Logo Search packages:      
Sourcecode: linux version File versions  Download package

cm4000_cs.c

 /*
  * A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
  *
  * cm4000_cs.c support.linux@omnikey.com
  *
  * Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
  * Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
  * Thu Nov 14 16:34:11 GMT 2002 mh   - added PPS functionality
  * Tue Nov 19 16:36:27 GMT 2002 mh   - added SUSPEND/RESUME functionailty
  * Wed Jul 28 12:55:01 CEST 2004 mh  - kernel 2.6 adjustments
  *
  * current version: 2.4.0gm4
  *
  * (C) 2000,2001,2002,2003,2004 Omnikey AG
  *
  * (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
  *   - Adhere to Kernel CodingStyle
  *   - Port to 2.6.13 "new" style PCMCIA
  *   - Check for copy_{from,to}_user return values
  *   - Use nonseekable_open()
  *   - add class interface for udev device creation
  *
  * All rights reserved. Licensed under dual BSD/GPL license.
  */

/* #define PCMCIA_DEBUG 6 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/bitrev.h>
#include <asm/uaccess.h>
#include <asm/io.h>

#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ciscode.h>
#include <pcmcia/ds.h>

#include <linux/cm4000_cs.h>

/* #define ATR_CSUM */

#ifdef PCMCIA_DEBUG
#define reader_to_dev(x)      (&handle_to_dev(x->p_dev))
static int pc_debug = PCMCIA_DEBUG;
module_param(pc_debug, int, 0600);
#define DEBUGP(n, rdr, x, args...) do {                     \
      if (pc_debug >= (n))                                  \
            dev_printk(KERN_DEBUG, reader_to_dev(rdr), "%s:" x,   \
                     __FUNCTION__ , ## args);               \
      } while (0)
#else
#define DEBUGP(n, rdr, x, args...)
#endif
static char *version = "cm4000_cs.c v2.4.0gm6 - All bugs added by Harald Welte";

#define     T_1SEC            (HZ)
#define     T_10MSEC    msecs_to_jiffies(10)
#define     T_20MSEC    msecs_to_jiffies(20)
#define     T_40MSEC    msecs_to_jiffies(40)
#define     T_50MSEC    msecs_to_jiffies(50)
#define     T_100MSEC   msecs_to_jiffies(100)
#define     T_500MSEC   msecs_to_jiffies(500)

static void cm4000_release(struct pcmcia_device *link);

static int major;       /* major number we get from the kernel */

/* note: the first state has to have number 0 always */

#define     M_FETCH_ATR 0
#define     M_TIMEOUT_WAIT    1
#define     M_READ_ATR_LEN    2
#define     M_READ_ATR  3
#define     M_ATR_PRESENT     4
#define     M_BAD_CARD  5
#define M_CARDOFF 6

#define     LOCK_IO                 0
#define     LOCK_MONITOR            1

#define IS_AUTOPPS_ACT         6
#define     IS_PROCBYTE_PRESENT      7
#define     IS_INVREV          8
#define IS_ANY_T0        9
#define     IS_ANY_T1         10
#define     IS_ATR_PRESENT          11
#define     IS_ATR_VALID            12
#define     IS_CMM_ABSENT           13
#define     IS_BAD_LENGTH           14
#define     IS_BAD_CSUM       15
#define     IS_BAD_CARD       16

#define REG_FLAGS0(x)         (x + 0)
#define REG_FLAGS1(x)         (x + 1)
#define REG_NUM_BYTES(x)      (x + 2)
#define REG_BUF_ADDR(x)       (x + 3)
#define REG_BUF_DATA(x)       (x + 4)
#define REG_NUM_SEND(x)       (x + 5)
#define REG_BAUDRATE(x)       (x + 6)
#define REG_STOPBITS(x)       (x + 7)

struct cm4000_dev {
      struct pcmcia_device *p_dev;
      dev_node_t node;        /* OS node (major,minor) */

      unsigned char atr[MAX_ATR];
      unsigned char rbuf[512];
      unsigned char sbuf[512];

      wait_queue_head_t devq;       /* when removing cardman must not be
                                 zeroed! */

      wait_queue_head_t ioq;        /* if IO is locked, wait on this Q */
      wait_queue_head_t atrq;       /* wait for ATR valid */
      wait_queue_head_t readq;      /* used by write to wake blk.read */

      /* warning: do not move this fields.
       * initialising to zero depends on it - see ZERO_DEV below.  */
      unsigned char atr_csum;
      unsigned char atr_len_retry;
      unsigned short atr_len;
      unsigned short rlen;    /* bytes avail. after write */
      unsigned short rpos;    /* latest read pos. write zeroes */
      unsigned char procbyte; /* T=0 procedure byte */
      unsigned char mstate;   /* state of card monitor */
      unsigned char cwarn;    /* slow down warning */
      unsigned char flags0;   /* cardman IO-flags 0 */
      unsigned char flags1;   /* cardman IO-flags 1 */
      unsigned int mdelay;    /* variable monitor speeds, in jiffies */

      unsigned int baudv;     /* baud value for speed */
      unsigned char ta1;
      unsigned char proto;    /* T=0, T=1, ... */
      unsigned long flags;    /* lock+flags (MONITOR,IO,ATR) * for concurrent
                           access */

      unsigned char pts[4];

      struct timer_list timer;      /* used to keep monitor running */
      int monitor_running;
};

#define     ZERO_DEV(dev)                                   \
      memset(&dev->atr_csum,0,                        \
            sizeof(struct cm4000_dev) -               \
            offsetof(struct cm4000_dev, atr_csum))

static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
static struct class *cmm_class;

/* This table doesn't use spaces after the comma between fields and thus
 * violates CodingStyle.  However, I don't really think wrapping it around will
 * make it any clearer to read -HW */
static unsigned char fi_di_table[10][14] = {
/*FI     00   01   02   03   04   05   06   07   08   09   10   11   12   13 */
/*DI */
/* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
/* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
/* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
/* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
/* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
/* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
/* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
/* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
/* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
/* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
};

#ifndef PCMCIA_DEBUG
#define     xoutb outb
#define     xinb  inb
#else
static inline void xoutb(unsigned char val, unsigned short port)
{
      if (pc_debug >= 7)
            printk(KERN_DEBUG "outb(val=%.2x,port=%.4x)\n", val, port);
      outb(val, port);
}
static inline unsigned char xinb(unsigned short port)
{
      unsigned char val;

      val = inb(port);
      if (pc_debug >= 7)
            printk(KERN_DEBUG "%.2x=inb(%.4x)\n", val, port);

      return val;
}
#endif

static inline unsigned char invert_revert(unsigned char ch)
{
      return bitrev8(~ch);
}

static void str_invert_revert(unsigned char *b, int len)
{
      int i;

      for (i = 0; i < len; i++)
            b[i] = invert_revert(b[i]);
}

#define     ATRLENCK(dev,pos) \
      if (pos>=dev->atr_len || pos>=MAX_ATR) \
            goto return_0;

static unsigned int calc_baudv(unsigned char fidi)
{
      unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;

      fi_rfu = 372;
      di_rfu = 1;

      /* FI */
      switch ((fidi >> 4) & 0x0F) {
      case 0x00:
            wcrcf = 372;
            break;
      case 0x01:
            wcrcf = 372;
            break;
      case 0x02:
            wcrcf = 558;
            break;
      case 0x03:
            wcrcf = 744;
            break;
      case 0x04:
            wcrcf = 1116;
            break;
      case 0x05:
            wcrcf = 1488;
            break;
      case 0x06:
            wcrcf = 1860;
            break;
      case 0x07:
            wcrcf = fi_rfu;
            break;
      case 0x08:
            wcrcf = fi_rfu;
            break;
      case 0x09:
            wcrcf = 512;
            break;
      case 0x0A:
            wcrcf = 768;
            break;
      case 0x0B:
            wcrcf = 1024;
            break;
      case 0x0C:
            wcrcf = 1536;
            break;
      case 0x0D:
            wcrcf = 2048;
            break;
      default:
            wcrcf = fi_rfu;
            break;
      }

