Logo Search packages:      
Sourcecode: linux version File versions  Download package

main.c

/*
 * Sonics Silicon Backplane
 * Subsystem core
 *
 * Copyright 2005, Broadcom Corporation
 * Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
 *
 * Licensed under the GNU/GPL. See COPYING for details.
 */

#include "ssb_private.h"

#include <linux/delay.h>
#include <linux/io.h>
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>

#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ds.h>


MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
MODULE_LICENSE("GPL");


/* Temporary list of yet-to-be-attached buses */
static LIST_HEAD(attach_queue);
/* List if running buses */
static LIST_HEAD(buses);
/* Software ID counter */
static unsigned int next_busnumber;
/* buses_mutes locks the two buslists and the next_busnumber.
 * Don't lock this directly, but use ssb_buses_[un]lock() below. */
static DEFINE_MUTEX(buses_mutex);

/* There are differences in the codeflow, if the bus is
 * initialized from early boot, as various needed services
 * are not available early. This is a mechanism to delay
 * these initializations to after early boot has finished.
 * It's also used to avoid mutex locking, as that's not
 * available and needed early. */
static bool ssb_is_early_boot = 1;

static void ssb_buses_lock(void);
static void ssb_buses_unlock(void);


#ifdef CONFIG_SSB_PCIHOST
struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
{
      struct ssb_bus *bus;

      ssb_buses_lock();
      list_for_each_entry(bus, &buses, list) {
            if (bus->bustype == SSB_BUSTYPE_PCI &&
                bus->host_pci == pdev)
                  goto found;
      }
      bus = NULL;
found:
      ssb_buses_unlock();

      return bus;
}
#endif /* CONFIG_SSB_PCIHOST */

static struct ssb_device *ssb_device_get(struct ssb_device *dev)
{
      if (dev)
            get_device(dev->dev);
      return dev;
}

static void ssb_device_put(struct ssb_device *dev)
{
      if (dev)
            put_device(dev->dev);
}

static int ssb_bus_resume(struct ssb_bus *bus)
{
      int err;

      ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
      err = ssb_pcmcia_init(bus);
      if (err) {
            /* No need to disable XTAL, as we don't have one on PCMCIA. */
            return err;
      }
      ssb_chipco_resume(&bus->chipco);

      return 0;
}

static int ssb_device_resume(struct device *dev)
{
      struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
      struct ssb_driver *ssb_drv;
      struct ssb_bus *bus;
      int err = 0;

      bus = ssb_dev->bus;
      if (bus->suspend_cnt == bus->nr_devices) {
            err = ssb_bus_resume(bus);
            if (err)
                  return err;
      }
      bus->suspend_cnt--;
      if (dev->driver) {
            ssb_drv = drv_to_ssb_drv(dev->driver);
            if (ssb_drv && ssb_drv->resume)
                  err = ssb_drv->resume(ssb_dev);
            if (err)
                  goto out;
      }
out:
      return err;
}

static void ssb_bus_suspend(struct ssb_bus *bus, pm_message_t state)
{
      ssb_chipco_suspend(&bus->chipco, state);
      ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);

      /* Reset HW state information in memory, so that HW is
       * completely reinitialized on resume. */
      bus->mapped_device = NULL;
#ifdef CONFIG_SSB_DRIVER_PCICORE
      bus->pcicore.setup_done = 0;
#endif
#ifdef CONFIG_SSB_DEBUG
      bus->powered_up = 0;
#endif
}

static int ssb_device_suspend(struct device *dev, pm_message_t state)
{
      struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
      struct ssb_driver *ssb_drv;
      struct ssb_bus *bus;
      int err = 0;

      if (dev->driver) {
            ssb_drv = drv_to_ssb_drv(dev->driver);
            if (ssb_drv && ssb_drv->suspend)
                  err = ssb_drv->suspend(ssb_dev, state);
            if (err)
                  goto out;
      }

      bus = ssb_dev->bus;
      bus->suspend_cnt++;
      if (bus->suspend_cnt == bus->nr_devices) {
            /* All devices suspended. Shutdown the bus. */
            ssb_bus_suspend(bus, state);
      }

out:
      return err;
}

#ifdef CONFIG_SSB_PCIHOST
int ssb_devices_freeze(struct ssb_bus *bus)
{
      struct ssb_device *dev;
      struct ssb_driver *drv;
      int err = 0;
      int i;
      pm_message_t state = PMSG_FREEZE;

