Logo Search packages:      
Sourcecode: linux version File versions  Download package

dl2k.c

/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
/*
    Copyright (c) 2001, 2002 by D-Link Corporation
    Written by Edward Peng.<edward_peng@dlink.com.tw>
    Created 03-May-2001, base on Linux' sundance.c.

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.
*/

#define DRV_NAME  "DL2000/TC902x-based linux driver"
#define DRV_VERSION     "v1.19"
#define DRV_RELDATE     "2007/08/12"
#include "dl2k.h"
#include <linux/dma-mapping.h>

static char version[] __devinitdata =
      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
#define MAX_UNITS 8
static int mtu[MAX_UNITS];
static int vlan[MAX_UNITS];
static int jumbo[MAX_UNITS];
static char *media[MAX_UNITS];
static int tx_flow=-1;
static int rx_flow=-1;
static int copy_thresh;
static int rx_coalesce=10;    /* Rx frame count each interrupt */
static int rx_timeout=200;    /* Rx DMA wait time in 640ns increments */
static int tx_coalesce=16;    /* HW xmit count each TxDMAComplete */


MODULE_AUTHOR ("Edward Peng");
MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
MODULE_LICENSE("GPL");
module_param_array(mtu, int, NULL, 0);
module_param_array(media, charp, NULL, 0);
module_param_array(vlan, int, NULL, 0);
module_param_array(jumbo, int, NULL, 0);
module_param(tx_flow, int, 0);
module_param(rx_flow, int, 0);
module_param(copy_thresh, int, 0);
module_param(rx_coalesce, int, 0);  /* Rx frame count each interrupt */
module_param(rx_timeout, int, 0);   /* Rx DMA wait time in 64ns increments */
module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */


/* Enable the default interrupts */
#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
       UpdateStats | LinkEvent)
#define EnableInt() \
writew(DEFAULT_INTR, ioaddr + IntEnable)

static const int max_intrloop = 50;
static const int multicast_filter_limit = 0x40;

static int rio_open (struct net_device *dev);
static void rio_timer (unsigned long data);
static void rio_tx_timeout (struct net_device *dev);
static void alloc_list (struct net_device *dev);
static int start_xmit (struct sk_buff *skb, struct net_device *dev);
static irqreturn_t rio_interrupt (int irq, void *dev_instance);
static void rio_free_tx (struct net_device *dev, int irq);
static void tx_error (struct net_device *dev, int tx_status);
static int receive_packet (struct net_device *dev);
static void rio_error (struct net_device *dev, int int_status);
static int change_mtu (struct net_device *dev, int new_mtu);
static void set_multicast (struct net_device *dev);
static struct net_device_stats *get_stats (struct net_device *dev);
static int clear_stats (struct net_device *dev);
static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
static int rio_close (struct net_device *dev);
static int find_miiphy (struct net_device *dev);
static int parse_eeprom (struct net_device *dev);
static int read_eeprom (long ioaddr, int eep_addr);
static int mii_wait_link (struct net_device *dev, int wait);
static int mii_set_media (struct net_device *dev);
static int mii_get_media (struct net_device *dev);
static int mii_set_media_pcs (struct net_device *dev);
static int mii_get_media_pcs (struct net_device *dev);
static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
                  u16 data);

static const struct ethtool_ops ethtool_ops;

static int __devinit
rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
{
      struct net_device *dev;
      struct netdev_private *np;
      static int card_idx;
      int chip_idx = ent->driver_data;
      int err, irq;
      long ioaddr;
      static int version_printed;
      void *ring_space;
      dma_addr_t ring_dma;
      DECLARE_MAC_BUF(mac);

      if (!version_printed++)
            printk ("%s", version);

      err = pci_enable_device (pdev);
      if (err)
            return err;

      irq = pdev->irq;
      err = pci_request_regions (pdev, "dl2k");
      if (err)
            goto err_out_disable;

      pci_set_master (pdev);
      dev = alloc_etherdev (sizeof (*np));
      if (!dev) {
            err = -ENOMEM;
            goto err_out_res;
      }
      SET_NETDEV_DEV(dev, &pdev->dev);

#ifdef MEM_MAPPING
      ioaddr = pci_resource_start (pdev, 1);
      ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
      if (!ioaddr) {
            err = -ENOMEM;
            goto err_out_dev;
      }
#else
      ioaddr = pci_resource_start (pdev, 0);
#endif
      dev->base_addr = ioaddr;
      dev->irq = irq;
      np = netdev_priv(dev);
      np->chip_id = chip_idx;
      np->pdev = pdev;
      spin_lock_init (&np->tx_lock);
      spin_lock_init (&np->rx_lock);

      /* Parse manual configuration */
      np->an_enable = 1;
      np->tx_coalesce = 1;
      if (card_idx < MAX_UNITS) {
            if (media[card_idx] != NULL) {
                  np->an_enable = 0;
                  if (strcmp (media[card_idx], "auto") == 0 ||
                      strcmp (media[card_idx], "autosense") == 0 ||
                      strcmp (media[card_idx], "0") == 0 ) {
                        np->an_enable = 2;
                  } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
                      strcmp (media[card_idx], "4") == 0) {
                        np->speed = 100;
                        np->full_duplex = 1;
                  } else if (strcmp (media[card_idx], "100mbps_hd") == 0
                           || strcmp (media[card_idx], "3") == 0) {
                        np->speed = 100;
                        np->full_duplex = 0;
                  } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
                           strcmp (media[card_idx], "2") == 0) {
                        np->speed = 10;
                        np->full_duplex = 1;
                  } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
                           strcmp (media[card_idx], "1") == 0) {
                        np->speed = 10;
                        np->full_duplex = 0;
                  } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
                         strcmp (media[card_idx], "6") == 0) {
                        np->speed=1000;
                        np->full_duplex=1;
                  } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
                         strcmp (media[card_idx], "5") == 0) {
                        np->speed = 1000;
                        np->full_duplex = 0;
                  } else {
                        np->an_enable = 1;
                  }
            }
            if (jumbo[card_idx] != 0) {
                  np->jumbo = 1;
                  dev->mtu = MAX_JUMBO;
            } else {
                  np->jumbo = 0;
                  if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
                        dev->mtu = mtu[card_idx];
            }
            np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
                vlan[card_idx] : 0;
            if (rx_coalesce > 0 && rx_timeout > 0) {
                  np->rx_coalesce = rx_coalesce;
                  np->rx_timeout = rx_timeout;
                  np->coalesce = 1;
            }
            np->tx_flow = (tx_flow == 0) ? 0 : 1;
            np->rx_flow = (rx_flow == 0) ? 0 : 1;

            if (tx_coalesce < 1)
                  tx_coalesce = 1;
            else if (tx_coalesce > TX_RING_SIZE-1)
                  tx_coalesce = TX_RING_SIZE - 1;
      }
      dev->open = &rio_open;
      dev->hard_start_xmit = &start_xmit;
      dev->stop = &rio_close;
      dev->get_stats = &get_stats;
      dev->set_multicast_list = &set_multicast;
      dev->do_ioctl = &rio_ioctl;
      dev->tx_timeout = &rio_tx_timeout;
      dev->watchdog_timeo = TX_TIMEOUT;
      dev->change_mtu = &change_mtu;
      SET_ETHTOOL_OPS(dev, &ethtool_ops);
#if 0
      dev->features = NETIF_F_IP_CSUM;
#endif
      pci_set_drvdata (pdev, dev);

      ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
      if (!ring_space)
            goto err_out_iounmap;
      np->tx_ring = (struct netdev_desc *) ring_space;
      np->tx_ring_dma = ring_dma;

      ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
      if (!ring_space)
            goto err_out_unmap_tx;
      np->rx_ring = (struct netdev_desc *) ring_space;
      np->rx_ring_dma = ring_dma;

      /* Parse eeprom data */
      parse_eeprom (dev);

      /* Find PHY address */
      err = find_miiphy (dev);
      if (err)
            goto err_out_unmap_rx;

      /* Fiber device? */
      np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
      np->link_status = 0;
      /* Set media and reset PHY */
      if (np->phy_media) {
            /* default Auto-Negotiation for fiber deivices */
            if (np->an_enable == 2) {
                  np->an_enable = 1;
            }
            mii_set_media_pcs (dev);
      } else {
            /* Auto-Negotiation is mandatory for 1000BASE-T,
               IEEE 802.3ab Annex 28D page 14 */
            if (np->speed == 1000)
                  np->an_enable = 1;
            mii_set_media (dev);
      }

      err = register_netdev (dev);
      if (err)
            goto err_out_unmap_rx;

      card_idx++;

      printk (KERN_INFO "%s: %s, %s, IRQ %d\n",
            dev->name, np->name, print_mac(mac, dev->dev_addr), irq);
      if (tx_coalesce > 1)
            printk(KERN_INFO "tx_coalesce:\t%d packets\n",
                        tx_coalesce);
      if (np->coalesce)
            printk(KERN_INFO "rx_coalesce:\t%d packets\n"
                   KERN_INFO "rx_timeout: \t%d ns\n",
                        np->rx_coalesce, np->rx_timeout*640);
      if (np->vlan)
            printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
      return 0;

      err_out_unmap_rx:
      pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
      err_out_unmap_tx:
      pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
      err_out_iounmap:
#ifdef MEM_MAPPING
      iounmap ((void *) ioaddr);

      err_out_dev:
#endif
      free_netdev (dev);

      err_out_res:
      pci_release_regions (pdev);

      err_out_disable:
      pci_disable_device (pdev);
      return err;
}

static int
find_miiphy (struct net_device *dev)
{
      int i, phy_found = 0;
      struct netdev_private *np;
      long ioaddr;
      np = netdev_priv(dev);
      ioaddr = dev->base_addr;
      np->phy_addr = 1;

      for (i = 31; i >= 0; i--) {
            int mii_status = mii_read (dev, i, 1);
            if (mii_status != 0xffff && mii_status != 0x0000) {
                  np->phy_addr = i;
                  phy_found++;
            }
      }
      if (!phy_found) {
            printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
            return -ENODEV;
      }
      return 0;
}

static int
parse_eeprom (struct net_device *dev)
{
      int i, j;
      long ioaddr = dev->base_addr;
      u8 sromdata[256];
      u8 *psib;
      u32 crc;
      PSROM_t psrom = (PSROM_t) sromdata;
      struct netdev_private *np = netdev_priv(dev);

      int cid, next;

#ifdef      MEM_MAPPING
      ioaddr = pci_resource_start (np->pdev, 0);
#endif
      /* Read eeprom */
      for (i = 0; i < 128; i++) {
            ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
      }
#ifdef      MEM_MAPPING
      ioaddr = dev->base_addr;
#endif
      if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {  /* D-Link Only */
            /* Check CRC */
            crc = ~ether_crc_le (256 - 4, sromdata);
            if (psrom->crc != crc) {
                  printk (KERN_ERR "%s: EEPROM data CRC error.\n",
                              dev->name);
                  return -1;
            }
      }

      /* Set MAC address */
      for (i = 0; i < 6; i++)
            dev->dev_addr[i] = psrom->mac_addr[i];

      if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
            return 0;
      }

      /* Parse Software Information Block */
      i = 0x30;
      psib = (u8 *) sromdata;
      do {
            cid = psib[i++];
            next = psib[i++];
            if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
                  printk (KERN_ERR "Cell data error\n");
                  return -1;
            }
            switch (cid) {
            case 0:     /* Format version */
                  break;
            case 1:     /* End of cell */
                  return 0;
            case 2:     /* Duplex Polarity */
                  np->duplex_polarity = psib[i];
                  writeb (readb (ioaddr + PhyCtrl) | psib[i],
                        ioaddr + PhyCtrl);
                  break;
            case 3:     /* Wake Polarity */
                  np->wake_polarity = psib[i];
                  break;
            case 9:     /* Adapter description */
                  j = (next - i > 255) ? 255 : next - i;
                  memcpy (np->name, &(psib[i]), j);
                  break;
            case 4:
            case 5:
            case 6:
            case 7:
            case 8:     /* Reversed */
                  break;
            default:    /* Unknown cell */
                  return -1;
            }
            i = next;
      } while (1);

      return 0;
}

static int
rio_open (struct net_device *dev)
{
      struct netdev_private *np = netdev_priv(dev);
      long ioaddr = dev->base_addr;
      int i;
      u16 macctrl;

      i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
      if (i)
            return i;

      /* Reset all logic functions */
      writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
            ioaddr + ASICCtrl + 2);
      mdelay(10);

      /* DebugCtrl bit 4, 5, 9 must set */
      writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);

      /* Jumbo frame */
      if (np->jumbo != 0)
            writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);

      alloc_list (dev);

      /* Get station address */
      for (i = 0; i < 6; i++)
            writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);

      set_multicast (dev);
      if (np->coalesce) {
            writel (np->rx_coalesce | np->rx_timeout << 16,
                  ioaddr + RxDMAIntCtrl);
      }
      /* Set RIO to poll every N*320nsec. */
      writeb (0x20, ioaddr + RxDMAPollPeriod);
      writeb (0xff, ioaddr + TxDMAPollPeriod);
      writeb (0x30, ioaddr + RxDMABurstThresh);
      writeb (0x30, ioaddr + RxDMAUrgentThresh);
      writel (0x0007ffff, ioaddr + RmonStatMask);
      /* clear statistics */
      clear_stats (dev);

      /* VLAN supported */
      if (np->vlan) {
            /* priority field in RxDMAIntCtrl  */
            writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
                  ioaddr + RxDMAIntCtrl);
            /* VLANId */
            writew (np->vlan, ioaddr + VLANId);
            /* Length/Type should be 0x8100 */
            writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
            /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
               VLAN information tagged by TFC' VID, CFI fields. */
            writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
                  ioaddr + MACCtrl);
      }

      init_timer (&np->timer);
      np->timer.expires = jiffies + 1*HZ;
      np->timer.data = (unsigned long) dev;
      np->timer.function = &rio_timer;
      add_timer (&np->timer);