      /* DI */
      switch (fidi & 0x0F) {
      case 0x00:
            wbrcf = di_rfu;
            break;
      case 0x01:
            wbrcf = 1;
            break;
      case 0x02:
            wbrcf = 2;
            break;
      case 0x03:
            wbrcf = 4;
            break;
      case 0x04:
            wbrcf = 8;
            break;
      case 0x05:
            wbrcf = 16;
            break;
      case 0x06:
            wbrcf = 32;
            break;
      case 0x07:
            wbrcf = di_rfu;
            break;
      case 0x08:
            wbrcf = 12;
            break;
      case 0x09:
            wbrcf = 20;
            break;
      default:
            wbrcf = di_rfu;
            break;
      }

      return (wcrcf / wbrcf);
}

static unsigned short io_read_num_rec_bytes(ioaddr_t iobase, unsigned short *s)
{
      unsigned short tmp;

      tmp = *s = 0;
      do {
            *s = tmp;
            tmp = inb(REG_NUM_BYTES(iobase)) |
                        (inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
      } while (tmp != *s);

      return *s;
}

static int parse_atr(struct cm4000_dev *dev)
{
      unsigned char any_t1, any_t0;
      unsigned char ch, ifno;
      int ix, done;

      DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);

      if (dev->atr_len < 3) {
            DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
            return 0;
      }

      if (dev->atr[0] == 0x3f)
            set_bit(IS_INVREV, &dev->flags);
      else
            clear_bit(IS_INVREV, &dev->flags);
      ix = 1;
      ifno = 1;
      ch = dev->atr[1];
      dev->proto = 0;         /* XXX PROTO */
      any_t1 = any_t0 = done = 0;
      dev->ta1 = 0x11;  /* defaults to 9600 baud */
      do {
            if (ifno == 1 && (ch & 0x10)) {
                  /* read first interface byte and TA1 is present */
                  dev->ta1 = dev->atr[2];
                  DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
                  ifno++;
            } else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
                  dev->ta1 = 0x11;
                  ifno++;
            }

            DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
            ix += ((ch & 0x10) >> 4)      /* no of int.face chars */
                +((ch & 0x20) >> 5)
                + ((ch & 0x40) >> 6)
                + ((ch & 0x80) >> 7);
            /* ATRLENCK(dev,ix); */
            if (ch & 0x80) {  /* TDi */
                  ch = dev->atr[ix];
                  if ((ch & 0x0f)) {
                        any_t1 = 1;
                        DEBUGP(5, dev, "card is capable of T=1\n");
                  } else {
                        any_t0 = 1;
                        DEBUGP(5, dev, "card is capable of T=0\n");
                  }
            } else
                  done = 1;
      } while (!done);

      DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
            ix, dev->atr[1] & 15, any_t1);
      if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
            DEBUGP(5, dev, "length error\n");
            return 0;
      }
      if (any_t0)
            set_bit(IS_ANY_T0, &dev->flags);

      if (any_t1) {           /* compute csum */
            dev->atr_csum = 0;
#ifdef ATR_CSUM
            for (i = 1; i < dev->atr_len; i++)
                  dev->atr_csum ^= dev->atr[i];
            if (dev->atr_csum) {
                  set_bit(IS_BAD_CSUM, &dev->flags);
                  DEBUGP(5, dev, "bad checksum\n");
                  goto return_0;
            }
#endif
            if (any_t0 == 0)
                  dev->proto = 1;   /* XXX PROTO */
            set_bit(IS_ANY_T1, &dev->flags);
      }

      return 1;
}

struct card_fixup {
      char atr[12];
      u_int8_t atr_len;
      u_int8_t stopbits;
};

static struct card_fixup card_fixups[] = {
      {     /* ACOS */
            .atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
            .atr_len = 7,
            .stopbits = 0x03,
      },
      {     /* Motorola */
            .atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
                  0x41, 0x81, 0x81 },
            .atr_len = 11,
            .stopbits = 0x04,
      },
};

static void set_cardparameter(struct cm4000_dev *dev)
{
      int i;
      ioaddr_t iobase = dev->p_dev->io.BasePort1;
      u_int8_t stopbits = 0x02; /* ISO default */

      DEBUGP(3, dev, "-> set_cardparameter\n");

      dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
      xoutb(dev->flags1, REG_FLAGS1(iobase));
      DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);

      /* set baudrate */
      xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));

      DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
            ((dev->baudv - 1) & 0xFF));

      /* set stopbits */
      for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
            if (!memcmp(dev->atr, card_fixups[i].atr,
                      card_fixups[i].atr_len))
                  stopbits = card_fixups[i].stopbits;
      }
      xoutb(stopbits, REG_STOPBITS(iobase));

      DEBUGP(3, dev, "<- set_cardparameter\n");
}

static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
{

      unsigned long tmp, i;
      unsigned short num_bytes_read;
      unsigned char pts_reply[4];
      ssize_t rc;
      ioaddr_t iobase = dev->p_dev->io.BasePort1;

      rc = 0;

      DEBUGP(3, dev, "-> set_protocol\n");
      DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
             "ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
             "ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
             (unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
             ptsreq->pts3);

      /* Fill PTS structure */
      dev->pts[0] = 0xff;
      dev->pts[1] = 0x00;
      tmp = ptsreq->protocol;
      while ((tmp = (tmp >> 1)) > 0)
            dev->pts[1]++;
      dev->proto = dev->pts[1];     /* Set new protocol */
      dev->pts[1] = (0x01 << 4) | (dev->pts[1]);

      /* Correct Fi/Di according to CM4000 Fi/Di table */
      DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
      /* set Fi/Di according to ATR TA(1) */
      dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];

      /* Calculate PCK character */
      dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];

      DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
             dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);

      /* check card convention */
      if (test_bit(IS_INVREV, &dev->flags))
            str_invert_revert(dev->pts, 4);

      /* reset SM */
      xoutb(0x80, REG_FLAGS0(iobase));

      /* Enable access to the message buffer */
      DEBUGP(5, dev, "Enable access to the messages buffer\n");
      dev->flags1 = 0x20      /* T_Active */
          | (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
          | ((dev->baudv >> 8) & 0x01);   /* MSB-baud */
      xoutb(dev->flags1, REG_FLAGS1(iobase));

      DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
             dev->flags1);

      /* write challenge to the buffer */
      DEBUGP(5, dev, "Write challenge to buffer: ");
      for (i = 0; i < 4; i++) {
            xoutb(i, REG_BUF_ADDR(iobase));
            xoutb(dev->pts[i], REG_BUF_DATA(iobase)); /* buf data */
#ifdef PCMCIA_DEBUG
            if (pc_debug >= 5)
                  printk("0x%.2x ", dev->pts[i]);
      }
      if (pc_debug >= 5)
            printk("\n");
#else
      }
#endif

      /* set number of bytes to write */
      DEBUGP(5, dev, "Set number of bytes to write\n");
      xoutb(0x04, REG_NUM_SEND(iobase));

      /* Trigger CARDMAN CONTROLLER */
      xoutb(0x50, REG_FLAGS0(iobase));

