Logo Search packages:      
Sourcecode: linux version File versions  Download package

usb.c

/*
 * drivers/usb/core/usb.c
 *
 * (C) Copyright Linus Torvalds 1999
 * (C) Copyright Johannes Erdfelt 1999-2001
 * (C) Copyright Andreas Gal 1999
 * (C) Copyright Gregory P. Smith 1999
 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
 * (C) Copyright Randy Dunlap 2000
 * (C) Copyright David Brownell 2000-2004
 * (C) Copyright Yggdrasil Computing, Inc. 2000
 *     (usb_device_id matching changes by Adam J. Richter)
 * (C) Copyright Greg Kroah-Hartman 2002-2003
 *
 * NOTE! This is not actually a driver at all, rather this is
 * just a collection of helper routines that implement the
 * generic USB things that the real drivers can use..
 *
 * Think of this as a "USB library" rather than anything else.
 * It should be considered a slave, with no callbacks. Callbacks
 * are evil.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/interrupt.h>  /* for in_interrupt() */
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/usb.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>

#include <asm/io.h>
#include <linux/scatterlist.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>

#include "hcd.h"
#include "usb.h"


const char *usbcore_name = "usbcore";

static int nousb; /* Disable USB when built into kernel image */

/* Workqueue for autosuspend and for remote wakeup of root hubs */
struct workqueue_struct *ksuspend_usb_wq;

#ifdef      CONFIG_USB_SUSPEND
static int usb_autosuspend_delay = 2;           /* Default delay value,
                                     * in seconds */
module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
MODULE_PARM_DESC(autosuspend, "default autosuspend delay");

#else
#define usb_autosuspend_delay       0
#endif


/**
 * usb_ifnum_to_if - get the interface object with a given interface number
 * @dev: the device whose current configuration is considered
 * @ifnum: the desired interface
 *
 * This walks the device descriptor for the currently active configuration
 * and returns a pointer to the interface with that particular interface
 * number, or null.
 *
 * Note that configuration descriptors are not required to assign interface
 * numbers sequentially, so that it would be incorrect to assume that
 * the first interface in that descriptor corresponds to interface zero.
 * This routine helps device drivers avoid such mistakes.
 * However, you should make sure that you do the right thing with any
 * alternate settings available for this interfaces.
 *
 * Don't call this function unless you are bound to one of the interfaces
 * on this device or you have locked the device!
 */
struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
                              unsigned ifnum)
{
      struct usb_host_config *config = dev->actconfig;
      int i;

      if (!config)
            return NULL;
      for (i = 0; i < config->desc.bNumInterfaces; i++)
            if (config->interface[i]->altsetting[0]
                        .desc.bInterfaceNumber == ifnum)
                  return config->interface[i];

      return NULL;
}

/**
 * usb_altnum_to_altsetting - get the altsetting structure with a given
 *    alternate setting number.
 * @intf: the interface containing the altsetting in question
 * @altnum: the desired alternate setting number
 *
 * This searches the altsetting array of the specified interface for
 * an entry with the correct bAlternateSetting value and returns a pointer
 * to that entry, or null.
 *
 * Note that altsettings need not be stored sequentially by number, so
 * it would be incorrect to assume that the first altsetting entry in
 * the array corresponds to altsetting zero.  This routine helps device
 * drivers avoid such mistakes.
 *
 * Don't call this function unless you are bound to the intf interface
 * or you have locked the device!
 */
struct usb_host_interface *usb_altnum_to_altsetting(const struct usb_interface *intf,
                                        unsigned int altnum)
{
      int i;

      for (i = 0; i < intf->num_altsetting; i++) {
            if (intf->altsetting[i].desc.bAlternateSetting == altnum)
                  return &intf->altsetting[i];
      }
      return NULL;
}

struct find_interface_arg {
      int minor;
      struct usb_interface *interface;
};

static int __find_interface(struct device * dev, void * data)
{
      struct find_interface_arg *arg = data;
      struct usb_interface *intf;

