Logo Search packages:      
Sourcecode: linux version File versions  Download package

dmi_scan.c

#include <linux/types.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/dmi.h>
#include <linux/efi.h>
#include <linux/bootmem.h>
#include <linux/slab.h>
#include <asm/dmi.h>

static char * __init dmi_string(const struct dmi_header *dm, u8 s)
{
      const u8 *bp = ((u8 *) dm) + dm->length;
      char *str = "";

      if (s) {
            s--;
            while (s > 0 && *bp) {
                  bp += strlen(bp) + 1;
                  s--;
            }

            if (*bp != 0) {
                  str = dmi_alloc(strlen(bp) + 1);
                  if (str != NULL)
                        strcpy(str, bp);
                  else
                        printk(KERN_ERR "dmi_string: out of memory.\n");
            }
      }

      return str;
}

/*
 *    We have to be cautious here. We have seen BIOSes with DMI pointers
 *    pointing to completely the wrong place for example
 */
static int __init dmi_table(u32 base, int len, int num,
                      void (*decode)(const struct dmi_header *))
{
      u8 *buf, *data;
      int i = 0;

      buf = dmi_ioremap(base, len);
      if (buf == NULL)
            return -1;

      data = buf;

      /*
       *    Stop when we see all the items the table claimed to have
       *    OR we run off the end of the table (also happens)
       */
      while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
            const struct dmi_header *dm = (const struct dmi_header *)data;

            /*
             *  We want to know the total length (formated area and strings)
             *  before decoding to make sure we won't run off the table in
             *  dmi_decode or dmi_string
             */
            data += dm->length;
            while ((data - buf < len - 1) && (data[0] || data[1]))
                  data++;
            if (data - buf < len - 1)
                  decode(dm);
            data += 2;
            i++;
      }
      dmi_iounmap(buf, len);
      return 0;
}

static int __init dmi_checksum(const u8 *buf)
{
      u8 sum = 0;
      int a;

      for (a = 0; a < 15; a++)
            sum += buf[a];

      return sum == 0;
}

static char *dmi_ident[DMI_STRING_MAX];
static LIST_HEAD(dmi_devices);
int dmi_available;

/*
 *    Save a DMI string
 */
static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
{
      const char *d = (const char*) dm;
      char *p;

      if (dmi_ident[slot])
            return;

      p = dmi_string(dm, d[string]);
      if (p == NULL)
            return;

      dmi_ident[slot] = p;
}

static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
{
      const u8 *d = (u8*) dm + index;
      char *s;
      int is_ff = 1, is_00 = 1, i;

      if (dmi_ident[slot])
            return;

      for (i = 0; i < 16 && (is_ff || is_00); i++) {
            if(d[i] != 0x00) is_ff = 0;
            if(d[i] != 0xFF) is_00 = 0;
      }

      if (is_ff || is_00)
            return;

      s = dmi_alloc(16*2+4+1);
      if (!s)
            return;

      sprintf(s,
            "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
            d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
            d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);

        dmi_ident[slot] = s;
}

static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
{
      const u8 *d = (u8*) dm + index;
      char *s;

      if (dmi_ident[slot])
            return;

      s = dmi_alloc(4);
      if (!s)
            return;

      sprintf(s, "%u", *d & 0x7F);
      dmi_ident[slot] = s;
}

static void __init dmi_save_devices(const struct dmi_header *dm)
{
      int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
      struct dmi_device *dev;

      for (i = 0; i < count; i++) {
            const char *d = (char *)(dm + 1) + (i * 2);

