Logo Search packages:      
Sourcecode: linux version File versions  Download package

edac_core.h

/*
 * Defines, structures, APIs for edac_core module
 *
 * (C) 2007 Linux Networx (http://lnxi.com)
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 * Written by Thayne Harbaugh
 * Based on work by Dan Hollis <goemon at anime dot net> and others.
 *    http://www.anime.net/~goemon/linux-ecc/
 *
 * NMI handling support added by
 *     Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
 *
 * Refactored for multi-source files:
 *    Doug Thompson <norsk5@xmission.com>
 *
 */

#ifndef _EDAC_CORE_H_
#define _EDAC_CORE_H_

#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/pci.h>
#include <linux/time.h>
#include <linux/nmi.h>
#include <linux/rcupdate.h>
#include <linux/completion.h>
#include <linux/kobject.h>
#include <linux/platform_device.h>
#include <linux/sysdev.h>
#include <linux/workqueue.h>
#include <linux/version.h>

#define EDAC_MC_LABEL_LEN     31
#define EDAC_DEVICE_NAME_LEN  31
#define EDAC_ATTRIB_VALUE_LEN 15
#define MC_PROC_NAME_MAX_LEN  7

#if PAGE_SHIFT < 20
#define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) )
#else                   /* PAGE_SHIFT > 20 */
#define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) )
#endif

#define edac_printk(level, prefix, fmt, arg...) \
      printk(level "EDAC " prefix ": " fmt, ##arg)

#define edac_mc_printk(mci, level, fmt, arg...) \
      printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)

#define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
      printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)

/* edac_device printk */
#define edac_device_printk(ctl, level, fmt, arg...) \
      printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg)

/* edac_pci printk */
#define edac_pci_printk(ctl, level, fmt, arg...) \
      printk(level "EDAC PCI%d: " fmt, ctl->pci_idx, ##arg)

/* prefixes for edac_printk() and edac_mc_printk() */
#define EDAC_MC "MC"
#define EDAC_PCI "PCI"
#define EDAC_DEBUG "DEBUG"

#ifdef CONFIG_EDAC_DEBUG
extern int edac_debug_level;

#define edac_debug_printk(level, fmt, arg...)                            \
      do {                                                             \
            if (level <= edac_debug_level)                           \
                  edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
      } while(0)

#define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
#define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
#define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
#define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
#define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )

#else                   /* !CONFIG_EDAC_DEBUG */

#define debugf0( ... )
#define debugf1( ... )
#define debugf2( ... )
#define debugf3( ... )
#define debugf4( ... )

#endif                        /* !CONFIG_EDAC_DEBUG */

#define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
      PCI_DEVICE_ID_ ## vend ## _ ## dev

#define dev_name(dev) (dev)->dev_name

/* memory devices */
enum dev_type {
      DEV_UNKNOWN = 0,
      DEV_X1,
      DEV_X2,
      DEV_X4,
      DEV_X8,
      DEV_X16,
      DEV_X32,          /* Do these parts exist? */
      DEV_X64                 /* Do these parts exist? */
};

#define DEV_FLAG_UNKNOWN      BIT(DEV_UNKNOWN)
#define DEV_FLAG_X1           BIT(DEV_X1)
#define DEV_FLAG_X2           BIT(DEV_X2)
#define DEV_FLAG_X4           BIT(DEV_X4)
#define DEV_FLAG_X8           BIT(DEV_X8)
#define DEV_FLAG_X16          BIT(DEV_X16)
#define DEV_FLAG_X32          BIT(DEV_X32)
#define DEV_FLAG_X64          BIT(DEV_X64)

/* memory types */
enum mem_type {
      MEM_EMPTY = 0,          /* Empty csrow */
      MEM_RESERVED,           /* Reserved csrow type */
      MEM_UNKNOWN,            /* Unknown csrow type */
      MEM_FPM,          /* Fast page mode */
      MEM_EDO,          /* Extended data out */
      MEM_BEDO,         /* Burst Extended data out */
      MEM_SDR,          /* Single data rate SDRAM */
      MEM_RDR,          /* Registered single data rate SDRAM */
      MEM_DDR,          /* Double data rate SDRAM */
      MEM_RDDR,         /* Registered Double data rate SDRAM */
      MEM_RMBS,         /* Rambus DRAM */
      MEM_DDR2,         /* DDR2 RAM */
      MEM_FB_DDR2,            /* fully buffered DDR2 */
      MEM_RDDR2,        /* Registered DDR2 RAM */
};