      /* can't look at usb devices, only interfaces */
      if (is_usb_device(dev))
            return 0;

      intf = to_usb_interface(dev);
      if (intf->minor != -1 && intf->minor == arg->minor) {
            arg->interface = intf;
            return 1;
      }
      return 0;
}

/**
 * usb_find_interface - find usb_interface pointer for driver and device
 * @drv: the driver whose current configuration is considered
 * @minor: the minor number of the desired device
 *
 * This walks the driver device list and returns a pointer to the interface 
 * with the matching minor.  Note, this only works for devices that share the
 * USB major number.
 */
struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
{
      struct find_interface_arg argb;
      int retval;

      argb.minor = minor;
      argb.interface = NULL;
      /* eat the error, it will be in argb.interface */
      retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
                              __find_interface);
      return argb.interface;
}

/**
 * usb_release_dev - free a usb device structure when all users of it are finished.
 * @dev: device that's been disconnected
 *
 * Will be called only by the device core when all users of this usb device are
 * done.
 */
static void usb_release_dev(struct device *dev)
{
      struct usb_device *udev;

      udev = to_usb_device(dev);

      usb_destroy_configuration(udev);
      usb_put_hcd(bus_to_hcd(udev->bus));
      kfree(udev->product);
      kfree(udev->manufacturer);
      kfree(udev->serial);
      kfree(udev);
}

#ifdef      CONFIG_HOTPLUG
static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
{
      struct usb_device *usb_dev;

      usb_dev = to_usb_device(dev);

      if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
            return -ENOMEM;

      if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
            return -ENOMEM;

      return 0;
}

#else

static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
{
      return -ENODEV;
}
#endif      /* CONFIG_HOTPLUG */

struct device_type usb_device_type = {
      .name =           "usb_device",
      .release =  usb_release_dev,
      .uevent =   usb_dev_uevent,
};

#ifdef      CONFIG_PM

static int ksuspend_usb_init(void)
{
      /* This workqueue is supposed to be both freezable and
       * singlethreaded.  Its job doesn't justify running on more
       * than one CPU.
       */
      ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd");
      if (!ksuspend_usb_wq)
            return -ENOMEM;
      return 0;
}

static void ksuspend_usb_cleanup(void)
{
      destroy_workqueue(ksuspend_usb_wq);
}

#else

#define ksuspend_usb_init()   0
#define ksuspend_usb_cleanup()      do {} while (0)

#endif      /* CONFIG_PM */


/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
static unsigned usb_bus_is_wusb(struct usb_bus *bus)
{
      struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
      return hcd->wireless;
}


/**
 * usb_alloc_dev - usb device constructor (usbcore-internal)
 * @parent: hub to which device is connected; null to allocate a root hub
 * @bus: bus used to access the device
 * @port1: one-based index of port; ignored for root hubs
 * Context: !in_interrupt()
 *
 * Only hub drivers (including virtual root hub drivers for host
 * controllers) should ever call this.
 *
 * This call may not be used in a non-sleeping context.
 */
struct usb_device *
usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
{
      struct usb_device *dev;
      struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
      unsigned root_hub = 0;

      dev = kzalloc(sizeof(*dev), GFP_KERNEL);
      if (!dev)
            return NULL;

      if (!usb_get_hcd(bus_to_hcd(bus))) {
            kfree(dev);
            return NULL;
      }

      device_initialize(&dev->dev);
      dev->dev.bus = &usb_bus_type;
      dev->dev.type = &usb_device_type;
      dev->dev.dma_mask = bus->controller->dma_mask;
      set_dev_node(&dev->dev, dev_to_node(bus->controller));
      dev->state = USB_STATE_ATTACHED;
      atomic_set(&dev->urbnum, 0);

      INIT_LIST_HEAD(&dev->ep0.urb_list);
      dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
      dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
      /* ep0 maxpacket comes later, from device descriptor */
      usb_enable_endpoint(dev, &dev->ep0);
      dev->can_submit = 1;

