Logo Search packages:      
Sourcecode: linux version File versions  Download package

cpqphp_ctrl.c

/*
 * Compaq Hot Plug Controller Driver
 *
 * Copyright (C) 1995,2001 Compaq Computer Corporation
 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
 * Copyright (C) 2001 IBM Corp.
 *
 * All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 * NON INFRINGEMENT.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Send feedback to <greg@kroah.com>
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/smp_lock.h>
#include <linux/pci.h>
#include <linux/pci_hotplug.h>
#include <linux/kthread.h>
#include "cpqphp.h"

static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
                  u8 behind_bridge, struct resource_lists *resources);
static int configure_new_function(struct controller* ctrl, struct pci_func *func,
                  u8 behind_bridge, struct resource_lists *resources);
static void interrupt_event_handler(struct controller *ctrl);


static struct task_struct *cpqhp_event_thread;
static unsigned long pushbutton_pending;  /* = 0 */

/* delay is in jiffies to wait for */
static void long_delay(int delay)
{
      /*
       * XXX(hch): if someone is bored please convert all callers
       * to call msleep_interruptible directly.  They really want
       * to specify timeouts in natural units and spend a lot of
       * effort converting them to jiffies..
       */
      msleep_interruptible(jiffies_to_msecs(delay));
}


/* FIXME: The following line needs to be somewhere else... */
#define WRONG_BUS_FREQUENCY 0x07
static u8 handle_switch_change(u8 change, struct controller * ctrl)
{
      int hp_slot;
      u8 rc = 0;
      u16 temp_word;
      struct pci_func *func;
      struct event_info *taskInfo;

      if (!change)
            return 0;

      /* Switch Change */
      dbg("cpqsbd:  Switch interrupt received.\n");

      for (hp_slot = 0; hp_slot < 6; hp_slot++) {
            if (change & (0x1L << hp_slot)) {
                  /**********************************
                   * this one changed.
                   **********************************/
                  func = cpqhp_slot_find(ctrl->bus,
                        (hp_slot + ctrl->slot_device_offset), 0);

                  /* this is the structure that tells the worker thread
                   *what to do */
                  taskInfo = &(ctrl->event_queue[ctrl->next_event]);
                  ctrl->next_event = (ctrl->next_event + 1) % 10;
                  taskInfo->hp_slot = hp_slot;

                  rc++;

                  temp_word = ctrl->ctrl_int_comp >> 16;
                  func->presence_save = (temp_word >> hp_slot) & 0x01;
                  func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;

                  if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
                        /**********************************
                         * Switch opened
                         **********************************/

                        func->switch_save = 0;

                        taskInfo->event_type = INT_SWITCH_OPEN;
                  } else {
                        /**********************************
                         * Switch closed
                         **********************************/

                        func->switch_save = 0x10;

                        taskInfo->event_type = INT_SWITCH_CLOSE;
                  }
            }
      }

      return rc;
}

/**
 * cpqhp_find_slot - find the struct slot of given device
 * @ctrl: scan lots of this controller
 * @device: the device id to find
 */
static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
{
      struct slot *slot = ctrl->slot;

      while (slot && (slot->device != device)) {
            slot = slot->next;
      }

      return slot;
}


static u8 handle_presence_change(u16 change, struct controller * ctrl)
{
      int hp_slot;
      u8 rc = 0;
      u8 temp_byte;
      u16 temp_word;
      struct pci_func *func;
      struct event_info *taskInfo;
      struct slot *p_slot;

      if (!change)
            return 0;

      /**********************************
       * Presence Change
       **********************************/
      dbg("cpqsbd:  Presence/Notify input change.\n");
      dbg("         Changed bits are 0x%4.4x\n", change );

      for (hp_slot = 0; hp_slot < 6; hp_slot++) {
            if (change & (0x0101 << hp_slot)) {
                  /**********************************
                   * this one changed.
                   **********************************/
                  func = cpqhp_slot_find(ctrl->bus,
                        (hp_slot + ctrl->slot_device_offset), 0);

                  taskInfo = &(ctrl->event_queue[ctrl->next_event]);
                  ctrl->next_event = (ctrl->next_event + 1) % 10;
                  taskInfo->hp_slot = hp_slot;

                  rc++;

                  p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
                  if (!p_slot)
                        return 0;

                  /* If the switch closed, must be a button
                   * If not in button mode, nevermind */
                  if (func->switch_save && (ctrl->push_button == 1)) {
                        temp_word = ctrl->ctrl_int_comp >> 16;
                        temp_byte = (temp_word >> hp_slot) & 0x01;
                        temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;

                        if (temp_byte != func->presence_save) {
                              /**************************************
                               * button Pressed (doesn't do anything)
                               **************************************/
                              dbg("hp_slot %d button pressed\n", hp_slot);
                              taskInfo->event_type = INT_BUTTON_PRESS;
                        } else {
                              /**********************************
                               * button Released - TAKE ACTION!!!!
                               **********************************/
                              dbg("hp_slot %d button released\n", hp_slot);
                              taskInfo->event_type = INT_BUTTON_RELEASE;

                              /* Cancel if we are still blinking */
                              if ((p_slot->state == BLINKINGON_STATE)
                                  || (p_slot->state == BLINKINGOFF_STATE)) {
                                    taskInfo->event_type = INT_BUTTON_CANCEL;
                                    dbg("hp_slot %d button cancel\n", hp_slot);
                              } else if ((p_slot->state == POWERON_STATE)
                                       || (p_slot->state == POWEROFF_STATE)) {
                                    /* info(msg_button_ignore, p_slot->number); */
                                    taskInfo->event_type = INT_BUTTON_IGNORE;
                                    dbg("hp_slot %d button ignore\n", hp_slot);
                              }
                        }
                  } else {
                        /* Switch is open, assume a presence change
                         * Save the presence state */
                        temp_word = ctrl->ctrl_int_comp >> 16;
                        func->presence_save = (temp_word >> hp_slot) & 0x01;
                        func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;

                        if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
                            (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
                              /* Present */
                              taskInfo->event_type = INT_PRESENCE_ON;
                        } else {
                              /* Not Present */
                              taskInfo->event_type = INT_PRESENCE_OFF;
                        }
                  }
            }
      }

      return rc;
}


static u8 handle_power_fault(u8 change, struct controller * ctrl)
{
      int hp_slot;
      u8 rc = 0;
      struct pci_func *func;
      struct event_info *taskInfo;

      if (!change)
            return 0;

      /**********************************
       * power fault
       **********************************/

      info("power fault interrupt\n");

      for (hp_slot = 0; hp_slot < 6; hp_slot++) {
            if (change & (0x01 << hp_slot)) {
                  /**********************************
                   * this one changed.
                   **********************************/
                  func = cpqhp_slot_find(ctrl->bus,
                        (hp_slot + ctrl->slot_device_offset), 0);

                  taskInfo = &(ctrl->event_queue[ctrl->next_event]);
                  ctrl->next_event = (ctrl->next_event + 1) % 10;
                  taskInfo->hp_slot = hp_slot;

                  rc++;

                  if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
                        /**********************************
                         * power fault Cleared
                         **********************************/
                        func->status = 0x00;

                        taskInfo->event_type = INT_POWER_FAULT_CLEAR;
                  } else {
                        /**********************************
                         * power fault
                         **********************************/
                        taskInfo->event_type = INT_POWER_FAULT;

                        if (ctrl->rev < 4) {
                              amber_LED_on (ctrl, hp_slot);
                              green_LED_off (ctrl, hp_slot);
                              set_SOGO (ctrl);

                              /* this is a fatal condition, we want
                               * to crash the machine to protect from
                               * data corruption. simulated_NMI
                               * shouldn't ever return */
                              /* FIXME
                              simulated_NMI(hp_slot, ctrl); */

                              /* The following code causes a software
                               * crash just in case simulated_NMI did
                               * return */
                              /*FIXME
                              panic(msg_power_fault); */
                        } else {
                              /* set power fault status for this board */
                              func->status = 0xFF;
                              info("power fault bit %x set\n", hp_slot);
                        }
                  }
            }
      }

      return rc;
}


/**
 * sort_by_size - sort nodes on the list by their length, smallest first.
 * @head: list to sort
 */
static int sort_by_size(struct pci_resource **head)
{
      struct pci_resource *current_res;
      struct pci_resource *next_res;
      int out_of_order = 1;

      if (!(*head))
            return 1;

      if (!((*head)->next))
            return 0;

      while (out_of_order) {
            out_of_order = 0;

            /* Special case for swapping list head */
            if (((*head)->next) &&
                ((*head)->length > (*head)->next->length)) {
                  out_of_order++;
                  current_res = *head;
                  *head = (*head)->next;
                  current_res->next = (*head)->next;
                  (*head)->next = current_res;
            }

            current_res = *head;

            while (current_res->next && current_res->next->next) {
                  if (current_res->next->length > current_res->next->next->length) {
                        out_of_order++;
                        next_res = current_res->next;
                        current_res->next = current_res->next->next;
                        current_res = current_res->next;
                        next_res->next = current_res->next;
                        current_res->next = next_res;
                  } else
                        current_res = current_res->next;
            }
      }  /* End of out_of_order loop */

      return 0;
}


/**
 * sort_by_max_size - sort nodes on the list by their length, largest first.
 * @head: list to sort
 */
static int sort_by_max_size(struct pci_resource **head)
{
      struct pci_resource *current_res;
      struct pci_resource *next_res;
      int out_of_order = 1;

      if (!(*head))
            return 1;

      if (!((*head)->next))
            return 0;

      while (out_of_order) {
            out_of_order = 0;

