Logo Search packages:      
Sourcecode: linux version File versions  Download package

pci.c

/*
 *    $Id: pci.c,v 1.91 1999/01/21 13:34:01 davem Exp $
 *
 *    PCI Bus Services, see include/linux/pci.h for further explanation.
 *
 *    Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
 *    David Mosberger-Tang
 *
 *    Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
 */

#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pm.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/log2.h>
#include <asm/dma.h>    /* isa_dma_bridge_buggy */
#include "pci.h"

unsigned int pci_pm_d3_delay = 10;

#ifdef CONFIG_PCI_DOMAINS
int pci_domains_supported = 1;
#endif

#define DEFAULT_CARDBUS_IO_SIZE           (256)
#define DEFAULT_CARDBUS_MEM_SIZE    (64*1024*1024)
/* pci=cbmemsize=nnM,cbiosize=nn can override this */
unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;

/**
 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 * @bus: pointer to PCI bus structure to search
 *
 * Given a PCI bus, returns the highest PCI bus number present in the set
 * including the given PCI bus and its list of child PCI buses.
 */
unsigned char pci_bus_max_busnr(struct pci_bus* bus)
{
      struct list_head *tmp;
      unsigned char max, n;

      max = bus->subordinate;
      list_for_each(tmp, &bus->children) {
            n = pci_bus_max_busnr(pci_bus_b(tmp));
            if(n > max)
                  max = n;
      }
      return max;
}
EXPORT_SYMBOL_GPL(pci_bus_max_busnr);

#if 0
/**
 * pci_max_busnr - returns maximum PCI bus number
 *
 * Returns the highest PCI bus number present in the system global list of
 * PCI buses.
 */
unsigned char __devinit
pci_max_busnr(void)
{
      struct pci_bus *bus = NULL;
      unsigned char max, n;

      max = 0;
      while ((bus = pci_find_next_bus(bus)) != NULL) {
            n = pci_bus_max_busnr(bus);
            if(n > max)
                  max = n;
      }
      return max;
}

#endif  /*  0  */

#define PCI_FIND_CAP_TTL      48

static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
                           u8 pos, int cap, int *ttl)
{
      u8 id;

      while ((*ttl)--) {
            pci_bus_read_config_byte(bus, devfn, pos, &pos);
            if (pos < 0x40)
                  break;
            pos &= ~3;
            pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
                               &id);
            if (id == 0xff)
                  break;
            if (id == cap)
                  return pos;
            pos += PCI_CAP_LIST_NEXT;
      }
      return 0;
}

static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
                         u8 pos, int cap)
{
      int ttl = PCI_FIND_CAP_TTL;

      return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
}

int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
{
      return __pci_find_next_cap(dev->bus, dev->devfn,
                           pos + PCI_CAP_LIST_NEXT, cap);
}
EXPORT_SYMBOL_GPL(pci_find_next_capability);

static int __pci_bus_find_cap_start(struct pci_bus *bus,
                            unsigned int devfn, u8 hdr_type)
{
      u16 status;

      pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
      if (!(status & PCI_STATUS_CAP_LIST))
            return 0;

      switch (hdr_type) {
      case PCI_HEADER_TYPE_NORMAL:
      case PCI_HEADER_TYPE_BRIDGE:
            return PCI_CAPABILITY_LIST;
      case PCI_HEADER_TYPE_CARDBUS:
            return PCI_CB_CAPABILITY_LIST;
      default:
            return 0;
      }

      return 0;
}

/**
 * pci_find_capability - query for devices' capabilities 
 * @dev: PCI device to query
 * @cap: capability code
 *
 * Tell if a device supports a given PCI capability.
 * Returns the address of the requested capability structure within the
 * device's PCI configuration space or 0 in case the device does not
 * support it.  Possible values for @cap:
 *
 *  %PCI_CAP_ID_PM           Power Management 
 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port 
 *  %PCI_CAP_ID_VPD          Vital Product Data 
 *  %PCI_CAP_ID_SLOTID       Slot Identification 
 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap 
 *  %PCI_CAP_ID_PCIX         PCI-X
 *  %PCI_CAP_ID_EXP          PCI Express
 */
int pci_find_capability(struct pci_dev *dev, int cap)
{
      int pos;

      pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
      if (pos)
            pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);

      return pos;
}

/**
 * pci_bus_find_capability - query for devices' capabilities 
 * @bus:   the PCI bus to query
 * @devfn: PCI device to query
 * @cap:   capability code
 *
 * Like pci_find_capability() but works for pci devices that do not have a
 * pci_dev structure set up yet. 
 *
 * Returns the address of the requested capability structure within the
 * device's PCI configuration space or 0 in case the device does not
 * support it.
 */
int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
{
      int pos;
      u8 hdr_type;

      pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);

      pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
      if (pos)
            pos = __pci_find_next_cap(bus, devfn, pos, cap);

      return pos;
}

/**
 * pci_find_ext_capability - Find an extended capability
 * @dev: PCI device to query
 * @cap: capability code
 *
 * Returns the address of the requested extended capability structure
 * within the device's PCI configuration space or 0 if the device does
 * not support it.  Possible values for @cap:
 *
 *  %PCI_EXT_CAP_ID_ERR       Advanced Error Reporting
 *  %PCI_EXT_CAP_ID_VC        Virtual Channel
 *  %PCI_EXT_CAP_ID_DSN       Device Serial Number
 *  %PCI_EXT_CAP_ID_PWR       Power Budgeting
 */
int pci_find_ext_capability(struct pci_dev *dev, int cap)
{
      u32 header;
      int ttl = 480; /* 3840 bytes, minimum 8 bytes per capability */
      int pos = 0x100;

      if (dev->cfg_size <= 256)
            return 0;

      if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
            return 0;