      /* Save readable and stable topology id, distinguishing devices
       * by location for diagnostics, tools, driver model, etc.  The
       * string is a path along hub ports, from the root.  Each device's
       * dev->devpath will be stable until USB is re-cabled, and hubs
       * are often labeled with these port numbers.  The bus_id isn't
       * as stable:  bus->busnum changes easily from modprobe order,
       * cardbus or pci hotplugging, and so on.
       */
      if (unlikely(!parent)) {
            dev->devpath[0] = '0';

            dev->dev.parent = bus->controller;
            sprintf(&dev->dev.bus_id[0], "usb%d", bus->busnum);
            root_hub = 1;
      } else {
            /* match any labeling on the hubs; it's one-based */
            if (parent->devpath[0] == '0')
                  snprintf(dev->devpath, sizeof dev->devpath,
                        "%d", port1);
            else
                  snprintf(dev->devpath, sizeof dev->devpath,
                        "%s.%d", parent->devpath, port1);

            dev->dev.parent = &parent->dev;
            sprintf(&dev->dev.bus_id[0], "%d-%s",
                  bus->busnum, dev->devpath);

            /* hub driver sets up TT records */
      }

      dev->portnum = port1;
      dev->bus = bus;
      dev->parent = parent;
      INIT_LIST_HEAD(&dev->filelist);

#ifdef      CONFIG_PM
      mutex_init(&dev->pm_mutex);
      INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
      dev->autosuspend_delay = usb_autosuspend_delay * HZ;
#endif
      if (root_hub)     /* Root hub always ok [and always wired] */
            dev->authorized = 1;
      else {
            dev->authorized = usb_hcd->authorized_default;
            dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
      }
      return dev;
}

/**
 * usb_get_dev - increments the reference count of the usb device structure
 * @dev: the device being referenced
 *
 * Each live reference to a device should be refcounted.
 *
 * Drivers for USB interfaces should normally record such references in
 * their probe() methods, when they bind to an interface, and release
 * them by calling usb_put_dev(), in their disconnect() methods.
 *
 * A pointer to the device with the incremented reference counter is returned.
 */
struct usb_device *usb_get_dev(struct usb_device *dev)
{
      if (dev)
            get_device(&dev->dev);
      return dev;
}

/**
 * usb_put_dev - release a use of the usb device structure
 * @dev: device that's been disconnected
 *
 * Must be called when a user of a device is finished with it.  When the last
 * user of the device calls this function, the memory of the device is freed.
 */
void usb_put_dev(struct usb_device *dev)
{
      if (dev)
            put_device(&dev->dev);
}

/**
 * usb_get_intf - increments the reference count of the usb interface structure
 * @intf: the interface being referenced
 *
 * Each live reference to a interface must be refcounted.
 *
 * Drivers for USB interfaces should normally record such references in
 * their probe() methods, when they bind to an interface, and release
 * them by calling usb_put_intf(), in their disconnect() methods.
 *
 * A pointer to the interface with the incremented reference counter is
 * returned.
 */
struct usb_interface *usb_get_intf(struct usb_interface *intf)
{
      if (intf)
            get_device(&intf->dev);
      return intf;
}

/**
 * usb_put_intf - release a use of the usb interface structure
 * @intf: interface that's been decremented
 *
 * Must be called when a user of an interface is finished with it.  When the
 * last user of the interface calls this function, the memory of the interface
 * is freed.
 */
void usb_put_intf(struct usb_interface *intf)
{
      if (intf)
            put_device(&intf->dev);
}


/*                USB device locking
 *
 * USB devices and interfaces are locked using the semaphore in their
 * embedded struct device.  The hub driver guarantees that whenever a
 * device is connected or disconnected, drivers are called with the
 * USB device locked as well as their particular interface.
 *
 * Complications arise when several devices are to be locked at the same
 * time.  Only hub-aware drivers that are part of usbcore ever have to
 * do this; nobody else needs to worry about it.  The rule for locking
 * is simple:
 *
 *    When locking both a device and its parent, always lock the
 *    the parent first.
 */