            /* Special case for swapping list head */
            if (((*head)->next) &&
                ((*head)->length < (*head)->next->length)) {
                  out_of_order++;
                  current_res = *head;
                  *head = (*head)->next;
                  current_res->next = (*head)->next;
                  (*head)->next = current_res;
            }

            current_res = *head;

            while (current_res->next && current_res->next->next) {
                  if (current_res->next->length < current_res->next->next->length) {
                        out_of_order++;
                        next_res = current_res->next;
                        current_res->next = current_res->next->next;
                        current_res = current_res->next;
                        next_res->next = current_res->next;
                        current_res->next = next_res;
                  } else
                        current_res = current_res->next;
            }
      }  /* End of out_of_order loop */

      return 0;
}


/**
 * do_pre_bridge_resource_split - find node of resources that are unused
 * @head: new list head
 * @orig_head: original list head
 * @alignment: max node size (?)
 */
static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
                        struct pci_resource **orig_head, u32 alignment)
{
      struct pci_resource *prevnode = NULL;
      struct pci_resource *node;
      struct pci_resource *split_node;
      u32 rc;
      u32 temp_dword;
      dbg("do_pre_bridge_resource_split\n");

      if (!(*head) || !(*orig_head))
            return NULL;

      rc = cpqhp_resource_sort_and_combine(head);

      if (rc)
            return NULL;

      if ((*head)->base != (*orig_head)->base)
            return NULL;

      if ((*head)->length == (*orig_head)->length)
            return NULL;


      /* If we got here, there the bridge requires some of the resource, but
       * we may be able to split some off of the front */

      node = *head;

      if (node->length & (alignment -1)) {
            /* this one isn't an aligned length, so we'll make a new entry
             * and split it up. */
            split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);

            if (!split_node)
                  return NULL;

            temp_dword = (node->length | (alignment-1)) + 1 - alignment;

            split_node->base = node->base;
            split_node->length = temp_dword;

            node->length -= temp_dword;
            node->base += split_node->length;

            /* Put it in the list */
            *head = split_node;
            split_node->next = node;
      }

      if (node->length < alignment)
            return NULL;

      /* Now unlink it */
      if (*head == node) {
            *head = node->next;
      } else {
            prevnode = *head;
            while (prevnode->next != node)
                  prevnode = prevnode->next;

            prevnode->next = node->next;
      }
      node->next = NULL;

      return node;
}


/**
 * do_bridge_resource_split - find one node of resources that aren't in use
 * @head: list head
 * @alignment: max node size (?)
 */
static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
{
      struct pci_resource *prevnode = NULL;
      struct pci_resource *node;
      u32 rc;
      u32 temp_dword;

      rc = cpqhp_resource_sort_and_combine(head);

      if (rc)
            return NULL;

      node = *head;

      while (node->next) {
            prevnode = node;
            node = node->next;
            kfree(prevnode);
      }

      if (node->length < alignment)
            goto error;

      if (node->base & (alignment - 1)) {
            /* Short circuit if adjusted size is too small */
            temp_dword = (node->base | (alignment-1)) + 1;
            if ((node->length - (temp_dword - node->base)) < alignment)
                  goto error;

            node->length -= (temp_dword - node->base);
            node->base = temp_dword;
      }

      if (node->length & (alignment - 1))
            /* There's stuff in use after this node */
            goto error;

      return node;
error:
      kfree(node);
      return NULL;
}


/**
 * get_io_resource - find first node of given size not in ISA aliasing window.
 * @head: list to search
 * @size: size of node to find, must be a power of two.
 *
 * Description: This function sorts the resource list by size and then returns
 * returns the first node of "size" length that is not in the ISA aliasing
 * window.  If it finds a node larger than "size" it will split it up.
 */
static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
{
      struct pci_resource *prevnode;
      struct pci_resource *node;
      struct pci_resource *split_node;
      u32 temp_dword;

      if (!(*head))
            return NULL;

      if ( cpqhp_resource_sort_and_combine(head) )
            return NULL;

      if ( sort_by_size(head) )
            return NULL;

      for (node = *head; node; node = node->next) {
            if (node->length < size)
                  continue;

            if (node->base & (size - 1)) {
                  /* this one isn't base aligned properly
                   * so we'll make a new entry and split it up */
                  temp_dword = (node->base | (size-1)) + 1;

                  /* Short circuit if adjusted size is too small */
                  if ((node->length - (temp_dword - node->base)) < size)
                        continue;

                  split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);

                  if (!split_node)
                        return NULL;

                  split_node->base = node->base;
                  split_node->length = temp_dword - node->base;
                  node->base = temp_dword;
                  node->length -= split_node->length;

                  /* Put it in the list */
                  split_node->next = node->next;
                  node->next = split_node;
            } /* End of non-aligned base */

            /* Don't need to check if too small since we already did */
            if (node->length > size) {
                  /* this one is longer than we need
                   * so we'll make a new entry and split it up */
                  split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);

                  if (!split_node)
                        return NULL;

                  split_node->base = node->base + size;
                  split_node->length = node->length - size;
                  node->length = size;

                  /* Put it in the list */
                  split_node->next = node->next;
                  node->next = split_node;
            }  /* End of too big on top end */

            /* For IO make sure it's not in the ISA aliasing space */
            if (node->base & 0x300L)
                  continue;

            /* If we got here, then it is the right size
             * Now take it out of the list and break */
            if (*head == node) {
                  *head = node->next;
            } else {
                  prevnode = *head;
                  while (prevnode->next != node)
                        prevnode = prevnode->next;

                  prevnode->next = node->next;
            }
            node->next = NULL;
            break;
      }

      return node;
}


/**
 * get_max_resource - get largest node which has at least the given size.
 * @head: the list to search the node in
 * @size: the minimum size of the node to find
 *
 * Description: Gets the largest node that is at least "size" big from the
 * list pointed to by head.  It aligns the node on top and bottom
 * to "size" alignment before returning it.
 */
static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
{
      struct pci_resource *max;
      struct pci_resource *temp;
      struct pci_resource *split_node;
      u32 temp_dword;

      if (cpqhp_resource_sort_and_combine(head))
            return NULL;

      if (sort_by_max_size(head))
            return NULL;

      for (max = *head; max; max = max->next) {
            /* If not big enough we could probably just bail, 
             * instead we'll continue to the next. */
            if (max->length < size)
                  continue;

            if (max->base & (size - 1)) {
                  /* this one isn't base aligned properly
                   * so we'll make a new entry and split it up */
                  temp_dword = (max->base | (size-1)) + 1;

                  /* Short circuit if adjusted size is too small */
                  if ((max->length - (temp_dword - max->base)) < size)
                        continue;

                  split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);

                  if (!split_node)
                        return NULL;

                  split_node->base = max->base;
                  split_node->length = temp_dword - max->base;
                  max->base = temp_dword;
                  max->length -= split_node->length;

                  split_node->next = max->next;
                  max->next = split_node;
            }

            if ((max->base + max->length) & (size - 1)) {
                  /* this one isn't end aligned properly at the top
                   * so we'll make a new entry and split it up */
                  split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);

                  if (!split_node)
                        return NULL;
                  temp_dword = ((max->base + max->length) & ~(size - 1));
                  split_node->base = temp_dword;
                  split_node->length = max->length + max->base
                                   - split_node->base;
                  max->length -= split_node->length;

                  split_node->next = max->next;
                  max->next = split_node;
            }

            /* Make sure it didn't shrink too much when we aligned it */
            if (max->length < size)
                  continue;

            /* Now take it out of the list */
            temp = *head;
            if (temp == max) {
                  *head = max->next;
            } else {
                  while (temp && temp->next != max) {
                        temp = temp->next;
                  }

                  temp->next = max->next;
            }

            max->next = NULL;
            break;
      }

      return max;
}


/**
 * get_resource - find resource of given size and split up larger ones.
 * @head: the list to search for resources
 * @size: the size limit to use
 *
 * Description: This function sorts the resource list by size and then
 * returns the first node of "size" length.  If it finds a node
 * larger than "size" it will split it up.
 *
 * size must be a power of two.
 */
static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
{
      struct pci_resource *prevnode;
      struct pci_resource *node;
      struct pci_resource *split_node;
      u32 temp_dword;

      if (cpqhp_resource_sort_and_combine(head))
            return NULL;

      if (sort_by_size(head))
            return NULL;

      for (node = *head; node; node = node->next) {
            dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
                __FUNCTION__, size, node, node->base, node->length);
            if (node->length < size)
                  continue;

            if (node->base & (size - 1)) {
                  dbg("%s: not aligned\n", __FUNCTION__);
                  /* this one isn't base aligned properly
                   * so we'll make a new entry and split it up */
                  temp_dword = (node->base | (size-1)) + 1;

                  /* Short circuit if adjusted size is too small */
                  if ((node->length - (temp_dword - node->base)) < size)
                        continue;

                  split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);

                  if (!split_node)
                        return NULL;

                  split_node->base = node->base;
                  split_node->length = temp_dword - node->base;
                  node->base = temp_dword;
                  node->length -= split_node->length;

                  split_node->next = node->next;
                  node->next = split_node;
            } /* End of non-aligned base */

            /* Don't need to check if too small since we already did */
            if (node->length > size) {
                  dbg("%s: too big\n", __FUNCTION__);
                  /* this one is longer than we need
                   * so we'll make a new entry and split it up */
                  split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);

                  if (!split_node)
                        return NULL;

                  split_node->base = node->base + size;
                  split_node->length = node->length - size;
                  node->length = size;

                  /* Put it in the list */
                  split_node->next = node->next;
                  node->next = split_node;
            }  /* End of too big on top end */

            dbg("%s: got one!!!\n", __FUNCTION__);
            /* If we got here, then it is the right size
             * Now take it out of the list */
            if (*head == node) {
                  *head = node->next;
            } else {
                  prevnode = *head;
                  while (prevnode->next != node)
                        prevnode = prevnode->next;

                  prevnode->next = node->next;
            }
            node->next = NULL;
            break;
      }
      return node;
}