      /* Monitor progress */
      /* wait for xmit done */
      DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");

      for (i = 0; i < 100; i++) {
            if (inb(REG_FLAGS0(iobase)) & 0x08) {
                  DEBUGP(5, dev, "NumRecBytes is valid\n");
                  break;
            }
            mdelay(10);
      }
      if (i == 100) {
            DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
                   "valid\n");
            rc = -EIO;
            goto exit_setprotocol;
      }

      DEBUGP(5, dev, "Reading NumRecBytes\n");
      for (i = 0; i < 100; i++) {
            io_read_num_rec_bytes(iobase, &num_bytes_read);
            if (num_bytes_read >= 4) {
                  DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
                  break;
            }
            mdelay(10);
      }

      /* check whether it is a short PTS reply? */
      if (num_bytes_read == 3)
            i = 0;

      if (i == 100) {
            DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
            rc = -EIO;
            goto exit_setprotocol;
      }

      DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
      xoutb(0x80, REG_FLAGS0(iobase));

      /* Read PPS reply */
      DEBUGP(5, dev, "Read PPS reply\n");
      for (i = 0; i < num_bytes_read; i++) {
            xoutb(i, REG_BUF_ADDR(iobase));
            pts_reply[i] = inb(REG_BUF_DATA(iobase));
      }

#ifdef PCMCIA_DEBUG
      DEBUGP(2, dev, "PTSreply: ");
      for (i = 0; i < num_bytes_read; i++) {
            if (pc_debug >= 5)
                  printk("0x%.2x ", pts_reply[i]);
      }
      printk("\n");
#endif      /* PCMCIA_DEBUG */

      DEBUGP(5, dev, "Clear Tactive in Flags1\n");
      xoutb(0x20, REG_FLAGS1(iobase));

      /* Compare ptsreq and ptsreply */
      if ((dev->pts[0] == pts_reply[0]) &&
          (dev->pts[1] == pts_reply[1]) &&
          (dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
            /* setcardparameter according to PPS */
            dev->baudv = calc_baudv(dev->pts[2]);
            set_cardparameter(dev);
      } else if ((dev->pts[0] == pts_reply[0]) &&
               ((dev->pts[1] & 0xef) == pts_reply[1]) &&
               ((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
            /* short PTS reply, set card parameter to default values */
            dev->baudv = calc_baudv(0x11);
            set_cardparameter(dev);
      } else
            rc = -EIO;

exit_setprotocol:
      DEBUGP(3, dev, "<- set_protocol\n");
      return rc;
}

static int io_detect_cm4000(ioaddr_t iobase, struct cm4000_dev *dev)
{

      /* note: statemachine is assumed to be reset */
      if (inb(REG_FLAGS0(iobase)) & 8) {
            clear_bit(IS_ATR_VALID, &dev->flags);
            set_bit(IS_CMM_ABSENT, &dev->flags);
            return 0;   /* detect CMM = 1 -> failure */
      }
      /* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
      xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
      if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
            clear_bit(IS_ATR_VALID, &dev->flags);
            set_bit(IS_CMM_ABSENT, &dev->flags);
            return 0;   /* detect CMM=0 -> failure */
      }
      /* clear detectCMM again by restoring original flags1 */
      xoutb(dev->flags1, REG_FLAGS1(iobase));
      return 1;
}

static void terminate_monitor(struct cm4000_dev *dev)
{

      /* tell the monitor to stop and wait until
       * it terminates.
       */
      DEBUGP(3, dev, "-> terminate_monitor\n");
      wait_event_interruptible(dev->devq,
                         test_and_set_bit(LOCK_MONITOR,
                                      (void *)&dev->flags));

      /* now, LOCK_MONITOR has been set.
       * allow a last cycle in the monitor.
       * the monitor will indicate that it has
       * finished by clearing this bit.
       */
      DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
      while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
            msleep(25);

      DEBUGP(5, dev, "Delete timer\n");
      del_timer_sync(&dev->timer);
#ifdef PCMCIA_DEBUG
      dev->monitor_running = 0;
#endif

      DEBUGP(3, dev, "<- terminate_monitor\n");
}

/*
 * monitor the card every 50msec. as a side-effect, retrieve the
 * atr once a card is inserted. another side-effect of retrieving the
 * atr is that the card will be powered on, so there is no need to
 * power on the card explictely from the application: the driver
 * is already doing that for you.
 */

static void monitor_card(unsigned long p)
{
      struct cm4000_dev *dev = (struct cm4000_dev *) p;
      ioaddr_t iobase = dev->p_dev->io.BasePort1;
      unsigned short s;
      struct ptsreq ptsreq;
      int i, atrc;

      DEBUGP(7, dev, "->  monitor_card\n");

      /* if someone has set the lock for us: we're done! */
      if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
            DEBUGP(4, dev, "About to stop monitor\n");
            /* no */
            dev->rlen =
                dev->rpos =
                dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
            dev->mstate = M_FETCH_ATR;
            clear_bit(LOCK_MONITOR, &dev->flags);
            /* close et al. are sleeping on devq, so wake it */
            wake_up_interruptible(&dev->devq);
            DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
            return;
      }

      /* try to lock io: if it is already locked, just add another timer */
      if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
            DEBUGP(4, dev, "Couldn't get IO lock\n");
            goto return_with_timer;
      }

      /* is a card/a reader inserted at all ? */
      dev->flags0 = xinb(REG_FLAGS0(iobase));
      DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
      DEBUGP(7, dev, "smartcard present: %s\n",
             dev->flags0 & 1 ? "yes" : "no");
      DEBUGP(7, dev, "cardman present: %s\n",
             dev->flags0 == 0xff ? "no" : "yes");

      if ((dev->flags0 & 1) == 0    /* no smartcard inserted */
          || dev->flags0 == 0xff) { /* no cardman inserted */
            /* no */
            dev->rlen =
                dev->rpos =
                dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
            dev->mstate = M_FETCH_ATR;

            dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */

            if (dev->flags0 == 0xff) {
                  DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
                  set_bit(IS_CMM_ABSENT, &dev->flags);
            } else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
                  DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
                         "(card is removed)\n");
                  clear_bit(IS_CMM_ABSENT, &dev->flags);
            }

            goto release_io;
      } else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
            /* cardman and card present but cardman was absent before
             * (after suspend with inserted card) */
            DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
            clear_bit(IS_CMM_ABSENT, &dev->flags);
      }

      if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
            DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
            goto release_io;
      }

      switch (dev->mstate) {
            unsigned char flags0;
      case M_CARDOFF:
            DEBUGP(4, dev, "M_CARDOFF\n");
            flags0 = inb(REG_FLAGS0(iobase));
            if (flags0 & 0x02) {
                  /* wait until Flags0 indicate power is off */
                  dev->mdelay = T_10MSEC;
            } else {
                  /* Flags0 indicate power off and no card inserted now;
                   * Reset CARDMAN CONTROLLER */
                  xoutb(0x80, REG_FLAGS0(iobase));

                  /* prepare for fetching ATR again: after card off ATR
                   * is read again automatically */
                  dev->rlen =
                      dev->rpos =
                      dev->atr_csum =
                      dev->atr_len_retry = dev->cwarn = 0;
                  dev->mstate = M_FETCH_ATR;