      /*
       * If we have no capabilities, this is indicated by cap ID,
       * cap version and next pointer all being 0.
       */
      if (header == 0)
            return 0;

      while (ttl-- > 0) {
            if (PCI_EXT_CAP_ID(header) == cap)
                  return pos;

            pos = PCI_EXT_CAP_NEXT(header);
            if (pos < 0x100)
                  break;

            if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
                  break;
      }

      return 0;
}
EXPORT_SYMBOL_GPL(pci_find_ext_capability);

static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
{
      int rc, ttl = PCI_FIND_CAP_TTL;
      u8 cap, mask;

      if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
            mask = HT_3BIT_CAP_MASK;
      else
            mask = HT_5BIT_CAP_MASK;

      pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
                              PCI_CAP_ID_HT, &ttl);
      while (pos) {
            rc = pci_read_config_byte(dev, pos + 3, &cap);
            if (rc != PCIBIOS_SUCCESSFUL)
                  return 0;

            if ((cap & mask) == ht_cap)
                  return pos;

            pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
                                    pos + PCI_CAP_LIST_NEXT,
                                    PCI_CAP_ID_HT, &ttl);
      }

      return 0;
}
/**
 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 * @dev: PCI device to query
 * @pos: Position from which to continue searching
 * @ht_cap: Hypertransport capability code
 *
 * To be used in conjunction with pci_find_ht_capability() to search for
 * all capabilities matching @ht_cap. @pos should always be a value returned
 * from pci_find_ht_capability().
 *
 * NB. To be 100% safe against broken PCI devices, the caller should take
 * steps to avoid an infinite loop.
 */
int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
{
      return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
}
EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);

/**
 * pci_find_ht_capability - query a device's Hypertransport capabilities
 * @dev: PCI device to query
 * @ht_cap: Hypertransport capability code
 *
 * Tell if a device supports a given Hypertransport capability.
 * Returns an address within the device's PCI configuration space
 * or 0 in case the device does not support the request capability.
 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 * which has a Hypertransport capability matching @ht_cap.
 */
int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
{
      int pos;

      pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
      if (pos)
            pos = __pci_find_next_ht_cap(dev, pos, ht_cap);

      return pos;
}
EXPORT_SYMBOL_GPL(pci_find_ht_capability);

/**
 * pci_find_parent_resource - return resource region of parent bus of given region
 * @dev: PCI device structure contains resources to be searched
 * @res: child resource record for which parent is sought
 *
 *  For given resource region of given device, return the resource
 *  region of parent bus the given region is contained in or where
 *  it should be allocated from.
 */
struct resource *
pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
{
      const struct pci_bus *bus = dev->bus;
      int i;
      struct resource *best = NULL;

      for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
            struct resource *r = bus->resource[i];
            if (!r)
                  continue;
            if (res->start && !(res->start >= r->start && res->end <= r->end))
                  continue;   /* Not contained */
            if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
                  continue;   /* Wrong type */
            if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
                  return r;   /* Exact match */
            if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
                  best = r;   /* Approximating prefetchable by non-prefetchable */
      }
      return best;
}

/**
 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 * @dev: PCI device to have its BARs restored
 *
 * Restore the BAR values for a given device, so as to make it
 * accessible by its driver.
 */
void
pci_restore_bars(struct pci_dev *dev)
{
      int i, numres;

      switch (dev->hdr_type) {
      case PCI_HEADER_TYPE_NORMAL:
            numres = 6;
            break;
      case PCI_HEADER_TYPE_BRIDGE:
            numres = 2;
            break;
      case PCI_HEADER_TYPE_CARDBUS:
            numres = 1;
            break;
      default:
            /* Should never get here, but just in case... */
            return;
      }

      for (i = 0; i < numres; i ++)
            pci_update_resource(dev, &dev->resource[i], i);
}

int (*platform_pci_set_power_state)(struct pci_dev *dev, pci_power_t t);

/**
 * pci_set_power_state - Set the power state of a PCI device
 * @dev: PCI device to be suspended
 * @state: PCI power state (D0, D1, D2, D3hot, D3cold) we're entering
 *
 * Transition a device to a new power state, using the Power Management 
 * Capabilities in the device's config space.
 *
 * RETURN VALUE: 
 * -EINVAL if trying to enter a lower state than we're already in.
 * 0 if we're already in the requested state.
 * -EIO if device does not support PCI PM.
 * 0 if we can successfully change the power state.
 */
int
pci_set_power_state(struct pci_dev *dev, pci_power_t state)
{
      int pm, need_restore = 0;
      u16 pmcsr, pmc;

      /* bound the state we're entering */
      if (state > PCI_D3hot)
            state = PCI_D3hot;

      /*
       * If the device or the parent bridge can't support PCI PM, ignore
       * the request if we're doing anything besides putting it into D0
       * (which would only happen on boot).
       */
      if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
            return 0;

      /* find PCI PM capability in list */
      pm = pci_find_capability(dev, PCI_CAP_ID_PM);

      /* abort if the device doesn't support PM capabilities */
      if (!pm)
            return -EIO;