      /* First check that we are capable to freeze all devices. */
      for (i = 0; i < bus->nr_devices; i++) {
            dev = &(bus->devices[i]);
            if (!dev->dev ||
                !dev->dev->driver ||
                !device_is_registered(dev->dev))
                  continue;
            drv = drv_to_ssb_drv(dev->dev->driver);
            if (!drv)
                  continue;
            if (!drv->suspend) {
                  /* Nope, can't suspend this one. */
                  return -EOPNOTSUPP;
            }
      }
      /* Now suspend all devices */
      for (i = 0; i < bus->nr_devices; i++) {
            dev = &(bus->devices[i]);
            if (!dev->dev ||
                !dev->dev->driver ||
                !device_is_registered(dev->dev))
                  continue;
            drv = drv_to_ssb_drv(dev->dev->driver);
            if (!drv)
                  continue;
            err = drv->suspend(dev, state);
            if (err) {
                  ssb_printk(KERN_ERR PFX "Failed to freeze device %s\n",
                           dev->dev->bus_id);
                  goto err_unwind;
            }
      }

      return 0;
err_unwind:
      for (i--; i >= 0; i--) {
            dev = &(bus->devices[i]);
            if (!dev->dev ||
                !dev->dev->driver ||
                !device_is_registered(dev->dev))
                  continue;
            drv = drv_to_ssb_drv(dev->dev->driver);
            if (!drv)
                  continue;
            if (drv->resume)
                  drv->resume(dev);
      }
      return err;
}

int ssb_devices_thaw(struct ssb_bus *bus)
{
      struct ssb_device *dev;
      struct ssb_driver *drv;
      int err;
      int i;

      for (i = 0; i < bus->nr_devices; i++) {
            dev = &(bus->devices[i]);
            if (!dev->dev ||
                !dev->dev->driver ||
                !device_is_registered(dev->dev))
                  continue;
            drv = drv_to_ssb_drv(dev->dev->driver);
            if (!drv)
                  continue;
            if (SSB_WARN_ON(!drv->resume))
                  continue;
            err = drv->resume(dev);
            if (err) {
                  ssb_printk(KERN_ERR PFX "Failed to thaw device %s\n",
                           dev->dev->bus_id);
            }
      }

      return 0;
}
#endif /* CONFIG_SSB_PCIHOST */

static void ssb_device_shutdown(struct device *dev)
{
      struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
      struct ssb_driver *ssb_drv;

      if (!dev->driver)
            return;
      ssb_drv = drv_to_ssb_drv(dev->driver);
      if (ssb_drv && ssb_drv->shutdown)
            ssb_drv->shutdown(ssb_dev);
}

static int ssb_device_remove(struct device *dev)
{
      struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
      struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);

      if (ssb_drv && ssb_drv->remove)
            ssb_drv->remove(ssb_dev);
      ssb_device_put(ssb_dev);

      return 0;
}

static int ssb_device_probe(struct device *dev)
{
      struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
      struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
      int err = 0;

      ssb_device_get(ssb_dev);
      if (ssb_drv && ssb_drv->probe)
            err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
      if (err)
            ssb_device_put(ssb_dev);