                  /* minimal gap between CARDOFF and read ATR is 50msec */
                  dev->mdelay = T_50MSEC;
            }
            break;
      case M_FETCH_ATR:
            DEBUGP(4, dev, "M_FETCH_ATR\n");
            xoutb(0x80, REG_FLAGS0(iobase));
            DEBUGP(4, dev, "Reset BAUDV to 9600\n");
            dev->baudv = 0x173;     /* 9600 */
            xoutb(0x02, REG_STOPBITS(iobase));  /* stopbits=2 */
            xoutb(0x73, REG_BAUDRATE(iobase));  /* baud value */
            xoutb(0x21, REG_FLAGS1(iobase));    /* T_Active=1, baud
                                             value */
            /* warm start vs. power on: */
            xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
            dev->mdelay = T_40MSEC;
            dev->mstate = M_TIMEOUT_WAIT;
            break;
      case M_TIMEOUT_WAIT:
            DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
            /* numRecBytes */
            io_read_num_rec_bytes(iobase, &dev->atr_len);
            dev->mdelay = T_10MSEC;
            dev->mstate = M_READ_ATR_LEN;
            break;
      case M_READ_ATR_LEN:
            DEBUGP(4, dev, "M_READ_ATR_LEN\n");
            /* infinite loop possible, since there is no timeout */

#define     MAX_ATR_LEN_RETRY 100

            if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
                  if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) {                              /* + XX msec */
                        dev->mdelay = T_10MSEC;
                        dev->mstate = M_READ_ATR;
                  }
            } else {
                  dev->atr_len = s;
                  dev->atr_len_retry = 0; /* set new timeout */
            }

            DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
            break;
      case M_READ_ATR:
            DEBUGP(4, dev, "M_READ_ATR\n");
            xoutb(0x80, REG_FLAGS0(iobase));    /* reset SM */
            for (i = 0; i < dev->atr_len; i++) {
                  xoutb(i, REG_BUF_ADDR(iobase));
                  dev->atr[i] = inb(REG_BUF_DATA(iobase));
            }
            /* Deactivate T_Active flags */
            DEBUGP(4, dev, "Deactivate T_Active flags\n");
            dev->flags1 = 0x01;
            xoutb(dev->flags1, REG_FLAGS1(iobase));

            /* atr is present (which doesnt mean it's valid) */
            set_bit(IS_ATR_PRESENT, &dev->flags);
            if (dev->atr[0] == 0x03)
                  str_invert_revert(dev->atr, dev->atr_len);
            atrc = parse_atr(dev);
            if (atrc == 0) {  /* atr invalid */
                  dev->mdelay = 0;
                  dev->mstate = M_BAD_CARD;
            } else {
                  dev->mdelay = T_50MSEC;
                  dev->mstate = M_ATR_PRESENT;
                  set_bit(IS_ATR_VALID, &dev->flags);
            }

            if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
                  DEBUGP(4, dev, "monitor_card: ATR valid\n");
                  /* if ta1 == 0x11, no PPS necessary (default values) */
                  /* do not do PPS with multi protocol cards */
                  if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
                      (dev->ta1 != 0x11) &&
                      !(test_bit(IS_ANY_T0, &dev->flags) &&
                      test_bit(IS_ANY_T1, &dev->flags))) {
                        DEBUGP(4, dev, "Perform AUTOPPS\n");
                        set_bit(IS_AUTOPPS_ACT, &dev->flags);
                        ptsreq.protocol = ptsreq.protocol =
                            (0x01 << dev->proto);
                        ptsreq.flags = 0x01;
                        ptsreq.pts1 = 0x00;
                        ptsreq.pts2 = 0x00;
                        ptsreq.pts3 = 0x00;
                        if (set_protocol(dev, &ptsreq) == 0) {
                              DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
                              clear_bit(IS_AUTOPPS_ACT, &dev->flags);
                              wake_up_interruptible(&dev->atrq);
                        } else {
                              DEBUGP(4, dev, "AUTOPPS failed: "
                                     "repower using defaults\n");
                              /* prepare for repowering  */
                              clear_bit(IS_ATR_PRESENT, &dev->flags);
                              clear_bit(IS_ATR_VALID, &dev->flags);
                              dev->rlen =
                                  dev->rpos =
                                  dev->atr_csum =
                                  dev->atr_len_retry = dev->cwarn = 0;
                              dev->mstate = M_FETCH_ATR;

                              dev->mdelay = T_50MSEC;
                        }
                  } else {
                        /* for cards which use slightly different
                         * params (extra guard time) */
                        set_cardparameter(dev);
                        if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
                              DEBUGP(4, dev, "AUTOPPS already active "
                                     "2nd try:use default values\n");
                        if (dev->ta1 == 0x11)
                              DEBUGP(4, dev, "No AUTOPPS necessary "
                                     "TA(1)==0x11\n");
                        if (test_bit(IS_ANY_T0, &dev->flags)
                            && test_bit(IS_ANY_T1, &dev->flags))
                              DEBUGP(4, dev, "Do NOT perform AUTOPPS "
                                     "with multiprotocol cards\n");
                        clear_bit(IS_AUTOPPS_ACT, &dev->flags);
                        wake_up_interruptible(&dev->atrq);
                  }
            } else {
                  DEBUGP(4, dev, "ATR invalid\n");
                  wake_up_interruptible(&dev->atrq);
            }
            break;
      case M_BAD_CARD:
            DEBUGP(4, dev, "M_BAD_CARD\n");
            /* slow down warning, but prompt immediately after insertion */
            if (dev->cwarn == 0 || dev->cwarn == 10) {
                  set_bit(IS_BAD_CARD, &dev->flags);
                  printk(KERN_WARNING MODULE_NAME ": device %s: ",
                         dev->node.dev_name);
                  if (test_bit(IS_BAD_CSUM, &dev->flags)) {
                        DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
                               "be zero) failed\n", dev->atr_csum);
                  }
#ifdef PCMCIA_DEBUG
                  else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
                        DEBUGP(4, dev, "ATR length error\n");
                  } else {
                        DEBUGP(4, dev, "card damaged or wrong way "
                              "inserted\n");
                  }
#endif
                  dev->cwarn = 0;
                  wake_up_interruptible(&dev->atrq);  /* wake open */
            }
            dev->cwarn++;
            dev->mdelay = T_100MSEC;
            dev->mstate = M_FETCH_ATR;
            break;
      default:
            DEBUGP(7, dev, "Unknown action\n");
            break;            /* nothing */
      }

release_io:
      DEBUGP(7, dev, "release_io\n");
      clear_bit(LOCK_IO, &dev->flags);
      wake_up_interruptible(&dev->ioq);   /* whoever needs IO */

return_with_timer:
      DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
      mod_timer(&dev->timer, jiffies + dev->mdelay);
      clear_bit(LOCK_MONITOR, &dev->flags);
}

/* Interface to userland (file_operations) */

static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
                  loff_t *ppos)
{
      struct cm4000_dev *dev = filp->private_data;
      ioaddr_t iobase = dev->p_dev->io.BasePort1;
      ssize_t rc;
      int i, j, k;

      DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);

      if (count == 0)         /* according to manpage */
            return 0;

      if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
          test_bit(IS_CMM_ABSENT, &dev->flags))
            return -ENODEV;

      if (test_bit(IS_BAD_CSUM, &dev->flags))
            return -EIO;

      /* also see the note about this in cmm_write */
      if (wait_event_interruptible
          (dev->atrq,
           ((filp->f_flags & O_NONBLOCK)
            || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
            if (filp->f_flags & O_NONBLOCK)
                  return -EAGAIN;
            return -ERESTARTSYS;
      }

      if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
            return -EIO;

      /* this one implements blocking IO */
      if (wait_event_interruptible
          (dev->readq,
           ((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
            if (filp->f_flags & O_NONBLOCK)
                  return -EAGAIN;
            return -ERESTARTSYS;
      }