      /* Validate current state:
       * Can enter D0 from any state, but if we can only go deeper 
       * to sleep if we're already in a low power state
       */
      if (state != PCI_D0 && dev->current_state > state) {
            printk(KERN_ERR "%s(): %s: state=%d, current state=%d\n",
                  __FUNCTION__, pci_name(dev), state, dev->current_state);
            return -EINVAL;
      } else if (dev->current_state == state)
            return 0;        /* we're already there */


      pci_read_config_word(dev,pm + PCI_PM_PMC,&pmc);
      if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
            printk(KERN_DEBUG
                   "PCI: %s has unsupported PM cap regs version (%u)\n",
                   pci_name(dev), pmc & PCI_PM_CAP_VER_MASK);
            return -EIO;
      }

      /* check if this device supports the desired state */
      if (state == PCI_D1 && !(pmc & PCI_PM_CAP_D1))
            return -EIO;
      else if (state == PCI_D2 && !(pmc & PCI_PM_CAP_D2))
            return -EIO;

      pci_read_config_word(dev, pm + PCI_PM_CTRL, &pmcsr);

      /* If we're (effectively) in D3, force entire word to 0.
       * This doesn't affect PME_Status, disables PME_En, and
       * sets PowerState to 0.
       */
      switch (dev->current_state) {
      case PCI_D0:
      case PCI_D1:
      case PCI_D2:
            pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
            pmcsr |= state;
            break;
      case PCI_UNKNOWN: /* Boot-up */
            if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
             && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
                  need_restore = 1;
            /* Fall-through: force to D0 */
      default:
            pmcsr = 0;
            break;
      }

      /* enter specified state */
      pci_write_config_word(dev, pm + PCI_PM_CTRL, pmcsr);

      /* Mandatory power management transition delays */
      /* see PCI PM 1.1 5.6.1 table 18 */
      if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
            msleep(pci_pm_d3_delay);
      else if (state == PCI_D2 || dev->current_state == PCI_D2)
            udelay(200);

      /*
       * Give firmware a chance to be called, such as ACPI _PRx, _PSx
       * Firmware method after native method ?
       */
      if (platform_pci_set_power_state)
            platform_pci_set_power_state(dev, state);

      dev->current_state = state;

      /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
       * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
       * from D3hot to D0 _may_ perform an internal reset, thereby
       * going to "D0 Uninitialized" rather than "D0 Initialized".
       * For example, at least some versions of the 3c905B and the
       * 3c556B exhibit this behaviour.
       *
       * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
       * devices in a D3hot state at boot.  Consequently, we need to
       * restore at least the BARs so that the device will be
       * accessible to its driver.
       */
      if (need_restore)
            pci_restore_bars(dev);

      return 0;
}

pci_power_t (*platform_pci_choose_state)(struct pci_dev *dev, pm_message_t state);
 
/**
 * pci_choose_state - Choose the power state of a PCI device
 * @dev: PCI device to be suspended
 * @state: target sleep state for the whole system. This is the value
 *    that is passed to suspend() function.
 *
 * Returns PCI power state suitable for given device and given system
 * message.
 */

pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
{
      pci_power_t ret;

      if (!pci_find_capability(dev, PCI_CAP_ID_PM))
            return PCI_D0;

      if (platform_pci_choose_state) {
            ret = platform_pci_choose_state(dev, state);
            if (ret != PCI_POWER_ERROR)
                  return ret;
      }

      switch (state.event) {
      case PM_EVENT_ON:
            return PCI_D0;
      case PM_EVENT_FREEZE:
      case PM_EVENT_PRETHAW:
            /* REVISIT both freeze and pre-thaw "should" use D0 */
      case PM_EVENT_SUSPEND:
            return PCI_D3hot;
      default:
            printk("Unrecognized suspend event %d\n", state.event);
            BUG();
      }
      return PCI_D0;
}

EXPORT_SYMBOL(pci_choose_state);

static int pci_save_pcie_state(struct pci_dev *dev)
{
      int pos, i = 0;
      struct pci_cap_saved_state *save_state;
      u16 *cap;

      pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
      if (pos <= 0)
            return 0;

      save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
      if (!save_state)
            save_state = kzalloc(sizeof(*save_state) + sizeof(u16) * 4, GFP_KERNEL);
      if (!save_state) {
            dev_err(&dev->dev, "Out of memory in pci_save_pcie_state\n");
            return -ENOMEM;
      }
      cap = (u16 *)&save_state->data[0];

      pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
      pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
      pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
      pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
      pci_add_saved_cap(dev, save_state);
      return 0;
}

static void pci_restore_pcie_state(struct pci_dev *dev)
{
      int i = 0, pos;
      struct pci_cap_saved_state *save_state;
      u16 *cap;

      save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
      pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
      if (!save_state || pos <= 0)
            return;
      cap = (u16 *)&save_state->data[0];

      pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
      pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
      pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
      pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
}


static int pci_save_pcix_state(struct pci_dev *dev)
{
      int pos, i = 0;
      struct pci_cap_saved_state *save_state;
      u16 *cap;

      pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
      if (pos <= 0)
            return 0;

      save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
      if (!save_state)
            save_state = kzalloc(sizeof(*save_state) + sizeof(u16), GFP_KERNEL);
      if (!save_state) {
            dev_err(&dev->dev, "Out of memory in pci_save_pcie_state\n");
            return -ENOMEM;
      }
      cap = (u16 *)&save_state->data[0];

      pci_read_config_word(dev, pos + PCI_X_CMD, &cap[i++]);
      pci_add_saved_cap(dev, save_state);
      return 0;
}

static void pci_restore_pcix_state(struct pci_dev *dev)
{
      int i = 0, pos;
      struct pci_cap_saved_state *save_state;
      u16 *cap;

      save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
      pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
      if (!save_state || pos <= 0)
            return;
      cap = (u16 *)&save_state->data[0];

      pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
}


/**
 * pci_save_state - save the PCI configuration space of a device before suspending
 * @dev: - PCI device that we're dealing with
 */
int
pci_save_state(struct pci_dev *dev)
{
      int i;
      /* XXX: 100% dword access ok here? */
      for (i = 0; i < 16; i++)
            pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
      if ((i = pci_save_pcie_state(dev)) != 0)
            return i;
      if ((i = pci_save_pcix_state(dev)) != 0)
            return i;
      return 0;
}

