Logo Search packages:      
Sourcecode: linux version File versions  Download package

doc2000.c

/*
 * Linux driver for Disk-On-Chip 2000 and Millennium
 * (c) 1999 Machine Vision Holdings, Inc.
 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
 *
 * $Id: doc2000.c,v 1.67 2005/11/07 11:14:24 gleixner Exp $
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/miscdevice.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/mutex.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/doc2000.h>

#define DOC_SUPPORT_2000
#define DOC_SUPPORT_2000TSOP
#define DOC_SUPPORT_MILLENNIUM

#ifdef DOC_SUPPORT_2000
#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
#else
#define DoC_is_2000(doc) (0)
#endif

#if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM)
#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
#else
#define DoC_is_Millennium(doc) (0)
#endif

/* #define ECC_DEBUG */

/* I have no idea why some DoC chips can not use memcpy_from|to_io().
 * This may be due to the different revisions of the ASIC controller built-in or
 * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
 * this:
 #undef USE_MEMCPY
*/

static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
                size_t *retlen, u_char *buf);
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
                 size_t *retlen, const u_char *buf);
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
                  struct mtd_oob_ops *ops);
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
                   struct mtd_oob_ops *ops);
static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
                   size_t *retlen, const u_char *buf);
static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);

static struct mtd_info *doc2klist = NULL;

/* Perform the required delay cycles by reading from the appropriate register */
static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
{
      volatile char dummy;
      int i;

      for (i = 0; i < cycles; i++) {
            if (DoC_is_Millennium(doc))
                  dummy = ReadDOC(doc->virtadr, NOP);
            else
                  dummy = ReadDOC(doc->virtadr, DOCStatus);
      }

}

/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
static int _DoC_WaitReady(struct DiskOnChip *doc)
{
      void __iomem *docptr = doc->virtadr;
      unsigned long timeo = jiffies + (HZ * 10);

      DEBUG(MTD_DEBUG_LEVEL3,
            "_DoC_WaitReady called for out-of-line wait\n");

      /* Out-of-line routine to wait for chip response */
      while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
            /* issue 2 read from NOP register after reading from CDSNControl register
            see Software Requirement 11.4 item 2. */
            DoC_Delay(doc, 2);

            if (time_after(jiffies, timeo)) {
                  DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
                  return -EIO;
            }
            udelay(1);
            cond_resched();
      }

      return 0;
}

static inline int DoC_WaitReady(struct DiskOnChip *doc)
{
      void __iomem *docptr = doc->virtadr;

      /* This is inline, to optimise the common case, where it's ready instantly */
      int ret = 0;

      /* 4 read form NOP register should be issued in prior to the read from CDSNControl
         see Software Requirement 11.4 item 2. */
      DoC_Delay(doc, 4);

      if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
            /* Call the out-of-line routine to wait */
            ret = _DoC_WaitReady(doc);

      /* issue 2 read from NOP register after reading from CDSNControl register
         see Software Requirement 11.4 item 2. */
      DoC_Delay(doc, 2);

      return ret;
}

/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
   bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
   required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */

static int DoC_Command(struct DiskOnChip *doc, unsigned char command,
                        unsigned char xtraflags)
{
      void __iomem *docptr = doc->virtadr;

      if (DoC_is_2000(doc))
            xtraflags |= CDSN_CTRL_FLASH_IO;

      /* Assert the CLE (Command Latch Enable) line to the flash chip */
      WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
      DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */

      if (DoC_is_Millennium(doc))
            WriteDOC(command, docptr, CDSNSlowIO);

      /* Send the command */
      WriteDOC_(command, docptr, doc->ioreg);
      if (DoC_is_Millennium(doc))
            WriteDOC(command, docptr, WritePipeTerm);

      /* Lower the CLE line */
      WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
      DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */

      /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
      return DoC_WaitReady(doc);
}

/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
   bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
   required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */

static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
                   unsigned char xtraflags1, unsigned char xtraflags2)
{
      int i;
      void __iomem *docptr = doc->virtadr;

      if (DoC_is_2000(doc))
            xtraflags1 |= CDSN_CTRL_FLASH_IO;

      /* Assert the ALE (Address Latch Enable) line to the flash chip */
      WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);

      DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */

      /* Send the address */
      /* Devices with 256-byte page are addressed as:
         Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
         * there is no device on the market with page256
         and more than 24 bits.
         Devices with 512-byte page are addressed as:
         Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
         * 25-31 is sent only if the chip support it.
         * bit 8 changes the read command to be sent
         (NAND_CMD_READ0 or NAND_CMD_READ1).
       */

      if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
            if (DoC_is_Millennium(doc))
                  WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
            WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
      }

      if (doc->page256) {
            ofs = ofs >> 8;
      } else {
            ofs = ofs >> 9;
      }

      if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
            for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
                  if (DoC_is_Millennium(doc))
                        WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
                  WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
            }
      }

      if (DoC_is_Millennium(doc))
            WriteDOC(ofs & 0xff, docptr, WritePipeTerm);

      DoC_Delay(doc, 2);      /* Needed for some slow flash chips. mf. */

      /* FIXME: The SlowIO's for millennium could be replaced by
         a single WritePipeTerm here. mf. */

      /* Lower the ALE line */
      WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
             CDSNControl);

      DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */

      /* Wait for the chip to respond - Software requirement 11.4.1 */
      return DoC_WaitReady(doc);
}

/* Read a buffer from DoC, taking care of Millennium odditys */
static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
{
      volatile int dummy;
      int modulus = 0xffff;
      void __iomem *docptr = doc->virtadr;
      int i;

      if (len <= 0)
            return;

      if (DoC_is_Millennium(doc)) {
            /* Read the data via the internal pipeline through CDSN IO register,
               see Pipelined Read Operations 11.3 */
            dummy = ReadDOC(docptr, ReadPipeInit);

            /* Millennium should use the LastDataRead register - Pipeline Reads */
            len--;

            /* This is needed for correctly ECC calculation */
            modulus = 0xff;
      }

      for (i = 0; i < len; i++)
            buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));

      if (DoC_is_Millennium(doc)) {
            buf[i] = ReadDOC(docptr, LastDataRead);
      }
}

/* Write a buffer to DoC, taking care of Millennium odditys */
static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
{
      void __iomem *docptr = doc->virtadr;
      int i;

      if (len <= 0)
            return;

      for (i = 0; i < len; i++)
            WriteDOC_(buf[i], docptr, doc->ioreg + i);

      if (DoC_is_Millennium(doc)) {
            WriteDOC(0x00, docptr, WritePipeTerm);
      }
}


/* DoC_SelectChip: Select a given flash chip within the current floor */

static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
{
      void __iomem *docptr = doc->virtadr;

      /* Software requirement 11.4.4 before writing DeviceSelect */
      /* Deassert the CE line to eliminate glitches on the FCE# outputs */
      WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
      DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */

      /* Select the individual flash chip requested */
      WriteDOC(chip, docptr, CDSNDeviceSelect);
      DoC_Delay(doc, 4);

      /* Reassert the CE line */
      WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
             CDSNControl);
      DoC_Delay(doc, 4);      /* Software requirement 11.4.3 for Millennium */

      /* Wait for it to be ready */
      return DoC_WaitReady(doc);
}

/* DoC_SelectFloor: Select a given floor (bank of flash chips) */

static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
{
      void __iomem *docptr = doc->virtadr;

      /* Select the floor (bank) of chips required */
      WriteDOC(floor, docptr, FloorSelect);

      /* Wait for the chip to be ready */
      return DoC_WaitReady(doc);
}

/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */

static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
{
      int mfr, id, i, j;
      volatile char dummy;

      /* Page in the required floor/chip */
      DoC_SelectFloor(doc, floor);
      DoC_SelectChip(doc, chip);

      /* Reset the chip */
      if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
            DEBUG(MTD_DEBUG_LEVEL2,
                  "DoC_Command (reset) for %d,%d returned true\n",
                  floor, chip);
            return 0;
      }


      /* Read the NAND chip ID: 1. Send ReadID command */
      if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
            DEBUG(MTD_DEBUG_LEVEL2,
                  "DoC_Command (ReadID) for %d,%d returned true\n",
                  floor, chip);
            return 0;
      }

      /* Read the NAND chip ID: 2. Send address byte zero */
      DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);

