Logo Search packages:      
Sourcecode: linux version File versions  Download package

edac_mc.c

/*
 * edac_mc kernel module
 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 * Written by Thayne Harbaugh
 * Based on work by Dan Hollis <goemon at anime dot net> and others.
 *    http://www.anime.net/~goemon/linux-ecc/
 *
 * Modified by Dave Peterson and Doug Thompson
 *
 */

#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/sysdev.h>
#include <linux/ctype.h>
#include <linux/edac.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/edac.h>
#include "edac_core.h"
#include "edac_module.h"

/* lock to memory controller's control array */
static DEFINE_MUTEX(mem_ctls_mutex);
static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);

#ifdef CONFIG_EDAC_DEBUG

static void edac_mc_dump_channel(struct channel_info *chan)
{
      debugf4("\tchannel = %p\n", chan);
      debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
      debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
      debugf4("\tchannel->label = '%s'\n", chan->label);
      debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
}

static void edac_mc_dump_csrow(struct csrow_info *csrow)
{
      debugf4("\tcsrow = %p\n", csrow);
      debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
      debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page);
      debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
      debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
      debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
      debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels);
      debugf4("\tcsrow->channels = %p\n", csrow->channels);
      debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
}

static void edac_mc_dump_mci(struct mem_ctl_info *mci)
{
      debugf3("\tmci = %p\n", mci);
      debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
      debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
      debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
      debugf4("\tmci->edac_check = %p\n", mci->edac_check);
      debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
            mci->nr_csrows, mci->csrows);
      debugf3("\tdev = %p\n", mci->dev);
      debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name);
      debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
}

#endif                        /* CONFIG_EDAC_DEBUG */

/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
 * Adjust 'ptr' so that its alignment is at least as stringent as what the
 * compiler would provide for X and return the aligned result.
 *
 * If 'size' is a constant, the compiler will optimize this whole function
 * down to either a no-op or the addition of a constant to the value of 'ptr'.
 */
void *edac_align_ptr(void *ptr, unsigned size)
{
      unsigned align, r;

      /* Here we assume that the alignment of a "long long" is the most
       * stringent alignment that the compiler will ever provide by default.
       * As far as I know, this is a reasonable assumption.
       */
      if (size > sizeof(long))
            align = sizeof(long long);
      else if (size > sizeof(int))
            align = sizeof(long);
      else if (size > sizeof(short))
            align = sizeof(int);
      else if (size > sizeof(char))
            align = sizeof(short);
      else
            return (char *)ptr;

      r = size % align;

      if (r == 0)
            return (char *)ptr;

      return (void *)(((unsigned long)ptr) + align - r);
}

/**
 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
 * @size_pvt:     size of private storage needed
 * @nr_csrows:    Number of CWROWS needed for this MC
 * @nr_chans:     Number of channels for the MC
 *
 * Everything is kmalloc'ed as one big chunk - more efficient.
 * Only can be used if all structures have the same lifetime - otherwise
 * you have to allocate and initialize your own structures.
 *
 * Use edac_mc_free() to free mc structures allocated by this function.
 *
 * Returns:
 *    NULL allocation failed
 *    struct mem_ctl_info pointer
 */
struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
                        unsigned nr_chans, int edac_index)
{
      struct mem_ctl_info *mci;
      struct csrow_info *csi, *csrow;
      struct channel_info *chi, *chp, *chan;
      void *pvt;
      unsigned size;
      int row, chn;
      int err;

      /* Figure out the offsets of the various items from the start of an mc
       * structure.  We want the alignment of each item to be at least as
       * stringent as what the compiler would provide if we could simply
       * hardcode everything into a single struct.
       */
      mci = (struct mem_ctl_info *)0;
      csi = edac_align_ptr(&mci[1], sizeof(*csi));
      chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi));
      pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
      size = ((unsigned long)pvt) + sz_pvt;

      mci = kzalloc(size, GFP_KERNEL);
      if (mci == NULL)
            return NULL;

      /* Adjust pointers so they point within the memory we just allocated
       * rather than an imaginary chunk of memory located at address 0.
       */
      csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi));
      chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi));
      pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;

      /* setup index and various internal pointers */
      mci->mc_idx = edac_index;
      mci->csrows = csi;
      mci->pvt_info = pvt;
      mci->nr_csrows = nr_csrows;

      for (row = 0; row < nr_csrows; row++) {
            csrow = &csi[row];
            csrow->csrow_idx = row;
            csrow->mci = mci;
            csrow->nr_channels = nr_chans;
            chp = &chi[row * nr_chans];
            csrow->channels = chp;

            for (chn = 0; chn < nr_chans; chn++) {
                  chan = &chp[chn];
                  chan->chan_idx = chn;
                  chan->csrow = csrow;
            }
      }

      mci->op_state = OP_ALLOC;

      /*
       * Initialize the 'root' kobj for the edac_mc controller
       */
      err = edac_mc_register_sysfs_main_kobj(mci);
      if (err) {
            kfree(mci);
            return NULL;
      }