      /* Start Tx/Rx */
      writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
                  ioaddr + MACCtrl);

      macctrl = 0;
      macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
      macctrl |= (np->full_duplex) ? DuplexSelect : 0;
      macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
      macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
      writew(macctrl,   ioaddr + MACCtrl);

      netif_start_queue (dev);

      /* Enable default interrupts */
      EnableInt ();
      return 0;
}

static void
rio_timer (unsigned long data)
{
      struct net_device *dev = (struct net_device *)data;
      struct netdev_private *np = netdev_priv(dev);
      unsigned int entry;
      int next_tick = 1*HZ;
      unsigned long flags;

      spin_lock_irqsave(&np->rx_lock, flags);
      /* Recover rx ring exhausted error */
      if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
            printk(KERN_INFO "Try to recover rx ring exhausted...\n");
            /* Re-allocate skbuffs to fill the descriptor ring */
            for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
                  struct sk_buff *skb;
                  entry = np->old_rx % RX_RING_SIZE;
                  /* Dropped packets don't need to re-allocate */
                  if (np->rx_skbuff[entry] == NULL) {
                        skb = dev_alloc_skb (np->rx_buf_sz);
                        if (skb == NULL) {
                              np->rx_ring[entry].fraginfo = 0;
                              printk (KERN_INFO
                                    "%s: Still unable to re-allocate Rx skbuff.#%d\n",
                                    dev->name, entry);
                              break;
                        }
                        np->rx_skbuff[entry] = skb;
                        /* 16 byte align the IP header */
                        skb_reserve (skb, 2);
                        np->rx_ring[entry].fraginfo =
                            cpu_to_le64 (pci_map_single
                               (np->pdev, skb->data, np->rx_buf_sz,
                                PCI_DMA_FROMDEVICE));
                  }
                  np->rx_ring[entry].fraginfo |=
                      cpu_to_le64((u64)np->rx_buf_sz << 48);
                  np->rx_ring[entry].status = 0;
            } /* end for */
      } /* end if */
      spin_unlock_irqrestore (&np->rx_lock, flags);
      np->timer.expires = jiffies + next_tick;
      add_timer(&np->timer);
}

static void
rio_tx_timeout (struct net_device *dev)
{
      long ioaddr = dev->base_addr;

      printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
            dev->name, readl (ioaddr + TxStatus));
      rio_free_tx(dev, 0);
      dev->if_port = 0;
      dev->trans_start = jiffies;
}

 /* allocate and initialize Tx and Rx descriptors */
static void
alloc_list (struct net_device *dev)
{
      struct netdev_private *np = netdev_priv(dev);
      int i;

      np->cur_rx = np->cur_tx = 0;
      np->old_rx = np->old_tx = 0;
      np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);

      /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
      for (i = 0; i < TX_RING_SIZE; i++) {
            np->tx_skbuff[i] = NULL;
            np->tx_ring[i].status = cpu_to_le64 (TFDDone);
            np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
                                    ((i+1)%TX_RING_SIZE) *
                                    sizeof (struct netdev_desc));
      }

      /* Initialize Rx descriptors */
      for (i = 0; i < RX_RING_SIZE; i++) {
            np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
                                    ((i + 1) % RX_RING_SIZE) *
                                    sizeof (struct netdev_desc));
            np->rx_ring[i].status = 0;
            np->rx_ring[i].fraginfo = 0;
            np->rx_skbuff[i] = NULL;
      }

      /* Allocate the rx buffers */
      for (i = 0; i < RX_RING_SIZE; i++) {
            /* Allocated fixed size of skbuff */
            struct sk_buff *skb = dev_alloc_skb (np->rx_buf_sz);
            np->rx_skbuff[i] = skb;
            if (skb == NULL) {
                  printk (KERN_ERR
                        "%s: alloc_list: allocate Rx buffer error! ",
                        dev->name);
                  break;
            }
            skb_reserve (skb, 2);   /* 16 byte align the IP header. */
            /* Rubicon now supports 40 bits of addressing space. */
            np->rx_ring[i].fraginfo =
                cpu_to_le64 ( pci_map_single (
                          np->pdev, skb->data, np->rx_buf_sz,
                          PCI_DMA_FROMDEVICE));
            np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
      }

      /* Set RFDListPtr */
      writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
      writel (0, dev->base_addr + RFDListPtr1);

      return;
}

static int
start_xmit (struct sk_buff *skb, struct net_device *dev)
{
      struct netdev_private *np = netdev_priv(dev);
      struct netdev_desc *txdesc;
      unsigned entry;
      u32 ioaddr;
      u64 tfc_vlan_tag = 0;

      if (np->link_status == 0) {   /* Link Down */
            dev_kfree_skb(skb);
            return 0;
      }
      ioaddr = dev->base_addr;
      entry = np->cur_tx % TX_RING_SIZE;
      np->tx_skbuff[entry] = skb;
      txdesc = &np->tx_ring[entry];

#if 0
      if (skb->ip_summed == CHECKSUM_PARTIAL) {
            txdesc->status |=
                cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
                         IPChecksumEnable);
      }
#endif
      if (np->vlan) {
            tfc_vlan_tag = VLANTagInsert |
                ((u64)np->vlan << 32) |
                ((u64)skb->priority << 45);
      }
      txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
                                          skb->len,
                                          PCI_DMA_TODEVICE));
      txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);

      /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
       * Work around: Always use 1 descriptor in 10Mbps mode */
      if (entry % np->tx_coalesce == 0 || np->speed == 10)
            txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
                                    WordAlignDisable |
                                    TxDMAIndicate |
                                    (1 << FragCountShift));
      else
            txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
                                    WordAlignDisable |
                                    (1 << FragCountShift));

      /* TxDMAPollNow */
      writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
      /* Schedule ISR */
      writel(10000, ioaddr + CountDown);
      np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
      if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
                  < TX_QUEUE_LEN - 1 && np->speed != 10) {
            /* do nothing */
      } else if (!netif_queue_stopped(dev)) {
            netif_stop_queue (dev);
      }

      /* The first TFDListPtr */
      if (readl (dev->base_addr + TFDListPtr0) == 0) {
            writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
                  dev->base_addr + TFDListPtr0);
            writel (0, dev->base_addr + TFDListPtr1);
      }

      /* NETDEV WATCHDOG timer */
      dev->trans_start = jiffies;
      return 0;
}

static irqreturn_t
rio_interrupt (int irq, void *dev_instance)
{
      struct net_device *dev = dev_instance;
      struct netdev_private *np;
      unsigned int_status;
      long ioaddr;
      int cnt = max_intrloop;
      int handled = 0;

      ioaddr = dev->base_addr;
      np = netdev_priv(dev);
      while (1) {
            int_status = readw (ioaddr + IntStatus);
            writew (int_status, ioaddr + IntStatus);
            int_status &= DEFAULT_INTR;
            if (int_status == 0 || --cnt < 0)
                  break;
            handled = 1;
            /* Processing received packets */
            if (int_status & RxDMAComplete)
                  receive_packet (dev);
            /* TxDMAComplete interrupt */
            if ((int_status & (TxDMAComplete|IntRequested))) {
                  int tx_status;
                  tx_status = readl (ioaddr + TxStatus);
                  if (tx_status & 0x01)
                        tx_error (dev, tx_status);
                  /* Free used tx skbuffs */
                  rio_free_tx (dev, 1);
            }