/**
 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
 * @head: the list to sort and clean up
 *
 * Description: Sorts all of the nodes in the list in ascending order by
 * their base addresses.  Also does garbage collection by
 * combining adjacent nodes.
 *
 * Returns %0 if success.
 */
int cpqhp_resource_sort_and_combine(struct pci_resource **head)
{
      struct pci_resource *node1;
      struct pci_resource *node2;
      int out_of_order = 1;

      dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);

      if (!(*head))
            return 1;

      dbg("*head->next = %p\n",(*head)->next);

      if (!(*head)->next)
            return 0;   /* only one item on the list, already sorted! */

      dbg("*head->base = 0x%x\n",(*head)->base);
      dbg("*head->next->base = 0x%x\n",(*head)->next->base);
      while (out_of_order) {
            out_of_order = 0;

            /* Special case for swapping list head */
            if (((*head)->next) &&
                ((*head)->base > (*head)->next->base)) {
                  node1 = *head;
                  (*head) = (*head)->next;
                  node1->next = (*head)->next;
                  (*head)->next = node1;
                  out_of_order++;
            }

            node1 = (*head);

            while (node1->next && node1->next->next) {
                  if (node1->next->base > node1->next->next->base) {
                        out_of_order++;
                        node2 = node1->next;
                        node1->next = node1->next->next;
                        node1 = node1->next;
                        node2->next = node1->next;
                        node1->next = node2;
                  } else
                        node1 = node1->next;
            }
      }  /* End of out_of_order loop */

      node1 = *head;

      while (node1 && node1->next) {
            if ((node1->base + node1->length) == node1->next->base) {
                  /* Combine */
                  dbg("8..\n");
                  node1->length += node1->next->length;
                  node2 = node1->next;
                  node1->next = node1->next->next;
                  kfree(node2);
            } else
                  node1 = node1->next;
      }

      return 0;
}


irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
{
      struct controller *ctrl = data;
      u8 schedule_flag = 0;
      u8 reset;
      u16 misc;
      u32 Diff;
      u32 temp_dword;

      
      misc = readw(ctrl->hpc_reg + MISC);
      /***************************************
       * Check to see if it was our interrupt
       ***************************************/
      if (!(misc & 0x000C)) {
            return IRQ_NONE;
      }

      if (misc & 0x0004) {
            /**********************************
             * Serial Output interrupt Pending
             **********************************/

            /* Clear the interrupt */
            misc |= 0x0004;
            writew(misc, ctrl->hpc_reg + MISC);

            /* Read to clear posted writes */
            misc = readw(ctrl->hpc_reg + MISC);

            dbg ("%s - waking up\n", __FUNCTION__);
            wake_up_interruptible(&ctrl->queue);
      }

      if (misc & 0x0008) {
            /* General-interrupt-input interrupt Pending */
            Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;

            ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);

            /* Clear the interrupt */
            writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);

            /* Read it back to clear any posted writes */
            temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);

            if (!Diff)
                  /* Clear all interrupts */
                  writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);

            schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
            schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
            schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
      }

      reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
      if (reset & 0x40) {
            /* Bus reset has completed */
            reset &= 0xCF;
            writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
            reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
            wake_up_interruptible(&ctrl->queue);
      }

      if (schedule_flag) {
            wake_up_process(cpqhp_event_thread);
            dbg("Waking even thread");
      }
      return IRQ_HANDLED;
}


/**
 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
 * @busnumber: bus where new node is to be located
 *
 * Returns pointer to the new node or %NULL if unsuccessful.
 */
struct pci_func *cpqhp_slot_create(u8 busnumber)
{
      struct pci_func *new_slot;
      struct pci_func *next;

      new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
      if (new_slot == NULL) {
            /* I'm not dead yet!
             * You will be. */
            return new_slot;
      }

      new_slot->next = NULL;
      new_slot->configured = 1;

      if (cpqhp_slot_list[busnumber] == NULL) {
            cpqhp_slot_list[busnumber] = new_slot;
      } else {
            next = cpqhp_slot_list[busnumber];
            while (next->next != NULL)
                  next = next->next;
            next->next = new_slot;
      }
      return new_slot;
}


/**
 * slot_remove - Removes a node from the linked list of slots.
 * @old_slot: slot to remove
 *
 * Returns %0 if successful, !0 otherwise.
 */
static int slot_remove(struct pci_func * old_slot)
{
      struct pci_func *next;

      if (old_slot == NULL)
            return 1;

      next = cpqhp_slot_list[old_slot->bus];

      if (next == NULL) {
            return 1;
      }

      if (next == old_slot) {
            cpqhp_slot_list[old_slot->bus] = old_slot->next;
            cpqhp_destroy_board_resources(old_slot);
            kfree(old_slot);
            return 0;
      }

      while ((next->next != old_slot) && (next->next != NULL)) {
            next = next->next;
      }

      if (next->next == old_slot) {
            next->next = old_slot->next;
            cpqhp_destroy_board_resources(old_slot);
            kfree(old_slot);
            return 0;
      } else
            return 2;
}


/**
 * bridge_slot_remove - Removes a node from the linked list of slots.
 * @bridge: bridge to remove
 *
 * Returns %0 if successful, !0 otherwise.
 */
static int bridge_slot_remove(struct pci_func *bridge)
{
      u8 subordinateBus, secondaryBus;
      u8 tempBus;
      struct pci_func *next;

      secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
      subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;

      for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
            next = cpqhp_slot_list[tempBus];

            while (!slot_remove(next)) {
                  next = cpqhp_slot_list[tempBus];
            }
      }

      next = cpqhp_slot_list[bridge->bus];

      if (next == NULL)
            return 1;

      if (next == bridge) {
            cpqhp_slot_list[bridge->bus] = bridge->next;
            goto out;
      }

      while ((next->next != bridge) && (next->next != NULL))
            next = next->next;

      if (next->next != bridge)
            return 2;
      next->next = bridge->next;
out:
      kfree(bridge);
      return 0;
}


/**
 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
 * @bus: bus to find
 * @device: device to find
 * @index: is %0 for first function found, %1 for the second...
 *
 * Returns pointer to the node if successful, %NULL otherwise.
 */
struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
{
      int found = -1;
      struct pci_func *func;

      func = cpqhp_slot_list[bus];

      if ((func == NULL) || ((func->device == device) && (index == 0)))
            return func;

      if (func->device == device)
            found++;

      while (func->next != NULL) {
            func = func->next;

            if (func->device == device)
                  found++;

            if (found == index)
                  return func;
      }

      return NULL;
}


/* DJZ: I don't think is_bridge will work as is.
 * FIXME */
static int is_bridge(struct pci_func * func)
{
      /* Check the header type */
      if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
            return 1;
      else
            return 0;
}


/**
 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
 * @ctrl: controller to change frequency/mode for.
 * @adapter_speed: the speed of the adapter we want to match.
 * @hp_slot: the slot number where the adapter is installed.
 *
 * Returns %0 if we successfully change frequency and/or mode to match the
 * adapter speed.
 */
static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
{
      struct slot *slot;
      u8 reg;
      u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
      u16 reg16;
      u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
      
      if (ctrl->speed == adapter_speed)
            return 0;
      
      /* We don't allow freq/mode changes if we find another adapter running
       * in another slot on this controller */
      for(slot = ctrl->slot; slot; slot = slot->next) {
            if (slot->device == (hp_slot + ctrl->slot_device_offset)) 
                  continue;
            if (!slot->hotplug_slot && !slot->hotplug_slot->info) 
                  continue;
            if (slot->hotplug_slot->info->adapter_status == 0) 
                  continue;
            /* If another adapter is running on the same segment but at a
             * lower speed/mode, we allow the new adapter to function at
             * this rate if supported */
            if (ctrl->speed < adapter_speed) 
                  return 0;

            return 1;
      }
      
      /* If the controller doesn't support freq/mode changes and the
       * controller is running at a higher mode, we bail */
      if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
            return 1;
      
      /* But we allow the adapter to run at a lower rate if possible */
      if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
            return 0;

      /* We try to set the max speed supported by both the adapter and
       * controller */
      if (ctrl->speed_capability < adapter_speed) {
            if (ctrl->speed == ctrl->speed_capability)
                  return 0;
            adapter_speed = ctrl->speed_capability;
      }

      writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
      writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
      
      set_SOGO(ctrl); 
      wait_for_ctrl_irq(ctrl);
      
      if (adapter_speed != PCI_SPEED_133MHz_PCIX)
            reg = 0xF5;
      else
            reg = 0xF4; 
      pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
      
      reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
      reg16 &= ~0x000F;
      switch(adapter_speed) {
            case(PCI_SPEED_133MHz_PCIX): 
                  reg = 0x75;
                  reg16 |= 0xB; 
                  break;
            case(PCI_SPEED_100MHz_PCIX):
                  reg = 0x74;
                  reg16 |= 0xA;
                  break;
            case(PCI_SPEED_66MHz_PCIX):
                  reg = 0x73;
                  reg16 |= 0x9;
                  break;
            case(PCI_SPEED_66MHz):
                  reg = 0x73;
                  reg16 |= 0x1;
                  break;
            default: /* 33MHz PCI 2.2 */
                  reg = 0x71;
                  break;
                  
      }
      reg16 |= 0xB << 12;
      writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
      
      mdelay(5); 
      
      /* Reenable interrupts */
      writel(0, ctrl->hpc_reg + INT_MASK);

      pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 
      
      /* Restart state machine */
      reg = ~0xF;
      pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
      pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
      
      /* Only if mode change...*/
      if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
            ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 
                  set_SOGO(ctrl);
      
      wait_for_ctrl_irq(ctrl);
      mdelay(1100);
      
      /* Restore LED/Slot state */
      writel(leds, ctrl->hpc_reg + LED_CONTROL);
      writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
      
      set_SOGO(ctrl);
      wait_for_ctrl_irq(ctrl);

      ctrl->speed = adapter_speed;
      slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);

      info("Successfully changed frequency/mode for adapter in slot %d\n", 
                  slot->number);
      return 0;
}

/* the following routines constitute the bulk of the 
   hotplug controller logic
 */