      return err;
}

static int ssb_match_devid(const struct ssb_device_id *tabid,
                     const struct ssb_device_id *devid)
{
      if ((tabid->vendor != devid->vendor) &&
          tabid->vendor != SSB_ANY_VENDOR)
            return 0;
      if ((tabid->coreid != devid->coreid) &&
          tabid->coreid != SSB_ANY_ID)
            return 0;
      if ((tabid->revision != devid->revision) &&
          tabid->revision != SSB_ANY_REV)
            return 0;
      return 1;
}

static int ssb_bus_match(struct device *dev, struct device_driver *drv)
{
      struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
      struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
      const struct ssb_device_id *id;

      for (id = ssb_drv->id_table;
           id->vendor || id->coreid || id->revision;
           id++) {
            if (ssb_match_devid(id, &ssb_dev->id))
                  return 1; /* found */
      }

      return 0;
}

static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
      struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);

      if (!dev)
            return -ENODEV;

      return add_uevent_var(env,
                       "MODALIAS=ssb:v%04Xid%04Xrev%02X",
                       ssb_dev->id.vendor, ssb_dev->id.coreid,
                       ssb_dev->id.revision);
}

static struct bus_type ssb_bustype = {
      .name       = "ssb",
      .match            = ssb_bus_match,
      .probe            = ssb_device_probe,
      .remove           = ssb_device_remove,
      .shutdown   = ssb_device_shutdown,
      .suspend    = ssb_device_suspend,
      .resume           = ssb_device_resume,
      .uevent           = ssb_device_uevent,
};

static void ssb_buses_lock(void)
{
      /* See the comment at the ssb_is_early_boot definition */
      if (!ssb_is_early_boot)
            mutex_lock(&buses_mutex);
}

static void ssb_buses_unlock(void)
{
      /* See the comment at the ssb_is_early_boot definition */
      if (!ssb_is_early_boot)
            mutex_unlock(&buses_mutex);
}

static void ssb_devices_unregister(struct ssb_bus *bus)
{
      struct ssb_device *sdev;
      int i;

      for (i = bus->nr_devices - 1; i >= 0; i--) {
            sdev = &(bus->devices[i]);
            if (sdev->dev)
                  device_unregister(sdev->dev);
      }
}

void ssb_bus_unregister(struct ssb_bus *bus)
{
      ssb_buses_lock();
      ssb_devices_unregister(bus);
      list_del(&bus->list);
      ssb_buses_unlock();

      /* ssb_pcmcia_exit(bus); */
      ssb_pci_exit(bus);
      ssb_iounmap(bus);
}
EXPORT_SYMBOL(ssb_bus_unregister);

static void ssb_release_dev(struct device *dev)
{
      struct __ssb_dev_wrapper *devwrap;

      devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
      kfree(devwrap);
}

static int ssb_devices_register(struct ssb_bus *bus)
{
      struct ssb_device *sdev;
      struct device *dev;
      struct __ssb_dev_wrapper *devwrap;
      int i, err = 0;
      int dev_idx = 0;

      for (i = 0; i < bus->nr_devices; i++) {
            sdev = &(bus->devices[i]);

            /* We don't register SSB-system devices to the kernel,
             * as the drivers for them are built into SSB. */
            switch (sdev->id.coreid) {
            case SSB_DEV_CHIPCOMMON:
            case SSB_DEV_PCI:
            case SSB_DEV_PCIE:
            case SSB_DEV_PCMCIA:
            case SSB_DEV_MIPS:
            case SSB_DEV_MIPS_3302:
            case SSB_DEV_EXTIF:
                  continue;
            }

            devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
            if (!devwrap) {
                  ssb_printk(KERN_ERR PFX
                           "Could not allocate device\n");
                  err = -ENOMEM;
                  goto error;
            }
            dev = &devwrap->dev;
            devwrap->sdev = sdev;

            dev->release = ssb_release_dev;
            dev->bus = &ssb_bustype;
            snprintf(dev->bus_id, sizeof(dev->bus_id),
                   "ssb%u:%d", bus->busnumber, dev_idx);