#define MEM_FLAG_EMPTY        BIT(MEM_EMPTY)
#define MEM_FLAG_RESERVED     BIT(MEM_RESERVED)
#define MEM_FLAG_UNKNOWN      BIT(MEM_UNKNOWN)
#define MEM_FLAG_FPM          BIT(MEM_FPM)
#define MEM_FLAG_EDO          BIT(MEM_EDO)
#define MEM_FLAG_BEDO         BIT(MEM_BEDO)
#define MEM_FLAG_SDR          BIT(MEM_SDR)
#define MEM_FLAG_RDR          BIT(MEM_RDR)
#define MEM_FLAG_DDR          BIT(MEM_DDR)
#define MEM_FLAG_RDDR         BIT(MEM_RDDR)
#define MEM_FLAG_RMBS         BIT(MEM_RMBS)
#define MEM_FLAG_DDR2           BIT(MEM_DDR2)
#define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
#define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)

/* chipset Error Detection and Correction capabilities and mode */
enum edac_type {
      EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
      EDAC_NONE,        /* Doesnt support ECC */
      EDAC_RESERVED,          /* Reserved ECC type */
      EDAC_PARITY,            /* Detects parity errors */
      EDAC_EC,          /* Error Checking - no correction */
      EDAC_SECDED,            /* Single bit error correction, Double detection */
      EDAC_S2ECD2ED,          /* Chipkill x2 devices - do these exist? */
      EDAC_S4ECD4ED,          /* Chipkill x4 devices */
      EDAC_S8ECD8ED,          /* Chipkill x8 devices */
      EDAC_S16ECD16ED,  /* Chipkill x16 devices */
};

#define EDAC_FLAG_UNKNOWN     BIT(EDAC_UNKNOWN)
#define EDAC_FLAG_NONE        BIT(EDAC_NONE)
#define EDAC_FLAG_PARITY      BIT(EDAC_PARITY)
#define EDAC_FLAG_EC          BIT(EDAC_EC)
#define EDAC_FLAG_SECDED      BIT(EDAC_SECDED)
#define EDAC_FLAG_S2ECD2ED    BIT(EDAC_S2ECD2ED)
#define EDAC_FLAG_S4ECD4ED    BIT(EDAC_S4ECD4ED)
#define EDAC_FLAG_S8ECD8ED    BIT(EDAC_S8ECD8ED)
#define EDAC_FLAG_S16ECD16ED  BIT(EDAC_S16ECD16ED)

/* scrubbing capabilities */
enum scrub_type {
      SCRUB_UNKNOWN = 0,      /* Unknown if scrubber is available */
      SCRUB_NONE,       /* No scrubber */
      SCRUB_SW_PROG,          /* SW progressive (sequential) scrubbing */
      SCRUB_SW_SRC,           /* Software scrub only errors */
      SCRUB_SW_PROG_SRC,      /* Progressive software scrub from an error */
      SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
      SCRUB_HW_PROG,          /* HW progressive (sequential) scrubbing */
      SCRUB_HW_SRC,           /* Hardware scrub only errors */
      SCRUB_HW_PROG_SRC,      /* Progressive hardware scrub from an error */
      SCRUB_HW_TUNABLE  /* Hardware scrub frequency is tunable */
};

