char *buffer;   /* Where it lives in kernel space */
      int mapcount;
      struct cafe_camera *cam;
};

/*
 * A description of one of our devices.
 * Locking: controlled by s_mutex.  Certain fields, however, require
 *        the dev_lock spinlock; they are marked as such by comments.
 *        dev_lock is also required for access to device registers.
 */
struct cafe_camera
{
      enum cafe_state state;
      unsigned long flags;          /* Buffer status, mainly (dev_lock) */
      int users;              /* How many open FDs */
      struct file *owner;           /* Who has data access (v4l2) */

      /*
       * Subsystem structures.
       */
      struct pci_dev *pdev;
      struct video_device v4ldev;
      struct i2c_adapter i2c_adapter;
      struct i2c_client *sensor;

      unsigned char __iomem *regs;
      struct list_head dev_list;    /* link to other devices */

      /* DMA buffers */
      unsigned int nbufs;           /* How many are alloc'd */
      int next_buf;                 /* Next to consume (dev_lock) */
      unsigned int dma_buf_size;    /* allocated size */
      void *dma_bufs[MAX_DMA_BUFS]; /* Internal buffer addresses */
      dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */
      unsigned int specframes;      /* Unconsumed spec frames (dev_lock) */
      unsigned int sequence;        /* Frame sequence number */
      unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */

      /* Streaming buffers */
      unsigned int n_sbufs;         /* How many we have */
      struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */
      struct list_head sb_avail;    /* Available for data (we own) (dev_lock) */
      struct list_head sb_full;     /* With data (user space owns) (dev_lock) */
      struct tasklet_struct s_tasklet;

      /* Current operating parameters */
      u32 sensor_type;        /* Currently ov7670 only */
      struct v4l2_pix_format pix_format;

      /* Locks */
      struct mutex s_mutex; /* Access to this structure */
      spinlock_t dev_lock;  /* Access to device */

      /* Misc */
      wait_queue_head_t smbus_wait; /* Waiting on i2c events */
      wait_queue_head_t iowait;     /* Waiting on frame data */
#ifdef CONFIG_VIDEO_ADV_DEBUG
      struct dentry *dfs_regs;
      struct dentry *dfs_cam_regs;
#endif
};

/*
 * Status flags.  Always manipulated with bit operations.
 */
#define CF_BUF0_VALID    0    /* Buffers valid - first three */
#define CF_BUF1_VALID    1
#define CF_BUF2_VALID    2
#define CF_DMA_ACTIVE    3    /* A frame is incoming */
#define CF_CONFIG_NEEDED 4    /* Must configure hardware */



/*
 * Start over with DMA buffers - dev_lock needed.
 */
static void cafe_reset_buffers(struct cafe_camera *cam)
{
      int i;

      cam->next_buf = -1;
      for (i = 0; i < cam->nbufs; i++)
            clear_bit(i, &cam->flags);
      cam->specframes = 0;
}

static inline int cafe_needs_config(struct cafe_camera *cam)
{
      return test_bit(CF_CONFIG_NEEDED, &cam->flags);
}

static void cafe_set_config_needed(struct cafe_camera *cam, int needed)
{
      if (needed)
            set_bit(CF_CONFIG_NEEDED, &cam->flags);
      else
            clear_bit(CF_CONFIG_NEEDED, &cam->flags);
}




/*
 * Debugging and related.
 */
#define cam_err(cam, fmt, arg...) \
      dev_err(&(cam)->pdev->dev, fmt, ##arg);
#define cam_warn(cam, fmt, arg...) \
      dev_warn(&(cam)->pdev->dev, fmt, ##arg);
#define cam_dbg(cam, fmt, arg...) \
      dev_dbg(&(cam)->pdev->dev, fmt, ##arg);


/* ---------------------------------------------------------------------*/
/*
 * We keep a simple list of known devices to search at open time.
 */
static LIST_HEAD(cafe_dev_list);
static DEFINE_MUTEX(cafe_dev_list_lock);

static void cafe_add_dev(struct cafe_camera *cam)
{
      mutex_lock(&cafe_dev_list_lock);
      list_add_tail(&cam->dev_list, &cafe_dev_list);
      mutex_unlock(&cafe_dev_list_lock);
}

static void cafe_remove_dev(struct cafe_camera *cam)
{
      mutex_lock(&cafe_dev_list_lock);
      list_del(&cam->dev_list);
      mutex_unlock(&cafe_dev_list_lock);
}

static struct cafe_camera *cafe_find_dev(int minor)
{
      struct cafe_camera *cam;

      mutex_lock(&cafe_dev_list_lock);
      list_for_each_entry(cam, &cafe_dev_list, dev_list) {
            if (cam->v4ldev.minor == minor)
                  goto done;
      }
      cam = NULL;
  done:
      mutex_unlock(&cafe_dev_list_lock);
      return cam;
}


static struct cafe_camera *cafe_find_by_pdev(struct pci_dev *pdev)
{
      struct cafe_camera *cam;

      mutex_lock(&cafe_dev_list_lock);
      list_for_each_entry(cam, &cafe_dev_list, dev_list) {
            if (cam->pdev == pdev)
                  goto done;
      }
      cam = NULL;
  done:
      mutex_unlock(&cafe_dev_list_lock);
      return cam;
}


/* ------------------------------------------------------------------------ */
/*
 * Device register I/O
 */
static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg,
            unsigned int val)
{
      iowrite32(val, cam->regs + reg);
}

static inline unsigned int cafe_reg_read(struct cafe_camera *cam,
            unsigned int reg)
{
      return ioread32(cam->regs + reg);
}


static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg,
            unsigned int val, unsigned int mask)
{
      unsigned int v = cafe_reg_read(cam, reg);

      v = (v & ~mask) | (val & mask);
      cafe_reg_write(cam, reg, v);
}

static inline void cafe_reg_clear_bit(struct cafe_camera *cam,
            unsigned int reg, unsigned int val)
{
      cafe_reg_write_mask(cam, reg, 0, val);
}

static inline void cafe_reg_set_bit(struct cafe_camera *cam,
            unsigned int reg, unsigned int val)
{
      cafe_reg_write_mask(cam, reg, val, val);
}



/* -------------------------------------------------------------------- */
/*
 * The I2C/SMBUS interface to the camera itself starts here.  The
 * controller handles SMBUS itself, presenting a relatively simple register
 * interface; all we have to do is to tell it where to route the data.
 */
#define CAFE_SMBUS_TIMEOUT (HZ)  /* generous */

static int cafe_smbus_write_done(struct cafe_camera *cam)
{
      unsigned long flags;
      int c1;

      /*
       * We must delay after the interrupt, or the controller gets confused
       * and never does give us good status.  Fortunately, we don't do this
       * often.
       */
      udelay(20);
      spin_lock_irqsave(&cam->dev_lock, flags);
      c1 = cafe_reg_read(cam, REG_TWSIC1);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
      return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
}

static int cafe_smbus_write_data(struct cafe_camera *cam,
            u16 addr, u8 command, u8 value)
{
      unsigned int rval;
      unsigned long flags;
      DEFINE_WAIT(the_wait);

      spin_lock_irqsave(&cam->dev_lock, flags);
      rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
      rval |= TWSIC0_OVMAGIC;  /* Make OV sensors work */
      /*
       * Marvell sez set clkdiv to all 1's for now.
       */
      rval |= TWSIC0_CLKDIV;
      cafe_reg_write(cam, REG_TWSIC0, rval);
      (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
      rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
      cafe_reg_write(cam, REG_TWSIC1, rval);
      spin_unlock_irqrestore(&cam->dev_lock, flags);