/**
 * board_replaced - Called after a board has been replaced in the system.
 * @func: PCI device/function information
 * @ctrl: hotplug controller
 *
 * This is only used if we don't have resources for hot add.
 * Turns power on for the board.
 * Checks to see if board is the same.
 * If board is same, reconfigures it.
 * If board isn't same, turns it back off.
 */
static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
{
      u8 hp_slot;
      u8 temp_byte;
      u8 adapter_speed;
      u32 rc = 0;

      hp_slot = func->device - ctrl->slot_device_offset;

      if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
            /**********************************
             * The switch is open.
             **********************************/
            rc = INTERLOCK_OPEN;
      } else if (is_slot_enabled (ctrl, hp_slot)) {
            /**********************************
             * The board is already on
             **********************************/
            rc = CARD_FUNCTIONING;
      } else {
            mutex_lock(&ctrl->crit_sect);

            /* turn on board without attaching to the bus */
            enable_slot_power (ctrl, hp_slot);

            set_SOGO(ctrl);

            /* Wait for SOBS to be unset */
            wait_for_ctrl_irq (ctrl);

            /* Change bits in slot power register to force another shift out
             * NOTE: this is to work around the timer bug */
            temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
            writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
            writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);

            set_SOGO(ctrl);

            /* Wait for SOBS to be unset */
            wait_for_ctrl_irq (ctrl);
            
            adapter_speed = get_adapter_speed(ctrl, hp_slot);
            if (ctrl->speed != adapter_speed)
                  if (set_controller_speed(ctrl, adapter_speed, hp_slot))
                        rc = WRONG_BUS_FREQUENCY;

            /* turn off board without attaching to the bus */
            disable_slot_power (ctrl, hp_slot);

            set_SOGO(ctrl);

            /* Wait for SOBS to be unset */
            wait_for_ctrl_irq (ctrl);

            mutex_unlock(&ctrl->crit_sect);

            if (rc)
                  return rc;

            mutex_lock(&ctrl->crit_sect);

            slot_enable (ctrl, hp_slot);
            green_LED_blink (ctrl, hp_slot);

            amber_LED_off (ctrl, hp_slot);

            set_SOGO(ctrl);

            /* Wait for SOBS to be unset */
            wait_for_ctrl_irq (ctrl);

            mutex_unlock(&ctrl->crit_sect);

            /* Wait for ~1 second because of hot plug spec */
            long_delay(1*HZ);

            /* Check for a power fault */
            if (func->status == 0xFF) {
                  /* power fault occurred, but it was benign */
                  rc = POWER_FAILURE;
                  func->status = 0;
            } else
                  rc = cpqhp_valid_replace(ctrl, func);

            if (!rc) {
                  /* It must be the same board */

                  rc = cpqhp_configure_board(ctrl, func);

                  /* If configuration fails, turn it off
                   * Get slot won't work for devices behind
                   * bridges, but in this case it will always be
                   * called for the "base" bus/dev/func of an
                   * adapter. */

                  mutex_lock(&ctrl->crit_sect);

                  amber_LED_on (ctrl, hp_slot);
                  green_LED_off (ctrl, hp_slot);
                  slot_disable (ctrl, hp_slot);

                  set_SOGO(ctrl);

                  /* Wait for SOBS to be unset */
                  wait_for_ctrl_irq (ctrl);

                  mutex_unlock(&ctrl->crit_sect);

                  if (rc)
                        return rc;
                  else
                        return 1;

            } else {
                  /* Something is wrong

                   * Get slot won't work for devices behind bridges, but
                   * in this case it will always be called for the "base"
                   * bus/dev/func of an adapter. */

                  mutex_lock(&ctrl->crit_sect);

                  amber_LED_on (ctrl, hp_slot);
                  green_LED_off (ctrl, hp_slot);
                  slot_disable (ctrl, hp_slot);

                  set_SOGO(ctrl);

                  /* Wait for SOBS to be unset */
                  wait_for_ctrl_irq (ctrl);

                  mutex_unlock(&ctrl->crit_sect);
            }

      }
      return rc;

}


/**
 * board_added - Called after a board has been added to the system.
 * @func: PCI device/function info
 * @ctrl: hotplug controller
 *
 * Turns power on for the board.
 * Configures board.
 */
static u32 board_added(struct pci_func *func, struct controller *ctrl)
{
      u8 hp_slot;
      u8 temp_byte;
      u8 adapter_speed;
      int index;
      u32 temp_register = 0xFFFFFFFF;
      u32 rc = 0;
      struct pci_func *new_slot = NULL;
      struct slot *p_slot;
      struct resource_lists res_lists;

      hp_slot = func->device - ctrl->slot_device_offset;
      dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
          __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);

      mutex_lock(&ctrl->crit_sect);

      /* turn on board without attaching to the bus */
      enable_slot_power(ctrl, hp_slot);

      set_SOGO(ctrl);

      /* Wait for SOBS to be unset */
      wait_for_ctrl_irq (ctrl);

      /* Change bits in slot power register to force another shift out
       * NOTE: this is to work around the timer bug */
      temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
      writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
      writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);

      set_SOGO(ctrl);

      /* Wait for SOBS to be unset */
      wait_for_ctrl_irq (ctrl);
      
      adapter_speed = get_adapter_speed(ctrl, hp_slot);
      if (ctrl->speed != adapter_speed)
            if (set_controller_speed(ctrl, adapter_speed, hp_slot))
                  rc = WRONG_BUS_FREQUENCY;
      
      /* turn off board without attaching to the bus */
      disable_slot_power (ctrl, hp_slot);

      set_SOGO(ctrl);

      /* Wait for SOBS to be unset */
      wait_for_ctrl_irq(ctrl);

      mutex_unlock(&ctrl->crit_sect);

      if (rc)
            return rc;
      
      p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);

      /* turn on board and blink green LED */

      dbg("%s: before down\n", __FUNCTION__);
      mutex_lock(&ctrl->crit_sect);
      dbg("%s: after down\n", __FUNCTION__);

      dbg("%s: before slot_enable\n", __FUNCTION__);
      slot_enable (ctrl, hp_slot);

      dbg("%s: before green_LED_blink\n", __FUNCTION__);
      green_LED_blink (ctrl, hp_slot);

      dbg("%s: before amber_LED_blink\n", __FUNCTION__);
      amber_LED_off (ctrl, hp_slot);

      dbg("%s: before set_SOGO\n", __FUNCTION__);
      set_SOGO(ctrl);

      /* Wait for SOBS to be unset */
      dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
      wait_for_ctrl_irq (ctrl);
      dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);

      dbg("%s: before up\n", __FUNCTION__);
      mutex_unlock(&ctrl->crit_sect);
      dbg("%s: after up\n", __FUNCTION__);

      /* Wait for ~1 second because of hot plug spec */
      dbg("%s: before long_delay\n", __FUNCTION__);
      long_delay(1*HZ);
      dbg("%s: after long_delay\n", __FUNCTION__);

      dbg("%s: func status = %x\n", __FUNCTION__, func->status);
      /* Check for a power fault */
      if (func->status == 0xFF) {
            /* power fault occurred, but it was benign */
            temp_register = 0xFFFFFFFF;
            dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
            rc = POWER_FAILURE;
            func->status = 0;
      } else {
            /* Get vendor/device ID u32 */
            ctrl->pci_bus->number = func->bus;
            rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
            dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
            dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);

            if (rc != 0) {
                  /* Something's wrong here */
                  temp_register = 0xFFFFFFFF;
                  dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
            }
            /* Preset return code.  It will be changed later if things go okay. */
            rc = NO_ADAPTER_PRESENT;
      }

      /* All F's is an empty slot or an invalid board */
      if (temp_register != 0xFFFFFFFF) {    /* Check for a board in the slot */
            res_lists.io_head = ctrl->io_head;
            res_lists.mem_head = ctrl->mem_head;
            res_lists.p_mem_head = ctrl->p_mem_head;
            res_lists.bus_head = ctrl->bus_head;
            res_lists.irqs = NULL;

            rc = configure_new_device(ctrl, func, 0, &res_lists);

            dbg("%s: back from configure_new_device\n", __FUNCTION__);
            ctrl->io_head = res_lists.io_head;
            ctrl->mem_head = res_lists.mem_head;
            ctrl->p_mem_head = res_lists.p_mem_head;
            ctrl->bus_head = res_lists.bus_head;

            cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
            cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
            cpqhp_resource_sort_and_combine(&(ctrl->io_head));
            cpqhp_resource_sort_and_combine(&(ctrl->bus_head));

            if (rc) {
                  mutex_lock(&ctrl->crit_sect);

                  amber_LED_on (ctrl, hp_slot);
                  green_LED_off (ctrl, hp_slot);
                  slot_disable (ctrl, hp_slot);

                  set_SOGO(ctrl);

                  /* Wait for SOBS to be unset */
                  wait_for_ctrl_irq (ctrl);

                  mutex_unlock(&ctrl->crit_sect);
                  return rc;
            } else {
                  cpqhp_save_slot_config(ctrl, func);
            }


            func->status = 0;
            func->switch_save = 0x10;
            func->is_a_board = 0x01;

            /* next, we will instantiate the linux pci_dev structures (with
             * appropriate driver notification, if already present) */
            dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
            index = 0;
            do {
                  new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
                  if (new_slot && !new_slot->pci_dev) {
                        cpqhp_configure_device(ctrl, new_slot);
                  }
            } while (new_slot);

            mutex_lock(&ctrl->crit_sect);

            green_LED_on (ctrl, hp_slot);

            set_SOGO(ctrl);

            /* Wait for SOBS to be unset */
            wait_for_ctrl_irq (ctrl);

            mutex_unlock(&ctrl->crit_sect);
      } else {
            mutex_lock(&ctrl->crit_sect);

            amber_LED_on (ctrl, hp_slot);
            green_LED_off (ctrl, hp_slot);
            slot_disable (ctrl, hp_slot);

            set_SOGO(ctrl);