            /* Skip disabled device */
            if ((*d & 0x80) == 0)
                  continue;

            dev = dmi_alloc(sizeof(*dev));
            if (!dev) {
                  printk(KERN_ERR "dmi_save_devices: out of memory.\n");
                  break;
            }

            dev->type = *d++ & 0x7f;
            dev->name = dmi_string(dm, *d);
            dev->device_data = NULL;
            list_add(&dev->list, &dmi_devices);
      }
}

static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
{
      int i, count = *(u8 *)(dm + 1);
      struct dmi_device *dev;

      for (i = 1; i <= count; i++) {
            dev = dmi_alloc(sizeof(*dev));
            if (!dev) {
                  printk(KERN_ERR
                     "dmi_save_oem_strings_devices: out of memory.\n");
                  break;
            }

            dev->type = DMI_DEV_TYPE_OEM_STRING;
            dev->name = dmi_string(dm, i);
            dev->device_data = NULL;

            list_add(&dev->list, &dmi_devices);
      }
}

static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
{
      struct dmi_device *dev;
      void * data;

      data = dmi_alloc(dm->length);
      if (data == NULL) {
            printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
            return;
      }

      memcpy(data, dm, dm->length);

      dev = dmi_alloc(sizeof(*dev));
      if (!dev) {
            printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
            return;
      }

      dev->type = DMI_DEV_TYPE_IPMI;
      dev->name = "IPMI controller";
      dev->device_data = data;

      list_add(&dev->list, &dmi_devices);
}

/*
 *    Process a DMI table entry. Right now all we care about are the BIOS
 *    and machine entries. For 2.5 we should pull the smbus controller info
 *    out of here.
 */
static void __init dmi_decode(const struct dmi_header *dm)
{
      switch(dm->type) {
      case 0:           /* BIOS Information */
            dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
            dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
            dmi_save_ident(dm, DMI_BIOS_DATE, 8);
            break;
      case 1:           /* System Information */
            dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
            dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
            dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
            dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
            dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
            break;
      case 2:           /* Base Board Information */
            dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
            dmi_save_ident(dm, DMI_BOARD_NAME, 5);
            dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
            dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
            dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
            break;
      case 3:           /* Chassis Information */
            dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
            dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
            dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
            dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
            dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
            break;
      case 10:    /* Onboard Devices Information */
            dmi_save_devices(dm);
            break;
      case 11:    /* OEM Strings */
            dmi_save_oem_strings_devices(dm);
            break;
      case 38:    /* IPMI Device Information */
            dmi_save_ipmi_device(dm);
      }
}

static int __init dmi_present(const char __iomem *p)
{
      u8 buf[15];

      memcpy_fromio(buf, p, 15);
      if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
            u16 num = (buf[13] << 8) | buf[12];
            u16 len = (buf[7] << 8) | buf[6];
            u32 base = (buf[11] << 24) | (buf[10] << 16) |
                  (buf[9] << 8) | buf[8];

            /*
             * DMI version 0.0 means that the real version is taken from
             * the SMBIOS version, which we don't know at this point.
             */
            if (buf[14] != 0)
                  printk(KERN_INFO "DMI %d.%d present.\n",
                         buf[14] >> 4, buf[14] & 0xF);
            else
                  printk(KERN_INFO "DMI present.\n");
            if (dmi_table(base,len, num, dmi_decode) == 0)
                  return 0;
      }
      return 1;
}

void __init dmi_scan_machine(void)
{
      char __iomem *p, *q;
      int rc;

      if (efi_enabled) {
            if (efi.smbios == EFI_INVALID_TABLE_ADDR)
                  goto out;

            /* This is called as a core_initcall() because it isn't
             * needed during early boot.  This also means we can
             * iounmap the space when we're done with it.
             */
            p = dmi_ioremap(efi.smbios, 32);
            if (p == NULL)
                  goto out;

            rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
            dmi_iounmap(p, 32);
            if (!rc) {
                  dmi_available = 1;
                  return;
            }
      }
      else {
            /*
             * no iounmap() for that ioremap(); it would be a no-op, but
             * it's so early in setup that sucker gets confused into doing
             * what it shouldn't if we actually call it.
             */
            p = dmi_ioremap(0xF0000, 0x10000);
            if (p == NULL)
                  goto out;

            for (q = p; q < p + 0x10000; q += 16) {
                  rc = dmi_present(q);
                  if (!rc) {
                        dmi_available = 1;
                        return;
                  }
            }
      }
 out: printk(KERN_INFO "DMI not present or invalid.\n");
}