/**
 * usb_lock_device_for_reset - cautiously acquire the lock for a
 *    usb device structure
 * @udev: device that's being locked
 * @iface: interface bound to the driver making the request (optional)
 *
 * Attempts to acquire the device lock, but fails if the device is
 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 * disconnect; in some drivers (such as usb-storage) the disconnect()
 * or suspend() method will block waiting for a device reset to complete.
 *
 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
 * that the device will or will not have to be unlocked.  (0 can be
 * returned when an interface is given and is BINDING, because in that
 * case the driver already owns the device lock.)
 */
int usb_lock_device_for_reset(struct usb_device *udev,
                        const struct usb_interface *iface)
{
      unsigned long jiffies_expire = jiffies + HZ;

      if (udev->state == USB_STATE_NOTATTACHED)
            return -ENODEV;
      if (udev->state == USB_STATE_SUSPENDED)
            return -EHOSTUNREACH;
      if (iface) {
            switch (iface->condition) {
              case USB_INTERFACE_BINDING:
                  return 0;
              case USB_INTERFACE_BOUND:
                  break;
              default:
                  return -EINTR;
            }
      }

      while (usb_trylock_device(udev) != 0) {

            /* If we can't acquire the lock after waiting one second,
             * we're probably deadlocked */
            if (time_after(jiffies, jiffies_expire))
                  return -EBUSY;

            msleep(15);
            if (udev->state == USB_STATE_NOTATTACHED)
                  return -ENODEV;
            if (udev->state == USB_STATE_SUSPENDED)
                  return -EHOSTUNREACH;
            if (iface && iface->condition != USB_INTERFACE_BOUND)
                  return -EINTR;
      }
      return 1;
}


static struct usb_device *match_device(struct usb_device *dev,
                               u16 vendor_id, u16 product_id)
{
      struct usb_device *ret_dev = NULL;
      int child;

      dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
          le16_to_cpu(dev->descriptor.idVendor),
          le16_to_cpu(dev->descriptor.idProduct));

      /* see if this device matches */
      if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
          (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
            dev_dbg(&dev->dev, "matched this device!\n");
            ret_dev = usb_get_dev(dev);
            goto exit;
      }

      /* look through all of the children of this device */
      for (child = 0; child < dev->maxchild; ++child) {
            if (dev->children[child]) {
                  usb_lock_device(dev->children[child]);
                  ret_dev = match_device(dev->children[child],
                                     vendor_id, product_id);
                  usb_unlock_device(dev->children[child]);
                  if (ret_dev)
                        goto exit;
            }
      }
exit:
      return ret_dev;
}

/**
 * usb_find_device - find a specific usb device in the system
 * @vendor_id: the vendor id of the device to find
 * @product_id: the product id of the device to find
 *
 * Returns a pointer to a struct usb_device if such a specified usb
 * device is present in the system currently.  The usage count of the
 * device will be incremented if a device is found.  Make sure to call
 * usb_put_dev() when the caller is finished with the device.
 *
 * If a device with the specified vendor and product id is not found,
 * NULL is returned.
 */
struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
{
      struct list_head *buslist;
      struct usb_bus *bus;
      struct usb_device *dev = NULL;
      
      mutex_lock(&usb_bus_list_lock);
      for (buslist = usb_bus_list.next;
           buslist != &usb_bus_list; 
           buslist = buslist->next) {
            bus = container_of(buslist, struct usb_bus, bus_list);
            if (!bus->root_hub)
                  continue;
            usb_lock_device(bus->root_hub);
            dev = match_device(bus->root_hub, vendor_id, product_id);
            usb_unlock_device(bus->root_hub);
            if (dev)
                  goto exit;
      }
exit:
      mutex_unlock(&usb_bus_list_lock);
      return dev;
}

/**
 * usb_get_current_frame_number - return current bus frame number
 * @dev: the device whose bus is being queried
 *
 * Returns the current frame number for the USB host controller
 * used with the given USB device.  This can be used when scheduling
 * isochronous requests.
 *
 * Note that different kinds of host controller have different
 * "scheduling horizons".  While one type might support scheduling only
 * 32 frames into the future, others could support scheduling up to
 * 1024 frames into the future.
 */
int usb_get_current_frame_number(struct usb_device *dev)
{
      return usb_hcd_get_frame_number(dev);
}

