Logo Search packages:      
Sourcecode: linux version File versions  Download package

dmaengine.c

/*
 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * The full GNU General Public License is included in this distribution in the
 * file called COPYING.
 */

/*
 * This code implements the DMA subsystem. It provides a HW-neutral interface
 * for other kernel code to use asynchronous memory copy capabilities,
 * if present, and allows different HW DMA drivers to register as providing
 * this capability.
 *
 * Due to the fact we are accelerating what is already a relatively fast
 * operation, the code goes to great lengths to avoid additional overhead,
 * such as locking.
 *
 * LOCKING:
 *
 * The subsystem keeps two global lists, dma_device_list and dma_client_list.
 * Both of these are protected by a mutex, dma_list_mutex.
 *
 * Each device has a channels list, which runs unlocked but is never modified
 * once the device is registered, it's just setup by the driver.
 *
 * Each client is responsible for keeping track of the channels it uses.  See
 * the definition of dma_event_callback in dmaengine.h.
 *
 * Each device has a kref, which is initialized to 1 when the device is
 * registered. A kref_get is done for each class_device registered.  When the
 * class_device is released, the coresponding kref_put is done in the release
 * method. Every time one of the device's channels is allocated to a client,
 * a kref_get occurs.  When the channel is freed, the coresponding kref_put
 * happens. The device's release function does a completion, so
 * unregister_device does a remove event, class_device_unregister, a kref_put
 * for the first reference, then waits on the completion for all other
 * references to finish.
 *
 * Each channel has an open-coded implementation of Rusty Russell's "bigref,"
 * with a kref and a per_cpu local_t.  A dma_chan_get is called when a client
 * signals that it wants to use a channel, and dma_chan_put is called when
 * a channel is removed or a client using it is unregesitered.  A client can
 * take extra references per outstanding transaction, as is the case with
 * the NET DMA client.  The release function does a kref_put on the device.
 *    -ChrisL, DanW
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/hardirq.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/mutex.h>
#include <linux/jiffies.h>

static DEFINE_MUTEX(dma_list_mutex);
static LIST_HEAD(dma_device_list);
static LIST_HEAD(dma_client_list);

/* --- sysfs implementation --- */

static ssize_t show_memcpy_count(struct class_device *cd, char *buf)
{
      struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
      unsigned long count = 0;
      int i;

      for_each_possible_cpu(i)
            count += per_cpu_ptr(chan->local, i)->memcpy_count;

      return sprintf(buf, "%lu\n", count);
}

static ssize_t show_bytes_transferred(struct class_device *cd, char *buf)
{
      struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
      unsigned long count = 0;
      int i;

      for_each_possible_cpu(i)
            count += per_cpu_ptr(chan->local, i)->bytes_transferred;

      return sprintf(buf, "%lu\n", count);
}

static ssize_t show_in_use(struct class_device *cd, char *buf)
{
      struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
      int in_use = 0;

      if (unlikely(chan->slow_ref) &&
            atomic_read(&chan->refcount.refcount) > 1)
            in_use = 1;
      else {
            if (local_read(&(per_cpu_ptr(chan->local,
                  get_cpu())->refcount)) > 0)
                  in_use = 1;
            put_cpu();
      }

      return sprintf(buf, "%d\n", in_use);
}

static struct class_device_attribute dma_class_attrs[] = {
      __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
      __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
      __ATTR(in_use, S_IRUGO, show_in_use, NULL),
      __ATTR_NULL
};

static void dma_async_device_cleanup(struct kref *kref);

static void dma_class_dev_release(struct class_device *cd)
{
      struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev);
      kref_put(&chan->device->refcount, dma_async_device_cleanup);
}

static struct class dma_devclass = {
      .name            = "dma",
      .class_dev_attrs = dma_class_attrs,
      .release = dma_class_dev_release,
};

/* --- client and device registration --- */

#define dma_chan_satisfies_mask(chan, mask) \
      __dma_chan_satisfies_mask((chan), &(mask))
static int
__dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want)
{
      dma_cap_mask_t has;

      bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits,
            DMA_TX_TYPE_END);
      return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
}