      /*
       * Time to wait for the write to complete.  THIS IS A RACY
       * WAY TO DO IT, but the sad fact is that reading the TWSIC1
       * register too quickly after starting the operation sends
       * the device into a place that may be kinder and better, but
       * which is absolutely useless for controlling the sensor.  In
       * practice we have plenty of time to get into our sleep state
       * before the interrupt hits, and the worst case is that we
       * time out and then see that things completed, so this seems
       * the best way for now.
       */
      do {
            prepare_to_wait(&cam->smbus_wait, &the_wait,
                        TASK_UNINTERRUPTIBLE);
            schedule_timeout(1); /* even 1 jiffy is too long */
            finish_wait(&cam->smbus_wait, &the_wait);
      } while (!cafe_smbus_write_done(cam));

#ifdef IF_THE_CAFE_HARDWARE_WORKED_RIGHT
      wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam),
                  CAFE_SMBUS_TIMEOUT);
#endif
      spin_lock_irqsave(&cam->dev_lock, flags);
      rval = cafe_reg_read(cam, REG_TWSIC1);
      spin_unlock_irqrestore(&cam->dev_lock, flags);

      if (rval & TWSIC1_WSTAT) {
            cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
                        command, value);
            return -EIO;
      }
      if (rval & TWSIC1_ERROR) {
            cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
                        command, value);
            return -EIO;
      }
      return 0;
}



static int cafe_smbus_read_done(struct cafe_camera *cam)
{
      unsigned long flags;
      int c1;

      /*
       * We must delay after the interrupt, or the controller gets confused
       * and never does give us good status.  Fortunately, we don't do this
       * often.
       */
      udelay(20);
      spin_lock_irqsave(&cam->dev_lock, flags);
      c1 = cafe_reg_read(cam, REG_TWSIC1);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
      return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
}



static int cafe_smbus_read_data(struct cafe_camera *cam,
            u16 addr, u8 command, u8 *value)
{
      unsigned int rval;
      unsigned long flags;

      spin_lock_irqsave(&cam->dev_lock, flags);
      rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
      rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
      /*
       * Marvel sez set clkdiv to all 1's for now.
       */
      rval |= TWSIC0_CLKDIV;
      cafe_reg_write(cam, REG_TWSIC0, rval);
      (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
      rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
      cafe_reg_write(cam, REG_TWSIC1, rval);
      spin_unlock_irqrestore(&cam->dev_lock, flags);

      wait_event_timeout(cam->smbus_wait,
                  cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT);
      spin_lock_irqsave(&cam->dev_lock, flags);
      rval = cafe_reg_read(cam, REG_TWSIC1);
      spin_unlock_irqrestore(&cam->dev_lock, flags);

      if (rval & TWSIC1_ERROR) {
            cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
            return -EIO;
      }
      if (! (rval & TWSIC1_RVALID)) {
            cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
                        command);
            return -EIO;
      }
      *value = rval & 0xff;
      return 0;
}

/*
 * Perform a transfer over SMBUS.  This thing is called under
 * the i2c bus lock, so we shouldn't race with ourselves...
 */
static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
            unsigned short flags, char rw, u8 command,
            int size, union i2c_smbus_data *data)
{
      struct cafe_camera *cam = i2c_get_adapdata(adapter);
      int ret = -EINVAL;

      /*
       * Refuse to talk to anything but OV cam chips.  We should
       * never even see an attempt to do so, but one never knows.
       */
      if (cam->sensor && addr != cam->sensor->addr) {
            cam_err(cam, "funky smbus addr %d\n", addr);
            return -EINVAL;
      }
      /*
       * This interface would appear to only do byte data ops.  OK
       * it can do word too, but the cam chip has no use for that.
       */
      if (size != I2C_SMBUS_BYTE_DATA) {
            cam_err(cam, "funky xfer size %d\n", size);
            return -EINVAL;
      }

      if (rw == I2C_SMBUS_WRITE)
            ret = cafe_smbus_write_data(cam, addr, command, data->byte);
      else if (rw == I2C_SMBUS_READ)
            ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
      return ret;
}


static void cafe_smbus_enable_irq(struct cafe_camera *cam)
{
      unsigned long flags;

      spin_lock_irqsave(&cam->dev_lock, flags);
      cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
}

static u32 cafe_smbus_func(struct i2c_adapter *adapter)
{
      return I2C_FUNC_SMBUS_READ_BYTE_DATA  |
             I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
}

static struct i2c_algorithm cafe_smbus_algo = {
      .smbus_xfer = cafe_smbus_xfer,
      .functionality = cafe_smbus_func
};

/* Somebody is on the bus */
static int cafe_cam_init(struct cafe_camera *cam);
static void cafe_ctlr_stop_dma(struct cafe_camera *cam);
static void cafe_ctlr_power_down(struct cafe_camera *cam);

static int cafe_smbus_attach(struct i2c_client *client)
{
      struct cafe_camera *cam = i2c_get_adapdata(client->adapter);

      /*
       * Don't talk to chips we don't recognize.
       */
      if (client->driver->id == I2C_DRIVERID_OV7670) {
            cam->sensor = client;
            return cafe_cam_init(cam);
      }
      return -EINVAL;
}

static int cafe_smbus_detach(struct i2c_client *client)
{
      struct cafe_camera *cam = i2c_get_adapdata(client->adapter);

      if (cam->sensor == client) {
            cafe_ctlr_stop_dma(cam);
            cafe_ctlr_power_down(cam);
            cam_err(cam, "lost the sensor!\n");
            cam->sensor = NULL;  /* Bummer, no camera */
            cam->state = S_NOTREADY;
      }
      return 0;
}

static int cafe_smbus_setup(struct cafe_camera *cam)
{
      struct i2c_adapter *adap = &cam->i2c_adapter;
      int ret;

      cafe_smbus_enable_irq(cam);
      adap->id = I2C_HW_SMBUS_CAFE;
      adap->class = I2C_CLASS_CAM_DIGITAL;
      adap->owner = THIS_MODULE;
      adap->client_register = cafe_smbus_attach;
      adap->client_unregister = cafe_smbus_detach;
      adap->algo = &cafe_smbus_algo;
      strcpy(adap->name, "cafe_ccic");
      adap->dev.parent = &cam->pdev->dev;
      i2c_set_adapdata(adap, cam);
      ret = i2c_add_adapter(adap);
      if (ret)
            printk(KERN_ERR "Unable to register cafe i2c adapter\n");
      return ret;
}

static void cafe_smbus_shutdown(struct cafe_camera *cam)
{
      i2c_del_adapter(&cam->i2c_adapter);
}


/* ------------------------------------------------------------------- */
/*
 * Deal with the controller.
 */

/*
 * Do everything we think we need to have the interface operating
 * according to the desired format.
 */
static void cafe_ctlr_dma(struct cafe_camera *cam)
{
      /*
       * Store the first two Y buffers (we aren't supporting
       * planar formats for now, so no UV bufs).  Then either
       * set the third if it exists, or tell the controller
       * to just use two.
       */
      cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
      cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
      if (cam->nbufs > 2) {
            cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
            cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
      }
      else
            cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
      cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */
}

static void cafe_ctlr_image(struct cafe_camera *cam)
{
      int imgsz;
      struct v4l2_pix_format *fmt = &cam->pix_format;

      imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
            (fmt->bytesperline & IMGSZ_H_MASK);
      cafe_reg_write(cam, REG_IMGSIZE, imgsz);
      cafe_reg_write(cam, REG_IMGOFFSET, 0);
      /* YPITCH just drops the last two bits */
      cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
                  IMGP_YP_MASK);
      /*
       * Tell the controller about the image format we are using.
       */
      switch (cam->pix_format.pixelformat) {
      case V4L2_PIX_FMT_YUYV:
          cafe_reg_write_mask(cam, REG_CTRL0,
                      C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
                      C0_DF_MASK);
          break;

      case V4L2_PIX_FMT_RGB444:
          cafe_reg_write_mask(cam, REG_CTRL0,
                      C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
                      C0_DF_MASK);
            /* Alpha value? */
          break;

      case V4L2_PIX_FMT_RGB565:
          cafe_reg_write_mask(cam, REG_CTRL0,
                      C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
                      C0_DF_MASK);
          break;

      default:
          cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
          break;
      }
      /*
       * Make sure it knows we want to use hsync/vsync.
       */
      cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
                  C0_SIFM_MASK);
}