/*-------------------------------------------------------------------*/
/*
 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 * extra field of the interface and endpoint descriptor structs.
 */

int __usb_get_extra_descriptor(char *buffer, unsigned size,
      unsigned char type, void **ptr)
{
      struct usb_descriptor_header *header;

      while (size >= sizeof(struct usb_descriptor_header)) {
            header = (struct usb_descriptor_header *)buffer;

            if (header->bLength < 2) {
                  printk(KERN_ERR
                        "%s: bogus descriptor, type %d length %d\n",
                        usbcore_name,
                        header->bDescriptorType, 
                        header->bLength);
                  return -1;
            }

            if (header->bDescriptorType == type) {
                  *ptr = header;
                  return 0;
            }

            buffer += header->bLength;
            size -= header->bLength;
      }
      return -1;
}

/**
 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 * @dev: device the buffer will be used with
 * @size: requested buffer size
 * @mem_flags: affect whether allocation may block
 * @dma: used to return DMA address of buffer
 *
 * Return value is either null (indicating no buffer could be allocated), or
 * the cpu-space pointer to a buffer that may be used to perform DMA to the
 * specified device.  Such cpu-space buffers are returned along with the DMA
 * address (through the pointer provided).
 *
 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 * hardware during URB completion/resubmit.  The implementation varies between
 * platforms, depending on details of how DMA will work to this device.
 * Using these buffers also eliminates cacheline sharing problems on
 * architectures where CPU caches are not DMA-coherent.  On systems without
 * bus-snooping caches, these buffers are uncached.
 *
 * When the buffer is no longer used, free it with usb_buffer_free().
 */
void *usb_buffer_alloc(
      struct usb_device *dev,
      size_t size,
      gfp_t mem_flags,
      dma_addr_t *dma
)
{
      if (!dev || !dev->bus)
            return NULL;
      return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
}

/**
 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
 * @dev: device the buffer was used with
 * @size: requested buffer size
 * @addr: CPU address of buffer
 * @dma: DMA address of buffer
 *
 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 * been allocated using usb_buffer_alloc(), and the parameters must match
 * those provided in that allocation request.
 */
void usb_buffer_free(
      struct usb_device *dev,
      size_t size,
      void *addr,
      dma_addr_t dma
)
{
      if (!dev || !dev->bus)
            return;
      if (!addr)
            return;
      hcd_buffer_free(dev->bus, size, addr, dma);
}

/**
 * usb_buffer_map - create DMA mapping(s) for an urb
 * @urb: urb whose transfer_buffer/setup_packet will be mapped
 *
 * Return value is either null (indicating no buffer could be mapped), or
 * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
 * added to urb->transfer_flags if the operation succeeds.  If the device
 * is connected to this system through a non-DMA controller, this operation
 * always succeeds.
 *
 * This call would normally be used for an urb which is reused, perhaps
 * as the target of a large periodic transfer, with usb_buffer_dmasync()
 * calls to synchronize memory and dma state.
 *
 * Reverse the effect of this call with usb_buffer_unmap().
 */
#if 0
struct urb *usb_buffer_map(struct urb *urb)
{
      struct usb_bus          *bus;
      struct device           *controller;

      if (!urb
                  || !urb->dev
                  || !(bus = urb->dev->bus)
                  || !(controller = bus->controller))
            return NULL;

      if (controller->dma_mask) {
            urb->transfer_dma = dma_map_single(controller,
                  urb->transfer_buffer, urb->transfer_buffer_length,
                  usb_pipein(urb->pipe)
                        ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
            if (usb_pipecontrol(urb->pipe))
                  urb->setup_dma = dma_map_single(controller,
                              urb->setup_packet,
                              sizeof(struct usb_ctrlrequest),
                              DMA_TO_DEVICE);
      // FIXME generic api broken like pci, can't report errors
      // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
      } else
            urb->transfer_dma = ~0;
      urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
                        | URB_NO_SETUP_DMA_MAP);
      return urb;
}
#endif  /*  0  */

/* XXX DISABLED, no users currently.  If you wish to re-enable this
 * XXX please determine whether the sync is to transfer ownership of
 * XXX the buffer from device to cpu or vice verse, and thusly use the
 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 */
#if 0