            switch (bus->bustype) {
            case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
                  sdev->irq = bus->host_pci->irq;
                  dev->parent = &bus->host_pci->dev;
#endif
                  break;
            case SSB_BUSTYPE_PCMCIA:
#ifdef CONFIG_SSB_PCMCIAHOST
                  sdev->irq = bus->host_pcmcia->irq.AssignedIRQ;
                  dev->parent = &bus->host_pcmcia->dev;
#endif
                  break;
            case SSB_BUSTYPE_SSB:
                  break;
            }

            sdev->dev = dev;
            err = device_register(dev);
            if (err) {
                  ssb_printk(KERN_ERR PFX
                           "Could not register %s\n",
                           dev->bus_id);
                  /* Set dev to NULL to not unregister
                   * dev on error unwinding. */
                  sdev->dev = NULL;
                  kfree(devwrap);
                  goto error;
            }
            dev_idx++;
      }

      return 0;
error:
      /* Unwind the already registered devices. */
      ssb_devices_unregister(bus);
      return err;
}

/* Needs ssb_buses_lock() */
static int ssb_attach_queued_buses(void)
{
      struct ssb_bus *bus, *n;
      int err = 0;
      int drop_them_all = 0;

      list_for_each_entry_safe(bus, n, &attach_queue, list) {
            if (drop_them_all) {
                  list_del(&bus->list);
                  continue;
            }
            /* Can't init the PCIcore in ssb_bus_register(), as that
             * is too early in boot for embedded systems
             * (no udelay() available). So do it here in attach stage.
             */
            err = ssb_bus_powerup(bus, 0);
            if (err)
                  goto error;
            ssb_pcicore_init(&bus->pcicore);
            ssb_bus_may_powerdown(bus);

            err = ssb_devices_register(bus);
error:
            if (err) {
                  drop_them_all = 1;
                  list_del(&bus->list);
                  continue;
            }
            list_move_tail(&bus->list, &buses);
      }

      return err;
}

static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
{
      struct ssb_bus *bus = dev->bus;

      offset += dev->core_index * SSB_CORE_SIZE;
      return readw(bus->mmio + offset);
}

static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
{
      struct ssb_bus *bus = dev->bus;

      offset += dev->core_index * SSB_CORE_SIZE;
      return readl(bus->mmio + offset);
}

static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
{
      struct ssb_bus *bus = dev->bus;

      offset += dev->core_index * SSB_CORE_SIZE;
      writew(value, bus->mmio + offset);
}

static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
{
      struct ssb_bus *bus = dev->bus;

      offset += dev->core_index * SSB_CORE_SIZE;
      writel(value, bus->mmio + offset);
}

/* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
static const struct ssb_bus_ops ssb_ssb_ops = {
      .read16           = ssb_ssb_read16,
      .read32           = ssb_ssb_read32,
      .write16    = ssb_ssb_write16,
      .write32    = ssb_ssb_write32,
};

static int ssb_fetch_invariants(struct ssb_bus *bus,
                        ssb_invariants_func_t get_invariants)
{
      struct ssb_init_invariants iv;
      int err;

      memset(&iv, 0, sizeof(iv));
      err = get_invariants(bus, &iv);
      if (err)
            goto out;
      memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
      memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
out:
      return err;
}

static int ssb_bus_register(struct ssb_bus *bus,
                      ssb_invariants_func_t get_invariants,
                      unsigned long baseaddr)
{
      int err;

      spin_lock_init(&bus->bar_lock);
      INIT_LIST_HEAD(&bus->list);

      /* Powerup the bus */
      err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
      if (err)
            goto out;
      ssb_buses_lock();
      bus->busnumber = next_busnumber;
      /* Scan for devices (cores) */
      err = ssb_bus_scan(bus, baseaddr);
      if (err)
            goto err_disable_xtal;

      /* Init PCI-host device (if any) */
      err = ssb_pci_init(bus);
      if (err)
            goto err_unmap;
      /* Init PCMCIA-host device (if any) */
      err = ssb_pcmcia_init(bus);
      if (err)
            goto err_pci_exit;