/** 
 * pci_restore_state - Restore the saved state of a PCI device
 * @dev: - PCI device that we're dealing with
 */
int 
pci_restore_state(struct pci_dev *dev)
{
      int i;
      u32 val;

      /* PCI Express register must be restored first */
      pci_restore_pcie_state(dev);

      /*
       * The Base Address register should be programmed before the command
       * register(s)
       */
      for (i = 15; i >= 0; i--) {
            pci_read_config_dword(dev, i * 4, &val);
            if (val != dev->saved_config_space[i]) {
                  printk(KERN_DEBUG "PM: Writing back config space on "
                        "device %s at offset %x (was %x, writing %x)\n",
                        pci_name(dev), i,
                        val, (int)dev->saved_config_space[i]);
                  pci_write_config_dword(dev,i * 4,
                        dev->saved_config_space[i]);
            }
      }
      pci_restore_pcix_state(dev);
      pci_restore_msi_state(dev);

      return 0;
}

static int do_pci_enable_device(struct pci_dev *dev, int bars)
{
      int err;

      err = pci_set_power_state(dev, PCI_D0);
      if (err < 0 && err != -EIO)
            return err;
      err = pcibios_enable_device(dev, bars);
      if (err < 0)
            return err;
      pci_fixup_device(pci_fixup_enable, dev);

      return 0;
}

/**
 * pci_reenable_device - Resume abandoned device
 * @dev: PCI device to be resumed
 *
 *  Note this function is a backend of pci_default_resume and is not supposed
 *  to be called by normal code, write proper resume handler and use it instead.
 */
int pci_reenable_device(struct pci_dev *dev)
{
      if (atomic_read(&dev->enable_cnt))
            return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
      return 0;
}

/**
 * pci_enable_device_bars - Initialize some of a device for use
 * @dev: PCI device to be initialized
 * @bars: bitmask of BAR's that must be configured
 *
 *  Initialize device before it's used by a driver. Ask low-level code
 *  to enable selected I/O and memory resources. Wake up the device if it
 *  was suspended. Beware, this function can fail.
 */
int
pci_enable_device_bars(struct pci_dev *dev, int bars)
{
      int err;

      if (atomic_add_return(1, &dev->enable_cnt) > 1)
            return 0;         /* already enabled */

      err = do_pci_enable_device(dev, bars);
      if (err < 0)
            atomic_dec(&dev->enable_cnt);
      return err;
}

/**
 * pci_enable_device - Initialize device before it's used by a driver.
 * @dev: PCI device to be initialized
 *
 *  Initialize device before it's used by a driver. Ask low-level code
 *  to enable I/O and memory. Wake up the device if it was suspended.
 *  Beware, this function can fail.
 *
 *  Note we don't actually enable the device many times if we call
 *  this function repeatedly (we just increment the count).
 */
int pci_enable_device(struct pci_dev *dev)
{
      return pci_enable_device_bars(dev, (1 << PCI_NUM_RESOURCES) - 1);
}

/*
 * Managed PCI resources.  This manages device on/off, intx/msi/msix
 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
 * there's no need to track it separately.  pci_devres is initialized
 * when a device is enabled using managed PCI device enable interface.
 */
struct pci_devres {
      unsigned int enabled:1;
      unsigned int pinned:1;
      unsigned int orig_intx:1;
      unsigned int restore_intx:1;
      u32 region_mask;
};

static void pcim_release(struct device *gendev, void *res)
{
      struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
      struct pci_devres *this = res;
      int i;

      if (dev->msi_enabled)
            pci_disable_msi(dev);
      if (dev->msix_enabled)
            pci_disable_msix(dev);

      for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
            if (this->region_mask & (1 << i))
                  pci_release_region(dev, i);

      if (this->restore_intx)
            pci_intx(dev, this->orig_intx);

      if (this->enabled && !this->pinned)
            pci_disable_device(dev);
}

static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
{
      struct pci_devres *dr, *new_dr;

      dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
      if (dr)
            return dr;

      new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
      if (!new_dr)
            return NULL;
      return devres_get(&pdev->dev, new_dr, NULL, NULL);
}

static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
{
      if (pci_is_managed(pdev))
            return devres_find(&pdev->dev, pcim_release, NULL, NULL);
      return NULL;
}

/**
 * pcim_enable_device - Managed pci_enable_device()
 * @pdev: PCI device to be initialized
 *
 * Managed pci_enable_device().
 */
int pcim_enable_device(struct pci_dev *pdev)
{
      struct pci_devres *dr;
      int rc;

      dr = get_pci_dr(pdev);
      if (unlikely(!dr))
            return -ENOMEM;
      WARN_ON(!!dr->enabled);

      rc = pci_enable_device(pdev);
      if (!rc) {
            pdev->is_managed = 1;
            dr->enabled = 1;
      }
      return rc;
}