#define SCRUB_FLAG_SW_PROG    BIT(SCRUB_SW_PROG)
#define SCRUB_FLAG_SW_SRC     BIT(SCRUB_SW_SRC)
#define SCRUB_FLAG_SW_PROG_SRC      BIT(SCRUB_SW_PROG_SRC)
#define SCRUB_FLAG_SW_TUN     BIT(SCRUB_SW_SCRUB_TUNABLE)
#define SCRUB_FLAG_HW_PROG    BIT(SCRUB_HW_PROG)
#define SCRUB_FLAG_HW_SRC     BIT(SCRUB_HW_SRC)
#define SCRUB_FLAG_HW_PROG_SRC      BIT(SCRUB_HW_PROG_SRC)
#define SCRUB_FLAG_HW_TUN     BIT(SCRUB_HW_TUNABLE)

/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */

/* EDAC internal operation states */
#define     OP_ALLOC          0x100
#define OP_RUNNING_POLL       0x201
#define OP_RUNNING_INTERRUPT  0x202
#define OP_RUNNING_POLL_INTR  0x203
#define OP_OFFLINE            0x300

/*
 * There are several things to be aware of that aren't at all obvious:
 *
 *
 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
 *
 * These are some of the many terms that are thrown about that don't always
 * mean what people think they mean (Inconceivable!).  In the interest of
 * creating a common ground for discussion, terms and their definitions
 * will be established.
 *
 * Memory devices:      The individual chip on a memory stick.  These devices
 *                commonly output 4 and 8 bits each.  Grouping several
 *                of these in parallel provides 64 bits which is common
 *                for a memory stick.
 *
 * Memory Stick:  A printed circuit board that agregates multiple
 *                memory devices in parallel.  This is the atomic
 *                memory component that is purchaseable by Joe consumer
 *                and loaded into a memory socket.
 *
 * Socket:        A physical connector on the motherboard that accepts
 *                a single memory stick.
 *
 * Channel:       Set of memory devices on a memory stick that must be
 *                grouped in parallel with one or more additional
 *                channels from other memory sticks.  This parallel
 *                grouping of the output from multiple channels are
 *                necessary for the smallest granularity of memory access.
 *                Some memory controllers are capable of single channel -
 *                which means that memory sticks can be loaded
 *                individually.  Other memory controllers are only
 *                capable of dual channel - which means that memory
 *                sticks must be loaded as pairs (see "socket set").
 *
 * Chip-select row:     All of the memory devices that are selected together.
 *                for a single, minimum grain of memory access.
 *                This selects all of the parallel memory devices across
 *                all of the parallel channels.  Common chip-select rows
 *                for single channel are 64 bits, for dual channel 128
 *                bits.
 *
 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory.
 *                Motherboards commonly drive two chip-select pins to
 *                a memory stick. A single-ranked stick, will occupy
 *                only one of those rows. The other will be unused.
 *
 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
 *                access different sets of memory devices.  The two
 *                rows cannot be accessed concurrently.
 *
 * Double-sided stick:  DEPRECATED TERM, see Double-Ranked stick.
 *                A double-sided stick has two chip-select rows which
 *                access different sets of memory devices.  The two
 *                rows cannot be accessed concurrently.  "Double-sided"
 *                is irrespective of the memory devices being mounted
 *                on both sides of the memory stick.
 *
 * Socket set:          All of the memory sticks that are required for for
 *                a single memory access or all of the memory sticks
 *                spanned by a chip-select row.  A single socket set
 *                has two chip-select rows and if double-sided sticks
 *                are used these will occupy those chip-select rows.
 *
 * Bank:          This term is avoided because it is unclear when
 *                needing to distinguish between chip-select rows and
 *                socket sets.
 *
 * Controller pages:
 *
 * Physical pages:
 *
 * Virtual pages:
 *
 *
 * STRUCTURE ORGANIZATION AND CHOICES
 *
 *
 *
 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
 */

struct channel_info {
      int chan_idx;           /* channel index */
      u32 ce_count;           /* Correctable Errors for this CHANNEL */
      char label[EDAC_MC_LABEL_LEN + 1];  /* DIMM label on motherboard */
      struct csrow_info *csrow;     /* the parent */
};