            /* Wait for SOBS to be unset */
            wait_for_ctrl_irq (ctrl);

            mutex_unlock(&ctrl->crit_sect);

            return rc;
      }
      return 0;
}


/**
 * remove_board - Turns off slot and LEDs
 * @func: PCI device/function info
 * @replace_flag: whether replacing or adding a new device
 * @ctrl: target controller
 */
static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
{
      int index;
      u8 skip = 0;
      u8 device;
      u8 hp_slot;
      u8 temp_byte;
      u32 rc;
      struct resource_lists res_lists;
      struct pci_func *temp_func;

      if (cpqhp_unconfigure_device(func))
            return 1;

      device = func->device;

      hp_slot = func->device - ctrl->slot_device_offset;
      dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);

      /* When we get here, it is safe to change base address registers.
       * We will attempt to save the base address register lengths */
      if (replace_flag || !ctrl->add_support)
            rc = cpqhp_save_base_addr_length(ctrl, func);
      else if (!func->bus_head && !func->mem_head &&
             !func->p_mem_head && !func->io_head) {
            /* Here we check to see if we've saved any of the board's
             * resources already.  If so, we'll skip the attempt to
             * determine what's being used. */
            index = 0;
            temp_func = cpqhp_slot_find(func->bus, func->device, index++);
            while (temp_func) {
                  if (temp_func->bus_head || temp_func->mem_head
                      || temp_func->p_mem_head || temp_func->io_head) {
                        skip = 1;
                        break;
                  }
                  temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
            }

            if (!skip)
                  rc = cpqhp_save_used_resources(ctrl, func);
      }
      /* Change status to shutdown */
      if (func->is_a_board)
            func->status = 0x01;
      func->configured = 0;

      mutex_lock(&ctrl->crit_sect);

      green_LED_off (ctrl, hp_slot);
      slot_disable (ctrl, hp_slot);

      set_SOGO(ctrl);

      /* turn off SERR for slot */
      temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
      temp_byte &= ~(0x01 << hp_slot);
      writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);

      /* Wait for SOBS to be unset */
      wait_for_ctrl_irq (ctrl);

      mutex_unlock(&ctrl->crit_sect);

      if (!replace_flag && ctrl->add_support) {
            while (func) {
                  res_lists.io_head = ctrl->io_head;
                  res_lists.mem_head = ctrl->mem_head;
                  res_lists.p_mem_head = ctrl->p_mem_head;
                  res_lists.bus_head = ctrl->bus_head;

                  cpqhp_return_board_resources(func, &res_lists);

                  ctrl->io_head = res_lists.io_head;
                  ctrl->mem_head = res_lists.mem_head;
                  ctrl->p_mem_head = res_lists.p_mem_head;
                  ctrl->bus_head = res_lists.bus_head;

                  cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
                  cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
                  cpqhp_resource_sort_and_combine(&(ctrl->io_head));
                  cpqhp_resource_sort_and_combine(&(ctrl->bus_head));

                  if (is_bridge(func)) {
                        bridge_slot_remove(func);
                  } else
                        slot_remove(func);

                  func = cpqhp_slot_find(ctrl->bus, device, 0);
            }

            /* Setup slot structure with entry for empty slot */
            func = cpqhp_slot_create(ctrl->bus);

            if (func == NULL)
                  return 1;

            func->bus = ctrl->bus;
            func->device = device;
            func->function = 0;
            func->configured = 0;
            func->switch_save = 0x10;
            func->is_a_board = 0;
            func->p_task_event = NULL;
      }

      return 0;
}

static void pushbutton_helper_thread(unsigned long data)
{
      pushbutton_pending = data;
      wake_up_process(cpqhp_event_thread);
}


/* this is the main worker thread */
static int event_thread(void* data)
{
      struct controller *ctrl;

      while (1) {
            dbg("!!!!event_thread sleeping\n");
            set_current_state(TASK_INTERRUPTIBLE);
            schedule();

            if (kthread_should_stop())
                  break;
            /* Do stuff here */
            if (pushbutton_pending)
                  cpqhp_pushbutton_thread(pushbutton_pending);
            else
                  for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
                        interrupt_event_handler(ctrl);
      }
      dbg("event_thread signals exit\n");
      return 0;
}

int cpqhp_event_start_thread(void)
{
      cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
      if (IS_ERR(cpqhp_event_thread)) {
            err ("Can't start up our event thread\n");
            return PTR_ERR(cpqhp_event_thread);
      }

      return 0;
}


void cpqhp_event_stop_thread(void)
{
      kthread_stop(cpqhp_event_thread);
}


static int update_slot_info(struct controller *ctrl, struct slot *slot)
{
      struct hotplug_slot_info *info;
      int result;

      info = kmalloc(sizeof(*info), GFP_KERNEL);
      if (!info)
            return -ENOMEM;

      info->power_status = get_slot_enabled(ctrl, slot);
      info->attention_status = cpq_get_attention_status(ctrl, slot);
      info->latch_status = cpq_get_latch_status(ctrl, slot);
      info->adapter_status = get_presence_status(ctrl, slot);
      result = pci_hp_change_slot_info(slot->hotplug_slot, info);
      kfree (info);
      return result;
}

static void interrupt_event_handler(struct controller *ctrl)
{
      int loop = 0;
      int change = 1;
      struct pci_func *func;
      u8 hp_slot;
      struct slot *p_slot;

      while (change) {
            change = 0;

            for (loop = 0; loop < 10; loop++) {
                  /* dbg("loop %d\n", loop); */
                  if (ctrl->event_queue[loop].event_type != 0) {
                        hp_slot = ctrl->event_queue[loop].hp_slot;

                        func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
                        if (!func)
                              return;

                        p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
                        if (!p_slot)
                              return;

                        dbg("hp_slot %d, func %p, p_slot %p\n",
                            hp_slot, func, p_slot);

                        if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
                              dbg("button pressed\n");
                        } else if (ctrl->event_queue[loop].event_type == 
                                 INT_BUTTON_CANCEL) {
                              dbg("button cancel\n");
                              del_timer(&p_slot->task_event);

                              mutex_lock(&ctrl->crit_sect);

                              if (p_slot->state == BLINKINGOFF_STATE) {
                                    /* slot is on */
                                    dbg("turn on green LED\n");
                                    green_LED_on (ctrl, hp_slot);
                              } else if (p_slot->state == BLINKINGON_STATE) {
                                    /* slot is off */
                                    dbg("turn off green LED\n");
                                    green_LED_off (ctrl, hp_slot);
                              }

                              info(msg_button_cancel, p_slot->number);

                              p_slot->state = STATIC_STATE;

                              amber_LED_off (ctrl, hp_slot);

                              set_SOGO(ctrl);

                              /* Wait for SOBS to be unset */
                              wait_for_ctrl_irq (ctrl);

                              mutex_unlock(&ctrl->crit_sect);
                        }
                        /*** button Released (No action on press...) */
                        else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
                              dbg("button release\n");

                              if (is_slot_enabled (ctrl, hp_slot)) {
                                    dbg("slot is on\n");
                                    p_slot->state = BLINKINGOFF_STATE;
                                    info(msg_button_off, p_slot->number);
                              } else {
                                    dbg("slot is off\n");
                                    p_slot->state = BLINKINGON_STATE;
                                    info(msg_button_on, p_slot->number);
                              }
                              mutex_lock(&ctrl->crit_sect);
                              
                              dbg("blink green LED and turn off amber\n");
                              
                              amber_LED_off (ctrl, hp_slot);
                              green_LED_blink (ctrl, hp_slot);
                              
                              set_SOGO(ctrl);

                              /* Wait for SOBS to be unset */
                              wait_for_ctrl_irq (ctrl);

                              mutex_unlock(&ctrl->crit_sect);
                              init_timer(&p_slot->task_event);
                              p_slot->hp_slot = hp_slot;
                              p_slot->ctrl = ctrl;
/*                            p_slot->physical_slot = physical_slot; */
                              p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
                              p_slot->task_event.function = pushbutton_helper_thread;
                              p_slot->task_event.data = (u32) p_slot;

                              dbg("add_timer p_slot = %p\n", p_slot);
                              add_timer(&p_slot->task_event);
                        }
                        /***********POWER FAULT */
                        else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
                              dbg("power fault\n");
                        } else {
                              /* refresh notification */
                              if (p_slot)
                                    update_slot_info(ctrl, p_slot);
                        }

                        ctrl->event_queue[loop].event_type = 0;

                        change = 1;
                  }
            }           /* End of FOR loop */
      }

      return;
}


/**
 * cpqhp_pushbutton_thread - handle pushbutton events
 * @slot: target slot (struct)
 *
 * Scheduled procedure to handle blocking stuff for the pushbuttons.
 * Handles all pending events and exits.
 */
void cpqhp_pushbutton_thread(unsigned long slot)
{
      u8 hp_slot;
      u8 device;
      struct pci_func *func;
      struct slot *p_slot = (struct slot *) slot;
      struct controller *ctrl = (struct controller *) p_slot->ctrl;

      pushbutton_pending = 0;
      hp_slot = p_slot->hp_slot;

      device = p_slot->device;

      if (is_slot_enabled(ctrl, hp_slot)) {
            p_slot->state = POWEROFF_STATE;
            /* power Down board */
            func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
            dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
            if (!func) {
                  dbg("Error! func NULL in %s\n", __FUNCTION__);
                  return ;
            }

            if (cpqhp_process_SS(ctrl, func) != 0) {
                  amber_LED_on(ctrl, hp_slot);
                  green_LED_on(ctrl, hp_slot);

                  set_SOGO(ctrl);