      /* lock io */
      if (wait_event_interruptible
          (dev->ioq,
           ((filp->f_flags & O_NONBLOCK)
            || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
            if (filp->f_flags & O_NONBLOCK)
                  return -EAGAIN;
            return -ERESTARTSYS;
      }

      rc = 0;
      dev->flags0 = inb(REG_FLAGS0(iobase));
      if ((dev->flags0 & 1) == 0    /* no smartcard inserted */
          || dev->flags0 == 0xff) { /* no cardman inserted */
            clear_bit(IS_ATR_VALID, &dev->flags);
            if (dev->flags0 & 1) {
                  set_bit(IS_CMM_ABSENT, &dev->flags);
                  rc = -ENODEV;
            }
            rc = -EIO;
            goto release_io;
      }

      DEBUGP(4, dev, "begin read answer\n");
      j = min(count, (size_t)(dev->rlen - dev->rpos));
      k = dev->rpos;
      if (k + j > 255)
            j = 256 - k;
      DEBUGP(4, dev, "read1 j=%d\n", j);
      for (i = 0; i < j; i++) {
            xoutb(k++, REG_BUF_ADDR(iobase));
            dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
      }
      j = min(count, (size_t)(dev->rlen - dev->rpos));
      if (k + j > 255) {
            DEBUGP(4, dev, "read2 j=%d\n", j);
            dev->flags1 |= 0x10;    /* MSB buf addr set */
            xoutb(dev->flags1, REG_FLAGS1(iobase));
            for (; i < j; i++) {
                  xoutb(k++, REG_BUF_ADDR(iobase));
                  dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
            }
      }

      if (dev->proto == 0 && count > dev->rlen - dev->rpos) {
            DEBUGP(4, dev, "T=0 and count > buffer\n");
            dev->rbuf[i] = dev->rbuf[i - 1];
            dev->rbuf[i - 1] = dev->procbyte;
            j++;
      }
      count = j;

      dev->rpos = dev->rlen + 1;

      /* Clear T1Active */
      DEBUGP(4, dev, "Clear T1Active\n");
      dev->flags1 &= 0xdf;
      xoutb(dev->flags1, REG_FLAGS1(iobase));

      xoutb(0, REG_FLAGS1(iobase)); /* clear detectCMM */
      /* last check before exit */
      if (!io_detect_cm4000(iobase, dev))
            count = -ENODEV;

      if (test_bit(IS_INVREV, &dev->flags) && count > 0)
            str_invert_revert(dev->rbuf, count);

      if (copy_to_user(buf, dev->rbuf, count))
            return -EFAULT;

release_io:
      clear_bit(LOCK_IO, &dev->flags);
      wake_up_interruptible(&dev->ioq);

      DEBUGP(2, dev, "<- cmm_read returns: rc = %Zi\n",
             (rc < 0 ? rc : count));
      return rc < 0 ? rc : count;
}

static ssize_t cmm_write(struct file *filp, const char __user *buf,
                   size_t count, loff_t *ppos)
{
      struct cm4000_dev *dev = (struct cm4000_dev *) filp->private_data;
      ioaddr_t iobase = dev->p_dev->io.BasePort1;
      unsigned short s;
      unsigned char tmp;
      unsigned char infolen;
      unsigned char sendT0;
      unsigned short nsend;
      unsigned short nr;
      ssize_t rc;
      int i;

      DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);

      if (count == 0)         /* according to manpage */
            return 0;

      if (dev->proto == 0 && count < 4) {
            /* T0 must have at least 4 bytes */
            DEBUGP(4, dev, "T0 short write\n");
            return -EIO;
      }

      nr = count & 0x1ff;     /* max bytes to write */

      sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;

      if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
          test_bit(IS_CMM_ABSENT, &dev->flags))
            return -ENODEV;

      if (test_bit(IS_BAD_CSUM, &dev->flags)) {
            DEBUGP(4, dev, "bad csum\n");
            return -EIO;
      }

      /*
       * wait for atr to become valid.
       * note: it is important to lock this code. if we dont, the monitor
       * could be run between test_bit and the call to sleep on the
       * atr-queue.  if *then* the monitor detects atr valid, it will wake up
       * any process on the atr-queue, *but* since we have been interrupted,
       * we do not yet sleep on this queue. this would result in a missed
       * wake_up and the calling process would sleep forever (until
       * interrupted).  also, do *not* restore_flags before sleep_on, because
       * this could result in the same situation!
       */
      if (wait_event_interruptible
          (dev->atrq,
           ((filp->f_flags & O_NONBLOCK)
            || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
            if (filp->f_flags & O_NONBLOCK)
                  return -EAGAIN;
            return -ERESTARTSYS;
      }

      if (test_bit(IS_ATR_VALID, &dev->flags) == 0) { /* invalid atr */
            DEBUGP(4, dev, "invalid ATR\n");
            return -EIO;
      }

      /* lock io */
      if (wait_event_interruptible
          (dev->ioq,
           ((filp->f_flags & O_NONBLOCK)
            || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
            if (filp->f_flags & O_NONBLOCK)
                  return -EAGAIN;
            return -ERESTARTSYS;
      }

      if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
            return -EFAULT;

      rc = 0;
      dev->flags0 = inb(REG_FLAGS0(iobase));
      if ((dev->flags0 & 1) == 0    /* no smartcard inserted */
          || dev->flags0 == 0xff) { /* no cardman inserted */
            clear_bit(IS_ATR_VALID, &dev->flags);
            if (dev->flags0 & 1) {
                  set_bit(IS_CMM_ABSENT, &dev->flags);
                  rc = -ENODEV;
            } else {
                  DEBUGP(4, dev, "IO error\n");
                  rc = -EIO;
            }
            goto release_io;
      }

      xoutb(0x80, REG_FLAGS0(iobase));    /* reset SM  */

      if (!io_detect_cm4000(iobase, dev)) {
            rc = -ENODEV;
            goto release_io;
      }

      /* reflect T=0 send/read mode in flags1 */
      dev->flags1 |= (sendT0);

      set_cardparameter(dev);

      /* dummy read, reset flag procedure received */
      tmp = inb(REG_FLAGS1(iobase));

      dev->flags1 = 0x20      /* T_Active */
          | (sendT0)
          | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity  */
          | (((dev->baudv - 1) & 0x0100) >> 8); /* MSB-Baud */
      DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
      xoutb(dev->flags1, REG_FLAGS1(iobase));

      /* xmit data */
      DEBUGP(4, dev, "Xmit data\n");
      for (i = 0; i < nr; i++) {
            if (i >= 256) {
                  dev->flags1 = 0x20      /* T_Active */
                      | (sendT0)    /* SendT0 */
                        /* inverse parity: */
                      | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
                      | (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
                      | 0x10; /* set address high */
                  DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
                         "high\n", dev->flags1);
                  xoutb(dev->flags1, REG_FLAGS1(iobase));
            }
            if (test_bit(IS_INVREV, &dev->flags)) {
                  DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
                        "-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
                        invert_revert(dev->sbuf[i]));
                  xoutb(i, REG_BUF_ADDR(iobase));
                  xoutb(invert_revert(dev->sbuf[i]),
                        REG_BUF_DATA(iobase));
            } else {
                  xoutb(i, REG_BUF_ADDR(iobase));
                  xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
            }
      }
      DEBUGP(4, dev, "Xmit done\n");

      if (dev->proto == 0) {
            /* T=0 proto: 0 byte reply  */
            if (nr == 4) {
                  DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
                  xoutb(i, REG_BUF_ADDR(iobase));
                  if (test_bit(IS_INVREV, &dev->flags))
                        xoutb(0xff, REG_BUF_DATA(iobase));
                  else
                        xoutb(0x00, REG_BUF_DATA(iobase));
            }