      /* Read the manufacturer and device id codes from the device */

      if (DoC_is_Millennium(doc)) {
            DoC_Delay(doc, 2);
            dummy = ReadDOC(doc->virtadr, ReadPipeInit);
            mfr = ReadDOC(doc->virtadr, LastDataRead);

            DoC_Delay(doc, 2);
            dummy = ReadDOC(doc->virtadr, ReadPipeInit);
            id = ReadDOC(doc->virtadr, LastDataRead);
      } else {
            /* CDSN Slow IO register see Software Req 11.4 item 5. */
            dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
            DoC_Delay(doc, 2);
            mfr = ReadDOC_(doc->virtadr, doc->ioreg);

            /* CDSN Slow IO register see Software Req 11.4 item 5. */
            dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
            DoC_Delay(doc, 2);
            id = ReadDOC_(doc->virtadr, doc->ioreg);
      }

      /* No response - return failure */
      if (mfr == 0xff || mfr == 0)
            return 0;

      /* Check it's the same as the first chip we identified.
       * M-Systems say that any given DiskOnChip device should only
       * contain _one_ type of flash part, although that's not a
       * hardware restriction. */
      if (doc->mfr) {
            if (doc->mfr == mfr && doc->id == id)
                  return 1;   /* This is another the same the first */
            else
                  printk(KERN_WARNING
                         "Flash chip at floor %d, chip %d is different:\n",
                         floor, chip);
      }

      /* Print and store the manufacturer and ID codes. */
      for (i = 0; nand_flash_ids[i].name != NULL; i++) {
            if (id == nand_flash_ids[i].id) {
                  /* Try to identify manufacturer */
                  for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
                        if (nand_manuf_ids[j].id == mfr)
                              break;
                  }
                  printk(KERN_INFO
                         "Flash chip found: Manufacturer ID: %2.2X, "
                         "Chip ID: %2.2X (%s:%s)\n", mfr, id,
                         nand_manuf_ids[j].name, nand_flash_ids[i].name);
                  if (!doc->mfr) {
                        doc->mfr = mfr;
                        doc->id = id;
                        doc->chipshift =
                              ffs((nand_flash_ids[i].chipsize << 20)) - 1;
                        doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0;
                        doc->pageadrlen = doc->chipshift > 25 ? 3 : 2;
                        doc->erasesize =
                            nand_flash_ids[i].erasesize;
                        return 1;
                  }
                  return 0;
            }
      }


      /* We haven't fully identified the chip. Print as much as we know. */
      printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
             id, mfr);

      printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
      return 0;
}

/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */

static void DoC_ScanChips(struct DiskOnChip *this, int maxchips)
{
      int floor, chip;
      int numchips[MAX_FLOORS];
      int ret = 1;

      this->numchips = 0;
      this->mfr = 0;
      this->id = 0;

      /* For each floor, find the number of valid chips it contains */
      for (floor = 0; floor < MAX_FLOORS; floor++) {
            ret = 1;
            numchips[floor] = 0;
            for (chip = 0; chip < maxchips && ret != 0; chip++) {

                  ret = DoC_IdentChip(this, floor, chip);
                  if (ret) {
                        numchips[floor]++;
                        this->numchips++;
                  }
            }
      }

      /* If there are none at all that we recognise, bail */
      if (!this->numchips) {
            printk(KERN_NOTICE "No flash chips recognised.\n");
            return;
      }

      /* Allocate an array to hold the information for each chip */
      this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
      if (!this->chips) {
            printk(KERN_NOTICE "No memory for allocating chip info structures\n");
            return;
      }

      ret = 0;

      /* Fill out the chip array with {floor, chipno} for each
       * detected chip in the device. */
      for (floor = 0; floor < MAX_FLOORS; floor++) {
            for (chip = 0; chip < numchips[floor]; chip++) {
                  this->chips[ret].floor = floor;
                  this->chips[ret].chip = chip;
                  this->chips[ret].curadr = 0;
                  this->chips[ret].curmode = 0x50;
                  ret++;
            }
      }

      /* Calculate and print the total size of the device */
      this->totlen = this->numchips * (1 << this->chipshift);

      printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
             this->numchips, this->totlen >> 20);
}

static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
{
      int tmp1, tmp2, retval;
      if (doc1->physadr == doc2->physadr)
            return 1;