/**
 *    dmi_check_system - check system DMI data
 *    @list: array of dmi_system_id structures to match against
 *          All non-null elements of the list must match
 *          their slot's (field index's) data (i.e., each
 *          list string must be a substring of the specified
 *          DMI slot's string data) to be considered a
 *          successful match.
 *
 *    Walk the blacklist table running matching functions until someone
 *    returns non zero or we hit the end. Callback function is called for
 *    each successful match. Returns the number of matches.
 */
int dmi_check_system(const struct dmi_system_id *list)
{
      int i, count = 0;
      const struct dmi_system_id *d = list;

      while (d->ident) {
            for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
                  int s = d->matches[i].slot;
                  if (s == DMI_NONE)
                        continue;
                  if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
                        continue;
                  /* No match */
                  goto fail;
            }
            count++;
            if (d->callback && d->callback(d))
                  break;
fail:       d++;
      }

      return count;
}
EXPORT_SYMBOL(dmi_check_system);

/**
 *    dmi_get_system_info - return DMI data value
 *    @field: data index (see enum dmi_field)
 *
 *    Returns one DMI data value, can be used to perform
 *    complex DMI data checks.
 */
const char *dmi_get_system_info(int field)
{
      return dmi_ident[field];
}
EXPORT_SYMBOL(dmi_get_system_info);


/**
 *    dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
 *    @str:       Case sensitive Name
 */
int dmi_name_in_vendors(const char *str)
{
      static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
                        DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
                        DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
      int i;
      for (i = 0; fields[i] != DMI_NONE; i++) {
            int f = fields[i];
            if (dmi_ident[f] && strstr(dmi_ident[f], str))
                  return 1;
      }
      return 0;
}
EXPORT_SYMBOL(dmi_name_in_vendors);

/**
 *    dmi_find_device - find onboard device by type/name
 *    @type: device type or %DMI_DEV_TYPE_ANY to match all device types
 *    @name: device name string or %NULL to match all
 *    @from: previous device found in search, or %NULL for new search.
 *
 *    Iterates through the list of known onboard devices. If a device is
 *    found with a matching @vendor and @device, a pointer to its device
 *    structure is returned.  Otherwise, %NULL is returned.
 *    A new search is initiated by passing %NULL as the @from argument.
 *    If @from is not %NULL, searches continue from next device.
 */
const struct dmi_device * dmi_find_device(int type, const char *name,
                            const struct dmi_device *from)
{
      const struct list_head *head = from ? &from->list : &dmi_devices;
      struct list_head *d;

      for(d = head->next; d != &dmi_devices; d = d->next) {
            const struct dmi_device *dev =
                  list_entry(d, struct dmi_device, list);

            if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
                ((name == NULL) || (strcmp(dev->name, name) == 0)))
                  return dev;
      }

      return NULL;
}
EXPORT_SYMBOL(dmi_find_device);

/**
 *    dmi_get_year - Return year of a DMI date
 *    @field:     data index (like dmi_get_system_info)
 *
 *    Returns -1 when the field doesn't exist. 0 when it is broken.
 */
int dmi_get_year(int field)
{
      int year;
      const char *s = dmi_get_system_info(field);

      if (!s)
            return -1;
      if (*s == '\0')
            return 0;
      s = strrchr(s, '/');
      if (!s)
            return 0;

      s += 1;
      year = simple_strtoul(s, NULL, 0);
      if (year && year < 100) {     /* 2-digit year */
            year += 1900;
            if (year < 1996)  /* no dates < spec 1.0 */
                  year += 100;
      }

      return year;
}

Generated by  Doxygen 1.6.0   Back to index