            /* Handle uncommon events */
            if (int_status &
                (HostError | LinkEvent | UpdateStats))
                  rio_error (dev, int_status);
      }
      if (np->cur_tx != np->old_tx)
            writel (100, ioaddr + CountDown);
      return IRQ_RETVAL(handled);
}

static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
{
      return le64_to_cpu(desc->fraginfo) & DMA_48BIT_MASK;
}

static void
rio_free_tx (struct net_device *dev, int irq)
{
      struct netdev_private *np = netdev_priv(dev);
      int entry = np->old_tx % TX_RING_SIZE;
      int tx_use = 0;
      unsigned long flag = 0;

      if (irq)
            spin_lock(&np->tx_lock);
      else
            spin_lock_irqsave(&np->tx_lock, flag);

      /* Free used tx skbuffs */
      while (entry != np->cur_tx) {
            struct sk_buff *skb;

            if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
                  break;
            skb = np->tx_skbuff[entry];
            pci_unmap_single (np->pdev,
                          desc_to_dma(&np->tx_ring[entry]),
                          skb->len, PCI_DMA_TODEVICE);
            if (irq)
                  dev_kfree_skb_irq (skb);
            else
                  dev_kfree_skb (skb);

            np->tx_skbuff[entry] = NULL;
            entry = (entry + 1) % TX_RING_SIZE;
            tx_use++;
      }
      if (irq)
            spin_unlock(&np->tx_lock);
      else
            spin_unlock_irqrestore(&np->tx_lock, flag);
      np->old_tx = entry;

      /* If the ring is no longer full, clear tx_full and
         call netif_wake_queue() */

      if (netif_queue_stopped(dev) &&
          ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
          < TX_QUEUE_LEN - 1 || np->speed == 10)) {
            netif_wake_queue (dev);
      }
}

static void
tx_error (struct net_device *dev, int tx_status)
{
      struct netdev_private *np;
      long ioaddr = dev->base_addr;
      int frame_id;
      int i;

      np = netdev_priv(dev);

      frame_id = (tx_status & 0xffff0000);
      printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
            dev->name, tx_status, frame_id);
      np->stats.tx_errors++;
      /* Ttransmit Underrun */
      if (tx_status & 0x10) {
            np->stats.tx_fifo_errors++;
            writew (readw (ioaddr + TxStartThresh) + 0x10,
                  ioaddr + TxStartThresh);
            /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
            writew (TxReset | DMAReset | FIFOReset | NetworkReset,
                  ioaddr + ASICCtrl + 2);
            /* Wait for ResetBusy bit clear */
            for (i = 50; i > 0; i--) {
                  if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
                        break;
                  mdelay (1);
            }
            rio_free_tx (dev, 1);
            /* Reset TFDListPtr */
            writel (np->tx_ring_dma +
                  np->old_tx * sizeof (struct netdev_desc),
                  dev->base_addr + TFDListPtr0);
            writel (0, dev->base_addr + TFDListPtr1);

            /* Let TxStartThresh stay default value */
      }
      /* Late Collision */
      if (tx_status & 0x04) {
            np->stats.tx_fifo_errors++;
            /* TxReset and clear FIFO */
            writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
            /* Wait reset done */
            for (i = 50; i > 0; i--) {
                  if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
                        break;
                  mdelay (1);
            }
            /* Let TxStartThresh stay default value */
      }
      /* Maximum Collisions */
#ifdef ETHER_STATS
      if (tx_status & 0x08)
            np->stats.collisions16++;
#else
      if (tx_status & 0x08)
            np->stats.collisions++;
#endif
      /* Restart the Tx */
      writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
}

static int
receive_packet (struct net_device *dev)
{
      struct netdev_private *np = netdev_priv(dev);
      int entry = np->cur_rx % RX_RING_SIZE;
      int cnt = 30;

      /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
      while (1) {
            struct netdev_desc *desc = &np->rx_ring[entry];
            int pkt_len;
            u64 frame_status;

            if (!(desc->status & cpu_to_le64(RFDDone)) ||
                !(desc->status & cpu_to_le64(FrameStart)) ||
                !(desc->status & cpu_to_le64(FrameEnd)))
                  break;

            /* Chip omits the CRC. */
            frame_status = le64_to_cpu(desc->status);
            pkt_len = frame_status & 0xffff;
            if (--cnt < 0)
                  break;
            /* Update rx error statistics, drop packet. */
            if (frame_status & RFS_Errors) {
                  np->stats.rx_errors++;
                  if (frame_status & (RxRuntFrame | RxLengthError))
                        np->stats.rx_length_errors++;
                  if (frame_status & RxFCSError)
                        np->stats.rx_crc_errors++;
                  if (frame_status & RxAlignmentError && np->speed != 1000)
                        np->stats.rx_frame_errors++;
                  if (frame_status & RxFIFOOverrun)
                        np->stats.rx_fifo_errors++;
            } else {
                  struct sk_buff *skb;

                  /* Small skbuffs for short packets */
                  if (pkt_len > copy_thresh) {
                        pci_unmap_single (np->pdev,
                                      desc_to_dma(desc),
                                      np->rx_buf_sz,
                                      PCI_DMA_FROMDEVICE);
                        skb_put (skb = np->rx_skbuff[entry], pkt_len);
                        np->rx_skbuff[entry] = NULL;
                  } else if ((skb = dev_alloc_skb (pkt_len + 2)) != NULL) {
                        pci_dma_sync_single_for_cpu(np->pdev,
                                              desc_to_dma(desc),
                                              np->rx_buf_sz,
                                              PCI_DMA_FROMDEVICE);
                        /* 16 byte align the IP header */
                        skb_reserve (skb, 2);
                        skb_copy_to_linear_data (skb,
                                      np->rx_skbuff[entry]->data,
                                      pkt_len);
                        skb_put (skb, pkt_len);
                        pci_dma_sync_single_for_device(np->pdev,
                                                 desc_to_dma(desc),
                                                 np->rx_buf_sz,
                                                 PCI_DMA_FROMDEVICE);
                  }
                  skb->protocol = eth_type_trans (skb, dev);
#if 0
                  /* Checksum done by hw, but csum value unavailable. */
                  if (np->pdev->pci_rev_id >= 0x0c &&
                        !(frame_status & (TCPError | UDPError | IPError))) {
                        skb->ip_summed = CHECKSUM_UNNECESSARY;
                  }
#endif
                  netif_rx (skb);
                  dev->last_rx = jiffies;
            }
            entry = (entry + 1) % RX_RING_SIZE;
      }
      spin_lock(&np->rx_lock);
      np->cur_rx = entry;
      /* Re-allocate skbuffs to fill the descriptor ring */
      entry = np->old_rx;
      while (entry != np->cur_rx) {
            struct sk_buff *skb;
            /* Dropped packets don't need to re-allocate */
            if (np->rx_skbuff[entry] == NULL) {
                  skb = dev_alloc_skb (np->rx_buf_sz);
                  if (skb == NULL) {
                        np->rx_ring[entry].fraginfo = 0;
                        printk (KERN_INFO
                              "%s: receive_packet: "
                              "Unable to re-allocate Rx skbuff.#%d\n",
                              dev->name, entry);
                        break;
                  }
                  np->rx_skbuff[entry] = skb;
                  /* 16 byte align the IP header */
                  skb_reserve (skb, 2);
                  np->rx_ring[entry].fraginfo =
                      cpu_to_le64 (pci_map_single
                               (np->pdev, skb->data, np->rx_buf_sz,
                                PCI_DMA_FROMDEVICE));
            }
            np->rx_ring[entry].fraginfo |=
                cpu_to_le64((u64)np->rx_buf_sz << 48);
            np->rx_ring[entry].status = 0;
            entry = (entry + 1) % RX_RING_SIZE;
      }
      np->old_rx = entry;
      spin_unlock(&np->rx_lock);
      return 0;
}