/**
 * dma_client_chan_alloc - try to allocate channels to a client
 * @client: &dma_client
 *
 * Called with dma_list_mutex held.
 */
static void dma_client_chan_alloc(struct dma_client *client)
{
      struct dma_device *device;
      struct dma_chan *chan;
      int desc;   /* allocated descriptor count */
      enum dma_state_client ack;

      /* Find a channel */
      list_for_each_entry(device, &dma_device_list, global_node)
            list_for_each_entry(chan, &device->channels, device_node) {
                  if (!dma_chan_satisfies_mask(chan, client->cap_mask))
                        continue;

                  desc = chan->device->device_alloc_chan_resources(chan);
                  if (desc >= 0) {
                        ack = client->event_callback(client,
                                    chan,
                                    DMA_RESOURCE_AVAILABLE);

                        /* we are done once this client rejects
                         * an available resource
                         */
                        if (ack == DMA_ACK)
                              dma_chan_get(chan);
                        else if (ack == DMA_NAK)
                              return;
                  }
            }
}

enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
{
      enum dma_status status;
      unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);

      dma_async_issue_pending(chan);
      do {
            status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
            if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
                  printk(KERN_ERR "dma_sync_wait_timeout!\n");
                  return DMA_ERROR;
            }
      } while (status == DMA_IN_PROGRESS);

      return status;
}
EXPORT_SYMBOL(dma_sync_wait);

/**
 * dma_chan_cleanup - release a DMA channel's resources
 * @kref: kernel reference structure that contains the DMA channel device
 */
void dma_chan_cleanup(struct kref *kref)
{
      struct dma_chan *chan = container_of(kref, struct dma_chan, refcount);
      chan->device->device_free_chan_resources(chan);
      kref_put(&chan->device->refcount, dma_async_device_cleanup);
}
EXPORT_SYMBOL(dma_chan_cleanup);

static void dma_chan_free_rcu(struct rcu_head *rcu)
{
      struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu);
      int bias = 0x7FFFFFFF;
      int i;
      for_each_possible_cpu(i)
            bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount);
      atomic_sub(bias, &chan->refcount.refcount);
      kref_put(&chan->refcount, dma_chan_cleanup);
}

static void dma_chan_release(struct dma_chan *chan)
{
      atomic_add(0x7FFFFFFF, &chan->refcount.refcount);
      chan->slow_ref = 1;
      call_rcu(&chan->rcu, dma_chan_free_rcu);
}

/**
 * dma_chans_notify_available - broadcast available channels to the clients
 */
static void dma_clients_notify_available(void)
{
      struct dma_client *client;

      mutex_lock(&dma_list_mutex);

      list_for_each_entry(client, &dma_client_list, global_node)
            dma_client_chan_alloc(client);

      mutex_unlock(&dma_list_mutex);
}

/**
 * dma_chans_notify_available - tell the clients that a channel is going away
 * @chan: channel on its way out
 */
static void dma_clients_notify_removed(struct dma_chan *chan)
{
      struct dma_client *client;
      enum dma_state_client ack;

      mutex_lock(&dma_list_mutex);

      list_for_each_entry(client, &dma_client_list, global_node) {
            ack = client->event_callback(client, chan,
                        DMA_RESOURCE_REMOVED);

            /* client was holding resources for this channel so
             * free it
             */
            if (ack == DMA_ACK)
                  dma_chan_put(chan);
      }

      mutex_unlock(&dma_list_mutex);
}

/**
 * dma_async_client_register - register a &dma_client
 * @client: ptr to a client structure with valid 'event_callback' and 'cap_mask'
 */
void dma_async_client_register(struct dma_client *client)
{
      mutex_lock(&dma_list_mutex);
      list_add_tail(&client->global_node, &dma_client_list);
      mutex_unlock(&dma_list_mutex);
}
EXPORT_SYMBOL(dma_async_client_register);