            /* numSendBytes */
            if (sendT0)
                  nsend = nr;
            else {
                  if (nr == 4)
                        nsend = 5;
                  else {
                        nsend = 5 + (unsigned char)dev->sbuf[4];
                        if (dev->sbuf[4] == 0)
                              nsend += 0x100;
                  }
            }
      } else
            nsend = nr;

      /* T0: output procedure byte */
      if (test_bit(IS_INVREV, &dev->flags)) {
            DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
                   "0x%.2x\n", invert_revert(dev->sbuf[1]));
            xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
      } else {
            DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
            xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
      }

      DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
             (unsigned char)(nsend & 0xff));
      xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));

      DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
             0x40 /* SM_Active */
            | (dev->flags0 & 2 ? 0 : 4)   /* power on if needed */
            |(dev->proto ? 0x10 : 0x08)   /* T=1/T=0 */
            |(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
      xoutb(0x40        /* SM_Active */
            | (dev->flags0 & 2 ? 0 : 4)   /* power on if needed */
            |(dev->proto ? 0x10 : 0x08)   /* T=1/T=0 */
            |(nsend & 0x100) >> 8,  /* MSB numSendBytes */
            REG_FLAGS0(iobase));

      /* wait for xmit done */
      if (dev->proto == 1) {
            DEBUGP(4, dev, "Wait for xmit done\n");
            for (i = 0; i < 1000; i++) {
                  if (inb(REG_FLAGS0(iobase)) & 0x08)
                        break;
                  msleep_interruptible(10);
            }
            if (i == 1000) {
                  DEBUGP(4, dev, "timeout waiting for xmit done\n");
                  rc = -EIO;
                  goto release_io;
            }
      }

      /* T=1: wait for infoLen */

      infolen = 0;
      if (dev->proto) {
            /* wait until infoLen is valid */
            for (i = 0; i < 6000; i++) {  /* max waiting time of 1 min */
                  io_read_num_rec_bytes(iobase, &s);
                  if (s >= 3) {
                        infolen = inb(REG_FLAGS1(iobase));
                        DEBUGP(4, dev, "infolen=%d\n", infolen);
                        break;
                  }
                  msleep_interruptible(10);
            }
            if (i == 6000) {
                  DEBUGP(4, dev, "timeout waiting for infoLen\n");
                  rc = -EIO;
                  goto release_io;
            }
      } else
            clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);

      /* numRecBytes | bit9 of numRecytes */
      io_read_num_rec_bytes(iobase, &dev->rlen);
      for (i = 0; i < 600; i++) {   /* max waiting time of 2 sec */
            if (dev->proto) {
                  if (dev->rlen >= infolen + 4)
                        break;
            }
            msleep_interruptible(10);
            /* numRecBytes | bit9 of numRecytes */
            io_read_num_rec_bytes(iobase, &s);
            if (s > dev->rlen) {
                  DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
                  i = 0;      /* reset timeout */
                  dev->rlen = s;
            }
            /* T=0: we are done when numRecBytes doesn't
             *      increment any more and NoProcedureByte
             *      is set and numRecBytes == bytes sent + 6
             *      (header bytes + data + 1 for sw2)
             *      except when the card replies an error
             *      which means, no data will be sent back.
             */
            else if (dev->proto == 0) {
                  if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
                        /* no procedure byte received since last read */
                        DEBUGP(1, dev, "NoProcedure byte set\n");
                        /* i=0; */
                  } else {
                        /* procedure byte received since last read */
                        DEBUGP(1, dev, "NoProcedure byte unset "
                              "(reset timeout)\n");
                        dev->procbyte = inb(REG_FLAGS1(iobase));
                        DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
                              dev->procbyte);
                        i = 0;      /* resettimeout */
                  }
                  if (inb(REG_FLAGS0(iobase)) & 0x08) {
                        DEBUGP(1, dev, "T0Done flag (read reply)\n");
                        break;
                  }
            }
            if (dev->proto)
                  infolen = inb(REG_FLAGS1(iobase));
      }
      if (i == 600) {
            DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
            rc = -EIO;
            goto release_io;
      } else {
            if (dev->proto == 0) {
                  DEBUGP(1, dev, "Wait for T0Done bit to be  set\n");
                  for (i = 0; i < 1000; i++) {
                        if (inb(REG_FLAGS0(iobase)) & 0x08)
                              break;
                        msleep_interruptible(10);
                  }
                  if (i == 1000) {
                        DEBUGP(1, dev, "timeout waiting for T0Done\n");
                        rc = -EIO;
                        goto release_io;
                  }

                  dev->procbyte = inb(REG_FLAGS1(iobase));
                  DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
                        dev->procbyte);

                  io_read_num_rec_bytes(iobase, &dev->rlen);
                  DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);

            }
      }
      /* T=1: read offset=zero, T=0: read offset=after challenge */
      dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
      DEBUGP(4, dev, "dev->rlen = %i,  dev->rpos = %i, nr = %i\n",
            dev->rlen, dev->rpos, nr);

release_io:
      DEBUGP(4, dev, "Reset SM\n");
      xoutb(0x80, REG_FLAGS0(iobase));    /* reset SM */

      if (rc < 0) {
            DEBUGP(4, dev, "Write failed but clear T_Active\n");
            dev->flags1 &= 0xdf;
            xoutb(dev->flags1, REG_FLAGS1(iobase));
      }

      clear_bit(LOCK_IO, &dev->flags);
      wake_up_interruptible(&dev->ioq);
      wake_up_interruptible(&dev->readq); /* tell read we have data */

      /* ITSEC E2: clear write buffer */
      memset((char *)dev->sbuf, 0, 512);

      /* return error or actually written bytes */
      DEBUGP(2, dev, "<- cmm_write\n");
      return rc < 0 ? rc : nr;
}

static void start_monitor(struct cm4000_dev *dev)
{
      DEBUGP(3, dev, "-> start_monitor\n");
      if (!dev->monitor_running) {
            DEBUGP(5, dev, "create, init and add timer\n");
            setup_timer(&dev->timer, monitor_card, (unsigned long)dev);
            dev->monitor_running = 1;
            mod_timer(&dev->timer, jiffies);
      } else
            DEBUGP(5, dev, "monitor already running\n");
      DEBUGP(3, dev, "<- start_monitor\n");
}

static void stop_monitor(struct cm4000_dev *dev)
{
      DEBUGP(3, dev, "-> stop_monitor\n");
      if (dev->monitor_running) {
            DEBUGP(5, dev, "stopping monitor\n");
            terminate_monitor(dev);
            /* reset monitor SM */
            clear_bit(IS_ATR_VALID, &dev->flags);
            clear_bit(IS_ATR_PRESENT, &dev->flags);
      } else
            DEBUGP(5, dev, "monitor already stopped\n");
      DEBUGP(3, dev, "<- stop_monitor\n");
}

static int cmm_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
                 unsigned long arg)
{
      struct cm4000_dev *dev = filp->private_data;
      ioaddr_t iobase = dev->p_dev->io.BasePort1;
      struct pcmcia_device *link;
      int size;
      int rc;
      void __user *argp = (void __user *)arg;
#ifdef PCMCIA_DEBUG
      char *ioctl_names[CM_IOC_MAXNR + 1] = {
            [_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
            [_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
            [_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
            [_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
            [_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
      };
#endif
      DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
             iminor(inode), ioctl_names[_IOC_NR(cmd)]);

      link = dev_table[iminor(inode)];
      if (!pcmcia_dev_present(link)) {
            DEBUGP(4, dev, "DEV_OK false\n");
            return -ENODEV;
      }