      /* at this point, the root kobj is valid, and in order to
       * 'free' the object, then the function:
       *      edac_mc_unregister_sysfs_main_kobj() must be called
       * which will perform kobj unregistration and the actual free
       * will occur during the kobject callback operation
       */
      return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_alloc);

/**
 * edac_mc_free
 *    'Free' a previously allocated 'mci' structure
 * @mci: pointer to a struct mem_ctl_info structure
 */
void edac_mc_free(struct mem_ctl_info *mci)
{
      edac_mc_unregister_sysfs_main_kobj(mci);
}
EXPORT_SYMBOL_GPL(edac_mc_free);


/*
 * find_mci_by_dev
 *
 *    scan list of controllers looking for the one that manages
 *    the 'dev' device
 */
static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
{
      struct mem_ctl_info *mci;
      struct list_head *item;

      debugf3("%s()\n", __func__);

      list_for_each(item, &mc_devices) {
            mci = list_entry(item, struct mem_ctl_info, link);

            if (mci->dev == dev)
                  return mci;
      }

      return NULL;
}

/*
 * handler for EDAC to check if NMI type handler has asserted interrupt
 */
static int edac_mc_assert_error_check_and_clear(void)
{
      int old_state;

      if (edac_op_state == EDAC_OPSTATE_POLL)
            return 1;

      old_state = edac_err_assert;
      edac_err_assert = 0;

      return old_state;
}

/*
 * edac_mc_workq_function
 *    performs the operation scheduled by a workq request
 */
static void edac_mc_workq_function(struct work_struct *work_req)
{
      struct delayed_work *d_work = (struct delayed_work *)work_req;
      struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);

      mutex_lock(&mem_ctls_mutex);

      /* if this control struct has movd to offline state, we are done */
      if (mci->op_state == OP_OFFLINE) {
            mutex_unlock(&mem_ctls_mutex);
            return;
      }

      /* Only poll controllers that are running polled and have a check */
      if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
            mci->edac_check(mci);

      mutex_unlock(&mem_ctls_mutex);

      /* Reschedule */
      queue_delayed_work(edac_workqueue, &mci->work,
                  msecs_to_jiffies(edac_mc_get_poll_msec()));
}

/*
 * edac_mc_workq_setup
 *    initialize a workq item for this mci
 *    passing in the new delay period in msec
 *
 *    locking model:
 *
 *          called with the mem_ctls_mutex held
 */
static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
{
      debugf0("%s()\n", __func__);

      /* if this instance is not in the POLL state, then simply return */
      if (mci->op_state != OP_RUNNING_POLL)
            return;

      INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
      queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
}

/*
 * edac_mc_workq_teardown
 *    stop the workq processing on this mci
 *
 *    locking model:
 *
 *          called WITHOUT lock held
 */
static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
{
      int status;

      status = cancel_delayed_work(&mci->work);
      if (status == 0) {
            debugf0("%s() not canceled, flush the queue\n",
                  __func__);

            /* workq instance might be running, wait for it */
            flush_workqueue(edac_workqueue);
      }
}

/*
 * edac_mc_reset_delay_period(unsigned long value)
 *
 *    user space has updated our poll period value, need to
 *    reset our workq delays
 */
void edac_mc_reset_delay_period(int value)
{
      struct mem_ctl_info *mci;
      struct list_head *item;

      mutex_lock(&mem_ctls_mutex);

      /* scan the list and turn off all workq timers, doing so under lock
       */
      list_for_each(item, &mc_devices) {
            mci = list_entry(item, struct mem_ctl_info, link);

            if (mci->op_state == OP_RUNNING_POLL)
                  cancel_delayed_work(&mci->work);
      }

      mutex_unlock(&mem_ctls_mutex);


      /* re-walk the list, and reset the poll delay */
      mutex_lock(&mem_ctls_mutex);

      list_for_each(item, &mc_devices) {
            mci = list_entry(item, struct mem_ctl_info, link);

            edac_mc_workq_setup(mci, (unsigned long) value);
      }

      mutex_unlock(&mem_ctls_mutex);
}



/* Return 0 on success, 1 on failure.
 * Before calling this function, caller must
 * assign a unique value to mci->mc_idx.
 *
 *    locking model:
 *
 *          called with the mem_ctls_mutex lock held
 */
static int add_mc_to_global_list(struct mem_ctl_info *mci)
{
      struct list_head *item, *insert_before;
      struct mem_ctl_info *p;

      insert_before = &mc_devices;

      p = find_mci_by_dev(mci->dev);
      if (unlikely(p != NULL))
            goto fail0;

      list_for_each(item, &mc_devices) {
            p = list_entry(item, struct mem_ctl_info, link);

            if (p->mc_idx >= mci->mc_idx) {
                  if (unlikely(p->mc_idx == mci->mc_idx))
                        goto fail1;

                  insert_before = item;
                  break;
            }
      }

      list_add_tail_rcu(&mci->link, insert_before);
      atomic_inc(&edac_handlers);
      return 0;