      /* Use the alias resolution register which was set aside for this
       * purpose. If it's value is the same on both chips, they might
       * be the same chip, and we write to one and check for a change in
       * the other. It's unclear if this register is usuable in the
       * DoC 2000 (it's in the Millennium docs), but it seems to work. */
      tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
      tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
      if (tmp1 != tmp2)
            return 0;

      WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
      tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
      if (tmp2 == (tmp1 + 1) % 0xff)
            retval = 1;
      else
            retval = 0;

      /* Restore register contents.  May not be necessary, but do it just to
       * be safe. */
      WriteDOC(tmp1, doc1->virtadr, AliasResolution);

      return retval;
}

/* This routine is found from the docprobe code by symbol_get(),
 * which will bump the use count of this module. */
void DoC2k_init(struct mtd_info *mtd)
{
      struct DiskOnChip *this = mtd->priv;
      struct DiskOnChip *old = NULL;
      int maxchips;

      /* We must avoid being called twice for the same device. */

      if (doc2klist)
            old = doc2klist->priv;

      while (old) {
            if (DoC2k_is_alias(old, this)) {
                  printk(KERN_NOTICE
                         "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
                         this->physadr);
                  iounmap(this->virtadr);
                  kfree(mtd);
                  return;
            }
            if (old->nextdoc)
                  old = old->nextdoc->priv;
            else
                  old = NULL;
      }


      switch (this->ChipID) {
      case DOC_ChipID_Doc2kTSOP:
            mtd->name = "DiskOnChip 2000 TSOP";
            this->ioreg = DoC_Mil_CDSN_IO;
            /* Pretend it's a Millennium */
            this->ChipID = DOC_ChipID_DocMil;
            maxchips = MAX_CHIPS;
            break;
      case DOC_ChipID_Doc2k:
            mtd->name = "DiskOnChip 2000";
            this->ioreg = DoC_2k_CDSN_IO;
            maxchips = MAX_CHIPS;
            break;
      case DOC_ChipID_DocMil:
            mtd->name = "DiskOnChip Millennium";
            this->ioreg = DoC_Mil_CDSN_IO;
            maxchips = MAX_CHIPS_MIL;
            break;
      default:
            printk("Unknown ChipID 0x%02x\n", this->ChipID);
            kfree(mtd);
            iounmap(this->virtadr);
            return;
      }

      printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
             this->physadr);

      mtd->type = MTD_NANDFLASH;
      mtd->flags = MTD_CAP_NANDFLASH;
      mtd->size = 0;
      mtd->erasesize = 0;
      mtd->writesize = 512;
      mtd->oobsize = 16;
      mtd->owner = THIS_MODULE;
      mtd->erase = doc_erase;
      mtd->point = NULL;
      mtd->unpoint = NULL;
      mtd->read = doc_read;
      mtd->write = doc_write;
      mtd->read_oob = doc_read_oob;
      mtd->write_oob = doc_write_oob;
      mtd->sync = NULL;

      this->totlen = 0;
      this->numchips = 0;

      this->curfloor = -1;
      this->curchip = -1;
      mutex_init(&this->lock);

      /* Ident all the chips present. */
      DoC_ScanChips(this, maxchips);

      if (!this->totlen) {
            kfree(mtd);
            iounmap(this->virtadr);
      } else {
            this->nextdoc = doc2klist;
            doc2klist = mtd;
            mtd->size = this->totlen;
            mtd->erasesize = this->erasesize;
            add_mtd_device(mtd);
            return;
      }
}
EXPORT_SYMBOL_GPL(DoC2k_init);

static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
                size_t * retlen, u_char * buf)
{
      struct DiskOnChip *this = mtd->priv;
      void __iomem *docptr = this->virtadr;
      struct Nand *mychip;
      unsigned char syndrome[6], eccbuf[6];
      volatile char dummy;
      int i, len256 = 0, ret=0;
      size_t left = len;

      /* Don't allow read past end of device */
      if (from >= this->totlen)
            return -EINVAL;

      mutex_lock(&this->lock);

      *retlen = 0;
      while (left) {
            len = left;