/*
 * Configure the controller for operation; caller holds the
 * device mutex.
 */
static int cafe_ctlr_configure(struct cafe_camera *cam)
{
      unsigned long flags;

      spin_lock_irqsave(&cam->dev_lock, flags);
      cafe_ctlr_dma(cam);
      cafe_ctlr_image(cam);
      cafe_set_config_needed(cam, 0);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
      return 0;
}

static void cafe_ctlr_irq_enable(struct cafe_camera *cam)
{
      /*
       * Clear any pending interrupts, since we do not
       * expect to have I/O active prior to enabling.
       */
      cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
      cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
}

static void cafe_ctlr_irq_disable(struct cafe_camera *cam)
{
      cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
}

/*
 * Make the controller start grabbing images.  Everything must
 * be set up before doing this.
 */
static void cafe_ctlr_start(struct cafe_camera *cam)
{
      /* set_bit performs a read, so no other barrier should be
         needed here */
      cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
}

static void cafe_ctlr_stop(struct cafe_camera *cam)
{
      cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
}

static void cafe_ctlr_init(struct cafe_camera *cam)
{
      unsigned long flags;

      spin_lock_irqsave(&cam->dev_lock, flags);
      /*
       * Added magic to bring up the hardware on the B-Test board
       */
      cafe_reg_write(cam, 0x3038, 0x8);
      cafe_reg_write(cam, 0x315c, 0x80008);
      /*
       * Go through the dance needed to wake the device up.
       * Note that these registers are global and shared
       * with the NAND and SD devices.  Interaction between the
       * three still needs to be examined.
       */
      cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
      cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
      cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
      /*
       * Here we must wait a bit for the controller to come around.
       */
      spin_unlock_irqrestore(&cam->dev_lock, flags);
      msleep(5);
      spin_lock_irqsave(&cam->dev_lock, flags);

      cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
      cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN);
      /*
       * Make sure it's not powered down.
       */
      cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
      /*
       * Turn off the enable bit.  It sure should be off anyway,
       * but it's good to be sure.
       */
      cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
      /*
       * Mask all interrupts.
       */
      cafe_reg_write(cam, REG_IRQMASK, 0);
      /*
       * Clock the sensor appropriately.  Controller clock should
       * be 48MHz, sensor "typical" value is half that.
       */
      cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
}


/*
 * Stop the controller, and don't return until we're really sure that no
 * further DMA is going on.
 */
static void cafe_ctlr_stop_dma(struct cafe_camera *cam)
{
      unsigned long flags;

      /*
       * Theory: stop the camera controller (whether it is operating
       * or not).  Delay briefly just in case we race with the SOF
       * interrupt, then wait until no DMA is active.
       */
      spin_lock_irqsave(&cam->dev_lock, flags);
      cafe_ctlr_stop(cam);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
      mdelay(1);
      wait_event_timeout(cam->iowait,
                  !test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
      if (test_bit(CF_DMA_ACTIVE, &cam->flags))
            cam_err(cam, "Timeout waiting for DMA to end\n");
            /* This would be bad news - what now? */
      spin_lock_irqsave(&cam->dev_lock, flags);
      cam->state = S_IDLE;
      cafe_ctlr_irq_disable(cam);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
}

/*
 * Power up and down.
 */
static void cafe_ctlr_power_up(struct cafe_camera *cam)
{
      unsigned long flags;

      spin_lock_irqsave(&cam->dev_lock, flags);
      cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
      /*
       * Part one of the sensor dance: turn the global
       * GPIO signal on.
       */
      cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
      cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
      /*
       * Put the sensor into operational mode (assumes OLPC-style
       * wiring).  Control 0 is reset - set to 1 to operate.
       * Control 1 is power down, set to 0 to operate.
       */
      cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
//    mdelay(1); /* Marvell says 1ms will do it */
      cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
//    mdelay(1); /* Enough? */
      spin_unlock_irqrestore(&cam->dev_lock, flags);
      msleep(5); /* Just to be sure */
}

static void cafe_ctlr_power_down(struct cafe_camera *cam)
{
      unsigned long flags;

      spin_lock_irqsave(&cam->dev_lock, flags);
      cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
      cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
      cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT);
      cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
}

/* -------------------------------------------------------------------- */
/*
 * Communications with the sensor.
 */

static int __cafe_cam_cmd(struct cafe_camera *cam, int cmd, void *arg)
{
      struct i2c_client *sc = cam->sensor;
      int ret;

      if (sc == NULL || sc->driver == NULL || sc->driver->command == NULL)
            return -EINVAL;
      ret = sc->driver->command(sc, cmd, arg);
      if (ret == -EPERM) /* Unsupported command */
            return 0;
      return ret;
}

static int __cafe_cam_reset(struct cafe_camera *cam)
{
      int zero = 0;
      return __cafe_cam_cmd(cam, VIDIOC_INT_RESET, &zero);
}

/*
 * We have found the sensor on the i2c.  Let's try to have a
 * conversation.
 */
static int cafe_cam_init(struct cafe_camera *cam)
{
      struct v4l2_chip_ident chip = { V4L2_CHIP_MATCH_I2C_ADDR, 0, 0, 0 };
      int ret;

      mutex_lock(&cam->s_mutex);
      if (cam->state != S_NOTREADY)
            cam_warn(cam, "Cam init with device in funky state %d",
                        cam->state);
      ret = __cafe_cam_reset(cam);
      if (ret)
            goto out;
      chip.match_chip = cam->sensor->addr;
      ret = __cafe_cam_cmd(cam, VIDIOC_G_CHIP_IDENT, &chip);
      if (ret)
            goto out;
      cam->sensor_type = chip.ident;
//    if (cam->sensor->addr != OV7xx0_SID) {
      if (cam->sensor_type != V4L2_IDENT_OV7670) {
            cam_err(cam, "Unsupported sensor type %d", cam->sensor->addr);
            ret = -EINVAL;
            goto out;
      }
/* Get/set parameters? */
      ret = 0;
      cam->state = S_IDLE;
  out:
      cafe_ctlr_power_down(cam);
      mutex_unlock(&cam->s_mutex);
      return ret;
}

/*
 * Configure the sensor to match the parameters we have.  Caller should
 * hold s_mutex
 */
static int cafe_cam_set_flip(struct cafe_camera *cam)
{
      struct v4l2_control ctrl;

      memset(&ctrl, 0, sizeof(ctrl));
      ctrl.id = V4L2_CID_VFLIP;
      ctrl.value = flip;
      return __cafe_cam_cmd(cam, VIDIOC_S_CTRL, &ctrl);
}


static int cafe_cam_configure(struct cafe_camera *cam)
{
      struct v4l2_format fmt;
      int ret, zero = 0;

      if (cam->state != S_IDLE)
            return -EINVAL;
      fmt.fmt.pix = cam->pix_format;
      ret = __cafe_cam_cmd(cam, VIDIOC_INT_INIT, &zero);
      if (ret == 0)
            ret = __cafe_cam_cmd(cam, VIDIOC_S_FMT, &fmt);
      /*
       * OV7670 does weird things if flip is set *before* format...
       */
      ret += cafe_cam_set_flip(cam);
      return ret;
}

/* -------------------------------------------------------------------- */
/*
 * DMA buffer management.  These functions need s_mutex held.
 */