                  /* Wait for SOBS to be unset */
                  wait_for_ctrl_irq(ctrl);
            }

            p_slot->state = STATIC_STATE;
      } else {
            p_slot->state = POWERON_STATE;
            /* slot is off */

            func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
            dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
            if (!func) {
                  dbg("Error! func NULL in %s\n", __FUNCTION__);
                  return ;
            }

            if (func != NULL && ctrl != NULL) {
                  if (cpqhp_process_SI(ctrl, func) != 0) {
                        amber_LED_on(ctrl, hp_slot);
                        green_LED_off(ctrl, hp_slot);
                        
                        set_SOGO(ctrl);

                        /* Wait for SOBS to be unset */
                        wait_for_ctrl_irq (ctrl);
                  }
            }

            p_slot->state = STATIC_STATE;
      }

      return;
}


int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
{
      u8 device, hp_slot;
      u16 temp_word;
      u32 tempdword;
      int rc;
      struct slot* p_slot;
      int physical_slot = 0;

      tempdword = 0;

      device = func->device;
      hp_slot = device - ctrl->slot_device_offset;
      p_slot = cpqhp_find_slot(ctrl, device);
      if (p_slot)
            physical_slot = p_slot->number;

      /* Check to see if the interlock is closed */
      tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);

      if (tempdword & (0x01 << hp_slot)) {
            return 1;
      }

      if (func->is_a_board) {
            rc = board_replaced(func, ctrl);
      } else {
            /* add board */
            slot_remove(func);

            func = cpqhp_slot_create(ctrl->bus);
            if (func == NULL)
                  return 1;

            func->bus = ctrl->bus;
            func->device = device;
            func->function = 0;
            func->configured = 0;
            func->is_a_board = 1;

            /* We have to save the presence info for these slots */
            temp_word = ctrl->ctrl_int_comp >> 16;
            func->presence_save = (temp_word >> hp_slot) & 0x01;
            func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;

            if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
                  func->switch_save = 0;
            } else {
                  func->switch_save = 0x10;
            }

            rc = board_added(func, ctrl);
            if (rc) {
                  if (is_bridge(func)) {
                        bridge_slot_remove(func);
                  } else
                        slot_remove(func);

                  /* Setup slot structure with entry for empty slot */
                  func = cpqhp_slot_create(ctrl->bus);

                  if (func == NULL)
                        return 1;

                  func->bus = ctrl->bus;
                  func->device = device;
                  func->function = 0;
                  func->configured = 0;
                  func->is_a_board = 0;

                  /* We have to save the presence info for these slots */
                  temp_word = ctrl->ctrl_int_comp >> 16;
                  func->presence_save = (temp_word >> hp_slot) & 0x01;
                  func->presence_save |=
                  (temp_word >> (hp_slot + 7)) & 0x02;

                  if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
                        func->switch_save = 0;
                  } else {
                        func->switch_save = 0x10;
                  }
            }
      }

      if (rc) {
            dbg("%s: rc = %d\n", __FUNCTION__, rc);
      }

      if (p_slot)
            update_slot_info(ctrl, p_slot);

      return rc;
}


int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
{
      u8 device, class_code, header_type, BCR;
      u8 index = 0;
      u8 replace_flag;
      u32 rc = 0;
      unsigned int devfn;
      struct slot* p_slot;
      struct pci_bus *pci_bus = ctrl->pci_bus;
      int physical_slot=0;

      device = func->device; 
      func = cpqhp_slot_find(ctrl->bus, device, index++);
      p_slot = cpqhp_find_slot(ctrl, device);
      if (p_slot) {
            physical_slot = p_slot->number;
      }

      /* Make sure there are no video controllers here */
      while (func && !rc) {
            pci_bus->number = func->bus;
            devfn = PCI_DEVFN(func->device, func->function);

            /* Check the Class Code */
            rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
            if (rc)
                  return rc;

            if (class_code == PCI_BASE_CLASS_DISPLAY) {
                  /* Display/Video adapter (not supported) */
                  rc = REMOVE_NOT_SUPPORTED;
            } else {
                  /* See if it's a bridge */
                  rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
                  if (rc)
                        return rc;

                  /* If it's a bridge, check the VGA Enable bit */
                  if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
                        rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
                        if (rc)
                              return rc;

                        /* If the VGA Enable bit is set, remove isn't
                         * supported */
                        if (BCR & PCI_BRIDGE_CTL_VGA) {
                              rc = REMOVE_NOT_SUPPORTED;
                        }
                  }
            }

            func = cpqhp_slot_find(ctrl->bus, device, index++);
      }

      func = cpqhp_slot_find(ctrl->bus, device, 0);
      if ((func != NULL) && !rc) {
            /* FIXME: Replace flag should be passed into process_SS */
            replace_flag = !(ctrl->add_support);
            rc = remove_board(func, replace_flag, ctrl);
      } else if (!rc) {
            rc = 1;
      }

      if (p_slot)
            update_slot_info(ctrl, p_slot);

      return rc;
}

/**
 * switch_leds - switch the leds, go from one site to the other.
 * @ctrl: controller to use
 * @num_of_slots: number of slots to use
 * @work_LED: LED control value
 * @direction: 1 to start from the left side, 0 to start right.
 */
static void switch_leds(struct controller *ctrl, const int num_of_slots,
                  u32 *work_LED, const int direction)
{
      int loop;

      for (loop = 0; loop < num_of_slots; loop++) {
            if (direction)
                  *work_LED = *work_LED >> 1;
            else
                  *work_LED = *work_LED << 1;
            writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);

            set_SOGO(ctrl);

            /* Wait for SOGO interrupt */
            wait_for_ctrl_irq(ctrl);

            /* Get ready for next iteration */
            long_delay((2*HZ)/10);
      }
}

/**
 * cpqhp_hardware_test - runs hardware tests
 * @ctrl: target controller
 * @test_num: the number written to the "test" file in sysfs.
 *
 * For hot plug ctrl folks to play with.
 */
int cpqhp_hardware_test(struct controller *ctrl, int test_num)
{
      u32 save_LED;
      u32 work_LED;
      int loop;
      int num_of_slots;

      num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;

      switch (test_num) {
            case 1:
                  /* Do stuff here! */

                  /* Do that funky LED thing */
                  /* so we can restore them later */
                  save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
                  work_LED = 0x01010101;
                  switch_leds(ctrl, num_of_slots, &work_LED, 0);
                  switch_leds(ctrl, num_of_slots, &work_LED, 1);
                  switch_leds(ctrl, num_of_slots, &work_LED, 0);
                  switch_leds(ctrl, num_of_slots, &work_LED, 1);

                  work_LED = 0x01010000;
                  writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
                  switch_leds(ctrl, num_of_slots, &work_LED, 0);
                  switch_leds(ctrl, num_of_slots, &work_LED, 1);
                  work_LED = 0x00000101;
                  writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
                  switch_leds(ctrl, num_of_slots, &work_LED, 0);
                  switch_leds(ctrl, num_of_slots, &work_LED, 1);

                  work_LED = 0x01010000;
                  writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
                  for (loop = 0; loop < num_of_slots; loop++) {
                        set_SOGO(ctrl);

                        /* Wait for SOGO interrupt */
                        wait_for_ctrl_irq (ctrl);

                        /* Get ready for next iteration */
                        long_delay((3*HZ)/10);
                        work_LED = work_LED >> 16;
                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
                        
                        set_SOGO(ctrl);

                        /* Wait for SOGO interrupt */
                        wait_for_ctrl_irq (ctrl);

                        /* Get ready for next iteration */
                        long_delay((3*HZ)/10);
                        work_LED = work_LED << 16;
                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
                        work_LED = work_LED << 1;
                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
                  }

                  /* put it back the way it was */
                  writel(save_LED, ctrl->hpc_reg + LED_CONTROL);

                  set_SOGO(ctrl);

                  /* Wait for SOBS to be unset */
                  wait_for_ctrl_irq (ctrl);
                  break;
            case 2:
                  /* Do other stuff here! */
                  break;
            case 3:
                  /* and more... */
                  break;
      }
      return 0;
}


/**
 * configure_new_device - Configures the PCI header information of one board.
 * @ctrl: pointer to controller structure
 * @func: pointer to function structure
 * @behind_bridge: 1 if this is a recursive call, 0 if not
 * @resources: pointer to set of resource lists
 *
 * Returns 0 if success.
 */
static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
                         u8 behind_bridge, struct resource_lists * resources)
{
      u8 temp_byte, function, max_functions, stop_it;
      int rc;
      u32 ID;
      struct pci_func *new_slot;
      int index;

      new_slot = func;

      dbg("%s\n", __FUNCTION__);
      /* Check for Multi-function device */
      ctrl->pci_bus->number = func->bus;
      rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
      if (rc) {
            dbg("%s: rc = %d\n", __FUNCTION__, rc);
            return rc;
      }

      if (temp_byte & 0x80)   /* Multi-function device */
            max_functions = 8;
      else
            max_functions = 1;

      function = 0;

      do {
            rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);

            if (rc) {
                  dbg("configure_new_function failed %d\n",rc);
                  index = 0;

                  while (new_slot) {
                        new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);

                        if (new_slot)
                              cpqhp_return_board_resources(new_slot, resources);
                  }

                  return rc;
            }

            function++;

            stop_it = 0;

            /* The following loop skips to the next present function
             * and creates a board structure */

            while ((function < max_functions) && (!stop_it)) {
                  pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);

                  if (ID == 0xFFFFFFFF) {   /* There's nothing there. */
                        function++;
                  } else {  /* There's something there */
                        /* Setup slot structure. */
                        new_slot = cpqhp_slot_create(func->bus);

                        if (new_slot == NULL)
                              return 1;

                        new_slot->bus = func->bus;
                        new_slot->device = func->device;
                        new_slot->function = function;
                        new_slot->is_a_board = 1;
                        new_slot->status = 0;

                        stop_it++;
                  }
            }

      } while (function < max_functions);
      dbg("returning from configure_new_device\n");

      return 0;
}


/*
  Configuration logic that involves the hotplug data structures and 
  their bookkeeping
 */