struct csrow_info {
      unsigned long first_page;     /* first page number in dimm */
      unsigned long last_page;      /* last page number in dimm */
      unsigned long page_mask;      /* used for interleaving -
                               * 0UL for non intlv
                               */
      u32 nr_pages;           /* number of pages in csrow */
      u32 grain;        /* granularity of reported error in bytes */
      int csrow_idx;          /* the chip-select row */
      enum dev_type dtype;    /* memory device type */
      u32 ue_count;           /* Uncorrectable Errors for this csrow */
      u32 ce_count;           /* Correctable Errors for this csrow */
      enum mem_type mtype;    /* memory csrow type */
      enum edac_type edac_mode;     /* EDAC mode for this csrow */
      struct mem_ctl_info *mci;     /* the parent */

      struct kobject kobj;    /* sysfs kobject for this csrow */

      /* channel information for this csrow */
      u32 nr_channels;
      struct channel_info *channels;
};

/* mcidev_sysfs_attribute structure
 *    used for driver sysfs attributes and in mem_ctl_info
 *    sysfs top level entries
 */
struct mcidev_sysfs_attribute {
        struct attribute attr;
        ssize_t (*show)(struct mem_ctl_info *,char *);
        ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
};

/* MEMORY controller information structure
 */
struct mem_ctl_info {
      struct list_head link;  /* for global list of mem_ctl_info structs */

      struct module *owner;   /* Module owner of this control struct */

      unsigned long mtype_cap;      /* memory types supported by mc */
      unsigned long edac_ctl_cap;   /* Mem controller EDAC capabilities */
      unsigned long edac_cap; /* configuration capabilities - this is
                         * closely related to edac_ctl_cap.  The
                         * difference is that the controller may be
                         * capable of s4ecd4ed which would be listed
                         * in edac_ctl_cap, but if channels aren't
                         * capable of s4ecd4ed then the edac_cap would
                         * not have that capability.
                         */
      unsigned long scrub_cap;      /* chipset scrub capabilities */
      enum scrub_type scrub_mode;   /* current scrub mode */

      /* Translates sdram memory scrub rate given in bytes/sec to the
         internal representation and configures whatever else needs
         to be configured.
       */
      int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw);

      /* Get the current sdram memory scrub rate from the internal
         representation and converts it to the closest matching
         bandwith in bytes/sec.
       */
      int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw);


      /* pointer to edac checking routine */
      void (*edac_check) (struct mem_ctl_info * mci);

      /*
       * Remaps memory pages: controller pages to physical pages.
       * For most MC's, this will be NULL.
       */
      /* FIXME - why not send the phys page to begin with? */
      unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
                                 unsigned long page);
      int mc_idx;
      int nr_csrows;
      struct csrow_info *csrows;
      /*
       * FIXME - what about controllers on other busses? - IDs must be
       * unique.  dev pointer should be sufficiently unique, but
       * BUS:SLOT.FUNC numbers may not be unique.
       */
      struct device *dev;
      const char *mod_name;
      const char *mod_ver;
      const char *ctl_name;
      const char *dev_name;
      char proc_name[MC_PROC_NAME_MAX_LEN + 1];
      void *pvt_info;
      u32 ue_noinfo_count;    /* Uncorrectable Errors w/o info */
      u32 ce_noinfo_count;    /* Correctable Errors w/o info */
      u32 ue_count;           /* Total Uncorrectable Errors for this MC */
      u32 ce_count;           /* Total Correctable Errors for this MC */
      unsigned long start_time;     /* mci load start time (in jiffies) */

      /* this stuff is for safe removal of mc devices from global list while
       * NMI handlers may be traversing list
       */
      struct rcu_head rcu;
      struct completion complete;

      /* edac sysfs device control */
      struct kobject edac_mci_kobj;

      /* Additional top controller level attributes, but specified
       * by the low level driver.
       *
       * Set by the low level driver to provide attributes at the
       * controller level, same level as 'ue_count' and 'ce_count' above.
       * An array of structures, NULL terminated
       *
       * If attributes are desired, then set to array of attributes
       * If no attributes are desired, leave NULL
       */
      struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;

      /* work struct for this MC */
      struct delayed_work work;

      /* the internal state of this controller instance */
      int op_state;
};