            /* Don't allow a single read to cross a 512-byte block boundary */
            if (from + len > ((from | 0x1ff) + 1))
                  len = ((from | 0x1ff) + 1) - from;

            /* The ECC will not be calculated correctly if less than 512 is read */
            if (len != 0x200 && eccbuf)
                  printk(KERN_WARNING
                         "ECC needs a full sector read (adr: %lx size %lx)\n",
                         (long) from, (long) len);

            /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */


            /* Find the chip which is to be used and select it */
            mychip = &this->chips[from >> (this->chipshift)];

            if (this->curfloor != mychip->floor) {
                  DoC_SelectFloor(this, mychip->floor);
                  DoC_SelectChip(this, mychip->chip);
            } else if (this->curchip != mychip->chip) {
                  DoC_SelectChip(this, mychip->chip);
            }

            this->curfloor = mychip->floor;
            this->curchip = mychip->chip;

            DoC_Command(this,
                      (!this->page256
                       && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
                      CDSN_CTRL_WP);
            DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
                      CDSN_CTRL_ECC_IO);

            /* Prime the ECC engine */
            WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
            WriteDOC(DOC_ECC_EN, docptr, ECCConf);

            /* treat crossing 256-byte sector for 2M x 8bits devices */
            if (this->page256 && from + len > (from | 0xff) + 1) {
                  len256 = (from | 0xff) + 1 - from;
                  DoC_ReadBuf(this, buf, len256);

                  DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
                  DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
                            CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
            }

            DoC_ReadBuf(this, &buf[len256], len - len256);

            /* Let the caller know we completed it */
            *retlen += len;

            /* Read the ECC data through the DiskOnChip ECC logic */
            /* Note: this will work even with 2M x 8bit devices as   */
            /*       they have 8 bytes of OOB per 256 page. mf.      */
            DoC_ReadBuf(this, eccbuf, 6);

            /* Flush the pipeline */
            if (DoC_is_Millennium(this)) {
                  dummy = ReadDOC(docptr, ECCConf);
                  dummy = ReadDOC(docptr, ECCConf);
                  i = ReadDOC(docptr, ECCConf);
            } else {
                  dummy = ReadDOC(docptr, 2k_ECCStatus);
                  dummy = ReadDOC(docptr, 2k_ECCStatus);
                  i = ReadDOC(docptr, 2k_ECCStatus);
            }

            /* Check the ECC Status */
            if (i & 0x80) {
                  int nb_errors;
                  /* There was an ECC error */
#ifdef ECC_DEBUG
                  printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
#endif
                  /* Read the ECC syndrom through the DiskOnChip ECC
                     logic.  These syndrome will be all ZERO when there
                     is no error */
                  for (i = 0; i < 6; i++) {
                        syndrome[i] =
                              ReadDOC(docptr, ECCSyndrome0 + i);
                  }
                  nb_errors = doc_decode_ecc(buf, syndrome);

#ifdef ECC_DEBUG
                  printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
#endif
                  if (nb_errors < 0) {
                        /* We return error, but have actually done the
                           read. Not that this can be told to
                           user-space, via sys_read(), but at least
                           MTD-aware stuff can know about it by
                           checking *retlen */
                        ret = -EIO;
                  }
            }

#ifdef PSYCHO_DEBUG
            printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
                   (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
                   eccbuf[3], eccbuf[4], eccbuf[5]);
#endif

            /* disable the ECC engine */
            WriteDOC(DOC_ECC_DIS, docptr , ECCConf);

            /* according to 11.4.1, we need to wait for the busy line
               * drop if we read to the end of the page.  */
            if(0 == ((from + len) & 0x1ff))
            {
                DoC_WaitReady(this);
            }

            from += len;
            left -= len;
            buf += len;
      }

      mutex_unlock(&this->lock);

      return ret;
}

static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
                 size_t * retlen, const u_char * buf)
{
      struct DiskOnChip *this = mtd->priv;
      int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
      void __iomem *docptr = this->virtadr;
      unsigned char eccbuf[6];
      volatile char dummy;
      int len256 = 0;
      struct Nand *mychip;
      size_t left = len;
      int status;