static void
rio_error (struct net_device *dev, int int_status)
{
      long ioaddr = dev->base_addr;
      struct netdev_private *np = netdev_priv(dev);
      u16 macctrl;

      /* Link change event */
      if (int_status & LinkEvent) {
            if (mii_wait_link (dev, 10) == 0) {
                  printk (KERN_INFO "%s: Link up\n", dev->name);
                  if (np->phy_media)
                        mii_get_media_pcs (dev);
                  else
                        mii_get_media (dev);
                  if (np->speed == 1000)
                        np->tx_coalesce = tx_coalesce;
                  else
                        np->tx_coalesce = 1;
                  macctrl = 0;
                  macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
                  macctrl |= (np->full_duplex) ? DuplexSelect : 0;
                  macctrl |= (np->tx_flow) ?
                        TxFlowControlEnable : 0;
                  macctrl |= (np->rx_flow) ?
                        RxFlowControlEnable : 0;
                  writew(macctrl,   ioaddr + MACCtrl);
                  np->link_status = 1;
                  netif_carrier_on(dev);
            } else {
                  printk (KERN_INFO "%s: Link off\n", dev->name);
                  np->link_status = 0;
                  netif_carrier_off(dev);
            }
      }

      /* UpdateStats statistics registers */
      if (int_status & UpdateStats) {
            get_stats (dev);
      }

      /* PCI Error, a catastronphic error related to the bus interface
         occurs, set GlobalReset and HostReset to reset. */
      if (int_status & HostError) {
            printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
                  dev->name, int_status);
            writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
            mdelay (500);
      }
}

static struct net_device_stats *
get_stats (struct net_device *dev)
{
      long ioaddr = dev->base_addr;
      struct netdev_private *np = netdev_priv(dev);
#ifdef MEM_MAPPING
      int i;
#endif
      unsigned int stat_reg;

      /* All statistics registers need to be acknowledged,
         else statistic overflow could cause problems */

      np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
      np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
      np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
      np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);

      np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
      np->stats.collisions += readl (ioaddr + SingleColFrames)
                       +  readl (ioaddr + MultiColFrames);

      /* detailed tx errors */
      stat_reg = readw (ioaddr + FramesAbortXSColls);
      np->stats.tx_aborted_errors += stat_reg;
      np->stats.tx_errors += stat_reg;

      stat_reg = readw (ioaddr + CarrierSenseErrors);
      np->stats.tx_carrier_errors += stat_reg;
      np->stats.tx_errors += stat_reg;

      /* Clear all other statistic register. */
      readl (ioaddr + McstOctetXmtOk);
      readw (ioaddr + BcstFramesXmtdOk);
      readl (ioaddr + McstFramesXmtdOk);
      readw (ioaddr + BcstFramesRcvdOk);
      readw (ioaddr + MacControlFramesRcvd);
      readw (ioaddr + FrameTooLongErrors);
      readw (ioaddr + InRangeLengthErrors);
      readw (ioaddr + FramesCheckSeqErrors);
      readw (ioaddr + FramesLostRxErrors);
      readl (ioaddr + McstOctetXmtOk);
      readl (ioaddr + BcstOctetXmtOk);
      readl (ioaddr + McstFramesXmtdOk);
      readl (ioaddr + FramesWDeferredXmt);
      readl (ioaddr + LateCollisions);
      readw (ioaddr + BcstFramesXmtdOk);
      readw (ioaddr + MacControlFramesXmtd);
      readw (ioaddr + FramesWEXDeferal);

#ifdef MEM_MAPPING
      for (i = 0x100; i <= 0x150; i += 4)
            readl (ioaddr + i);
#endif
      readw (ioaddr + TxJumboFrames);
      readw (ioaddr + RxJumboFrames);
      readw (ioaddr + TCPCheckSumErrors);
      readw (ioaddr + UDPCheckSumErrors);
      readw (ioaddr + IPCheckSumErrors);
      return &np->stats;
}

static int
clear_stats (struct net_device *dev)
{
      long ioaddr = dev->base_addr;
#ifdef MEM_MAPPING
      int i;
#endif

      /* All statistics registers need to be acknowledged,
         else statistic overflow could cause problems */
      readl (ioaddr + FramesRcvOk);
      readl (ioaddr + FramesXmtOk);
      readl (ioaddr + OctetRcvOk);
      readl (ioaddr + OctetXmtOk);

      readl (ioaddr + McstFramesRcvdOk);
      readl (ioaddr + SingleColFrames);
      readl (ioaddr + MultiColFrames);
      readl (ioaddr + LateCollisions);
      /* detailed rx errors */
      readw (ioaddr + FrameTooLongErrors);
      readw (ioaddr + InRangeLengthErrors);
      readw (ioaddr + FramesCheckSeqErrors);
      readw (ioaddr + FramesLostRxErrors);

      /* detailed tx errors */
      readw (ioaddr + FramesAbortXSColls);
      readw (ioaddr + CarrierSenseErrors);

      /* Clear all other statistic register. */
      readl (ioaddr + McstOctetXmtOk);
      readw (ioaddr + BcstFramesXmtdOk);
      readl (ioaddr + McstFramesXmtdOk);
      readw (ioaddr + BcstFramesRcvdOk);
      readw (ioaddr + MacControlFramesRcvd);
      readl (ioaddr + McstOctetXmtOk);
      readl (ioaddr + BcstOctetXmtOk);
      readl (ioaddr + McstFramesXmtdOk);
      readl (ioaddr + FramesWDeferredXmt);
      readw (ioaddr + BcstFramesXmtdOk);
      readw (ioaddr + MacControlFramesXmtd);
      readw (ioaddr + FramesWEXDeferal);
#ifdef MEM_MAPPING
      for (i = 0x100; i <= 0x150; i += 4)
            readl (ioaddr + i);
#endif
      readw (ioaddr + TxJumboFrames);
      readw (ioaddr + RxJumboFrames);
      readw (ioaddr + TCPCheckSumErrors);
      readw (ioaddr + UDPCheckSumErrors);
      readw (ioaddr + IPCheckSumErrors);
      return 0;
}


static int
change_mtu (struct net_device *dev, int new_mtu)
{
      struct netdev_private *np = netdev_priv(dev);
      int max = (np->jumbo) ? MAX_JUMBO : 1536;