      /* Initialize basic system devices (if available) */
      err = ssb_bus_powerup(bus, 0);
      if (err)
            goto err_pcmcia_exit;
      ssb_chipcommon_init(&bus->chipco);
      ssb_mipscore_init(&bus->mipscore);
      err = ssb_fetch_invariants(bus, get_invariants);
      if (err) {
            ssb_bus_may_powerdown(bus);
            goto err_pcmcia_exit;
      }
      ssb_bus_may_powerdown(bus);

      /* Queue it for attach.
       * See the comment at the ssb_is_early_boot definition. */
      list_add_tail(&bus->list, &attach_queue);
      if (!ssb_is_early_boot) {
            /* This is not early boot, so we must attach the bus now */
            err = ssb_attach_queued_buses();
            if (err)
                  goto err_dequeue;
      }
      next_busnumber++;
      ssb_buses_unlock();

out:
      return err;

err_dequeue:
      list_del(&bus->list);
err_pcmcia_exit:
/*    ssb_pcmcia_exit(bus); */
err_pci_exit:
      ssb_pci_exit(bus);
err_unmap:
      ssb_iounmap(bus);
err_disable_xtal:
      ssb_buses_unlock();
      ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
      return err;
}

#ifdef CONFIG_SSB_PCIHOST
int ssb_bus_pcibus_register(struct ssb_bus *bus,
                      struct pci_dev *host_pci)
{
      int err;

      bus->bustype = SSB_BUSTYPE_PCI;
      bus->host_pci = host_pci;
      bus->ops = &ssb_pci_ops;

      err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
      if (!err) {
            ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
                     "PCI device %s\n", host_pci->dev.bus_id);
      }

      return err;
}
EXPORT_SYMBOL(ssb_bus_pcibus_register);
#endif /* CONFIG_SSB_PCIHOST */

#ifdef CONFIG_SSB_PCMCIAHOST
int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
                         struct pcmcia_device *pcmcia_dev,
                         unsigned long baseaddr)
{
      int err;

      bus->bustype = SSB_BUSTYPE_PCMCIA;
      bus->host_pcmcia = pcmcia_dev;
      bus->ops = &ssb_pcmcia_ops;

      err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
      if (!err) {
            ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
                     "PCMCIA device %s\n", pcmcia_dev->devname);
      }

      return err;
}
EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
#endif /* CONFIG_SSB_PCMCIAHOST */

int ssb_bus_ssbbus_register(struct ssb_bus *bus,
                      unsigned long baseaddr,
                      ssb_invariants_func_t get_invariants)
{
      int err;

      bus->bustype = SSB_BUSTYPE_SSB;
      bus->ops = &ssb_ssb_ops;

      err = ssb_bus_register(bus, get_invariants, baseaddr);
      if (!err) {
            ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found at "
                     "address 0x%08lX\n", baseaddr);
      }

      return err;
}

int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
{
      drv->drv.name = drv->name;
      drv->drv.bus = &ssb_bustype;
      drv->drv.owner = owner;

      return driver_register(&drv->drv);
}
EXPORT_SYMBOL(__ssb_driver_register);

void ssb_driver_unregister(struct ssb_driver *drv)
{
      driver_unregister(&drv->drv);
}
EXPORT_SYMBOL(ssb_driver_unregister);

void ssb_set_devtypedata(struct ssb_device *dev, void *data)
{
      struct ssb_bus *bus = dev->bus;
      struct ssb_device *ent;
      int i;

      for (i = 0; i < bus->nr_devices; i++) {
            ent = &(bus->devices[i]);
            if (ent->id.vendor != dev->id.vendor)
                  continue;
            if (ent->id.coreid != dev->id.coreid)
                  continue;

            ent->devtypedata = data;
      }
}
EXPORT_SYMBOL(ssb_set_devtypedata);

static u32 clkfactor_f6_resolve(u32 v)
{
      /* map the magic values */
      switch (v) {
      case SSB_CHIPCO_CLK_F6_2:
            return 2;
      case SSB_CHIPCO_CLK_F6_3:
            return 3;
      case SSB_CHIPCO_CLK_F6_4:
            return 4;
      case SSB_CHIPCO_CLK_F6_5:
            return 5;
      case SSB_CHIPCO_CLK_F6_6:
            return 6;
      case SSB_CHIPCO_CLK_F6_7:
            return 7;
      }
      return 0;
}