/* FIXME: this is inefficient as hell, since dma_alloc_coherent just
 * does a get_free_pages() call, and we waste a good chunk of an orderN
 * allocation.  Should try to allocate the whole set in one chunk.
 */
static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime)
{
      int i;

      cafe_set_config_needed(cam, 1);
      if (loadtime)
            cam->dma_buf_size = dma_buf_size;
      else
            cam->dma_buf_size = cam->pix_format.sizeimage;
      if (n_dma_bufs > 3)
            n_dma_bufs = 3;

      cam->nbufs = 0;
      for (i = 0; i < n_dma_bufs; i++) {
            cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev,
                        cam->dma_buf_size, cam->dma_handles + i,
                        GFP_KERNEL);
            if (cam->dma_bufs[i] == NULL) {
                  cam_warn(cam, "Failed to allocate DMA buffer\n");
                  break;
            }
            /* For debug, remove eventually */
            memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
            (cam->nbufs)++;
      }

      switch (cam->nbufs) {
      case 1:
          dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
                      cam->dma_bufs[0], cam->dma_handles[0]);
          cam->nbufs = 0;
      case 0:
          cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
          return -ENOMEM;

      case 2:
          if (n_dma_bufs > 2)
                cam_warn(cam, "Will limp along with only 2 buffers\n");
          break;
      }
      return 0;
}

static void cafe_free_dma_bufs(struct cafe_camera *cam)
{
      int i;

      for (i = 0; i < cam->nbufs; i++) {
            dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
                        cam->dma_bufs[i], cam->dma_handles[i]);
            cam->dma_bufs[i] = NULL;
      }
      cam->nbufs = 0;
}





/* ----------------------------------------------------------------------- */
/*
 * Here starts the V4L2 interface code.
 */

/*
 * Read an image from the device.
 */
static ssize_t cafe_deliver_buffer(struct cafe_camera *cam,
            char __user *buffer, size_t len, loff_t *pos)
{
      int bufno;
      unsigned long flags;

      spin_lock_irqsave(&cam->dev_lock, flags);
      if (cam->next_buf < 0) {
            cam_err(cam, "deliver_buffer: No next buffer\n");
            spin_unlock_irqrestore(&cam->dev_lock, flags);
            return -EIO;
      }
      bufno = cam->next_buf;
      clear_bit(bufno, &cam->flags);
      if (++(cam->next_buf) >= cam->nbufs)
            cam->next_buf = 0;
      if (! test_bit(cam->next_buf, &cam->flags))
            cam->next_buf = -1;
      cam->specframes = 0;
      spin_unlock_irqrestore(&cam->dev_lock, flags);

      if (len > cam->pix_format.sizeimage)
            len = cam->pix_format.sizeimage;
      if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
            return -EFAULT;
      (*pos) += len;
      return len;
}

/*
 * Get everything ready, and start grabbing frames.
 */
static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state)
{
      int ret;
      unsigned long flags;

      /*
       * Configuration.  If we still don't have DMA buffers,
       * make one last, desperate attempt.
       */
      if (cam->nbufs == 0)
            if (cafe_alloc_dma_bufs(cam, 0))
                  return -ENOMEM;

      if (cafe_needs_config(cam)) {
            cafe_cam_configure(cam);
            ret = cafe_ctlr_configure(cam);
            if (ret)
                  return ret;
      }

      /*
       * Turn it loose.
       */
      spin_lock_irqsave(&cam->dev_lock, flags);
      cafe_reset_buffers(cam);
      cafe_ctlr_irq_enable(cam);
      cam->state = state;
      cafe_ctlr_start(cam);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
      return 0;
}


static ssize_t cafe_v4l_read(struct file *filp,
            char __user *buffer, size_t len, loff_t *pos)
{
      struct cafe_camera *cam = filp->private_data;
      int ret = 0;

      /*
       * Perhaps we're in speculative read mode and already
       * have data?
       */
      mutex_lock(&cam->s_mutex);
      if (cam->state == S_SPECREAD) {
            if (cam->next_buf >= 0) {
                  ret = cafe_deliver_buffer(cam, buffer, len, pos);
                  if (ret != 0)
                        goto out_unlock;
            }
      } else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
            ret = -EIO;
            goto out_unlock;
      } else if (cam->state != S_IDLE) {
            ret = -EBUSY;
            goto out_unlock;
      }

      /*
       * v4l2: multiple processes can open the device, but only
       * one gets to grab data from it.
       */
      if (cam->owner && cam->owner != filp) {
            ret = -EBUSY;
            goto out_unlock;
      }
      cam->owner = filp;

      /*
       * Do setup if need be.
       */
      if (cam->state != S_SPECREAD) {
            ret = cafe_read_setup(cam, S_SINGLEREAD);
            if (ret)
                  goto out_unlock;
      }
      /*
       * Wait for something to happen.  This should probably
       * be interruptible (FIXME).
       */
      wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
      if (cam->next_buf < 0) {
            cam_err(cam, "read() operation timed out\n");
            cafe_ctlr_stop_dma(cam);
            ret = -EIO;
            goto out_unlock;
      }
      /*
       * Give them their data and we should be done.
       */
      ret = cafe_deliver_buffer(cam, buffer, len, pos);

  out_unlock:
      mutex_unlock(&cam->s_mutex);
      return ret;
}








/*
 * Streaming I/O support.
 */



static int cafe_vidioc_streamon(struct file *filp, void *priv,
            enum v4l2_buf_type type)
{
      struct cafe_camera *cam = filp->private_data;
      int ret = -EINVAL;

      if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
            goto out;
      mutex_lock(&cam->s_mutex);
      if (cam->state != S_IDLE || cam->n_sbufs == 0)
            goto out_unlock;

      cam->sequence = 0;
      ret = cafe_read_setup(cam, S_STREAMING);

  out_unlock:
      mutex_unlock(&cam->s_mutex);
  out:
      return ret;
}


static int cafe_vidioc_streamoff(struct file *filp, void *priv,
            enum v4l2_buf_type type)
{
      struct cafe_camera *cam = filp->private_data;
      int ret = -EINVAL;

      if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
            goto out;
      mutex_lock(&cam->s_mutex);
      if (cam->state != S_STREAMING)
            goto out_unlock;

      cafe_ctlr_stop_dma(cam);
      ret = 0;

  out_unlock:
      mutex_unlock(&cam->s_mutex);
  out:
      return ret;
}



static int cafe_setup_siobuf(struct cafe_camera *cam, int index)
{
      struct cafe_sio_buffer *buf = cam->sb_bufs + index;

      INIT_LIST_HEAD(&buf->list);
      buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
      buf->buffer = vmalloc_user(buf->v4lbuf.length);
      if (buf->buffer == NULL)
            return -ENOMEM;
      buf->mapcount = 0;
      buf->cam = cam;

      buf->v4lbuf.index = index;
      buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
      buf->v4lbuf.field = V4L2_FIELD_NONE;
      buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
      /*
       * Offset: must be 32-bit even on a 64-bit system.  videobuf-dma-sg
       * just uses the length times the index, but the spec warns
       * against doing just that - vma merging problems.  So we
       * leave a gap between each pair of buffers.
       */
      buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
      return 0;
}

static int cafe_free_sio_buffers(struct cafe_camera *cam)
{
      int i;

      /*
       * If any buffers are mapped, we cannot free them at all.
       */
      for (i = 0; i < cam->n_sbufs; i++)
            if (cam->sb_bufs[i].mapcount > 0)
                  return -EBUSY;
      /*
       * OK, let's do it.
       */
      for (i = 0; i < cam->n_sbufs; i++)
            vfree(cam->sb_bufs[i].buffer);
      cam->n_sbufs = 0;
      kfree(cam->sb_bufs);
      cam->sb_bufs = NULL;
      INIT_LIST_HEAD(&cam->sb_avail);
      INIT_LIST_HEAD(&cam->sb_full);
      return 0;
}



static int cafe_vidioc_reqbufs(struct file *filp, void *priv,
            struct v4l2_requestbuffers *req)
{
      struct cafe_camera *cam = filp->private_data;
      int ret = 0;  /* Silence warning */