      if ((new_mtu < 68) || (new_mtu > max)) {
            return -EINVAL;
      }

      dev->mtu = new_mtu;

      return 0;
}

static void
set_multicast (struct net_device *dev)
{
      long ioaddr = dev->base_addr;
      u32 hash_table[2];
      u16 rx_mode = 0;
      struct netdev_private *np = netdev_priv(dev);

      hash_table[0] = hash_table[1] = 0;
      /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
      hash_table[1] |= 0x02000000;
      if (dev->flags & IFF_PROMISC) {
            /* Receive all frames promiscuously. */
            rx_mode = ReceiveAllFrames;
      } else if ((dev->flags & IFF_ALLMULTI) ||
                  (dev->mc_count > multicast_filter_limit)) {
            /* Receive broadcast and multicast frames */
            rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
      } else if (dev->mc_count > 0) {
            int i;
            struct dev_mc_list *mclist;
            /* Receive broadcast frames and multicast frames filtering
               by Hashtable */
            rx_mode =
                ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
            for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
                        i++, mclist=mclist->next)
            {
                  int bit, index = 0;
                  int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
                  /* The inverted high significant 6 bits of CRC are
                     used as an index to hashtable */
                  for (bit = 0; bit < 6; bit++)
                        if (crc & (1 << (31 - bit)))
                              index |= (1 << bit);
                  hash_table[index / 32] |= (1 << (index % 32));
            }
      } else {
            rx_mode = ReceiveBroadcast | ReceiveUnicast;
      }
      if (np->vlan) {
            /* ReceiveVLANMatch field in ReceiveMode */
            rx_mode |= ReceiveVLANMatch;
      }

      writel (hash_table[0], ioaddr + HashTable0);
      writel (hash_table[1], ioaddr + HashTable1);
      writew (rx_mode, ioaddr + ReceiveMode);
}

static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
      struct netdev_private *np = netdev_priv(dev);
      strcpy(info->driver, "dl2k");
      strcpy(info->version, DRV_VERSION);
      strcpy(info->bus_info, pci_name(np->pdev));
}

static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
      struct netdev_private *np = netdev_priv(dev);
      if (np->phy_media) {
            /* fiber device */
            cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
            cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
            cmd->port = PORT_FIBRE;
            cmd->transceiver = XCVR_INTERNAL;
      } else {
            /* copper device */
            cmd->supported = SUPPORTED_10baseT_Half |
                  SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
                  | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
                  SUPPORTED_Autoneg | SUPPORTED_MII;
            cmd->advertising = ADVERTISED_10baseT_Half |
                  ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
                  ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
                  ADVERTISED_Autoneg | ADVERTISED_MII;
            cmd->port = PORT_MII;
            cmd->transceiver = XCVR_INTERNAL;
      }
      if ( np->link_status ) {
            cmd->speed = np->speed;
            cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
      } else {
            cmd->speed = -1;
            cmd->duplex = -1;
      }
      if ( np->an_enable)
            cmd->autoneg = AUTONEG_ENABLE;
      else
            cmd->autoneg = AUTONEG_DISABLE;

      cmd->phy_address = np->phy_addr;
      return 0;
}

static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
      struct netdev_private *np = netdev_priv(dev);
      netif_carrier_off(dev);
      if (cmd->autoneg == AUTONEG_ENABLE) {
            if (np->an_enable)
                  return 0;
            else {
                  np->an_enable = 1;
                  mii_set_media(dev);
                  return 0;
            }
      } else {
            np->an_enable = 0;
            if (np->speed == 1000) {
                  cmd->speed = SPEED_100;
                  cmd->duplex = DUPLEX_FULL;
                  printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
            }
            switch(cmd->speed + cmd->duplex) {

            case SPEED_10 + DUPLEX_HALF:
                  np->speed = 10;
                  np->full_duplex = 0;
                  break;

            case SPEED_10 + DUPLEX_FULL:
                  np->speed = 10;
                  np->full_duplex = 1;
                  break;
            case SPEED_100 + DUPLEX_HALF:
                  np->speed = 100;
                  np->full_duplex = 0;
                  break;
            case SPEED_100 + DUPLEX_FULL:
                  np->speed = 100;
                  np->full_duplex = 1;
                  break;
            case SPEED_1000 + DUPLEX_HALF:/* not supported */
            case SPEED_1000 + DUPLEX_FULL:/* not supported */
            default:
                  return -EINVAL;
            }
            mii_set_media(dev);
      }
      return 0;
}

static u32 rio_get_link(struct net_device *dev)
{
      struct netdev_private *np = netdev_priv(dev);
      return np->link_status;
}

static const struct ethtool_ops ethtool_ops = {
      .get_drvinfo = rio_get_drvinfo,
      .get_settings = rio_get_settings,
      .set_settings = rio_set_settings,
      .get_link = rio_get_link,
};

static int
rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
{
      int phy_addr;
      struct netdev_private *np = netdev_priv(dev);
      struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;

      struct netdev_desc *desc;
      int i;

      phy_addr = np->phy_addr;
      switch (cmd) {
      case SIOCDEVPRIVATE:
            break;

      case SIOCDEVPRIVATE + 1:
            miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
            break;
      case SIOCDEVPRIVATE + 2:
            mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
            break;
      case SIOCDEVPRIVATE + 3:
            break;
      case SIOCDEVPRIVATE + 4:
            break;
      case SIOCDEVPRIVATE + 5:
            netif_stop_queue (dev);
            break;
      case SIOCDEVPRIVATE + 6:
            netif_wake_queue (dev);
            break;
      case SIOCDEVPRIVATE + 7:
            printk
                ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
                 netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
                 np->old_rx);
            break;
      case SIOCDEVPRIVATE + 8:
            printk("TX ring:\n");
            for (i = 0; i < TX_RING_SIZE; i++) {
                  desc = &np->tx_ring[i];
                  printk
                      ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
                       i,
                       (u32) (np->tx_ring_dma + i * sizeof (*desc)),
                       (u32)le64_to_cpu(desc->next_desc),
                       (u32)le64_to_cpu(desc->status),
                       (u32)(le64_to_cpu(desc->fraginfo) >> 32),
                       (u32)le64_to_cpu(desc->fraginfo));
                  printk ("\n");
            }
            printk ("\n");
            break;

      default:
            return -EOPNOTSUPP;
      }
      return 0;
}

#define EEP_READ 0x0200
#define EEP_BUSY 0x8000
/* Read the EEPROM word */
/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
static int
read_eeprom (long ioaddr, int eep_addr)
{
      int i = 1000;
      outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
      while (i-- > 0) {
            if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
                  return inw (ioaddr + EepromData);
            }
      }
      return 0;
}

enum phy_ctrl_bits {
      MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
      MII_DUPLEX = 0x08,
};