/*
 * The following are the structures to provide for a generic
 * or abstract 'edac_device'. This set of structures and the
 * code that implements the APIs for the same, provide for
 * registering EDAC type devices which are NOT standard memory.
 *
 * CPU caches (L1 and L2)
 * DMA engines
 * Core CPU swithces
 * Fabric switch units
 * PCIe interface controllers
 * other EDAC/ECC type devices that can be monitored for
 * errors, etc.
 *
 * It allows for a 2 level set of hiearchry. For example:
 *
 * cache could be composed of L1, L2 and L3 levels of cache.
 * Each CPU core would have its own L1 cache, while sharing
 * L2 and maybe L3 caches.
 *
 * View them arranged, via the sysfs presentation:
 * /sys/devices/system/edac/..
 *
 *    mc/         <existing memory device directory>
 *    cpu/cpu0/.. <L1 and L2 block directory>
 *          /L1-cache/ce_count
 *                 /ue_count
 *          /L2-cache/ce_count
 *                 /ue_count
 *    cpu/cpu1/.. <L1 and L2 block directory>
 *          /L1-cache/ce_count
 *                 /ue_count
 *          /L2-cache/ce_count
 *                 /ue_count
 *    ...
 *
 *    the L1 and L2 directories would be "edac_device_block's"
 */

struct edac_device_counter {
      u32 ue_count;
      u32 ce_count;
};

/* forward reference */
struct edac_device_ctl_info;
struct edac_device_block;

/* edac_dev_sysfs_attribute structure
 *    used for driver sysfs attributes in mem_ctl_info
 *    for extra controls and attributes:
 *          like high level error Injection controls
 */
struct edac_dev_sysfs_attribute {
      struct attribute attr;
      ssize_t (*show)(struct edac_device_ctl_info *, char *);
      ssize_t (*store)(struct edac_device_ctl_info *, const char *, size_t);
};

/* edac_dev_sysfs_block_attribute structure
 *
 *    used in leaf 'block' nodes for adding controls/attributes
 *
 *    each block in each instance of the containing control structure
 *    can have an array of the following. The show and store functions
 *    will be filled in with the show/store function in the
 *    low level driver.
 *
 *    The 'value' field will be the actual value field used for
 *    counting
 */
struct edac_dev_sysfs_block_attribute {
      struct attribute attr;
      ssize_t (*show)(struct kobject *, struct attribute *, char *);
      ssize_t (*store)(struct kobject *, struct attribute *,
                  const char *, size_t);
      struct edac_device_block *block;

      unsigned int value;
};

/* device block control structure */
struct edac_device_block {
      struct edac_device_instance *instance;    /* Up Pointer */
      char name[EDAC_DEVICE_NAME_LEN + 1];

      struct edac_device_counter counters;      /* basic UE and CE counters */

      int nr_attribs;         /* how many attributes */

      /* this block's attributes, could be NULL */
      struct edac_dev_sysfs_block_attribute *block_attributes;

      /* edac sysfs device control */
      struct kobject kobj;
};

/* device instance control structure */
struct edac_device_instance {
      struct edac_device_ctl_info *ctl;   /* Up pointer */
      char name[EDAC_DEVICE_NAME_LEN + 4];

      struct edac_device_counter counters;      /* instance counters */

      u32 nr_blocks;          /* how many blocks */
      struct edac_device_block *blocks;   /* block array */

      /* edac sysfs device control */
      struct kobject kobj;
};


/*
 * Abstract edac_device control info structure
 *
 */
struct edac_device_ctl_info {
      /* for global list of edac_device_ctl_info structs */
      struct list_head link;

      struct module *owner;   /* Module owner of this control struct */

      int dev_idx;

      /* Per instance controls for this edac_device */
      int log_ue;       /* boolean for logging UEs */
      int log_ce;       /* boolean for logging CEs */
      int panic_on_ue;  /* boolean for panic'ing on an UE */
      unsigned poll_msec;     /* number of milliseconds to poll interval */
      unsigned long delay;    /* number of jiffies for poll_msec */