      /*
       * Make sure it's something we can do.  User pointers could be
       * implemented without great pain, but that's not been done yet.
       */
      if (req->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
            return -EINVAL;
      if (req->memory != V4L2_MEMORY_MMAP)
            return -EINVAL;
      /*
       * If they ask for zero buffers, they really want us to stop streaming
       * (if it's happening) and free everything.  Should we check owner?
       */
      mutex_lock(&cam->s_mutex);
      if (req->count == 0) {
            if (cam->state == S_STREAMING)
                  cafe_ctlr_stop_dma(cam);
            ret = cafe_free_sio_buffers (cam);
            goto out;
      }
      /*
       * Device needs to be idle and working.  We *could* try to do the
       * right thing in S_SPECREAD by shutting things down, but it
       * probably doesn't matter.
       */
      if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
            ret = -EBUSY;
            goto out;
      }
      cam->owner = filp;

      if (req->count < min_buffers)
            req->count = min_buffers;
      else if (req->count > max_buffers)
            req->count = max_buffers;
      if (cam->n_sbufs > 0) {
            ret = cafe_free_sio_buffers(cam);
            if (ret)
                  goto out;
      }

      cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer),
                  GFP_KERNEL);
      if (cam->sb_bufs == NULL) {
            ret = -ENOMEM;
            goto out;
      }
      for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
            ret = cafe_setup_siobuf(cam, cam->n_sbufs);
            if (ret)
                  break;
      }

      if (cam->n_sbufs == 0)  /* no luck at all - ret already set */
            kfree(cam->sb_bufs);
      req->count = cam->n_sbufs;  /* In case of partial success */

  out:
      mutex_unlock(&cam->s_mutex);
      return ret;
}


static int cafe_vidioc_querybuf(struct file *filp, void *priv,
            struct v4l2_buffer *buf)
{
      struct cafe_camera *cam = filp->private_data;
      int ret = -EINVAL;

      mutex_lock(&cam->s_mutex);
      if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
            goto out;
      if (buf->index < 0 || buf->index >= cam->n_sbufs)
            goto out;
      *buf = cam->sb_bufs[buf->index].v4lbuf;
      ret = 0;
  out:
      mutex_unlock(&cam->s_mutex);
      return ret;
}

static int cafe_vidioc_qbuf(struct file *filp, void *priv,
            struct v4l2_buffer *buf)
{
      struct cafe_camera *cam = filp->private_data;
      struct cafe_sio_buffer *sbuf;
      int ret = -EINVAL;
      unsigned long flags;

      mutex_lock(&cam->s_mutex);
      if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
            goto out;
      if (buf->index < 0 || buf->index >= cam->n_sbufs)
            goto out;
      sbuf = cam->sb_bufs + buf->index;
      if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
            ret = 0; /* Already queued?? */
            goto out;
      }
      if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
            /* Spec doesn't say anything, seems appropriate tho */
            ret = -EBUSY;
            goto out;
      }
      sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
      spin_lock_irqsave(&cam->dev_lock, flags);
      list_add(&sbuf->list, &cam->sb_avail);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
      ret = 0;
  out:
      mutex_unlock(&cam->s_mutex);
      return ret;
}

static int cafe_vidioc_dqbuf(struct file *filp, void *priv,
            struct v4l2_buffer *buf)
{
      struct cafe_camera *cam = filp->private_data;
      struct cafe_sio_buffer *sbuf;
      int ret = -EINVAL;
      unsigned long flags;

      mutex_lock(&cam->s_mutex);
      if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
            goto out_unlock;
      if (cam->state != S_STREAMING)
            goto out_unlock;
      if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
            ret = -EAGAIN;
            goto out_unlock;
      }

      while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
            mutex_unlock(&cam->s_mutex);
            if (wait_event_interruptible(cam->iowait,
                                    !list_empty(&cam->sb_full))) {
                  ret = -ERESTARTSYS;
                  goto out;
            }
            mutex_lock(&cam->s_mutex);
      }

      if (cam->state != S_STREAMING)
            ret = -EINTR;
      else {
            spin_lock_irqsave(&cam->dev_lock, flags);
            /* Should probably recheck !list_empty() here */
            sbuf = list_entry(cam->sb_full.next,
                        struct cafe_sio_buffer, list);
            list_del_init(&sbuf->list);
            spin_unlock_irqrestore(&cam->dev_lock, flags);
            sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
            *buf = sbuf->v4lbuf;
            ret = 0;
      }

  out_unlock:
      mutex_unlock(&cam->s_mutex);
  out:
      return ret;
}



static void cafe_v4l_vm_open(struct vm_area_struct *vma)
{
      struct cafe_sio_buffer *sbuf = vma->vm_private_data;
      /*
       * Locking: done under mmap_sem, so we don't need to
       * go back to the camera lock here.
       */
      sbuf->mapcount++;
}


static void cafe_v4l_vm_close(struct vm_area_struct *vma)
{
      struct cafe_sio_buffer *sbuf = vma->vm_private_data;

      mutex_lock(&sbuf->cam->s_mutex);
      sbuf->mapcount--;
      /* Docs say we should stop I/O too... */
      if (sbuf->mapcount == 0)
            sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
      mutex_unlock(&sbuf->cam->s_mutex);
}

static struct vm_operations_struct cafe_v4l_vm_ops = {
      .open = cafe_v4l_vm_open,
      .close = cafe_v4l_vm_close
};


static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
{
      struct cafe_camera *cam = filp->private_data;
      unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
      int ret = -EINVAL;
      int i;
      struct cafe_sio_buffer *sbuf = NULL;

      if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED))
            return -EINVAL;
      /*
       * Find the buffer they are looking for.
       */
      mutex_lock(&cam->s_mutex);
      for (i = 0; i < cam->n_sbufs; i++)
            if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
                  sbuf = cam->sb_bufs + i;
                  break;
            }
      if (sbuf == NULL)
            goto out;

      ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
      if (ret)
            goto out;
      vma->vm_flags |= VM_DONTEXPAND;
      vma->vm_private_data = sbuf;
      vma->vm_ops = &cafe_v4l_vm_ops;
      sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
      cafe_v4l_vm_open(vma);
      ret = 0;
  out:
      mutex_unlock(&cam->s_mutex);
      return ret;
}



static int cafe_v4l_open(struct inode *inode, struct file *filp)
{
      struct cafe_camera *cam;

      cam = cafe_find_dev(iminor(inode));
      if (cam == NULL)
            return -ENODEV;
      filp->private_data = cam;

      mutex_lock(&cam->s_mutex);
      if (cam->users == 0) {
            cafe_ctlr_power_up(cam);
            __cafe_cam_reset(cam);
            cafe_set_config_needed(cam, 1);
      /* FIXME make sure this is complete */
      }
      (cam->users)++;
      mutex_unlock(&cam->s_mutex);
      return 0;
}


static int cafe_v4l_release(struct inode *inode, struct file *filp)
{
      struct cafe_camera *cam = filp->private_data;

      mutex_lock(&cam->s_mutex);
      (cam->users)--;
      if (filp == cam->owner) {
            cafe_ctlr_stop_dma(cam);
            cafe_free_sio_buffers(cam);
            cam->owner = NULL;
      }
      if (cam->users == 0) {
            cafe_ctlr_power_down(cam);
            if (alloc_bufs_at_read)
                  cafe_free_dma_bufs(cam);
      }
      mutex_unlock(&cam->s_mutex);
      return 0;
}



static unsigned int cafe_v4l_poll(struct file *filp,
            struct poll_table_struct *pt)
{
      struct cafe_camera *cam = filp->private_data;

      poll_wait(filp, &cam->iowait, pt);
      if (cam->next_buf >= 0)
            return POLLIN | POLLRDNORM;
      return 0;
}



static int cafe_vidioc_queryctrl(struct file *filp, void *priv,
            struct v4l2_queryctrl *qc)
{
      struct cafe_camera *cam = filp->private_data;
      int ret;

      mutex_lock(&cam->s_mutex);
      ret = __cafe_cam_cmd(cam, VIDIOC_QUERYCTRL, qc);
      mutex_unlock(&cam->s_mutex);
      return ret;
}


static int cafe_vidioc_g_ctrl(struct file *filp, void *priv,
            struct v4l2_control *ctrl)
{
      struct cafe_camera *cam = filp->private_data;
      int ret;

      mutex_lock(&cam->s_mutex);
      ret = __cafe_cam_cmd(cam, VIDIOC_G_CTRL, ctrl);
      mutex_unlock(&cam->s_mutex);
      return ret;
}


static int cafe_vidioc_s_ctrl(struct file *filp, void *priv,
            struct v4l2_control *ctrl)
{
      struct cafe_camera *cam = filp->private_data;
      int ret;

      mutex_lock(&cam->s_mutex);
      ret = __cafe_cam_cmd(cam, VIDIOC_S_CTRL, ctrl);
      mutex_unlock(&cam->s_mutex);
      return ret;
}





static int cafe_vidioc_querycap(struct file *file, void *priv,
            struct v4l2_capability *cap)
{
      strcpy(cap->driver, "cafe_ccic");
      strcpy(cap->card, "cafe_ccic");
      cap->version = CAFE_VERSION;
      cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
            V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
      return 0;
}