/* Calculate the speed the backplane would run at a given set of clockcontrol values */
u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
{
      u32 n1, n2, clock, m1, m2, m3, mc;

      n1 = (n & SSB_CHIPCO_CLK_N1);
      n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);

      switch (plltype) {
      case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
            if (m & SSB_CHIPCO_CLK_T6_MMASK)
                  return SSB_CHIPCO_CLK_T6_M0;
            return SSB_CHIPCO_CLK_T6_M1;
      case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
      case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
      case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
      case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
            n1 = clkfactor_f6_resolve(n1);
            n2 += SSB_CHIPCO_CLK_F5_BIAS;
            break;
      case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
            n1 += SSB_CHIPCO_CLK_T2_BIAS;
            n2 += SSB_CHIPCO_CLK_T2_BIAS;
            SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
            SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
            break;
      case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
            return 100000000;
      default:
            SSB_WARN_ON(1);
      }

      switch (plltype) {
      case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
      case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
            clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
            break;
      default:
            clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
      }
      if (!clock)
            return 0;

      m1 = (m & SSB_CHIPCO_CLK_M1);
      m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
      m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
      mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);

      switch (plltype) {
      case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
      case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
      case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
      case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
            m1 = clkfactor_f6_resolve(m1);
            if ((plltype == SSB_PLLTYPE_1) ||
                (plltype == SSB_PLLTYPE_3))
                  m2 += SSB_CHIPCO_CLK_F5_BIAS;
            else
                  m2 = clkfactor_f6_resolve(m2);
            m3 = clkfactor_f6_resolve(m3);

            switch (mc) {
            case SSB_CHIPCO_CLK_MC_BYPASS:
                  return clock;
            case SSB_CHIPCO_CLK_MC_M1:
                  return (clock / m1);
            case SSB_CHIPCO_CLK_MC_M1M2:
                  return (clock / (m1 * m2));
            case SSB_CHIPCO_CLK_MC_M1M2M3:
                  return (clock / (m1 * m2 * m3));
            case SSB_CHIPCO_CLK_MC_M1M3:
                  return (clock / (m1 * m3));
            }
            return 0;
      case SSB_PLLTYPE_2:
            m1 += SSB_CHIPCO_CLK_T2_BIAS;
            m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
            m3 += SSB_CHIPCO_CLK_T2_BIAS;
            SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
            SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
            SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));

            if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
                  clock /= m1;
            if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
                  clock /= m2;
            if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
                  clock /= m3;
            return clock;
      default:
            SSB_WARN_ON(1);
      }
      return 0;
}

/* Get the current speed the backplane is running at */
u32 ssb_clockspeed(struct ssb_bus *bus)
{
      u32 rate;
      u32 plltype;
      u32 clkctl_n, clkctl_m;

      if (ssb_extif_available(&bus->extif))
            ssb_extif_get_clockcontrol(&bus->extif, &plltype,
                                 &clkctl_n, &clkctl_m);
      else if (bus->chipco.dev)
            ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
                                  &clkctl_n, &clkctl_m);
      else
            return 0;

      if (bus->chip_id == 0x5365) {
            rate = 100000000;
      } else {
            rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
            if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
                  rate /= 2;
      }

      return rate;
}
EXPORT_SYMBOL(ssb_clockspeed);