/**
 * dma_async_client_unregister - unregister a client and free the &dma_client
 * @client: &dma_client to free
 *
 * Force frees any allocated DMA channels, frees the &dma_client memory
 */
void dma_async_client_unregister(struct dma_client *client)
{
      struct dma_device *device;
      struct dma_chan *chan;
      enum dma_state_client ack;

      if (!client)
            return;

      mutex_lock(&dma_list_mutex);
      /* free all channels the client is holding */
      list_for_each_entry(device, &dma_device_list, global_node)
            list_for_each_entry(chan, &device->channels, device_node) {
                  ack = client->event_callback(client, chan,
                        DMA_RESOURCE_REMOVED);

                  if (ack == DMA_ACK)
                        dma_chan_put(chan);
            }

      list_del(&client->global_node);
      mutex_unlock(&dma_list_mutex);
}
EXPORT_SYMBOL(dma_async_client_unregister);

/**
 * dma_async_client_chan_request - send all available channels to the
 * client that satisfy the capability mask
 * @client - requester
 */
void dma_async_client_chan_request(struct dma_client *client)
{
      mutex_lock(&dma_list_mutex);
      dma_client_chan_alloc(client);
      mutex_unlock(&dma_list_mutex);
}
EXPORT_SYMBOL(dma_async_client_chan_request);

/**
 * dma_async_device_register - registers DMA devices found
 * @device: &dma_device
 */
int dma_async_device_register(struct dma_device *device)
{
      static int id;
      int chancnt = 0, rc;
      struct dma_chan* chan;

      if (!device)
            return -ENODEV;

      /* validate device routines */
      BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
            !device->device_prep_dma_memcpy);
      BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
            !device->device_prep_dma_xor);
      BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) &&
            !device->device_prep_dma_zero_sum);
      BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
            !device->device_prep_dma_memset);
      BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) &&
            !device->device_prep_dma_interrupt);

      BUG_ON(!device->device_alloc_chan_resources);
      BUG_ON(!device->device_free_chan_resources);
      BUG_ON(!device->device_dependency_added);
      BUG_ON(!device->device_is_tx_complete);
      BUG_ON(!device->device_issue_pending);
      BUG_ON(!device->dev);

      init_completion(&device->done);
      kref_init(&device->refcount);
      device->dev_id = id++;

      /* represent channels in sysfs. Probably want devs too */
      list_for_each_entry(chan, &device->channels, device_node) {
            chan->local = alloc_percpu(typeof(*chan->local));
            if (chan->local == NULL)
                  continue;

            chan->chan_id = chancnt++;
            chan->class_dev.class = &dma_devclass;
            chan->class_dev.dev = NULL;
            snprintf(chan->class_dev.class_id, BUS_ID_SIZE, "dma%dchan%d",
                     device->dev_id, chan->chan_id);

            rc = class_device_register(&chan->class_dev);
            if (rc) {
                  chancnt--;
                  free_percpu(chan->local);
                  chan->local = NULL;
                  goto err_out;
            }

            /* One for the channel, one of the class device */
            kref_get(&device->refcount);
            kref_get(&device->refcount);
            kref_init(&chan->refcount);
            chan->slow_ref = 0;
            INIT_RCU_HEAD(&chan->rcu);
      }

      mutex_lock(&dma_list_mutex);
      list_add_tail(&device->global_node, &dma_device_list);
      mutex_unlock(&dma_list_mutex);

      dma_clients_notify_available();

      return 0;

err_out:
      list_for_each_entry(chan, &device->channels, device_node) {
            if (chan->local == NULL)
                  continue;
            kref_put(&device->refcount, dma_async_device_cleanup);
            class_device_unregister(&chan->class_dev);
            chancnt--;
            free_percpu(chan->local);
      }
      return rc;
}
EXPORT_SYMBOL(dma_async_device_register);

/**
 * dma_async_device_cleanup - function called when all references are released
 * @kref: kernel reference object
 */
static void dma_async_device_cleanup(struct kref *kref)
{
      struct dma_device *device;

      device = container_of(kref, struct dma_device, refcount);
      complete(&device->done);
}

/**
 * dma_async_device_unregister - unregisters DMA devices
 * @device: &dma_device
 */
void dma_async_device_unregister(struct dma_device *device)
{
      struct dma_chan *chan;

      mutex_lock(&dma_list_mutex);
      list_del(&device->global_node);
      mutex_unlock(&dma_list_mutex);

      list_for_each_entry(chan, &device->channels, device_node) {
            dma_clients_notify_removed(chan);
            class_device_unregister(&chan->class_dev);
            dma_chan_release(chan);
      }

      kref_put(&device->refcount, dma_async_device_cleanup);
      wait_for_completion(&device->done);
}
EXPORT_SYMBOL(dma_async_device_unregister);