/**
 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
 */
void usb_buffer_dmasync(struct urb *urb)
{
      struct usb_bus          *bus;
      struct device           *controller;

      if (!urb
                  || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
                  || !urb->dev
                  || !(bus = urb->dev->bus)
                  || !(controller = bus->controller))
            return;

      if (controller->dma_mask) {
            dma_sync_single(controller,
                  urb->transfer_dma, urb->transfer_buffer_length,
                  usb_pipein(urb->pipe)
                        ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
            if (usb_pipecontrol(urb->pipe))
                  dma_sync_single(controller,
                              urb->setup_dma,
                              sizeof(struct usb_ctrlrequest),
                              DMA_TO_DEVICE);
      }
}
#endif

/**
 * usb_buffer_unmap - free DMA mapping(s) for an urb
 * @urb: urb whose transfer_buffer will be unmapped
 *
 * Reverses the effect of usb_buffer_map().
 */
#if 0
void usb_buffer_unmap(struct urb *urb)
{
      struct usb_bus          *bus;
      struct device           *controller;

      if (!urb
                  || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
                  || !urb->dev
                  || !(bus = urb->dev->bus)
                  || !(controller = bus->controller))
            return;

      if (controller->dma_mask) {
            dma_unmap_single(controller,
                  urb->transfer_dma, urb->transfer_buffer_length,
                  usb_pipein(urb->pipe)
                        ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
            if (usb_pipecontrol(urb->pipe))
                  dma_unmap_single(controller,
                              urb->setup_dma,
                              sizeof(struct usb_ctrlrequest),
                              DMA_TO_DEVICE);
      }
      urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
                        | URB_NO_SETUP_DMA_MAP);
}
#endif  /*  0  */

/**
 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
 * @dev: device to which the scatterlist will be mapped
 * @is_in: mapping transfer direction
 * @sg: the scatterlist to map
 * @nents: the number of entries in the scatterlist
 *
 * Return value is either < 0 (indicating no buffers could be mapped), or
 * the number of DMA mapping array entries in the scatterlist.
 *
 * The caller is responsible for placing the resulting DMA addresses from
 * the scatterlist into URB transfer buffer pointers, and for setting the
 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
 *
 * Top I/O rates come from queuing URBs, instead of waiting for each one
 * to complete before starting the next I/O.   This is particularly easy
 * to do with scatterlists.  Just allocate and submit one URB for each DMA
 * mapping entry returned, stopping on the first error or when all succeed.
 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
 *
 * This call would normally be used when translating scatterlist requests,
 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
 * may be able to coalesce mappings for improved I/O efficiency.
 *
 * Reverse the effect of this call with usb_buffer_unmap_sg().
 */
int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
                  struct scatterlist *sg, int nents)
{
      struct usb_bus          *bus;
      struct device           *controller;

      if (!dev
                  || !(bus = dev->bus)
                  || !(controller = bus->controller)
                  || !controller->dma_mask)
            return -1;

      // FIXME generic api broken like pci, can't report errors
      return dma_map_sg(controller, sg, nents,
                  is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}

/* XXX DISABLED, no users currently.  If you wish to re-enable this
 * XXX please determine whether the sync is to transfer ownership of
 * XXX the buffer from device to cpu or vice verse, and thusly use the
 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 */
#if 0

/**
 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
 * @dev: device to which the scatterlist will be mapped
 * @is_in: mapping transfer direction
 * @sg: the scatterlist to synchronize
 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 *
 * Use this when you are re-using a scatterlist's data buffers for
 * another USB request.
 */
void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
                     struct scatterlist *sg, int n_hw_ents)
{
      struct usb_bus          *bus;
      struct device           *controller;

      if (!dev
                  || !(bus = dev->bus)
                  || !(controller = bus->controller)
                  || !controller->dma_mask)
            return;

      dma_sync_sg(controller, sg, n_hw_ents,
                  is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
#endif