static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
{
      /* The REJECT bit changed position in TMSLOW between
       * Backplane revisions. */
      switch (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV) {
      case SSB_IDLOW_SSBREV_22:
            return SSB_TMSLOW_REJECT_22;
      case SSB_IDLOW_SSBREV_23:
            return SSB_TMSLOW_REJECT_23;
      default:
            WARN_ON(1);
      }
      return (SSB_TMSLOW_REJECT_22 | SSB_TMSLOW_REJECT_23);
}

int ssb_device_is_enabled(struct ssb_device *dev)
{
      u32 val;
      u32 reject;

      reject = ssb_tmslow_reject_bitmask(dev);
      val = ssb_read32(dev, SSB_TMSLOW);
      val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;

      return (val == SSB_TMSLOW_CLOCK);
}
EXPORT_SYMBOL(ssb_device_is_enabled);

static void ssb_flush_tmslow(struct ssb_device *dev)
{
      /* Make _really_ sure the device has finished the TMSLOW
       * register write transaction, as we risk running into
       * a machine check exception otherwise.
       * Do this by reading the register back to commit the
       * PCI write and delay an additional usec for the device
       * to react to the change. */
      ssb_read32(dev, SSB_TMSLOW);
      udelay(1);
}

void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
{
      u32 val;

      ssb_device_disable(dev, core_specific_flags);
      ssb_write32(dev, SSB_TMSLOW,
                SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
                SSB_TMSLOW_FGC | core_specific_flags);
      ssb_flush_tmslow(dev);

      /* Clear SERR if set. This is a hw bug workaround. */
      if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
            ssb_write32(dev, SSB_TMSHIGH, 0);

      val = ssb_read32(dev, SSB_IMSTATE);
      if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
            val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
            ssb_write32(dev, SSB_IMSTATE, val);
      }

      ssb_write32(dev, SSB_TMSLOW,
                SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
                core_specific_flags);
      ssb_flush_tmslow(dev);

      ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
                core_specific_flags);
      ssb_flush_tmslow(dev);
}
EXPORT_SYMBOL(ssb_device_enable);

/* Wait for a bit in a register to get set or unset.
 * timeout is in units of ten-microseconds */
static int ssb_wait_bit(struct ssb_device *dev, u16 reg, u32 bitmask,
                  int timeout, int set)
{
      int i;
      u32 val;

      for (i = 0; i < timeout; i++) {
            val = ssb_read32(dev, reg);
            if (set) {
                  if (val & bitmask)
                        return 0;
            } else {
                  if (!(val & bitmask))
                        return 0;
            }
            udelay(10);
      }
      printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
                      "register %04X to %s.\n",
             bitmask, reg, (set ? "set" : "clear"));

      return -ETIMEDOUT;
}

void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
{
      u32 reject;

      if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
            return;

      reject = ssb_tmslow_reject_bitmask(dev);
      ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
      ssb_wait_bit(dev, SSB_TMSLOW, reject, 1000, 1);
      ssb_wait_bit(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
      ssb_write32(dev, SSB_TMSLOW,
                SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
                reject | SSB_TMSLOW_RESET |
                core_specific_flags);
      ssb_flush_tmslow(dev);

      ssb_write32(dev, SSB_TMSLOW,
                reject | SSB_TMSLOW_RESET |
                core_specific_flags);
      ssb_flush_tmslow(dev);
}
EXPORT_SYMBOL(ssb_device_disable);

u32 ssb_dma_translation(struct ssb_device *dev)
{
      switch (dev->bus->bustype) {
      case SSB_BUSTYPE_SSB:
            return 0;
      case SSB_BUSTYPE_PCI:
      case SSB_BUSTYPE_PCMCIA:
            return SSB_PCI_DMA;
      }
      return 0;
}
EXPORT_SYMBOL(ssb_dma_translation);

int ssb_dma_set_mask(struct ssb_device *ssb_dev, u64 mask)
{
      struct device *dev = ssb_dev->dev;