      /* Additional top controller level attributes, but specified
       * by the low level driver.
       *
       * Set by the low level driver to provide attributes at the
       * controller level, same level as 'ue_count' and 'ce_count' above.
       * An array of structures, NULL terminated
       *
       * If attributes are desired, then set to array of attributes
       * If no attributes are desired, leave NULL
       */
      struct edac_dev_sysfs_attribute *sysfs_attributes;

      /* pointer to main 'edac' class in sysfs */
      struct sysdev_class *edac_class;

      /* the internal state of this controller instance */
      int op_state;
      /* work struct for this instance */
      struct delayed_work work;

      /* pointer to edac polling checking routine:
       *      If NOT NULL: points to polling check routine
       *      If NULL: Then assumes INTERRUPT operation, where
       *              MC driver will receive events
       */
      void (*edac_check) (struct edac_device_ctl_info * edac_dev);

      struct device *dev;     /* pointer to device structure */

      const char *mod_name;   /* module name */
      const char *ctl_name;   /* edac controller  name */
      const char *dev_name;   /* pci/platform/etc... name */

      void *pvt_info;         /* pointer to 'private driver' info */

      unsigned long start_time;     /* edac_device load start time (jiffies) */

      /* these are for safe removal of mc devices from global list while
       * NMI handlers may be traversing list
       */
      struct rcu_head rcu;
      struct completion removal_complete;

      /* sysfs top name under 'edac' directory
       * and instance name:
       *      cpu/cpu0/...
       *      cpu/cpu1/...
       *      cpu/cpu2/...
       *      ...
       */
      char name[EDAC_DEVICE_NAME_LEN + 1];

      /* Number of instances supported on this control structure
       * and the array of those instances
       */
      u32 nr_instances;
      struct edac_device_instance *instances;

      /* Event counters for the this whole EDAC Device */
      struct edac_device_counter counters;

      /* edac sysfs device control for the 'name'
       * device this structure controls
       */
      struct kobject kobj;
};

/* To get from the instance's wq to the beginning of the ctl structure */
#define to_edac_mem_ctl_work(w) \
            container_of(w, struct mem_ctl_info, work)

#define to_edac_device_ctl_work(w) \
            container_of(w,struct edac_device_ctl_info,work)

/*
 * The alloc() and free() functions for the 'edac_device' control info
 * structure. A MC driver will allocate one of these for each edac_device
 * it is going to control/register with the EDAC CORE.
 */
extern struct edac_device_ctl_info *edac_device_alloc_ctl_info(
            unsigned sizeof_private,
            char *edac_device_name, unsigned nr_instances,
            char *edac_block_name, unsigned nr_blocks,
            unsigned offset_value,
            struct edac_dev_sysfs_block_attribute *block_attributes,
            unsigned nr_attribs,
            int device_index);

/* The offset value can be:
 *    -1 indicating no offset value
 *    0 for zero-based block numbers
 *    1 for 1-based block number
 *    other for other-based block number
 */
#define     BLOCK_OFFSET_VALUE_OFF  ((unsigned) -1)

extern void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info);

#ifdef CONFIG_PCI

struct edac_pci_counter {
      atomic_t pe_count;
      atomic_t npe_count;
};

/*
 * Abstract edac_pci control info structure
 *
 */
struct edac_pci_ctl_info {
      /* for global list of edac_pci_ctl_info structs */
      struct list_head link;

      int pci_idx;

      struct sysdev_class *edac_class;    /* pointer to class */

      /* the internal state of this controller instance */
      int op_state;
      /* work struct for this instance */
      struct delayed_work work;

      /* pointer to edac polling checking routine:
       *      If NOT NULL: points to polling check routine
       *      If NULL: Then assumes INTERRUPT operation, where
       *              MC driver will receive events
       */
      void (*edac_check) (struct edac_pci_ctl_info * edac_dev);

      struct device *dev;     /* pointer to device structure */

      const char *mod_name;   /* module name */
      const char *ctl_name;   /* edac controller  name */
      const char *dev_name;   /* pci/platform/etc... name */

      void *pvt_info;         /* pointer to 'private driver' info */

      unsigned long start_time;     /* edac_pci load start time (jiffies) */

      /* these are for safe removal of devices from global list while
       * NMI handlers may be traversing list
       */
      struct rcu_head rcu;
      struct completion complete;