/**
 * pcim_pin_device - Pin managed PCI device
 * @pdev: PCI device to pin
 *
 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
 * driver detach.  @pdev must have been enabled with
 * pcim_enable_device().
 */
void pcim_pin_device(struct pci_dev *pdev)
{
      struct pci_devres *dr;

      dr = find_pci_dr(pdev);
      WARN_ON(!dr || !dr->enabled);
      if (dr)
            dr->pinned = 1;
}

/**
 * pcibios_disable_device - disable arch specific PCI resources for device dev
 * @dev: the PCI device to disable
 *
 * Disables architecture specific PCI resources for the device. This
 * is the default implementation. Architecture implementations can
 * override this.
 */
void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}

/**
 * pci_disable_device - Disable PCI device after use
 * @dev: PCI device to be disabled
 *
 * Signal to the system that the PCI device is not in use by the system
 * anymore.  This only involves disabling PCI bus-mastering, if active.
 *
 * Note we don't actually disable the device until all callers of
 * pci_device_enable() have called pci_device_disable().
 */
void
pci_disable_device(struct pci_dev *dev)
{
      struct pci_devres *dr;
      u16 pci_command;

      dr = find_pci_dr(dev);
      if (dr)
            dr->enabled = 0;

      if (atomic_sub_return(1, &dev->enable_cnt) != 0)
            return;

      pci_read_config_word(dev, PCI_COMMAND, &pci_command);
      if (pci_command & PCI_COMMAND_MASTER) {
            pci_command &= ~PCI_COMMAND_MASTER;
            pci_write_config_word(dev, PCI_COMMAND, pci_command);
      }
      dev->is_busmaster = 0;

      pcibios_disable_device(dev);
}

/**
 * pcibios_set_pcie_reset_state - set reset state for device dev
 * @dev: the PCI-E device reset
 * @state: Reset state to enter into
 *
 *
 * Sets the PCI-E reset state for the device. This is the default
 * implementation. Architecture implementations can override this.
 */
int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
                                          enum pcie_reset_state state)
{
      return -EINVAL;
}

/**
 * pci_set_pcie_reset_state - set reset state for device dev
 * @dev: the PCI-E device reset
 * @state: Reset state to enter into
 *
 *
 * Sets the PCI reset state for the device.
 */
int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
{
      return pcibios_set_pcie_reset_state(dev, state);
}

/**
 * pci_enable_wake - enable PCI device as wakeup event source
 * @dev: PCI device affected
 * @state: PCI state from which device will issue wakeup events
 * @enable: True to enable event generation; false to disable
 *
 * This enables the device as a wakeup event source, or disables it.
 * When such events involves platform-specific hooks, those hooks are
 * called automatically by this routine.
 *
 * Devices with legacy power management (no standard PCI PM capabilities)
 * always require such platform hooks.  Depending on the platform, devices
 * supporting the standard PCI PME# signal may require such platform hooks;
 * they always update bits in config space to allow PME# generation.
 *
 * -EIO is returned if the device can't ever be a wakeup event source.
 * -EINVAL is returned if the device can't generate wakeup events from
 * the specified PCI state.  Returns zero if the operation is successful.
 */
int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
{
      int pm;
      int status;
      u16 value;

      /* Note that drivers should verify device_may_wakeup(&dev->dev)
       * before calling this function.  Platform code should report
       * errors when drivers try to enable wakeup on devices that
       * can't issue wakeups, or on which wakeups were disabled by
       * userspace updating the /sys/devices.../power/wakeup file.
       */

      status = call_platform_enable_wakeup(&dev->dev, enable);

      /* find PCI PM capability in list */
      pm = pci_find_capability(dev, PCI_CAP_ID_PM);

      /* If device doesn't support PM Capabilities, but caller wants to
       * disable wake events, it's a NOP.  Otherwise fail unless the
       * platform hooks handled this legacy device already.
       */
      if (!pm)
            return enable ? status : 0;

      /* Check device's ability to generate PME# */
      pci_read_config_word(dev,pm+PCI_PM_PMC,&value);

      value &= PCI_PM_CAP_PME_MASK;
      value >>= ffs(PCI_PM_CAP_PME_MASK) - 1;   /* First bit of mask */

      /* Check if it can generate PME# from requested state. */
      if (!value || !(value & (1 << state))) {
            /* if it can't, revert what the platform hook changed,
             * always reporting the base "EINVAL, can't PME#" error
             */
            if (enable)
                  call_platform_enable_wakeup(&dev->dev, 0);
            return enable ? -EINVAL : 0;
      }

      pci_read_config_word(dev, pm + PCI_PM_CTRL, &value);

      /* Clear PME_Status by writing 1 to it and enable PME# */
      value |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;

      if (!enable)
            value &= ~PCI_PM_CTRL_PME_ENABLE;

      pci_write_config_word(dev, pm + PCI_PM_CTRL, value);

      return 0;
}

int
pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
{
      u8 pin;

      pin = dev->pin;
      if (!pin)
            return -1;
      pin--;
      while (dev->bus->self) {
            pin = (pin + PCI_SLOT(dev->devfn)) % 4;
            dev = dev->bus->self;
      }
      *bridge = dev;
      return pin;
}