/**
 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
 * @dev: device to which the scatterlist will be mapped
 * @is_in: mapping transfer direction
 * @sg: the scatterlist to unmap
 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 *
 * Reverses the effect of usb_buffer_map_sg().
 */
void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
                   struct scatterlist *sg, int n_hw_ents)
{
      struct usb_bus          *bus;
      struct device           *controller;

      if (!dev
                  || !(bus = dev->bus)
                  || !(controller = bus->controller)
                  || !controller->dma_mask)
            return;

      dma_unmap_sg(controller, sg, n_hw_ents,
                  is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}

/* format to disable USB on kernel command line is: nousb */
__module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444);

/*
 * for external read access to <nousb>
 */
int usb_disabled(void)
{
      return nousb;
}

/*
 * Init
 */
static int __init usb_init(void)
{
      int retval;
      if (nousb) {
            pr_info("%s: USB support disabled\n", usbcore_name);
            return 0;
      }

      retval = ksuspend_usb_init();
      if (retval)
            goto out;
      retval = bus_register(&usb_bus_type);
      if (retval) 
            goto bus_register_failed;
      retval = usb_host_init();
      if (retval)
            goto host_init_failed;
      retval = usb_major_init();
      if (retval)
            goto major_init_failed;
      retval = usb_register(&usbfs_driver);
      if (retval)
            goto driver_register_failed;
      retval = usb_devio_init();
      if (retval)
            goto usb_devio_init_failed;
      retval = usbfs_init();
      if (retval)
            goto fs_init_failed;
      retval = usb_hub_init();
      if (retval)
            goto hub_init_failed;
      retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
      if (!retval)
            goto out;

      usb_hub_cleanup();
hub_init_failed:
      usbfs_cleanup();
fs_init_failed:
      usb_devio_cleanup();
usb_devio_init_failed:
      usb_deregister(&usbfs_driver);
driver_register_failed:
      usb_major_cleanup();
major_init_failed:
      usb_host_cleanup();
host_init_failed:
      bus_unregister(&usb_bus_type);
bus_register_failed:
      ksuspend_usb_cleanup();
out:
      return retval;
}

/*
 * Cleanup
 */
static void __exit usb_exit(void)
{
      /* This will matter if shutdown/reboot does exitcalls. */
      if (nousb)
            return;

      usb_deregister_device_driver(&usb_generic_driver);
      usb_major_cleanup();
      usbfs_cleanup();
      usb_deregister(&usbfs_driver);
      usb_devio_cleanup();
      usb_hub_cleanup();
      usb_host_cleanup();
      bus_unregister(&usb_bus_type);
      ksuspend_usb_cleanup();
}

subsys_initcall(usb_init);
module_exit(usb_exit);

/*
 * USB may be built into the kernel or be built as modules.
 * These symbols are exported for device (or host controller)
 * driver modules to use.
 */

EXPORT_SYMBOL(usb_disabled);

EXPORT_SYMBOL_GPL(usb_get_intf);
EXPORT_SYMBOL_GPL(usb_put_intf);

EXPORT_SYMBOL(usb_put_dev);
EXPORT_SYMBOL(usb_get_dev);
EXPORT_SYMBOL(usb_hub_tt_clear_buffer);

EXPORT_SYMBOL(usb_lock_device_for_reset);

EXPORT_SYMBOL(usb_find_interface);
EXPORT_SYMBOL(usb_ifnum_to_if);
EXPORT_SYMBOL(usb_altnum_to_altsetting);

EXPORT_SYMBOL(__usb_get_extra_descriptor);

EXPORT_SYMBOL(usb_get_current_frame_number);

EXPORT_SYMBOL(usb_buffer_alloc);
EXPORT_SYMBOL(usb_buffer_free);

#if 0
EXPORT_SYMBOL(usb_buffer_map);
EXPORT_SYMBOL(usb_buffer_dmasync);
EXPORT_SYMBOL(usb_buffer_unmap);
#endif

EXPORT_SYMBOL(usb_buffer_map_sg);
#if 0
EXPORT_SYMBOL(usb_buffer_dmasync_sg);
#endif
EXPORT_SYMBOL(usb_buffer_unmap_sg);

MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index