#define mii_delay() readb(ioaddr)
static void
mii_sendbit (struct net_device *dev, u32 data)
{
      long ioaddr = dev->base_addr + PhyCtrl;
      data = (data) ? MII_DATA1 : 0;
      data |= MII_WRITE;
      data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
      writeb (data, ioaddr);
      mii_delay ();
      writeb (data | MII_CLK, ioaddr);
      mii_delay ();
}

static int
mii_getbit (struct net_device *dev)
{
      long ioaddr = dev->base_addr + PhyCtrl;
      u8 data;

      data = (readb (ioaddr) & 0xf8) | MII_READ;
      writeb (data, ioaddr);
      mii_delay ();
      writeb (data | MII_CLK, ioaddr);
      mii_delay ();
      return ((readb (ioaddr) >> 1) & 1);
}

static void
mii_send_bits (struct net_device *dev, u32 data, int len)
{
      int i;
      for (i = len - 1; i >= 0; i--) {
            mii_sendbit (dev, data & (1 << i));
      }
}

static int
mii_read (struct net_device *dev, int phy_addr, int reg_num)
{
      u32 cmd;
      int i;
      u32 retval = 0;

      /* Preamble */
      mii_send_bits (dev, 0xffffffff, 32);
      /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
      /* ST,OP = 0110'b for read operation */
      cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
      mii_send_bits (dev, cmd, 14);
      /* Turnaround */
      if (mii_getbit (dev))
            goto err_out;
      /* Read data */
      for (i = 0; i < 16; i++) {
            retval |= mii_getbit (dev);
            retval <<= 1;
      }
      /* End cycle */
      mii_getbit (dev);
      return (retval >> 1) & 0xffff;

      err_out:
      return 0;
}
static int
mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
{
      u32 cmd;

      /* Preamble */
      mii_send_bits (dev, 0xffffffff, 32);
      /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
      /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
      cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
      mii_send_bits (dev, cmd, 32);
      /* End cycle */
      mii_getbit (dev);
      return 0;
}
static int
mii_wait_link (struct net_device *dev, int wait)
{
      __u16 bmsr;
      int phy_addr;
      struct netdev_private *np;

      np = netdev_priv(dev);
      phy_addr = np->phy_addr;

      do {
            bmsr = mii_read (dev, phy_addr, MII_BMSR);
            if (bmsr & MII_BMSR_LINK_STATUS)
                  return 0;
            mdelay (1);
      } while (--wait > 0);
      return -1;
}
static int
mii_get_media (struct net_device *dev)
{
      __u16 negotiate;
      __u16 bmsr;
      __u16 mscr;
      __u16 mssr;
      int phy_addr;
      struct netdev_private *np;

      np = netdev_priv(dev);
      phy_addr = np->phy_addr;

      bmsr = mii_read (dev, phy_addr, MII_BMSR);
      if (np->an_enable) {
            if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
                  /* Auto-Negotiation not completed */
                  return -1;
            }
            negotiate = mii_read (dev, phy_addr, MII_ANAR) &
                  mii_read (dev, phy_addr, MII_ANLPAR);
            mscr = mii_read (dev, phy_addr, MII_MSCR);
            mssr = mii_read (dev, phy_addr, MII_MSSR);
            if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
                  np->speed = 1000;
                  np->full_duplex = 1;
                  printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
            } else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
                  np->speed = 1000;
                  np->full_duplex = 0;
                  printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
            } else if (negotiate & MII_ANAR_100BX_FD) {
                  np->speed = 100;
                  np->full_duplex = 1;
                  printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
            } else if (negotiate & MII_ANAR_100BX_HD) {
                  np->speed = 100;
                  np->full_duplex = 0;
                  printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
            } else if (negotiate & MII_ANAR_10BT_FD) {
                  np->speed = 10;
                  np->full_duplex = 1;
                  printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
            } else if (negotiate & MII_ANAR_10BT_HD) {
                  np->speed = 10;
                  np->full_duplex = 0;
                  printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
            }
            if (negotiate & MII_ANAR_PAUSE) {
                  np->tx_flow &= 1;
                  np->rx_flow &= 1;
            } else if (negotiate & MII_ANAR_ASYMMETRIC) {
                  np->tx_flow = 0;
                  np->rx_flow &= 1;
            }
            /* else tx_flow, rx_flow = user select  */
      } else {
            __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
            switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
            case MII_BMCR_SPEED_1000:
                  printk (KERN_INFO "Operating at 1000 Mbps, ");
                  break;
            case MII_BMCR_SPEED_100:
                  printk (KERN_INFO "Operating at 100 Mbps, ");
                  break;
            case 0:
                  printk (KERN_INFO "Operating at 10 Mbps, ");
            }
            if (bmcr & MII_BMCR_DUPLEX_MODE) {
                  printk ("Full duplex\n");
            } else {
                  printk ("Half duplex\n");
            }
      }
      if (np->tx_flow)
            printk(KERN_INFO "Enable Tx Flow Control\n");
      else
            printk(KERN_INFO "Disable Tx Flow Control\n");
      if (np->rx_flow)
            printk(KERN_INFO "Enable Rx Flow Control\n");
      else
            printk(KERN_INFO "Disable Rx Flow Control\n");

      return 0;
}

static int
mii_set_media (struct net_device *dev)
{
      __u16 pscr;
      __u16 bmcr;
      __u16 bmsr;
      __u16 anar;
      int phy_addr;
      struct netdev_private *np;
      np = netdev_priv(dev);
      phy_addr = np->phy_addr;

      /* Does user set speed? */
      if (np->an_enable) {
            /* Advertise capabilities */
            bmsr = mii_read (dev, phy_addr, MII_BMSR);
            anar = mii_read (dev, phy_addr, MII_ANAR) &
                       ~MII_ANAR_100BX_FD &
                       ~MII_ANAR_100BX_HD &
                       ~MII_ANAR_100BT4 &
                       ~MII_ANAR_10BT_FD &
                       ~MII_ANAR_10BT_HD;
            if (bmsr & MII_BMSR_100BX_FD)
                  anar |= MII_ANAR_100BX_FD;
            if (bmsr & MII_BMSR_100BX_HD)
                  anar |= MII_ANAR_100BX_HD;
            if (bmsr & MII_BMSR_100BT4)
                  anar |= MII_ANAR_100BT4;
            if (bmsr & MII_BMSR_10BT_FD)
                  anar |= MII_ANAR_10BT_FD;
            if (bmsr & MII_BMSR_10BT_HD)
                  anar |= MII_ANAR_10BT_HD;
            anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
            mii_write (dev, phy_addr, MII_ANAR, anar);

            /* Enable Auto crossover */
            pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
            pscr |= 3 << 5;   /* 11'b */
            mii_write (dev, phy_addr, MII_PHY_SCR, pscr);

            /* Soft reset PHY */
            mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
            bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
            mii_write (dev, phy_addr, MII_BMCR, bmcr);
            mdelay(1);
      } else {
            /* Force speed setting */
            /* 1) Disable Auto crossover */
            pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
            pscr &= ~(3 << 5);
            mii_write (dev, phy_addr, MII_PHY_SCR, pscr);

            /* 2) PHY Reset */
            bmcr = mii_read (dev, phy_addr, MII_BMCR);
            bmcr |= MII_BMCR_RESET;
            mii_write (dev, phy_addr, MII_BMCR, bmcr);

            /* 3) Power Down */
            bmcr = 0x1940;    /* must be 0x1940 */
            mii_write (dev, phy_addr, MII_BMCR, bmcr);
            mdelay (100);     /* wait a certain time */