/**
 *    pci_release_region - Release a PCI bar
 *    @pdev: PCI device whose resources were previously reserved by pci_request_region
 *    @bar: BAR to release
 *
 *    Releases the PCI I/O and memory resources previously reserved by a
 *    successful call to pci_request_region.  Call this function only
 *    after all use of the PCI regions has ceased.
 */
void pci_release_region(struct pci_dev *pdev, int bar)
{
      struct pci_devres *dr;

      if (pci_resource_len(pdev, bar) == 0)
            return;
      if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
            release_region(pci_resource_start(pdev, bar),
                        pci_resource_len(pdev, bar));
      else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
            release_mem_region(pci_resource_start(pdev, bar),
                        pci_resource_len(pdev, bar));

      dr = find_pci_dr(pdev);
      if (dr)
            dr->region_mask &= ~(1 << bar);
}

/**
 *    pci_request_region - Reserved PCI I/O and memory resource
 *    @pdev: PCI device whose resources are to be reserved
 *    @bar: BAR to be reserved
 *    @res_name: Name to be associated with resource.
 *
 *    Mark the PCI region associated with PCI device @pdev BR @bar as
 *    being reserved by owner @res_name.  Do not access any
 *    address inside the PCI regions unless this call returns
 *    successfully.
 *
 *    Returns 0 on success, or %EBUSY on error.  A warning
 *    message is also printed on failure.
 */
int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
{
      struct pci_devres *dr;

      if (pci_resource_len(pdev, bar) == 0)
            return 0;
            
      if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
            if (!request_region(pci_resource_start(pdev, bar),
                      pci_resource_len(pdev, bar), res_name))
                  goto err_out;
      }
      else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
            if (!request_mem_region(pci_resource_start(pdev, bar),
                                pci_resource_len(pdev, bar), res_name))
                  goto err_out;
      }

      dr = find_pci_dr(pdev);
      if (dr)
            dr->region_mask |= 1 << bar;

      return 0;

err_out:
      printk (KERN_WARNING "PCI: Unable to reserve %s region #%d:%llx@%llx "
            "for device %s\n",
            pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
            bar + 1, /* PCI BAR # */
            (unsigned long long)pci_resource_len(pdev, bar),
            (unsigned long long)pci_resource_start(pdev, bar),
            pci_name(pdev));
      return -EBUSY;
}

/**
 * pci_release_selected_regions - Release selected PCI I/O and memory resources
 * @pdev: PCI device whose resources were previously reserved
 * @bars: Bitmask of BARs to be released
 *
 * Release selected PCI I/O and memory resources previously reserved.
 * Call this function only after all use of the PCI regions has ceased.
 */
void pci_release_selected_regions(struct pci_dev *pdev, int bars)
{
      int i;

      for (i = 0; i < 6; i++)
            if (bars & (1 << i))
                  pci_release_region(pdev, i);
}

/**
 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
 * @pdev: PCI device whose resources are to be reserved
 * @bars: Bitmask of BARs to be requested
 * @res_name: Name to be associated with resource
 */
int pci_request_selected_regions(struct pci_dev *pdev, int bars,
                         const char *res_name)
{
      int i;

      for (i = 0; i < 6; i++)
            if (bars & (1 << i))
                  if(pci_request_region(pdev, i, res_name))
                        goto err_out;
      return 0;

err_out:
      while(--i >= 0)
            if (bars & (1 << i))
                  pci_release_region(pdev, i);

      return -EBUSY;
}

/**
 *    pci_release_regions - Release reserved PCI I/O and memory resources
 *    @pdev: PCI device whose resources were previously reserved by pci_request_regions
 *
 *    Releases all PCI I/O and memory resources previously reserved by a
 *    successful call to pci_request_regions.  Call this function only
 *    after all use of the PCI regions has ceased.
 */

void pci_release_regions(struct pci_dev *pdev)
{
      pci_release_selected_regions(pdev, (1 << 6) - 1);
}

/**
 *    pci_request_regions - Reserved PCI I/O and memory resources
 *    @pdev: PCI device whose resources are to be reserved
 *    @res_name: Name to be associated with resource.
 *
 *    Mark all PCI regions associated with PCI device @pdev as
 *    being reserved by owner @res_name.  Do not access any
 *    address inside the PCI regions unless this call returns
 *    successfully.
 *
 *    Returns 0 on success, or %EBUSY on error.  A warning
 *    message is also printed on failure.
 */
int pci_request_regions(struct pci_dev *pdev, const char *res_name)
{
      return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
}

/**
 * pci_set_master - enables bus-mastering for device dev
 * @dev: the PCI device to enable
 *
 * Enables bus-mastering on the device and calls pcibios_set_master()
 * to do the needed arch specific settings.
 */
void
pci_set_master(struct pci_dev *dev)
{
      u16 cmd;

      pci_read_config_word(dev, PCI_COMMAND, &cmd);
      if (! (cmd & PCI_COMMAND_MASTER)) {
            pr_debug("PCI: Enabling bus mastering for device %s\n", pci_name(dev));
            cmd |= PCI_COMMAND_MASTER;
            pci_write_config_word(dev, PCI_COMMAND, cmd);
      }
      dev->is_busmaster = 1;
      pcibios_set_master(dev);
}

#ifdef PCI_DISABLE_MWI
int pci_set_mwi(struct pci_dev *dev)
{
      return 0;
}

int pci_try_set_mwi(struct pci_dev *dev)
{
      return 0;
}

void pci_clear_mwi(struct pci_dev *dev)
{
}

#else

#ifndef PCI_CACHE_LINE_BYTES
#define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
#endif

/* This can be overridden by arch code. */
/* Don't forget this is measured in 32-bit words, not bytes */
u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;