      if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
            DEBUGP(4, dev, "CMM_ABSENT flag set\n");
            return -ENODEV;
      }

      if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
            DEBUGP(4, dev, "ioctype mismatch\n");
            return -EINVAL;
      }
      if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
            DEBUGP(4, dev, "iocnr mismatch\n");
            return -EINVAL;
      }
      size = _IOC_SIZE(cmd);
      rc = 0;
      DEBUGP(4, dev, "iocdir=%.4x iocr=%.4x iocw=%.4x iocsize=%d cmd=%.4x\n",
            _IOC_DIR(cmd), _IOC_READ, _IOC_WRITE, size, cmd);

      if (_IOC_DIR(cmd) & _IOC_READ) {
            if (!access_ok(VERIFY_WRITE, argp, size))
                  return -EFAULT;
      }
      if (_IOC_DIR(cmd) & _IOC_WRITE) {
            if (!access_ok(VERIFY_READ, argp, size))
                  return -EFAULT;
      }

      switch (cmd) {
      case CM_IOCGSTATUS:
            DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
            {
                  int status;

                  /* clear other bits, but leave inserted & powered as
                   * they are */
                  status = dev->flags0 & 3;
                  if (test_bit(IS_ATR_PRESENT, &dev->flags))
                        status |= CM_ATR_PRESENT;
                  if (test_bit(IS_ATR_VALID, &dev->flags))
                        status |= CM_ATR_VALID;
                  if (test_bit(IS_CMM_ABSENT, &dev->flags))
                        status |= CM_NO_READER;
                  if (test_bit(IS_BAD_CARD, &dev->flags))
                        status |= CM_BAD_CARD;
                  if (copy_to_user(argp, &status, sizeof(int)))
                        return -EFAULT;
            }
            return 0;
      case CM_IOCGATR:
            DEBUGP(4, dev, "... in CM_IOCGATR\n");
            {
                  struct atreq __user *atreq = argp;
                  int tmp;
                  /* allow nonblocking io and being interrupted */
                  if (wait_event_interruptible
                      (dev->atrq,
                       ((filp->f_flags & O_NONBLOCK)
                        || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
                          != 0)))) {
                        if (filp->f_flags & O_NONBLOCK)
                              return -EAGAIN;
                        return -ERESTARTSYS;
                  }

                  if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
                        tmp = -1;
                        if (copy_to_user(&(atreq->atr_len), &tmp,
                                     sizeof(int)))
                              return -EFAULT;
                  } else {
                        if (copy_to_user(atreq->atr, dev->atr,
                                     dev->atr_len))
                              return -EFAULT;

                        tmp = dev->atr_len;
                        if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
                              return -EFAULT;
                  }
                  return 0;
            }
      case CM_IOCARDOFF:

#ifdef PCMCIA_DEBUG
            DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
            if (dev->flags0 & 0x01) {
                  DEBUGP(4, dev, "    Card inserted\n");
            } else {
                  DEBUGP(2, dev, "    No card inserted\n");
            }
            if (dev->flags0 & 0x02) {
                  DEBUGP(4, dev, "    Card powered\n");
            } else {
                  DEBUGP(2, dev, "    Card not powered\n");
            }
#endif

            /* is a card inserted and powered? */
            if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {

                  /* get IO lock */
                  if (wait_event_interruptible
                      (dev->ioq,
                       ((filp->f_flags & O_NONBLOCK)
                        || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
                          == 0)))) {
                        if (filp->f_flags & O_NONBLOCK)
                              return -EAGAIN;
                        return -ERESTARTSYS;
                  }
                  /* Set Flags0 = 0x42 */
                  DEBUGP(4, dev, "Set Flags0=0x42 \n");
                  xoutb(0x42, REG_FLAGS0(iobase));
                  clear_bit(IS_ATR_PRESENT, &dev->flags);
                  clear_bit(IS_ATR_VALID, &dev->flags);
                  dev->mstate = M_CARDOFF;
                  clear_bit(LOCK_IO, &dev->flags);
                  if (wait_event_interruptible
                      (dev->atrq,
                       ((filp->f_flags & O_NONBLOCK)
                        || (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
                          0)))) {
                        if (filp->f_flags & O_NONBLOCK)
                              return -EAGAIN;
                        return -ERESTARTSYS;
                  }
            }
            /* release lock */
            clear_bit(LOCK_IO, &dev->flags);
            wake_up_interruptible(&dev->ioq);

            return 0;
      case CM_IOCSPTS:
            {
                  struct ptsreq krnptsreq;

                  if (copy_from_user(&krnptsreq, argp,
                                 sizeof(struct ptsreq)))
                        return -EFAULT;

                  rc = 0;
                  DEBUGP(4, dev, "... in CM_IOCSPTS\n");
                  /* wait for ATR to get valid */
                  if (wait_event_interruptible
                      (dev->atrq,
                       ((filp->f_flags & O_NONBLOCK)
                        || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
                          != 0)))) {
                        if (filp->f_flags & O_NONBLOCK)
                              return -EAGAIN;
                        return -ERESTARTSYS;
                  }
                  /* get IO lock */
                  if (wait_event_interruptible
                      (dev->ioq,
                       ((filp->f_flags & O_NONBLOCK)
                        || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
                          == 0)))) {
                        if (filp->f_flags & O_NONBLOCK)
                              return -EAGAIN;
                        return -ERESTARTSYS;
                  }

                  if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
                        /* auto power_on again */
                        dev->mstate = M_FETCH_ATR;
                        clear_bit(IS_ATR_VALID, &dev->flags);
                  }
                  /* release lock */
                  clear_bit(LOCK_IO, &dev->flags);
                  wake_up_interruptible(&dev->ioq);

            }
            return rc;
#ifdef PCMCIA_DEBUG
      case CM_IOSDBGLVL:      /* set debug log level */
            {
                  int old_pc_debug = 0;

                  old_pc_debug = pc_debug;
                  if (copy_from_user(&pc_debug, argp, sizeof(int)))
                        return -EFAULT;

                  if (old_pc_debug != pc_debug)
                        DEBUGP(0, dev, "Changed debug log level "
                               "to %i\n", pc_debug);
            }
            return rc;
#endif
      default:
            DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
            return -EINVAL;
      }
}

static int cmm_open(struct inode *inode, struct file *filp)
{
      struct cm4000_dev *dev;
      struct pcmcia_device *link;
      int minor = iminor(inode);

      if (minor >= CM4000_MAX_DEV)
            return -ENODEV;

      link = dev_table[minor];
      if (link == NULL || !pcmcia_dev_present(link))
            return -ENODEV;

      if (link->open)
            return -EBUSY;

      dev = link->priv;
      filp->private_data = dev;

      DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
            imajor(inode), minor, current->comm, current->pid);

      /* init device variables, they may be "polluted" after close
       * or, the device may never have been closed (i.e. open failed)
       */

      ZERO_DEV(dev);

      /* opening will always block since the
       * monitor will be started by open, which
       * means we have to wait for ATR becoming
       * vaild = block until valid (or card
       * inserted)
       */
      if (filp->f_flags & O_NONBLOCK)
            return -EAGAIN;

      dev->mdelay = T_50MSEC;

      /* start monitoring the cardstatus */
      start_monitor(dev);

      link->open = 1;         /* only one open per device */

      DEBUGP(2, dev, "<- cmm_open\n");
      return nonseekable_open(inode, filp);
}

static int cmm_close(struct inode *inode, struct file *filp)
{
      struct cm4000_dev *dev;
      struct pcmcia_device *link;
      int minor = iminor(inode);

      if (minor >= CM4000_MAX_DEV)
            return -ENODEV;

      link = dev_table[minor];
      if (link == NULL)
            return -ENODEV;

      dev = link->priv;

      DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
             imajor(inode), minor);

      stop_monitor(dev);

      ZERO_DEV(dev);

      link->open = 0;         /* only one open per device */
      wake_up(&dev->devq);    /* socket removed? */

      DEBUGP(2, dev, "cmm_close\n");
      return 0;
}

static void cmm_cm4000_release(struct pcmcia_device * link)
{
      struct cm4000_dev *dev = link->priv;

      /* dont terminate the monitor, rather rely on
       * close doing that for us.
       */
      DEBUGP(3, dev, "-> cmm_cm4000_release\n");
      while (link->open) {
            printk(KERN_INFO MODULE_NAME ": delaying release until "
                   "process has terminated\n");
            /* note: don't interrupt us:
             * close the applications which own
             * the devices _first_ !
             */
            wait_event(dev->devq, (link->open == 0));
      }
      /* dev->devq=NULL;      this cannot be zeroed earlier */
      DEBUGP(3, dev, "<- cmm_cm4000_release\n");
      return;
}

/*==== Interface to PCMCIA Layer =======================================*/

static int cm4000_config(struct pcmcia_device * link, int devno)
{
      struct cm4000_dev *dev;
      tuple_t tuple;
      cisparse_t parse;
      u_char buf[64];
      int fail_fn, fail_rc;
      int rc;

      /* read the config-tuples */
      tuple.Attributes = 0;
      tuple.TupleData = buf;
      tuple.TupleDataMax = sizeof(buf);
      tuple.TupleOffset = 0;

      link->io.BasePort2 = 0;
      link->io.NumPorts2 = 0;
      link->io.Attributes2 = 0;
      tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
      for (rc = pcmcia_get_first_tuple(link, &tuple);
           rc == CS_SUCCESS; rc = pcmcia_get_next_tuple(link, &tuple)) {

            rc = pcmcia_get_tuple_data(link, &tuple);
            if (rc != CS_SUCCESS)
                  continue;
            rc = pcmcia_parse_tuple(link, &tuple, &parse);
            if (rc != CS_SUCCESS)
                  continue;

            link->conf.ConfigIndex = parse.cftable_entry.index;

            if (!parse.cftable_entry.io.nwin)
                  continue;

            /* Get the IOaddr */
            link->io.BasePort1 = parse.cftable_entry.io.win[0].base;
            link->io.NumPorts1 = parse.cftable_entry.io.win[0].len;
            link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
            if (!(parse.cftable_entry.io.flags & CISTPL_IO_8BIT))
                  link->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
            if (!(parse.cftable_entry.io.flags & CISTPL_IO_16BIT))
                  link->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
            link->io.IOAddrLines = parse.cftable_entry.io.flags
                & CISTPL_IO_LINES_MASK;

            rc = pcmcia_request_io(link, &link->io);
            if (rc == CS_SUCCESS)
                  break;      /* we are done */
      }
      if (rc != CS_SUCCESS)
            goto cs_release;

      link->conf.IntType = 00000002;

      if ((fail_rc =
           pcmcia_request_configuration(link, &link->conf)) != CS_SUCCESS) {
            fail_fn = RequestConfiguration;
            goto cs_release;
      }

      dev = link->priv;
      sprintf(dev->node.dev_name, DEVICE_NAME "%d", devno);
      dev->node.major = major;
      dev->node.minor = devno;
      dev->node.next = NULL;
      link->dev_node = &dev->node;

      return 0;

cs_release:
      cm4000_release(link);
      return -ENODEV;
}

static int cm4000_suspend(struct pcmcia_device *link)
{
      struct cm4000_dev *dev;

      dev = link->priv;
      stop_monitor(dev);

      return 0;
}

static int cm4000_resume(struct pcmcia_device *link)
{
      struct cm4000_dev *dev;

      dev = link->priv;
      if (link->open)
            start_monitor(dev);

      return 0;
}

static void cm4000_release(struct pcmcia_device *link)
{
      cmm_cm4000_release(link);     /* delay release until device closed */
      pcmcia_disable_device(link);
}

static int cm4000_probe(struct pcmcia_device *link)
{
      struct cm4000_dev *dev;
      int i, ret;

      for (i = 0; i < CM4000_MAX_DEV; i++)
            if (dev_table[i] == NULL)
                  break;

      if (i == CM4000_MAX_DEV) {
            printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
            return -ENODEV;
      }

      /* create a new cm4000_cs device */
      dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
      if (dev == NULL)
            return -ENOMEM;

      dev->p_dev = link;
      link->priv = dev;
      link->conf.IntType = INT_MEMORY_AND_IO;
      dev_table[i] = link;

      init_waitqueue_head(&dev->devq);
      init_waitqueue_head(&dev->ioq);
      init_waitqueue_head(&dev->atrq);
      init_waitqueue_head(&dev->readq);

      ret = cm4000_config(link, i);
      if (ret) {
            dev_table[i] = NULL;
            kfree(dev);
            return ret;
      }

      device_create(cmm_class, NULL, MKDEV(major, i), "cmm%d", i);

      return 0;
}

static void cm4000_detach(struct pcmcia_device *link)
{
      struct cm4000_dev *dev = link->priv;
      int devno;

      /* find device */
      for (devno = 0; devno < CM4000_MAX_DEV; devno++)
            if (dev_table[devno] == link)
                  break;
      if (devno == CM4000_MAX_DEV)
            return;

      stop_monitor(dev);

      cm4000_release(link);

      dev_table[devno] = NULL;
      kfree(dev);

      device_destroy(cmm_class, MKDEV(major, devno));

      return;
}

static const struct file_operations cm4000_fops = {
      .owner      = THIS_MODULE,
      .read = cmm_read,
      .write      = cmm_write,
      .ioctl      = cmm_ioctl,
      .open = cmm_open,
      .release= cmm_close,
};

static struct pcmcia_device_id cm4000_ids[] = {
      PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
      PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
      PCMCIA_DEVICE_NULL,
};
MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);

static struct pcmcia_driver cm4000_driver = {
      .owner        = THIS_MODULE,
      .drv    = {
            .name = "cm4000_cs",
            },
      .probe    = cm4000_probe,
      .remove   = cm4000_detach,
      .suspend  = cm4000_suspend,
      .resume   = cm4000_resume,
      .id_table = cm4000_ids,
};

static int __init cmm_init(void)
{
      int rc;

      printk(KERN_INFO "%s\n", version);

      cmm_class = class_create(THIS_MODULE, "cardman_4000");
      if (IS_ERR(cmm_class))
            return PTR_ERR(cmm_class);

      major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
      if (major < 0) {
            printk(KERN_WARNING MODULE_NAME
                  ": could not get major number\n");
            class_destroy(cmm_class);
            return major;
      }

      rc = pcmcia_register_driver(&cm4000_driver);
      if (rc < 0) {
            unregister_chrdev(major, DEVICE_NAME);
            class_destroy(cmm_class);
            return rc;
      }

      return 0;
}

static void __exit cmm_exit(void)
{
      printk(KERN_INFO MODULE_NAME ": unloading\n");
      pcmcia_unregister_driver(&cm4000_driver);
      unregister_chrdev(major, DEVICE_NAME);
      class_destroy(cmm_class);
};

module_init(cmm_init);
module_exit(cmm_exit);
MODULE_LICENSE("Dual BSD/GPL");

Generated by  Doxygen 1.6.0   Back to index