      /* Don't allow write past end of device */
      if (to >= this->totlen)
            return -EINVAL;

      mutex_lock(&this->lock);

      *retlen = 0;
      while (left) {
            len = left;

            /* Don't allow a single write to cross a 512-byte block boundary */
            if (to + len > ((to | 0x1ff) + 1))
                  len = ((to | 0x1ff) + 1) - to;

            /* The ECC will not be calculated correctly if less than 512 is written */
/* DBB-
            if (len != 0x200 && eccbuf)
                  printk(KERN_WARNING
                         "ECC needs a full sector write (adr: %lx size %lx)\n",
                         (long) to, (long) len);
   -DBB */

            /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */

            /* Find the chip which is to be used and select it */
            mychip = &this->chips[to >> (this->chipshift)];

            if (this->curfloor != mychip->floor) {
                  DoC_SelectFloor(this, mychip->floor);
                  DoC_SelectChip(this, mychip->chip);
            } else if (this->curchip != mychip->chip) {
                  DoC_SelectChip(this, mychip->chip);
            }

            this->curfloor = mychip->floor;
            this->curchip = mychip->chip;

            /* Set device to main plane of flash */
            DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
            DoC_Command(this,
                      (!this->page256
                       && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
                      CDSN_CTRL_WP);

            DoC_Command(this, NAND_CMD_SEQIN, 0);
            DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);

            /* Prime the ECC engine */
            WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
            WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);

            /* treat crossing 256-byte sector for 2M x 8bits devices */
            if (this->page256 && to + len > (to | 0xff) + 1) {
                  len256 = (to | 0xff) + 1 - to;
                  DoC_WriteBuf(this, buf, len256);

                  DoC_Command(this, NAND_CMD_PAGEPROG, 0);

                  DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
                  /* There's an implicit DoC_WaitReady() in DoC_Command */

                  dummy = ReadDOC(docptr, CDSNSlowIO);
                  DoC_Delay(this, 2);

                  if (ReadDOC_(docptr, this->ioreg) & 1) {
                        printk(KERN_ERR "Error programming flash\n");
                        /* Error in programming */
                        *retlen = 0;
                        mutex_unlock(&this->lock);
                        return -EIO;
                  }

                  DoC_Command(this, NAND_CMD_SEQIN, 0);
                  DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
                            CDSN_CTRL_ECC_IO);
            }

            DoC_WriteBuf(this, &buf[len256], len - len256);

            WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, CDSNControl);

            if (DoC_is_Millennium(this)) {
                  WriteDOC(0, docptr, NOP);
                  WriteDOC(0, docptr, NOP);
                  WriteDOC(0, docptr, NOP);
            } else {
                  WriteDOC_(0, docptr, this->ioreg);
                  WriteDOC_(0, docptr, this->ioreg);
                  WriteDOC_(0, docptr, this->ioreg);
            }

            WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr,
                   CDSNControl);

            /* Read the ECC data through the DiskOnChip ECC logic */
            for (di = 0; di < 6; di++) {
                  eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
            }

            /* Reset the ECC engine */
            WriteDOC(DOC_ECC_DIS, docptr, ECCConf);

#ifdef PSYCHO_DEBUG
            printk
                  ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
                   (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
                   eccbuf[4], eccbuf[5]);
#endif
            DoC_Command(this, NAND_CMD_PAGEPROG, 0);

            DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
            /* There's an implicit DoC_WaitReady() in DoC_Command */

            if (DoC_is_Millennium(this)) {
                  ReadDOC(docptr, ReadPipeInit);
                  status = ReadDOC(docptr, LastDataRead);
            } else {
                  dummy = ReadDOC(docptr, CDSNSlowIO);
                  DoC_Delay(this, 2);
                  status = ReadDOC_(docptr, this->ioreg);
            }

            if (status & 1) {
                  printk(KERN_ERR "Error programming flash\n");
                  /* Error in programming */
                  *retlen = 0;
                  mutex_unlock(&this->lock);
                  return -EIO;
            }

            /* Let the caller know we completed it */
            *retlen += len;

            if (eccbuf) {
                  unsigned char x[8];
                  size_t dummy;
                  int ret;

                  /* Write the ECC data to flash */
                  for (di=0; di<6; di++)
                        x[di] = eccbuf[di];

                  x[6]=0x55;
                  x[7]=0x55;