/*
 * The default format we use until somebody says otherwise.
 */
static struct v4l2_pix_format cafe_def_pix_format = {
      .width            = VGA_WIDTH,
      .height           = VGA_HEIGHT,
      .pixelformat      = V4L2_PIX_FMT_YUYV,
      .field            = V4L2_FIELD_NONE,
      .bytesperline     = VGA_WIDTH*2,
      .sizeimage  = VGA_WIDTH*VGA_HEIGHT*2,
};

static int cafe_vidioc_enum_fmt_cap(struct file *filp,
            void *priv, struct v4l2_fmtdesc *fmt)
{
      struct cafe_camera *cam = priv;
      int ret;

      if (fmt->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
            return -EINVAL;
      mutex_lock(&cam->s_mutex);
      ret = __cafe_cam_cmd(cam, VIDIOC_ENUM_FMT, fmt);
      mutex_unlock(&cam->s_mutex);
      return ret;
}


static int cafe_vidioc_try_fmt_cap (struct file *filp, void *priv,
            struct v4l2_format *fmt)
{
      struct cafe_camera *cam = priv;
      int ret;

      mutex_lock(&cam->s_mutex);
      ret = __cafe_cam_cmd(cam, VIDIOC_TRY_FMT, fmt);
      mutex_unlock(&cam->s_mutex);
      return ret;
}

static int cafe_vidioc_s_fmt_cap(struct file *filp, void *priv,
            struct v4l2_format *fmt)
{
      struct cafe_camera *cam = priv;
      int ret;

      /*
       * Can't do anything if the device is not idle
       * Also can't if there are streaming buffers in place.
       */
      if (cam->state != S_IDLE || cam->n_sbufs > 0)
            return -EBUSY;
      /*
       * See if the formatting works in principle.
       */
      ret = cafe_vidioc_try_fmt_cap(filp, priv, fmt);
      if (ret)
            return ret;
      /*
       * Now we start to change things for real, so let's do it
       * under lock.
       */
      mutex_lock(&cam->s_mutex);
      cam->pix_format = fmt->fmt.pix;
      /*
       * Make sure we have appropriate DMA buffers.
       */
      ret = -ENOMEM;
      if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
            cafe_free_dma_bufs(cam);
      if (cam->nbufs == 0) {
            if (cafe_alloc_dma_bufs(cam, 0))
                  goto out;
      }
      /*
       * It looks like this might work, so let's program the sensor.
       */
      ret = cafe_cam_configure(cam);
      if (! ret)
            ret = cafe_ctlr_configure(cam);
  out:
      mutex_unlock(&cam->s_mutex);
      return ret;
}

/*
 * Return our stored notion of how the camera is/should be configured.
 * The V4l2 spec wants us to be smarter, and actually get this from
 * the camera (and not mess with it at open time).  Someday.
 */
static int cafe_vidioc_g_fmt_cap(struct file *filp, void *priv,
            struct v4l2_format *f)
{
      struct cafe_camera *cam = priv;

      f->fmt.pix = cam->pix_format;
      return 0;
}

/*
 * We only have one input - the sensor - so minimize the nonsense here.
 */
static int cafe_vidioc_enum_input(struct file *filp, void *priv,
            struct v4l2_input *input)
{
      if (input->index != 0)
            return -EINVAL;

      input->type = V4L2_INPUT_TYPE_CAMERA;
      input->std = V4L2_STD_ALL; /* Not sure what should go here */
      strcpy(input->name, "Camera");
      return 0;
}

static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
{
      *i = 0;
      return 0;
}

static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
{
      if (i != 0)
            return -EINVAL;
      return 0;
}

/* from vivi.c */
static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
{
      return 0;
}

/*
 * G/S_PARM.  Most of this is done by the sensor, but we are
 * the level which controls the number of read buffers.
 */
static int cafe_vidioc_g_parm(struct file *filp, void *priv,
            struct v4l2_streamparm *parms)
{
      struct cafe_camera *cam = priv;
      int ret;

      mutex_lock(&cam->s_mutex);
      ret = __cafe_cam_cmd(cam, VIDIOC_G_PARM, parms);
      mutex_unlock(&cam->s_mutex);
      parms->parm.capture.readbuffers = n_dma_bufs;
      return ret;
}

static int cafe_vidioc_s_parm(struct file *filp, void *priv,
            struct v4l2_streamparm *parms)
{
      struct cafe_camera *cam = priv;
      int ret;

      mutex_lock(&cam->s_mutex);
      ret = __cafe_cam_cmd(cam, VIDIOC_S_PARM, parms);
      mutex_unlock(&cam->s_mutex);
      parms->parm.capture.readbuffers = n_dma_bufs;
      return ret;
}


static void cafe_v4l_dev_release(struct video_device *vd)
{
      struct cafe_camera *cam = container_of(vd, struct cafe_camera, v4ldev);

      kfree(cam);
}


/*
 * This template device holds all of those v4l2 methods; we
 * clone it for specific real devices.
 */

static const struct file_operations cafe_v4l_fops = {
      .owner = THIS_MODULE,
      .open = cafe_v4l_open,
      .release = cafe_v4l_release,
      .read = cafe_v4l_read,
      .poll = cafe_v4l_poll,
      .mmap = cafe_v4l_mmap,
      .ioctl = video_ioctl2,
      .llseek = no_llseek,
};

static struct video_device cafe_v4l_template = {
      .name = "cafe",
      .type = VFL_TYPE_GRABBER,
      .type2 = VID_TYPE_CAPTURE,
      .minor = -1, /* Get one dynamically */
      .tvnorms = V4L2_STD_NTSC_M,
      .current_norm = V4L2_STD_NTSC_M,  /* make mplayer happy */

      .fops = &cafe_v4l_fops,
      .release = cafe_v4l_dev_release,

      .vidioc_querycap  = cafe_vidioc_querycap,
      .vidioc_enum_fmt_cap    = cafe_vidioc_enum_fmt_cap,
      .vidioc_try_fmt_cap     = cafe_vidioc_try_fmt_cap,
      .vidioc_s_fmt_cap = cafe_vidioc_s_fmt_cap,
      .vidioc_g_fmt_cap = cafe_vidioc_g_fmt_cap,
      .vidioc_enum_input      = cafe_vidioc_enum_input,
      .vidioc_g_input         = cafe_vidioc_g_input,
      .vidioc_s_input         = cafe_vidioc_s_input,
      .vidioc_s_std           = cafe_vidioc_s_std,
      .vidioc_reqbufs         = cafe_vidioc_reqbufs,
      .vidioc_querybuf  = cafe_vidioc_querybuf,
      .vidioc_qbuf            = cafe_vidioc_qbuf,
      .vidioc_dqbuf           = cafe_vidioc_dqbuf,
      .vidioc_streamon  = cafe_vidioc_streamon,
      .vidioc_streamoff = cafe_vidioc_streamoff,
      .vidioc_queryctrl = cafe_vidioc_queryctrl,
      .vidioc_g_ctrl          = cafe_vidioc_g_ctrl,
      .vidioc_s_ctrl          = cafe_vidioc_s_ctrl,
      .vidioc_g_parm          = cafe_vidioc_g_parm,
      .vidioc_s_parm          = cafe_vidioc_s_parm,
};