/**
 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
 * @dev: the PCI device for which MWI is to be enabled
 *
 * Helper function for pci_set_mwi.
 * Originally copied from drivers/net/acenic.c.
 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
 *
 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 */
static int
pci_set_cacheline_size(struct pci_dev *dev)
{
      u8 cacheline_size;

      if (!pci_cache_line_size)
            return -EINVAL;         /* The system doesn't support MWI. */

      /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
         equal to or multiple of the right value. */
      pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
      if (cacheline_size >= pci_cache_line_size &&
          (cacheline_size % pci_cache_line_size) == 0)
            return 0;

      /* Write the correct value. */
      pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
      /* Read it back. */
      pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
      if (cacheline_size == pci_cache_line_size)
            return 0;

      printk(KERN_DEBUG "PCI: cache line size of %d is not supported "
             "by device %s\n", pci_cache_line_size << 2, pci_name(dev));

      return -EINVAL;
}

/**
 * pci_set_mwi - enables memory-write-invalidate PCI transaction
 * @dev: the PCI device for which MWI is enabled
 *
 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
 *
 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 */
int
pci_set_mwi(struct pci_dev *dev)
{
      int rc;
      u16 cmd;

      rc = pci_set_cacheline_size(dev);
      if (rc)
            return rc;

      pci_read_config_word(dev, PCI_COMMAND, &cmd);
      if (! (cmd & PCI_COMMAND_INVALIDATE)) {
            pr_debug("PCI: Enabling Mem-Wr-Inval for device %s\n",
                  pci_name(dev));
            cmd |= PCI_COMMAND_INVALIDATE;
            pci_write_config_word(dev, PCI_COMMAND, cmd);
      }
      
      return 0;
}

/**
 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
 * @dev: the PCI device for which MWI is enabled
 *
 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
 * Callers are not required to check the return value.
 *
 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 */
int pci_try_set_mwi(struct pci_dev *dev)
{
      int rc = pci_set_mwi(dev);
      return rc;
}

/**
 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
 * @dev: the PCI device to disable
 *
 * Disables PCI Memory-Write-Invalidate transaction on the device
 */
void
pci_clear_mwi(struct pci_dev *dev)
{
      u16 cmd;

      pci_read_config_word(dev, PCI_COMMAND, &cmd);
      if (cmd & PCI_COMMAND_INVALIDATE) {
            cmd &= ~PCI_COMMAND_INVALIDATE;
            pci_write_config_word(dev, PCI_COMMAND, cmd);
      }
}
#endif /* ! PCI_DISABLE_MWI */

/**
 * pci_intx - enables/disables PCI INTx for device dev
 * @pdev: the PCI device to operate on
 * @enable: boolean: whether to enable or disable PCI INTx
 *
 * Enables/disables PCI INTx for device dev
 */
void
pci_intx(struct pci_dev *pdev, int enable)
{
      u16 pci_command, new;

      pci_read_config_word(pdev, PCI_COMMAND, &pci_command);

      if (enable) {
            new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
      } else {
            new = pci_command | PCI_COMMAND_INTX_DISABLE;
      }

      if (new != pci_command) {
            struct pci_devres *dr;

            pci_write_config_word(pdev, PCI_COMMAND, new);

            dr = find_pci_dr(pdev);
            if (dr && !dr->restore_intx) {
                  dr->restore_intx = 1;
                  dr->orig_intx = !enable;
            }
      }
}

/**
 * pci_msi_off - disables any msi or msix capabilities
 * @dev: the PCI device to operate on
 *
 * If you want to use msi see pci_enable_msi and friends.
 * This is a lower level primitive that allows us to disable
 * msi operation at the device level.
 */
void pci_msi_off(struct pci_dev *dev)
{
      int pos;
      u16 control;

      pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
      if (pos) {
            pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
            control &= ~PCI_MSI_FLAGS_ENABLE;
            pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
      }
      pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
      if (pos) {
            pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
            control &= ~PCI_MSIX_FLAGS_ENABLE;
            pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
      }
}

#ifndef HAVE_ARCH_PCI_SET_DMA_MASK
/*
 * These can be overridden by arch-specific implementations
 */
int
pci_set_dma_mask(struct pci_dev *dev, u64 mask)
{
      if (!pci_dma_supported(dev, mask))
            return -EIO;

      dev->dma_mask = mask;

      return 0;
}
    
int
pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
{
      if (!pci_dma_supported(dev, mask))
            return -EIO;

      dev->dev.coherent_dma_mask = mask;

      return 0;
}
#endif

/**
 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
 * @dev: PCI device to query
 *
 * Returns mmrbc: maximum designed memory read count in bytes
 *    or appropriate error value.
 */
int pcix_get_max_mmrbc(struct pci_dev *dev)
{
      int err, cap;
      u32 stat;

      cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
      if (!cap)
            return -EINVAL;

      err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
      if (err)
            return -EINVAL;

      return (stat & PCI_X_STATUS_MAX_READ) >> 12;
}
EXPORT_SYMBOL(pcix_get_max_mmrbc);

/**
 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
 * @dev: PCI device to query
 *
 * Returns mmrbc: maximum memory read count in bytes
 *    or appropriate error value.
 */
int pcix_get_mmrbc(struct pci_dev *dev)
{
      int ret, cap;
      u32 cmd;

      cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
      if (!cap)
            return -EINVAL;

      ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
      if (!ret)
            ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);

      return ret;
}
EXPORT_SYMBOL(pcix_get_mmrbc);