                  ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
                  if (ret) {
                        mutex_unlock(&this->lock);
                        return ret;
                  }
            }

            to += len;
            left -= len;
            buf += len;
      }

      mutex_unlock(&this->lock);
      return 0;
}

static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
                  struct mtd_oob_ops *ops)
{
      struct DiskOnChip *this = mtd->priv;
      int len256 = 0, ret;
      struct Nand *mychip;
      uint8_t *buf = ops->oobbuf;
      size_t len = ops->len;

      BUG_ON(ops->mode != MTD_OOB_PLACE);

      ofs += ops->ooboffs;

      mutex_lock(&this->lock);

      mychip = &this->chips[ofs >> this->chipshift];

      if (this->curfloor != mychip->floor) {
            DoC_SelectFloor(this, mychip->floor);
            DoC_SelectChip(this, mychip->chip);
      } else if (this->curchip != mychip->chip) {
            DoC_SelectChip(this, mychip->chip);
      }
      this->curfloor = mychip->floor;
      this->curchip = mychip->chip;

      /* update address for 2M x 8bit devices. OOB starts on the second */
      /* page to maintain compatibility with doc_read_ecc. */
      if (this->page256) {
            if (!(ofs & 0x8))
                  ofs += 0x100;
            else
                  ofs -= 0x8;
      }

      DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
      DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);

      /* treat crossing 8-byte OOB data for 2M x 8bit devices */
      /* Note: datasheet says it should automaticaly wrap to the */
      /*       next OOB block, but it didn't work here. mf.      */
      if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
            len256 = (ofs | 0x7) + 1 - ofs;
            DoC_ReadBuf(this, buf, len256);

            DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
            DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
                      CDSN_CTRL_WP, 0);
      }

      DoC_ReadBuf(this, &buf[len256], len - len256);

      ops->retlen = len;
      /* Reading the full OOB data drops us off of the end of the page,
         * causing the flash device to go into busy mode, so we need
         * to wait until ready 11.4.1 and Toshiba TC58256FT docs */

      ret = DoC_WaitReady(this);

      mutex_unlock(&this->lock);
      return ret;

}

static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
                        size_t * retlen, const u_char * buf)
{
      struct DiskOnChip *this = mtd->priv;
      int len256 = 0;
      void __iomem *docptr = this->virtadr;
      struct Nand *mychip = &this->chips[ofs >> this->chipshift];
      volatile int dummy;
      int status;

      //      printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
      //   buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);

      /* Find the chip which is to be used and select it */
      if (this->curfloor != mychip->floor) {
            DoC_SelectFloor(this, mychip->floor);
            DoC_SelectChip(this, mychip->chip);
      } else if (this->curchip != mychip->chip) {
            DoC_SelectChip(this, mychip->chip);
      }
      this->curfloor = mychip->floor;
      this->curchip = mychip->chip;

      /* disable the ECC engine */
      WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
      WriteDOC (DOC_ECC_DIS, docptr, ECCConf);

      /* Reset the chip, see Software Requirement 11.4 item 1. */
      DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);

      /* issue the Read2 command to set the pointer to the Spare Data Area. */
      DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);

      /* update address for 2M x 8bit devices. OOB starts on the second */
      /* page to maintain compatibility with doc_read_ecc. */
      if (this->page256) {
            if (!(ofs & 0x8))
                  ofs += 0x100;
            else
                  ofs -= 0x8;
      }

      /* issue the Serial Data In command to initial the Page Program process */
      DoC_Command(this, NAND_CMD_SEQIN, 0);
      DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);

      /* treat crossing 8-byte OOB data for 2M x 8bit devices */
      /* Note: datasheet says it should automaticaly wrap to the */
      /*       next OOB block, but it didn't work here. mf.      */
      if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
            len256 = (ofs | 0x7) + 1 - ofs;
            DoC_WriteBuf(this, buf, len256);