/* ---------------------------------------------------------------------- */
/*
 * Interrupt handler stuff
 */



static void cafe_frame_tasklet(unsigned long data)
{
      struct cafe_camera *cam = (struct cafe_camera *) data;
      int i;
      unsigned long flags;
      struct cafe_sio_buffer *sbuf;

      spin_lock_irqsave(&cam->dev_lock, flags);
      for (i = 0; i < cam->nbufs; i++) {
            int bufno = cam->next_buf;
            if (bufno < 0) {  /* "will never happen" */
                  cam_err(cam, "No valid bufs in tasklet!\n");
                  break;
            }
            if (++(cam->next_buf) >= cam->nbufs)
                  cam->next_buf = 0;
            if (! test_bit(bufno, &cam->flags))
                  continue;
            if (list_empty(&cam->sb_avail))
                  break;  /* Leave it valid, hope for better later */
            clear_bit(bufno, &cam->flags);
            sbuf = list_entry(cam->sb_avail.next,
                        struct cafe_sio_buffer, list);
            /*
             * Drop the lock during the big copy.  This *should* be safe...
             */
            spin_unlock_irqrestore(&cam->dev_lock, flags);
            memcpy(sbuf->buffer, cam->dma_bufs[bufno],
                        cam->pix_format.sizeimage);
            sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
            sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
            sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
            sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
            spin_lock_irqsave(&cam->dev_lock, flags);
            list_move_tail(&sbuf->list, &cam->sb_full);
      }
      if (! list_empty(&cam->sb_full))
            wake_up(&cam->iowait);
      spin_unlock_irqrestore(&cam->dev_lock, flags);
}



static void cafe_frame_complete(struct cafe_camera *cam, int frame)
{
      /*
       * Basic frame housekeeping.
       */
      if (test_bit(frame, &cam->flags) && printk_ratelimit())
            cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
      set_bit(frame, &cam->flags);
      clear_bit(CF_DMA_ACTIVE, &cam->flags);
      if (cam->next_buf < 0)
            cam->next_buf = frame;
      cam->buf_seq[frame] = ++(cam->sequence);

      switch (cam->state) {
      /*
       * If in single read mode, try going speculative.
       */
          case S_SINGLEREAD:
            cam->state = S_SPECREAD;
            cam->specframes = 0;
            wake_up(&cam->iowait);
            break;

      /*
       * If we are already doing speculative reads, and nobody is
       * reading them, just stop.
       */
          case S_SPECREAD:
            if (++(cam->specframes) >= cam->nbufs) {
                  cafe_ctlr_stop(cam);
                  cafe_ctlr_irq_disable(cam);
                  cam->state = S_IDLE;
            }
            wake_up(&cam->iowait);
            break;
      /*
       * For the streaming case, we defer the real work to the
       * camera tasklet.
       *
       * FIXME: if the application is not consuming the buffers,
       * we should eventually put things on hold and restart in
       * vidioc_dqbuf().
       */
          case S_STREAMING:
            tasklet_schedule(&cam->s_tasklet);
            break;

          default:
            cam_err(cam, "Frame interrupt in non-operational state\n");
            break;
      }
}




static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs)
{
      unsigned int frame;

      cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
      /*
       * Handle any frame completions.  There really should
       * not be more than one of these, or we have fallen
       * far behind.
       */
      for (frame = 0; frame < cam->nbufs; frame++)
            if (irqs & (IRQ_EOF0 << frame))
                  cafe_frame_complete(cam, frame);
      /*
       * If a frame starts, note that we have DMA active.  This
       * code assumes that we won't get multiple frame interrupts
       * at once; may want to rethink that.
       */
      if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2))
            set_bit(CF_DMA_ACTIVE, &cam->flags);
}



static irqreturn_t cafe_irq(int irq, void *data)
{
      struct cafe_camera *cam = data;
      unsigned int irqs;

      spin_lock(&cam->dev_lock);
      irqs = cafe_reg_read(cam, REG_IRQSTAT);
      if ((irqs & ALLIRQS) == 0) {
            spin_unlock(&cam->dev_lock);
            return IRQ_NONE;
      }
      if (irqs & FRAMEIRQS)
            cafe_frame_irq(cam, irqs);
      if (irqs & TWSIIRQS) {
            cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS);
            wake_up(&cam->smbus_wait);
      }
      spin_unlock(&cam->dev_lock);
      return IRQ_HANDLED;
}


/* -------------------------------------------------------------------------- */
#ifdef CONFIG_VIDEO_ADV_DEBUG
/*
 * Debugfs stuff.
 */

static char cafe_debug_buf[1024];
static struct dentry *cafe_dfs_root;

static void cafe_dfs_setup(void)
{
      cafe_dfs_root = debugfs_create_dir("cafe_ccic", NULL);
      if (IS_ERR(cafe_dfs_root)) {
            cafe_dfs_root = NULL;  /* Never mind */
            printk(KERN_NOTICE "cafe_ccic unable to set up debugfs\n");
      }
}

static void cafe_dfs_shutdown(void)
{
      if (cafe_dfs_root)
            debugfs_remove(cafe_dfs_root);
}

static int cafe_dfs_open(struct inode *inode, struct file *file)
{
      file->private_data = inode->i_private;
      return 0;
}

static ssize_t cafe_dfs_read_regs(struct file *file,
            char __user *buf, size_t count, loff_t *ppos)
{
      struct cafe_camera *cam = file->private_data;
      char *s = cafe_debug_buf;
      int offset;

      for (offset = 0; offset < 0x44; offset += 4)
            s += sprintf(s, "%02x: %08x\n", offset,
                        cafe_reg_read(cam, offset));
      for (offset = 0x88; offset <= 0x90; offset += 4)
            s += sprintf(s, "%02x: %08x\n", offset,
                        cafe_reg_read(cam, offset));
      for (offset = 0xb4; offset <= 0xbc; offset += 4)
            s += sprintf(s, "%02x: %08x\n", offset,
                        cafe_reg_read(cam, offset));
      for (offset = 0x3000; offset <= 0x300c; offset += 4)
            s += sprintf(s, "%04x: %08x\n", offset,
                        cafe_reg_read(cam, offset));
      return simple_read_from_buffer(buf, count, ppos, cafe_debug_buf,
                  s - cafe_debug_buf);
}

static const struct file_operations cafe_dfs_reg_ops = {
      .owner = THIS_MODULE,
      .read = cafe_dfs_read_regs,
      .open = cafe_dfs_open
};

static ssize_t cafe_dfs_read_cam(struct file *file,
            char __user *buf, size_t count, loff_t *ppos)
{
      struct cafe_camera *cam = file->private_data;
      char *s = cafe_debug_buf;
      int offset;

      if (! cam->sensor)
            return -EINVAL;
      for (offset = 0x0; offset < 0x8a; offset++)
      {
            u8 v;

            cafe_smbus_read_data(cam, cam->sensor->addr, offset, &v);
            s += sprintf(s, "%02x: %02x\n", offset, v);
      }
      return simple_read_from_buffer(buf, count, ppos, cafe_debug_buf,
                  s - cafe_debug_buf);
}

static const struct file_operations cafe_dfs_cam_ops = {
      .owner = THIS_MODULE,
      .read = cafe_dfs_read_cam,
      .open = cafe_dfs_open
};



static void cafe_dfs_cam_setup(struct cafe_camera *cam)
{
      char fname[40];

      if (!cafe_dfs_root)
            return;
      sprintf(fname, "regs-%d", cam->v4ldev.minor);
      cam->dfs_regs = debugfs_create_file(fname, 0444, cafe_dfs_root,
                  cam, &cafe_dfs_reg_ops);
      sprintf(fname, "cam-%d", cam->v4ldev.minor);
      cam->dfs_cam_regs = debugfs_create_file(fname, 0444, cafe_dfs_root,
                  cam, &cafe_dfs_cam_ops);
}


static void cafe_dfs_cam_shutdown(struct cafe_camera *cam)
{
      if (! IS_ERR(cam->dfs_regs))
            debugfs_remove(cam->dfs_regs);
      if (! IS_ERR(cam->dfs_cam_regs))
            debugfs_remove(cam->dfs_cam_regs);
}