      /* sysfs top name under 'edac' directory
       * and instance name:
       *      cpu/cpu0/...
       *      cpu/cpu1/...
       *      cpu/cpu2/...
       *      ...
       */
      char name[EDAC_DEVICE_NAME_LEN + 1];

      /* Event counters for the this whole EDAC Device */
      struct edac_pci_counter counters;

      /* edac sysfs device control for the 'name'
       * device this structure controls
       */
      struct kobject kobj;
      struct completion kobj_complete;
};

#define to_edac_pci_ctl_work(w) \
            container_of(w, struct edac_pci_ctl_info,work)

/* write all or some bits in a byte-register*/
static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
                           u8 mask)
{
      if (mask != 0xff) {
            u8 buf;

            pci_read_config_byte(pdev, offset, &buf);
            value &= mask;
            buf &= ~mask;
            value |= buf;
      }

      pci_write_config_byte(pdev, offset, value);
}

/* write all or some bits in a word-register*/
static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
                            u16 value, u16 mask)
{
      if (mask != 0xffff) {
            u16 buf;

            pci_read_config_word(pdev, offset, &buf);
            value &= mask;
            buf &= ~mask;
            value |= buf;
      }

      pci_write_config_word(pdev, offset, value);
}

/* write all or some bits in a dword-register*/
static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
                            u32 value, u32 mask)
{
      if (mask != 0xffff) {
            u32 buf;

            pci_read_config_dword(pdev, offset, &buf);
            value &= mask;
            buf &= ~mask;
            value |= buf;
      }

      pci_write_config_dword(pdev, offset, value);
}

#endif                        /* CONFIG_PCI */

extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
                                unsigned nr_chans, int edac_index);
extern int edac_mc_add_mc(struct mem_ctl_info *mci);
extern void edac_mc_free(struct mem_ctl_info *mci);
extern struct mem_ctl_info *edac_mc_find(int idx);
extern struct mem_ctl_info *edac_mc_del_mc(struct device *dev);
extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
                              unsigned long page);

/*
 * The no info errors are used when error overflows are reported.
 * There are a limited number of error logging registers that can
 * be exausted.  When all registers are exhausted and an additional
 * error occurs then an error overflow register records that an
 * error occured and the type of error, but doesn't have any
 * further information.  The ce/ue versions make for cleaner
 * reporting logic and function interface - reduces conditional
 * statement clutter and extra function arguments.
 */
extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
                        unsigned long page_frame_number,
                        unsigned long offset_in_page,
                        unsigned long syndrome, int row, int channel,
                        const char *msg);
extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
                              const char *msg);
extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
                        unsigned long page_frame_number,
                        unsigned long offset_in_page, int row,
                        const char *msg);
extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
                              const char *msg);
extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, unsigned int csrow,
                          unsigned int channel0, unsigned int channel1,
                          char *msg);
extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, unsigned int csrow,
                          unsigned int channel, char *msg);

/*
 * edac_device APIs
 */
extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev);
extern struct edac_device_ctl_info *edac_device_del_device(struct device *dev);
extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
                        int inst_nr, int block_nr, const char *msg);
extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
                        int inst_nr, int block_nr, const char *msg);

/*
 * edac_pci APIs
 */
extern struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt,
                        const char *edac_pci_name);

extern void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci);

extern void edac_pci_reset_delay_period(struct edac_pci_ctl_info *pci,
                        unsigned long value);

extern int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx);
extern struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev);

extern struct edac_pci_ctl_info *edac_pci_create_generic_ctl(
                        struct device *dev,
                        const char *mod_name);

extern void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci);
extern int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci);
extern void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci);

/*
 * edac misc APIs
 */
extern char *edac_op_state_to_string(int op_state);

#endif                        /* _EDAC_CORE_H_ */

Generated by  Doxygen 1.6.0   Back to index