            DoC_Command(this, NAND_CMD_PAGEPROG, 0);
            DoC_Command(this, NAND_CMD_STATUS, 0);
            /* DoC_WaitReady() is implicit in DoC_Command */

            if (DoC_is_Millennium(this)) {
                  ReadDOC(docptr, ReadPipeInit);
                  status = ReadDOC(docptr, LastDataRead);
            } else {
                  dummy = ReadDOC(docptr, CDSNSlowIO);
                  DoC_Delay(this, 2);
                  status = ReadDOC_(docptr, this->ioreg);
            }

            if (status & 1) {
                  printk(KERN_ERR "Error programming oob data\n");
                  /* There was an error */
                  *retlen = 0;
                  return -EIO;
            }
            DoC_Command(this, NAND_CMD_SEQIN, 0);
            DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
      }

      DoC_WriteBuf(this, &buf[len256], len - len256);

      DoC_Command(this, NAND_CMD_PAGEPROG, 0);
      DoC_Command(this, NAND_CMD_STATUS, 0);
      /* DoC_WaitReady() is implicit in DoC_Command */

      if (DoC_is_Millennium(this)) {
            ReadDOC(docptr, ReadPipeInit);
            status = ReadDOC(docptr, LastDataRead);
      } else {
            dummy = ReadDOC(docptr, CDSNSlowIO);
            DoC_Delay(this, 2);
            status = ReadDOC_(docptr, this->ioreg);
      }

      if (status & 1) {
            printk(KERN_ERR "Error programming oob data\n");
            /* There was an error */
            *retlen = 0;
            return -EIO;
      }

      *retlen = len;
      return 0;

}

static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
                   struct mtd_oob_ops *ops)
{
      struct DiskOnChip *this = mtd->priv;
      int ret;

      BUG_ON(ops->mode != MTD_OOB_PLACE);

      mutex_lock(&this->lock);
      ret = doc_write_oob_nolock(mtd, ofs + ops->ooboffs, ops->len,
                           &ops->retlen, ops->oobbuf);

      mutex_unlock(&this->lock);
      return ret;
}

static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
{
      struct DiskOnChip *this = mtd->priv;
      __u32 ofs = instr->addr;
      __u32 len = instr->len;
      volatile int dummy;
      void __iomem *docptr = this->virtadr;
      struct Nand *mychip;
      int status;

      mutex_lock(&this->lock);

      if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
            mutex_unlock(&this->lock);
            return -EINVAL;
      }

      instr->state = MTD_ERASING;

      /* FIXME: Do this in the background. Use timers or schedule_task() */
      while(len) {
            mychip = &this->chips[ofs >> this->chipshift];

            if (this->curfloor != mychip->floor) {
                  DoC_SelectFloor(this, mychip->floor);
                  DoC_SelectChip(this, mychip->chip);
            } else if (this->curchip != mychip->chip) {
                  DoC_SelectChip(this, mychip->chip);
            }
            this->curfloor = mychip->floor;
            this->curchip = mychip->chip;

            DoC_Command(this, NAND_CMD_ERASE1, 0);
            DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
            DoC_Command(this, NAND_CMD_ERASE2, 0);

            DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);

            if (DoC_is_Millennium(this)) {
                  ReadDOC(docptr, ReadPipeInit);
                  status = ReadDOC(docptr, LastDataRead);
            } else {
                  dummy = ReadDOC(docptr, CDSNSlowIO);
                  DoC_Delay(this, 2);
                  status = ReadDOC_(docptr, this->ioreg);
            }

            if (status & 1) {
                  printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
                  /* There was an error */
                  instr->state = MTD_ERASE_FAILED;
                  goto callback;
            }
            ofs += mtd->erasesize;
            len -= mtd->erasesize;
      }
      instr->state = MTD_ERASE_DONE;

 callback:
      mtd_erase_callback(instr);

      mutex_unlock(&this->lock);
      return 0;
}


/****************************************************************************
 *
 * Module stuff
 *
 ****************************************************************************/

static void __exit cleanup_doc2000(void)
{
      struct mtd_info *mtd;
      struct DiskOnChip *this;

      while ((mtd = doc2klist)) {
            this = mtd->priv;
            doc2klist = this->nextdoc;

            del_mtd_device(mtd);

            iounmap(this->virtadr);
            kfree(this->chips);
            kfree(mtd);
      }
}

module_exit(cleanup_doc2000);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");


Generated by  Doxygen 1.6.0   Back to index