#else

#define cafe_dfs_setup()
#define cafe_dfs_shutdown()
#define cafe_dfs_cam_setup(cam)
#define cafe_dfs_cam_shutdown(cam)
#endif    /* CONFIG_VIDEO_ADV_DEBUG */




/* ------------------------------------------------------------------------*/
/*
 * PCI interface stuff.
 */

static int cafe_pci_probe(struct pci_dev *pdev,
            const struct pci_device_id *id)
{
      int ret;
      u16 classword;
      struct cafe_camera *cam;
      /*
       * Make sure we have a camera here - we'll get calls for
       * the other cafe devices as well.
       */
      pci_read_config_word(pdev, PCI_CLASS_DEVICE, &classword);
      if (classword != PCI_CLASS_MULTIMEDIA_VIDEO)
            return -ENODEV;
      /*
       * Start putting together one of our big camera structures.
       */
      ret = -ENOMEM;
      cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
      if (cam == NULL)
            goto out;
      mutex_init(&cam->s_mutex);
      mutex_lock(&cam->s_mutex);
      spin_lock_init(&cam->dev_lock);
      cam->state = S_NOTREADY;
      cafe_set_config_needed(cam, 1);
      init_waitqueue_head(&cam->smbus_wait);
      init_waitqueue_head(&cam->iowait);
      cam->pdev = pdev;
      cam->pix_format = cafe_def_pix_format;
      INIT_LIST_HEAD(&cam->dev_list);
      INIT_LIST_HEAD(&cam->sb_avail);
      INIT_LIST_HEAD(&cam->sb_full);
      tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam);
      /*
       * Get set up on the PCI bus.
       */
      ret = pci_enable_device(pdev);
      if (ret)
            goto out_free;
      pci_set_master(pdev);

      ret = -EIO;
      cam->regs = pci_iomap(pdev, 0, 0);
      if (! cam->regs) {
            printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
            goto out_free;
      }
      ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
      if (ret)
            goto out_iounmap;
      /*
       * Initialize the controller and leave it powered up.  It will
       * stay that way until the sensor driver shows up.
       */
      cafe_ctlr_init(cam);
      cafe_ctlr_power_up(cam);
      /*
       * Set up I2C/SMBUS communications.  We have to drop the mutex here
       * because the sensor could attach in this call chain, leading to
       * unsightly deadlocks.
       */
      mutex_unlock(&cam->s_mutex);  /* attach can deadlock */
      ret = cafe_smbus_setup(cam);
      if (ret)
            goto out_freeirq;
      /*
       * Get the v4l2 setup done.
       */
      mutex_lock(&cam->s_mutex);
      cam->v4ldev = cafe_v4l_template;
      cam->v4ldev.debug = 0;
//    cam->v4ldev.debug = V4L2_DEBUG_IOCTL_ARG;
      cam->v4ldev.dev = &pdev->dev;
      ret = video_register_device(&cam->v4ldev, VFL_TYPE_GRABBER, -1);
      if (ret)
            goto out_smbus;
      /*
       * If so requested, try to get our DMA buffers now.
       */
      if (!alloc_bufs_at_read) {
            if (cafe_alloc_dma_bufs(cam, 1))
                  cam_warn(cam, "Unable to alloc DMA buffers at load"
                              " will try again later.");
      }

      cafe_dfs_cam_setup(cam);
      mutex_unlock(&cam->s_mutex);
      cafe_add_dev(cam);
      return 0;

  out_smbus:
      cafe_smbus_shutdown(cam);
  out_freeirq:
      cafe_ctlr_power_down(cam);
      free_irq(pdev->irq, cam);
  out_iounmap:
      pci_iounmap(pdev, cam->regs);
  out_free:
      kfree(cam);
  out:
      return ret;
}


/*
 * Shut down an initialized device
 */
static void cafe_shutdown(struct cafe_camera *cam)
{
/* FIXME: Make sure we take care of everything here */
      cafe_dfs_cam_shutdown(cam);
      if (cam->n_sbufs > 0)
            /* What if they are still mapped?  Shouldn't be, but... */
            cafe_free_sio_buffers(cam);
      cafe_remove_dev(cam);
      cafe_ctlr_stop_dma(cam);
      cafe_ctlr_power_down(cam);
      cafe_smbus_shutdown(cam);
      cafe_free_dma_bufs(cam);
      free_irq(cam->pdev->irq, cam);
      pci_iounmap(cam->pdev, cam->regs);
      video_unregister_device(&cam->v4ldev);
      /* kfree(cam); done in v4l_release () */
}


static void cafe_pci_remove(struct pci_dev *pdev)
{
      struct cafe_camera *cam = cafe_find_by_pdev(pdev);

      if (cam == NULL) {
            printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
            return;
      }
      mutex_lock(&cam->s_mutex);
      if (cam->users > 0)
            cam_warn(cam, "Removing a device with users!\n");
      cafe_shutdown(cam);
/* No unlock - it no longer exists */
}


#ifdef CONFIG_PM
/*
 * Basic power management.
 */
static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
      struct cafe_camera *cam = cafe_find_by_pdev(pdev);
      int ret;
      enum cafe_state cstate;

      ret = pci_save_state(pdev);
      if (ret)
            return ret;
      cstate = cam->state; /* HACK - stop_dma sets to idle */
      cafe_ctlr_stop_dma(cam);
      cafe_ctlr_power_down(cam);
      pci_disable_device(pdev);
      cam->state = cstate;
      return 0;
}


static int cafe_pci_resume(struct pci_dev *pdev)
{
      struct cafe_camera *cam = cafe_find_by_pdev(pdev);
      int ret = 0;

      ret = pci_restore_state(pdev);
      if (ret)
            return ret;
      ret = pci_enable_device(pdev);

      if (ret) {
            cam_warn(cam, "Unable to re-enable device on resume!\n");
            return ret;
      }
      cafe_ctlr_init(cam);
      cafe_ctlr_power_down(cam);

      mutex_lock(&cam->s_mutex);
      if (cam->users > 0) {
            cafe_ctlr_power_up(cam);
            __cafe_cam_reset(cam);
      }
      mutex_unlock(&cam->s_mutex);

      set_bit(CF_CONFIG_NEEDED, &cam->flags);
      if (cam->state == S_SPECREAD)
            cam->state = S_IDLE;  /* Don't bother restarting */
      else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
            ret = cafe_read_setup(cam, cam->state);
      return ret;
}

#endif  /* CONFIG_PM */


static struct pci_device_id cafe_ids[] = {
      { PCI_DEVICE(0x11ab, 0x4100) }, /* Eventual real ID */
      { PCI_DEVICE(0x11ab, 0x4102) }, /* Really eventual real ID */
      { 0, }
};

MODULE_DEVICE_TABLE(pci, cafe_ids);

static struct pci_driver cafe_pci_driver = {
      .name = "cafe1000-ccic",
      .id_table = cafe_ids,
      .probe = cafe_pci_probe,
      .remove = cafe_pci_remove,
#ifdef CONFIG_PM
      .suspend = cafe_pci_suspend,
      .resume = cafe_pci_resume,
#endif
};




static int __init cafe_init(void)
{
      int ret;

      printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
                  CAFE_VERSION);
      cafe_dfs_setup();
      ret = pci_register_driver(&cafe_pci_driver);
      if (ret) {
            printk(KERN_ERR "Unable to register cafe_ccic driver\n");
            goto out;
      }
      request_module("ov7670");  /* FIXME want something more general */
      ret = 0;

  out:
      return ret;
}


static void __exit cafe_exit(void)
{
      pci_unregister_driver(&cafe_pci_driver);
      cafe_dfs_shutdown();
}

module_init(cafe_init);
module_exit(cafe_exit);

Generated by  Doxygen 1.6.0   Back to index