#ifdef CONFIG_SSB_PCIHOST
      if (ssb_dev->bus->bustype == SSB_BUSTYPE_PCI &&
          !dma_supported(dev, mask))
            return -EIO;
#endif
      dev->coherent_dma_mask = mask;
      dev->dma_mask = &dev->coherent_dma_mask;

      return 0;
}
EXPORT_SYMBOL(ssb_dma_set_mask);

int ssb_bus_may_powerdown(struct ssb_bus *bus)
{
      struct ssb_chipcommon *cc;
      int err = 0;

      /* On buses where more than one core may be working
       * at a time, we must not powerdown stuff if there are
       * still cores that may want to run. */
      if (bus->bustype == SSB_BUSTYPE_SSB)
            goto out;

      cc = &bus->chipco;
      ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
      err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
      if (err)
            goto error;
out:
#ifdef CONFIG_SSB_DEBUG
      bus->powered_up = 0;
#endif
      return err;
error:
      ssb_printk(KERN_ERR PFX "Bus powerdown failed\n");
      goto out;
}
EXPORT_SYMBOL(ssb_bus_may_powerdown);

int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
{
      struct ssb_chipcommon *cc;
      int err;
      enum ssb_clkmode mode;

      err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
      if (err)
            goto error;
      cc = &bus->chipco;
      mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
      ssb_chipco_set_clockmode(cc, mode);

#ifdef CONFIG_SSB_DEBUG
      bus->powered_up = 1;
#endif
      return 0;
error:
      ssb_printk(KERN_ERR PFX "Bus powerup failed\n");
      return err;
}
EXPORT_SYMBOL(ssb_bus_powerup);

u32 ssb_admatch_base(u32 adm)
{
      u32 base = 0;

      switch (adm & SSB_ADM_TYPE) {
      case SSB_ADM_TYPE0:
            base = (adm & SSB_ADM_BASE0);
            break;
      case SSB_ADM_TYPE1:
            SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
            base = (adm & SSB_ADM_BASE1);
            break;
      case SSB_ADM_TYPE2:
            SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
            base = (adm & SSB_ADM_BASE2);
            break;
      default:
            SSB_WARN_ON(1);
      }

      return base;
}
EXPORT_SYMBOL(ssb_admatch_base);

u32 ssb_admatch_size(u32 adm)
{
      u32 size = 0;

      switch (adm & SSB_ADM_TYPE) {
      case SSB_ADM_TYPE0:
            size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
            break;
      case SSB_ADM_TYPE1:
            SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
            size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
            break;
      case SSB_ADM_TYPE2:
            SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
            size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
            break;
      default:
            SSB_WARN_ON(1);
      }
      size = (1 << (size + 1));

      return size;
}
EXPORT_SYMBOL(ssb_admatch_size);

static int __init ssb_modinit(void)
{
      int err;

      /* See the comment at the ssb_is_early_boot definition */
      ssb_is_early_boot = 0;
      err = bus_register(&ssb_bustype);
      if (err)
            return err;

      /* Maybe we already registered some buses at early boot.
       * Check for this and attach them
       */
      ssb_buses_lock();
      err = ssb_attach_queued_buses();
      ssb_buses_unlock();
      if (err)
            bus_unregister(&ssb_bustype);

      err = b43_pci_ssb_bridge_init();
      if (err) {
            ssb_printk(KERN_ERR "Broadcom 43xx PCI-SSB-bridge "
                     "initialization failed");
            /* don't fail SSB init because of this */
            err = 0;
      }

      return err;
}
/* ssb must be initialized after PCI but before the ssb drivers.
 * That means we must use some initcall between subsys_initcall
 * and device_initcall. */
fs_initcall(ssb_modinit);

static void __exit ssb_modexit(void)
{
      b43_pci_ssb_bridge_exit();
      bus_unregister(&ssb_bustype);
}
module_exit(ssb_modexit)

Generated by  Doxygen 1.6.0   Back to index