/**
 * configure_new_function - Configures the PCI header information of one device
 * @ctrl: pointer to controller structure
 * @func: pointer to function structure
 * @behind_bridge: 1 if this is a recursive call, 0 if not
 * @resources: pointer to set of resource lists
 *
 * Calls itself recursively for bridged devices.
 * Returns 0 if success.
 */
static int configure_new_function(struct controller *ctrl, struct pci_func *func,
                           u8 behind_bridge,
                           struct resource_lists *resources)
{
      int cloop;
      u8 IRQ = 0;
      u8 temp_byte;
      u8 device;
      u8 class_code;
      u16 command;
      u16 temp_word;
      u32 temp_dword;
      u32 rc;
      u32 temp_register;
      u32 base;
      u32 ID;
      unsigned int devfn;
      struct pci_resource *mem_node;
      struct pci_resource *p_mem_node;
      struct pci_resource *io_node;
      struct pci_resource *bus_node;
      struct pci_resource *hold_mem_node;
      struct pci_resource *hold_p_mem_node;
      struct pci_resource *hold_IO_node;
      struct pci_resource *hold_bus_node;
      struct irq_mapping irqs;
      struct pci_func *new_slot;
      struct pci_bus *pci_bus;
      struct resource_lists temp_resources;

      pci_bus = ctrl->pci_bus;
      pci_bus->number = func->bus;
      devfn = PCI_DEVFN(func->device, func->function);

      /* Check for Bridge */
      rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
      if (rc)
            return rc;

      if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
            /* set Primary bus */
            dbg("set Primary bus = %d\n", func->bus);
            rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
            if (rc)
                  return rc;

            /* find range of busses to use */
            dbg("find ranges of buses to use\n");
            bus_node = get_max_resource(&(resources->bus_head), 1);

            /* If we don't have any busses to allocate, we can't continue */
            if (!bus_node)
                  return -ENOMEM;

            /* set Secondary bus */
            temp_byte = bus_node->base;
            dbg("set Secondary bus = %d\n", bus_node->base);
            rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
            if (rc)
                  return rc;

            /* set subordinate bus */
            temp_byte = bus_node->base + bus_node->length - 1;
            dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
            rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
            if (rc)
                  return rc;

            /* set subordinate Latency Timer and base Latency Timer */
            temp_byte = 0x40;
            rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
            if (rc)
                  return rc;
            rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
            if (rc)
                  return rc;

            /* set Cache Line size */
            temp_byte = 0x08;
            rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
            if (rc)
                  return rc;

            /* Setup the IO, memory, and prefetchable windows */
            io_node = get_max_resource(&(resources->io_head), 0x1000);
            if (!io_node)
                  return -ENOMEM;
            mem_node = get_max_resource(&(resources->mem_head), 0x100000);
            if (!mem_node)
                  return -ENOMEM;
            p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
            if (!p_mem_node)
                  return -ENOMEM;
            dbg("Setup the IO, memory, and prefetchable windows\n");
            dbg("io_node\n");
            dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
                              io_node->length, io_node->next);
            dbg("mem_node\n");
            dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
                              mem_node->length, mem_node->next);
            dbg("p_mem_node\n");
            dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
                              p_mem_node->length, p_mem_node->next);

            /* set up the IRQ info */
            if (!resources->irqs) {
                  irqs.barber_pole = 0;
                  irqs.interrupt[0] = 0;
                  irqs.interrupt[1] = 0;
                  irqs.interrupt[2] = 0;
                  irqs.interrupt[3] = 0;
                  irqs.valid_INT = 0;
            } else {
                  irqs.barber_pole = resources->irqs->barber_pole;
                  irqs.interrupt[0] = resources->irqs->interrupt[0];
                  irqs.interrupt[1] = resources->irqs->interrupt[1];
                  irqs.interrupt[2] = resources->irqs->interrupt[2];
                  irqs.interrupt[3] = resources->irqs->interrupt[3];
                  irqs.valid_INT = resources->irqs->valid_INT;
            }

            /* set up resource lists that are now aligned on top and bottom
             * for anything behind the bridge. */
            temp_resources.bus_head = bus_node;
            temp_resources.io_head = io_node;
            temp_resources.mem_head = mem_node;
            temp_resources.p_mem_head = p_mem_node;
            temp_resources.irqs = &irqs;

            /* Make copies of the nodes we are going to pass down so that
             * if there is a problem,we can just use these to free resources */
            hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
            hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
            hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
            hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);

            if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
                  kfree(hold_bus_node);
                  kfree(hold_IO_node);
                  kfree(hold_mem_node);
                  kfree(hold_p_mem_node);

                  return 1;
            }

            memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));

            bus_node->base += 1;
            bus_node->length -= 1;
            bus_node->next = NULL;

            /* If we have IO resources copy them and fill in the bridge's
             * IO range registers */
            if (io_node) {
                  memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
                  io_node->next = NULL;

                  /* set IO base and Limit registers */
                  temp_byte = io_node->base >> 8;
                  rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);

                  temp_byte = (io_node->base + io_node->length - 1) >> 8;
                  rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
            } else {
                  kfree(hold_IO_node);
                  hold_IO_node = NULL;
            }

            /* If we have memory resources copy them and fill in the
             * bridge's memory range registers.  Otherwise, fill in the
             * range registers with values that disable them. */
            if (mem_node) {
                  memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
                  mem_node->next = NULL;

                  /* set Mem base and Limit registers */
                  temp_word = mem_node->base >> 16;
                  rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);

                  temp_word = (mem_node->base + mem_node->length - 1) >> 16;
                  rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
            } else {
                  temp_word = 0xFFFF;
                  rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);

                  temp_word = 0x0000;
                  rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);

                  kfree(hold_mem_node);
                  hold_mem_node = NULL;
            }

            memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
            p_mem_node->next = NULL;

            /* set Pre Mem base and Limit registers */
            temp_word = p_mem_node->base >> 16;
            rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);

            temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
            rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);

            /* Adjust this to compensate for extra adjustment in first loop */
            irqs.barber_pole--;

            rc = 0;

            /* Here we actually find the devices and configure them */
            for (device = 0; (device <= 0x1F) && !rc; device++) {
                  irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;

                  ID = 0xFFFFFFFF;
                  pci_bus->number = hold_bus_node->base;
                  pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
                  pci_bus->number = func->bus;

                  if (ID != 0xFFFFFFFF) {   /*  device present */
                        /* Setup slot structure. */
                        new_slot = cpqhp_slot_create(hold_bus_node->base);

                        if (new_slot == NULL) {
                              rc = -ENOMEM;
                              continue;
                        }

                        new_slot->bus = hold_bus_node->base;
                        new_slot->device = device;
                        new_slot->function = 0;
                        new_slot->is_a_board = 1;
                        new_slot->status = 0;

                        rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
                        dbg("configure_new_device rc=0x%x\n",rc);
                  }     /* End of IF (device in slot?) */
            }           /* End of FOR loop */

            if (rc)
                  goto free_and_out;
            /* save the interrupt routing information */
            if (resources->irqs) {
                  resources->irqs->interrupt[0] = irqs.interrupt[0];
                  resources->irqs->interrupt[1] = irqs.interrupt[1];
                  resources->irqs->interrupt[2] = irqs.interrupt[2];
                  resources->irqs->interrupt[3] = irqs.interrupt[3];
                  resources->irqs->valid_INT = irqs.valid_INT;
            } else if (!behind_bridge) {
                  /* We need to hook up the interrupts here */
                  for (cloop = 0; cloop < 4; cloop++) {
                        if (irqs.valid_INT & (0x01 << cloop)) {
                              rc = cpqhp_set_irq(func->bus, func->device,
                                             0x0A + cloop, irqs.interrupt[cloop]);
                              if (rc)
                                    goto free_and_out;
                        }
                  }     /* end of for loop */
            }
            /* Return unused bus resources
             * First use the temporary node to store information for
             * the board */
            if (hold_bus_node && bus_node && temp_resources.bus_head) {
                  hold_bus_node->length = bus_node->base - hold_bus_node->base;

                  hold_bus_node->next = func->bus_head;
                  func->bus_head = hold_bus_node;

                  temp_byte = temp_resources.bus_head->base - 1;

                  /* set subordinate bus */
                  rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);

                  if (temp_resources.bus_head->length == 0) {
                        kfree(temp_resources.bus_head);
                        temp_resources.bus_head = NULL;
                  } else {
                        return_resource(&(resources->bus_head), temp_resources.bus_head);
                  }
            }

            /* If we have IO space available and there is some left,
             * return the unused portion */
            if (hold_IO_node && temp_resources.io_head) {
                  io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
                                                 &hold_IO_node, 0x1000);

                  /* Check if we were able to split something off */
                  if (io_node) {
                        hold_IO_node->base = io_node->base + io_node->length;

                        temp_byte = (hold_IO_node->base) >> 8;
                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);

                        return_resource(&(resources->io_head), io_node);
                  }

                  io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);

                  /* Check if we were able to split something off */
                  if (io_node) {
                        /* First use the temporary node to store
                         * information for the board */
                        hold_IO_node->length = io_node->base - hold_IO_node->base;

                        /* If we used any, add it to the board's list */
                        if (hold_IO_node->length) {
                              hold_IO_node->next = func->io_head;
                              func->io_head = hold_IO_node;

                              temp_byte = (io_node->base - 1) >> 8;
                              rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);

                              return_resource(&(resources->io_head), io_node);
                        } else {
                              /* it doesn't need any IO */
                              temp_word = 0x0000;
                              rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);

                              return_resource(&(resources->io_head), io_node);
                              kfree(hold_IO_node);
                        }
                  } else {
                        /* it used most of the range */
                        hold_IO_node->next = func->io_head;
                        func->io_head = hold_IO_node;
                  }
            } else if (hold_IO_node) {
                  /* it used the whole range */
                  hold_IO_node->next = func->io_head;
                  func->io_head = hold_IO_node;
            }
            /* If we have memory space available and there is some left,
             * return the unused portion */
            if (hold_mem_node && temp_resources.mem_head) {
                  mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
                                                &hold_mem_node, 0x100000);