            /* 4) Advertise nothing */
            mii_write (dev, phy_addr, MII_ANAR, 0);

            /* 5) Set media and Power Up */
            bmcr = MII_BMCR_POWER_DOWN;
            if (np->speed == 100) {
                  bmcr |= MII_BMCR_SPEED_100;
                  printk (KERN_INFO "Manual 100 Mbps, ");
            } else if (np->speed == 10) {
                  printk (KERN_INFO "Manual 10 Mbps, ");
            }
            if (np->full_duplex) {
                  bmcr |= MII_BMCR_DUPLEX_MODE;
                  printk ("Full duplex\n");
            } else {
                  printk ("Half duplex\n");
            }
#if 0
            /* Set 1000BaseT Master/Slave setting */
            mscr = mii_read (dev, phy_addr, MII_MSCR);
            mscr |= MII_MSCR_CFG_ENABLE;
            mscr &= ~MII_MSCR_CFG_VALUE = 0;
#endif
            mii_write (dev, phy_addr, MII_BMCR, bmcr);
            mdelay(10);
      }
      return 0;
}

static int
mii_get_media_pcs (struct net_device *dev)
{
      __u16 negotiate;
      __u16 bmsr;
      int phy_addr;
      struct netdev_private *np;

      np = netdev_priv(dev);
      phy_addr = np->phy_addr;

      bmsr = mii_read (dev, phy_addr, PCS_BMSR);
      if (np->an_enable) {
            if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
                  /* Auto-Negotiation not completed */
                  return -1;
            }
            negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
                  mii_read (dev, phy_addr, PCS_ANLPAR);
            np->speed = 1000;
            if (negotiate & PCS_ANAR_FULL_DUPLEX) {
                  printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
                  np->full_duplex = 1;
            } else {
                  printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
                  np->full_duplex = 0;
            }
            if (negotiate & PCS_ANAR_PAUSE) {
                  np->tx_flow &= 1;
                  np->rx_flow &= 1;
            } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
                  np->tx_flow = 0;
                  np->rx_flow &= 1;
            }
            /* else tx_flow, rx_flow = user select  */
      } else {
            __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
            printk (KERN_INFO "Operating at 1000 Mbps, ");
            if (bmcr & MII_BMCR_DUPLEX_MODE) {
                  printk ("Full duplex\n");
            } else {
                  printk ("Half duplex\n");
            }
      }
      if (np->tx_flow)
            printk(KERN_INFO "Enable Tx Flow Control\n");
      else
            printk(KERN_INFO "Disable Tx Flow Control\n");
      if (np->rx_flow)
            printk(KERN_INFO "Enable Rx Flow Control\n");
      else
            printk(KERN_INFO "Disable Rx Flow Control\n");

      return 0;
}

static int
mii_set_media_pcs (struct net_device *dev)
{
      __u16 bmcr;
      __u16 esr;
      __u16 anar;
      int phy_addr;
      struct netdev_private *np;
      np = netdev_priv(dev);
      phy_addr = np->phy_addr;

      /* Auto-Negotiation? */
      if (np->an_enable) {
            /* Advertise capabilities */
            esr = mii_read (dev, phy_addr, PCS_ESR);
            anar = mii_read (dev, phy_addr, MII_ANAR) &
                  ~PCS_ANAR_HALF_DUPLEX &
                  ~PCS_ANAR_FULL_DUPLEX;
            if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
                  anar |= PCS_ANAR_HALF_DUPLEX;
            if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
                  anar |= PCS_ANAR_FULL_DUPLEX;
            anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
            mii_write (dev, phy_addr, MII_ANAR, anar);

            /* Soft reset PHY */
            mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
            bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
                   MII_BMCR_RESET;
            mii_write (dev, phy_addr, MII_BMCR, bmcr);
            mdelay(1);
      } else {
            /* Force speed setting */
            /* PHY Reset */
            bmcr = MII_BMCR_RESET;
            mii_write (dev, phy_addr, MII_BMCR, bmcr);
            mdelay(10);
            if (np->full_duplex) {
                  bmcr = MII_BMCR_DUPLEX_MODE;
                  printk (KERN_INFO "Manual full duplex\n");
            } else {
                  bmcr = 0;
                  printk (KERN_INFO "Manual half duplex\n");
            }
            mii_write (dev, phy_addr, MII_BMCR, bmcr);
            mdelay(10);

            /*  Advertise nothing */
            mii_write (dev, phy_addr, MII_ANAR, 0);
      }
      return 0;
}


static int
rio_close (struct net_device *dev)
{
      long ioaddr = dev->base_addr;
      struct netdev_private *np = netdev_priv(dev);
      struct sk_buff *skb;
      int i;

      netif_stop_queue (dev);

      /* Disable interrupts */
      writew (0, ioaddr + IntEnable);

      /* Stop Tx and Rx logics */
      writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
      synchronize_irq (dev->irq);
      free_irq (dev->irq, dev);
      del_timer_sync (&np->timer);

      /* Free all the skbuffs in the queue. */
      for (i = 0; i < RX_RING_SIZE; i++) {
            np->rx_ring[i].status = 0;
            np->rx_ring[i].fraginfo = 0;
            skb = np->rx_skbuff[i];
            if (skb) {
                  pci_unmap_single(np->pdev,
                               desc_to_dma(&np->rx_ring[i]),
                               skb->len, PCI_DMA_FROMDEVICE);
                  dev_kfree_skb (skb);
                  np->rx_skbuff[i] = NULL;
            }
      }
      for (i = 0; i < TX_RING_SIZE; i++) {
            skb = np->tx_skbuff[i];
            if (skb) {
                  pci_unmap_single(np->pdev,
                               desc_to_dma(&np->tx_ring[i]),
                               skb->len, PCI_DMA_TODEVICE);
                  dev_kfree_skb (skb);
                  np->tx_skbuff[i] = NULL;
            }
      }

      return 0;
}

static void __devexit
rio_remove1 (struct pci_dev *pdev)
{
      struct net_device *dev = pci_get_drvdata (pdev);

      if (dev) {
            struct netdev_private *np = netdev_priv(dev);

            unregister_netdev (dev);
            pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
                             np->rx_ring_dma);
            pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
                             np->tx_ring_dma);
#ifdef MEM_MAPPING
            iounmap ((char *) (dev->base_addr));
#endif
            free_netdev (dev);
            pci_release_regions (pdev);
            pci_disable_device (pdev);
      }
      pci_set_drvdata (pdev, NULL);
}

static struct pci_driver rio_driver = {
      .name       = "dl2k",
      .id_table   = rio_pci_tbl,
      .probe            = rio_probe1,
      .remove           = __devexit_p(rio_remove1),
};

static int __init
rio_init (void)
{
      return pci_register_driver(&rio_driver);
}

static void __exit
rio_exit (void)
{
      pci_unregister_driver (&rio_driver);
}

module_init (rio_init);
module_exit (rio_exit);

/*

Compile command:

gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c

Read Documentation/networking/dl2k.txt for details.

*/


Generated by  Doxygen 1.6.0   Back to index