/**
 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
 * @chan: DMA channel to offload copy to
 * @dest: destination address (virtual)
 * @src: source address (virtual)
 * @len: length
 *
 * Both @dest and @src must be mappable to a bus address according to the
 * DMA mapping API rules for streaming mappings.
 * Both @dest and @src must stay memory resident (kernel memory or locked
 * user space pages).
 */
dma_cookie_t
dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
                  void *src, size_t len)
{
      struct dma_device *dev = chan->device;
      struct dma_async_tx_descriptor *tx;
      dma_addr_t addr;
      dma_cookie_t cookie;
      int cpu;

      tx = dev->device_prep_dma_memcpy(chan, len, 0);
      if (!tx)
            return -ENOMEM;

      tx->ack = 1;
      tx->callback = NULL;
      addr = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
      tx->tx_set_src(addr, tx, 0);
      addr = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
      tx->tx_set_dest(addr, tx, 0);
      cookie = tx->tx_submit(tx);

      cpu = get_cpu();
      per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
      per_cpu_ptr(chan->local, cpu)->memcpy_count++;
      put_cpu();

      return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);

/**
 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
 * @chan: DMA channel to offload copy to
 * @page: destination page
 * @offset: offset in page to copy to
 * @kdata: source address (virtual)
 * @len: length
 *
 * Both @page/@offset and @kdata must be mappable to a bus address according
 * to the DMA mapping API rules for streaming mappings.
 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
 * locked user space pages)
 */
dma_cookie_t
dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
                  unsigned int offset, void *kdata, size_t len)
{
      struct dma_device *dev = chan->device;
      struct dma_async_tx_descriptor *tx;
      dma_addr_t addr;
      dma_cookie_t cookie;
      int cpu;

      tx = dev->device_prep_dma_memcpy(chan, len, 0);
      if (!tx)
            return -ENOMEM;

      tx->ack = 1;
      tx->callback = NULL;
      addr = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
      tx->tx_set_src(addr, tx, 0);
      addr = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
      tx->tx_set_dest(addr, tx, 0);
      cookie = tx->tx_submit(tx);

      cpu = get_cpu();
      per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
      per_cpu_ptr(chan->local, cpu)->memcpy_count++;
      put_cpu();

      return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);

/**
 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
 * @chan: DMA channel to offload copy to
 * @dest_pg: destination page
 * @dest_off: offset in page to copy to
 * @src_pg: source page
 * @src_off: offset in page to copy from
 * @len: length
 *
 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
 * address according to the DMA mapping API rules for streaming mappings.
 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
 * (kernel memory or locked user space pages).
 */
dma_cookie_t
dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
      unsigned int dest_off, struct page *src_pg, unsigned int src_off,
      size_t len)
{
      struct dma_device *dev = chan->device;
      struct dma_async_tx_descriptor *tx;
      dma_addr_t addr;
      dma_cookie_t cookie;
      int cpu;

      tx = dev->device_prep_dma_memcpy(chan, len, 0);
      if (!tx)
            return -ENOMEM;

      tx->ack = 1;
      tx->callback = NULL;
      addr = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
      tx->tx_set_src(addr, tx, 0);
      addr = dma_map_page(dev->dev, dest_pg, dest_off, len, DMA_FROM_DEVICE);
      tx->tx_set_dest(addr, tx, 0);
      cookie = tx->tx_submit(tx);

      cpu = get_cpu();
      per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
      per_cpu_ptr(chan->local, cpu)->memcpy_count++;
      put_cpu();

      return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);

void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
      struct dma_chan *chan)
{
      tx->chan = chan;
      spin_lock_init(&tx->lock);
      INIT_LIST_HEAD(&tx->depend_node);
      INIT_LIST_HEAD(&tx->depend_list);
}
EXPORT_SYMBOL(dma_async_tx_descriptor_init);

static int __init dma_bus_init(void)
{
      mutex_init(&dma_list_mutex);
      return class_register(&dma_devclass);
}
subsys_initcall(dma_bus_init);


Generated by  Doxygen 1.6.0   Back to index