/**
 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
 * @dev: PCI device to query
 * @mmrbc: maximum memory read count in bytes
 *    valid values are 512, 1024, 2048, 4096
 *
 * If possible sets maximum memory read byte count, some bridges have erratas
 * that prevent this.
 */
int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
{
      int cap, err = -EINVAL;
      u32 stat, cmd, v, o;

      if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
            goto out;

      v = ffs(mmrbc) - 10;

      cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
      if (!cap)
            goto out;

      err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
      if (err)
            goto out;

      if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
            return -E2BIG;

      err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
      if (err)
            goto out;

      o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
      if (o != v) {
            if (v > o && dev->bus &&
               (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
                  return -EIO;

            cmd &= ~PCI_X_CMD_MAX_READ;
            cmd |= v << 2;
            err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
      }
out:
      return err;
}
EXPORT_SYMBOL(pcix_set_mmrbc);

/**
 * pcie_get_readrq - get PCI Express read request size
 * @dev: PCI device to query
 *
 * Returns maximum memory read request in bytes
 *    or appropriate error value.
 */
int pcie_get_readrq(struct pci_dev *dev)
{
      int ret, cap;
      u16 ctl;

      cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
      if (!cap)
            return -EINVAL;

      ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
      if (!ret)
      ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);

      return ret;
}
EXPORT_SYMBOL(pcie_get_readrq);

/**
 * pcie_set_readrq - set PCI Express maximum memory read request
 * @dev: PCI device to query
 * @rq: maximum memory read count in bytes
 *    valid values are 128, 256, 512, 1024, 2048, 4096
 *
 * If possible sets maximum read byte count
 */
int pcie_set_readrq(struct pci_dev *dev, int rq)
{
      int cap, err = -EINVAL;
      u16 ctl, v;

      if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
            goto out;

      v = (ffs(rq) - 8) << 12;

      cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
      if (!cap)
            goto out;

      err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
      if (err)
            goto out;

      if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
            ctl &= ~PCI_EXP_DEVCTL_READRQ;
            ctl |= v;
            err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
      }

out:
      return err;
}
EXPORT_SYMBOL(pcie_set_readrq);

/**
 * pci_select_bars - Make BAR mask from the type of resource
 * @dev: the PCI device for which BAR mask is made
 * @flags: resource type mask to be selected
 *
 * This helper routine makes bar mask from the type of resource.
 */
int pci_select_bars(struct pci_dev *dev, unsigned long flags)
{
      int i, bars = 0;
      for (i = 0; i < PCI_NUM_RESOURCES; i++)
            if (pci_resource_flags(dev, i) & flags)
                  bars |= (1 << i);
      return bars;
}

static void __devinit pci_no_domains(void)
{
#ifdef CONFIG_PCI_DOMAINS
      pci_domains_supported = 0;
#endif
}

static int __devinit pci_init(void)
{
      struct pci_dev *dev = NULL;

      while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
            pci_fixup_device(pci_fixup_final, dev);
      }
      return 0;
}

static int __devinit pci_setup(char *str)
{
      while (str) {
            char *k = strchr(str, ',');
            if (k)
                  *k++ = 0;
            if (*str && (str = pcibios_setup(str)) && *str) {
                  if (!strcmp(str, "nomsi")) {
                        pci_no_msi();
                  } else if (!strcmp(str, "noaer")) {
                        pci_no_aer();
                  } else if (!strcmp(str, "nodomains")) {
                        pci_no_domains();
                  } else if (!strncmp(str, "cbiosize=", 9)) {
                        pci_cardbus_io_size = memparse(str + 9, &str);
                  } else if (!strncmp(str, "cbmemsize=", 10)) {
                        pci_cardbus_mem_size = memparse(str + 10, &str);
                  } else {
                        printk(KERN_ERR "PCI: Unknown option `%s'\n",
                                    str);
                  }
            }
            str = k;
      }
      return 0;
}
early_param("pci", pci_setup);

device_initcall(pci_init);

EXPORT_SYMBOL_GPL(pci_restore_bars);
EXPORT_SYMBOL(pci_reenable_device);
EXPORT_SYMBOL(pci_enable_device_bars);
EXPORT_SYMBOL(pci_enable_device);
EXPORT_SYMBOL(pcim_enable_device);
EXPORT_SYMBOL(pcim_pin_device);
EXPORT_SYMBOL(pci_disable_device);
EXPORT_SYMBOL(pci_find_capability);
EXPORT_SYMBOL(pci_bus_find_capability);
EXPORT_SYMBOL(pci_release_regions);
EXPORT_SYMBOL(pci_request_regions);
EXPORT_SYMBOL(pci_release_region);
EXPORT_SYMBOL(pci_request_region);
EXPORT_SYMBOL(pci_release_selected_regions);
EXPORT_SYMBOL(pci_request_selected_regions);
EXPORT_SYMBOL(pci_set_master);
EXPORT_SYMBOL(pci_set_mwi);
EXPORT_SYMBOL(pci_try_set_mwi);
EXPORT_SYMBOL(pci_clear_mwi);
EXPORT_SYMBOL_GPL(pci_intx);
EXPORT_SYMBOL(pci_set_dma_mask);
EXPORT_SYMBOL(pci_set_consistent_dma_mask);
EXPORT_SYMBOL(pci_assign_resource);
EXPORT_SYMBOL(pci_find_parent_resource);
EXPORT_SYMBOL(pci_select_bars);

EXPORT_SYMBOL(pci_set_power_state);
EXPORT_SYMBOL(pci_save_state);
EXPORT_SYMBOL(pci_restore_state);
EXPORT_SYMBOL(pci_enable_wake);
EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);


Generated by  Doxygen 1.6.0   Back to index