                  /* Check if we were able to split something off */
                  if (mem_node) {
                        hold_mem_node->base = mem_node->base + mem_node->length;

                        temp_word = (hold_mem_node->base) >> 16;
                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);

                        return_resource(&(resources->mem_head), mem_node);
                  }

                  mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);

                  /* Check if we were able to split something off */
                  if (mem_node) {
                        /* First use the temporary node to store
                         * information for the board */
                        hold_mem_node->length = mem_node->base - hold_mem_node->base;

                        if (hold_mem_node->length) {
                              hold_mem_node->next = func->mem_head;
                              func->mem_head = hold_mem_node;

                              /* configure end address */
                              temp_word = (mem_node->base - 1) >> 16;
                              rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);

                              /* Return unused resources to the pool */
                              return_resource(&(resources->mem_head), mem_node);
                        } else {
                              /* it doesn't need any Mem */
                              temp_word = 0x0000;
                              rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);

                              return_resource(&(resources->mem_head), mem_node);
                              kfree(hold_mem_node);
                        }
                  } else {
                        /* it used most of the range */
                        hold_mem_node->next = func->mem_head;
                        func->mem_head = hold_mem_node;
                  }
            } else if (hold_mem_node) {
                  /* it used the whole range */
                  hold_mem_node->next = func->mem_head;
                  func->mem_head = hold_mem_node;
            }
            /* If we have prefetchable memory space available and there
             * is some left at the end, return the unused portion */
            if (hold_p_mem_node && temp_resources.p_mem_head) {
                  p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
                                                  &hold_p_mem_node, 0x100000);

                  /* Check if we were able to split something off */
                  if (p_mem_node) {
                        hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;

                        temp_word = (hold_p_mem_node->base) >> 16;
                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);

                        return_resource(&(resources->p_mem_head), p_mem_node);
                  }

                  p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);

                  /* Check if we were able to split something off */
                  if (p_mem_node) {
                        /* First use the temporary node to store
                         * information for the board */
                        hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;

                        /* If we used any, add it to the board's list */
                        if (hold_p_mem_node->length) {
                              hold_p_mem_node->next = func->p_mem_head;
                              func->p_mem_head = hold_p_mem_node;

                              temp_word = (p_mem_node->base - 1) >> 16;
                              rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);

                              return_resource(&(resources->p_mem_head), p_mem_node);
                        } else {
                              /* it doesn't need any PMem */
                              temp_word = 0x0000;
                              rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);

                              return_resource(&(resources->p_mem_head), p_mem_node);
                              kfree(hold_p_mem_node);
                        }
                  } else {
                        /* it used the most of the range */
                        hold_p_mem_node->next = func->p_mem_head;
                        func->p_mem_head = hold_p_mem_node;
                  }
            } else if (hold_p_mem_node) {
                  /* it used the whole range */
                  hold_p_mem_node->next = func->p_mem_head;
                  func->p_mem_head = hold_p_mem_node;
            }
            /* We should be configuring an IRQ and the bridge's base address
             * registers if it needs them.  Although we have never seen such
             * a device */

            /* enable card */
            command = 0x0157; /* = PCI_COMMAND_IO |
                               *   PCI_COMMAND_MEMORY |
                               *   PCI_COMMAND_MASTER |
                               *   PCI_COMMAND_INVALIDATE |
                               *   PCI_COMMAND_PARITY |
                               *   PCI_COMMAND_SERR */
            rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);

            /* set Bridge Control Register */
            command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
                               *   PCI_BRIDGE_CTL_SERR |
                               *   PCI_BRIDGE_CTL_NO_ISA */
            rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
      } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
            /* Standard device */
            rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);

            if (class_code == PCI_BASE_CLASS_DISPLAY) {
                  /* Display (video) adapter (not supported) */
                  return DEVICE_TYPE_NOT_SUPPORTED;
            }
            /* Figure out IO and memory needs */
            for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
                  temp_register = 0xFFFFFFFF;

                  dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
                  rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);

                  rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
                  dbg("CND: base = 0x%x\n", temp_register);

                  if (temp_register) {      /* If this register is implemented */
                        if ((temp_register & 0x03L) == 0x01) {
                              /* Map IO */

                              /* set base = amount of IO space */
                              base = temp_register & 0xFFFFFFFC;
                              base = ~base + 1;

                              dbg("CND:      length = 0x%x\n", base);
                              io_node = get_io_resource(&(resources->io_head), base);
                              dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
                                  io_node->base, io_node->length, io_node->next);
                              dbg("func (%p) io_head (%p)\n", func, func->io_head);

                              /* allocate the resource to the board */
                              if (io_node) {
                                    base = io_node->base;

                                    io_node->next = func->io_head;
                                    func->io_head = io_node;
                              } else
                                    return -ENOMEM;
                        } else if ((temp_register & 0x0BL) == 0x08) {
                              /* Map prefetchable memory */
                              base = temp_register & 0xFFFFFFF0;
                              base = ~base + 1;

                              dbg("CND:      length = 0x%x\n", base);
                              p_mem_node = get_resource(&(resources->p_mem_head), base);

                              /* allocate the resource to the board */
                              if (p_mem_node) {
                                    base = p_mem_node->base;

                                    p_mem_node->next = func->p_mem_head;
                                    func->p_mem_head = p_mem_node;
                              } else
                                    return -ENOMEM;
                        } else if ((temp_register & 0x0BL) == 0x00) {
                              /* Map memory */
                              base = temp_register & 0xFFFFFFF0;
                              base = ~base + 1;

                              dbg("CND:      length = 0x%x\n", base);
                              mem_node = get_resource(&(resources->mem_head), base);

                              /* allocate the resource to the board */
                              if (mem_node) {
                                    base = mem_node->base;

                                    mem_node->next = func->mem_head;
                                    func->mem_head = mem_node;
                              } else
                                    return -ENOMEM;
                        } else if ((temp_register & 0x0BL) == 0x04) {
                              /* Map memory */
                              base = temp_register & 0xFFFFFFF0;
                              base = ~base + 1;

                              dbg("CND:      length = 0x%x\n", base);
                              mem_node = get_resource(&(resources->mem_head), base);

                              /* allocate the resource to the board */
                              if (mem_node) {
                                    base = mem_node->base;

                                    mem_node->next = func->mem_head;
                                    func->mem_head = mem_node;
                              } else
                                    return -ENOMEM;
                        } else if ((temp_register & 0x0BL) == 0x06) {
                              /* Those bits are reserved, we can't handle this */
                              return 1;
                        } else {
                              /* Requesting space below 1M */
                              return NOT_ENOUGH_RESOURCES;
                        }

                        rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);

                        /* Check for 64-bit base */
                        if ((temp_register & 0x07L) == 0x04) {
                              cloop += 4;

                              /* Upper 32 bits of address always zero
                               * on today's systems */
                              /* FIXME this is probably not true on
                               * Alpha and ia64??? */
                              base = 0;
                              rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
                        }
                  }
            }           /* End of base register loop */
            if (cpqhp_legacy_mode) {
                  /* Figure out which interrupt pin this function uses */
                  rc = pci_bus_read_config_byte (pci_bus, devfn, 
                        PCI_INTERRUPT_PIN, &temp_byte);

                  /* If this function needs an interrupt and we are behind
                   * a bridge and the pin is tied to something that's
                   * alread mapped, set this one the same */
                  if (temp_byte && resources->irqs && 
                      (resources->irqs->valid_INT & 
                       (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
                        /* We have to share with something already set up */
                        IRQ = resources->irqs->interrupt[(temp_byte + 
                              resources->irqs->barber_pole - 1) & 0x03];
                  } else {
                        /* Program IRQ based on card type */
                        rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);

                        if (class_code == PCI_BASE_CLASS_STORAGE) {
                              IRQ = cpqhp_disk_irq;
                        } else {
                              IRQ = cpqhp_nic_irq;
                        }
                  }

                  /* IRQ Line */
                  rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
            }

            if (!behind_bridge) {
                  rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
                  if (rc)
                        return 1;
            } else {
                  /* TBD - this code may also belong in the other clause
                   * of this If statement */
                  resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
                  resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
            }

            /* Latency Timer */
            temp_byte = 0x40;
            rc = pci_bus_write_config_byte(pci_bus, devfn,
                              PCI_LATENCY_TIMER, temp_byte);

            /* Cache Line size */
            temp_byte = 0x08;
            rc = pci_bus_write_config_byte(pci_bus, devfn,
                              PCI_CACHE_LINE_SIZE, temp_byte);

            /* disable ROM base Address */
            temp_dword = 0x00L;
            rc = pci_bus_write_config_word(pci_bus, devfn,
                              PCI_ROM_ADDRESS, temp_dword);

            /* enable card */
            temp_word = 0x0157;     /* = PCI_COMMAND_IO |
                               *   PCI_COMMAND_MEMORY |
                               *   PCI_COMMAND_MASTER |
                               *   PCI_COMMAND_INVALIDATE |
                               *   PCI_COMMAND_PARITY |
                               *   PCI_COMMAND_SERR */
            rc = pci_bus_write_config_word (pci_bus, devfn,
                              PCI_COMMAND, temp_word);
      } else {          /* End of Not-A-Bridge else */
            /* It's some strange type of PCI adapter (Cardbus?) */
            return DEVICE_TYPE_NOT_SUPPORTED;
      }

      func->configured = 1;

      return 0;
free_and_out:
      cpqhp_destroy_resource_list (&temp_resources);

      return_resource(&(resources-> bus_head), hold_bus_node);
      return_resource(&(resources-> io_head), hold_IO_node);
      return_resource(&(resources-> mem_head), hold_mem_node);
      return_resource(&(resources-> p_mem_head), hold_p_mem_node);
      return rc;
}

Generated by  Doxygen 1.6.0   Back to index