fail0:
      edac_printk(KERN_WARNING, EDAC_MC,
            "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
            dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
      return 1;

fail1:
      edac_printk(KERN_WARNING, EDAC_MC,
            "bug in low-level driver: attempt to assign\n"
            "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
      return 1;
}

static void complete_mc_list_del(struct rcu_head *head)
{
      struct mem_ctl_info *mci;

      mci = container_of(head, struct mem_ctl_info, rcu);
      INIT_LIST_HEAD(&mci->link);
      complete(&mci->complete);
}

static void del_mc_from_global_list(struct mem_ctl_info *mci)
{
      atomic_dec(&edac_handlers);
      list_del_rcu(&mci->link);
      init_completion(&mci->complete);
      call_rcu(&mci->rcu, complete_mc_list_del);
      wait_for_completion(&mci->complete);
}

/**
 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
 *
 * If found, return a pointer to the structure.
 * Else return NULL.
 *
 * Caller must hold mem_ctls_mutex.
 */
struct mem_ctl_info *edac_mc_find(int idx)
{
      struct list_head *item;
      struct mem_ctl_info *mci;

      list_for_each(item, &mc_devices) {
            mci = list_entry(item, struct mem_ctl_info, link);

            if (mci->mc_idx >= idx) {
                  if (mci->mc_idx == idx)
                        return mci;

                  break;
            }
      }

      return NULL;
}
EXPORT_SYMBOL(edac_mc_find);

/**
 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
 *                 create sysfs entries associated with mci structure
 * @mci: pointer to the mci structure to be added to the list
 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
 *
 * Return:
 *    0     Success
 *    !0    Failure
 */

/* FIXME - should a warning be printed if no error detection? correction? */
int edac_mc_add_mc(struct mem_ctl_info *mci)
{
      debugf0("%s()\n", __func__);

#ifdef CONFIG_EDAC_DEBUG
      if (edac_debug_level >= 3)
            edac_mc_dump_mci(mci);

      if (edac_debug_level >= 4) {
            int i;

            for (i = 0; i < mci->nr_csrows; i++) {
                  int j;

                  edac_mc_dump_csrow(&mci->csrows[i]);
                  for (j = 0; j < mci->csrows[i].nr_channels; j++)
                        edac_mc_dump_channel(&mci->csrows[i].
                                    channels[j]);
            }
      }
#endif
      mutex_lock(&mem_ctls_mutex);

      if (add_mc_to_global_list(mci))
            goto fail0;

      /* set load time so that error rate can be tracked */
      mci->start_time = jiffies;

      if (edac_create_sysfs_mci_device(mci)) {
            edac_mc_printk(mci, KERN_WARNING,
                  "failed to create sysfs device\n");
            goto fail1;
      }

      /* If there IS a check routine, then we are running POLLED */
      if (mci->edac_check != NULL) {
            /* This instance is NOW RUNNING */
            mci->op_state = OP_RUNNING_POLL;

            edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
      } else {
            mci->op_state = OP_RUNNING_INTERRUPT;
      }

      /* Report action taken */
      edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
            " DEV %s\n", mci->mod_name, mci->ctl_name, dev_name(mci));

      mutex_unlock(&mem_ctls_mutex);
      return 0;

fail1:
      del_mc_from_global_list(mci);

fail0:
      mutex_unlock(&mem_ctls_mutex);
      return 1;
}
EXPORT_SYMBOL_GPL(edac_mc_add_mc);

/**
 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
 *                 remove mci structure from global list
 * @pdev: Pointer to 'struct device' representing mci structure to remove.
 *
 * Return pointer to removed mci structure, or NULL if device not found.
 */
struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
{
      struct mem_ctl_info *mci;

      debugf0("%s()\n", __func__);

      mutex_lock(&mem_ctls_mutex);

      /* find the requested mci struct in the global list */
      mci = find_mci_by_dev(dev);
      if (mci == NULL) {
            mutex_unlock(&mem_ctls_mutex);
            return NULL;
      }

      /* marking MCI offline */
      mci->op_state = OP_OFFLINE;

      del_mc_from_global_list(mci);
      mutex_unlock(&mem_ctls_mutex);

      /* flush workq processes and remove sysfs */
      edac_mc_workq_teardown(mci);
      edac_remove_sysfs_mci_device(mci);

      edac_printk(KERN_INFO, EDAC_MC,
            "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
            mci->mod_name, mci->ctl_name, dev_name(mci));

      return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_del_mc);

static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
                        u32 size)
{
      struct page *pg;
      void *virt_addr;
      unsigned long flags = 0;

      debugf3("%s()\n", __func__);

      /* ECC error page was not in our memory. Ignore it. */
      if (!pfn_valid(page))
            return;

      /* Find the actual page structure then map it and fix */
      pg = pfn_to_page(page);

      if (PageHighMem(pg))
            local_irq_save(flags);

      virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);

      /* Perform architecture specific atomic scrub operation */
      atomic_scrub(virt_addr + offset, size);

      /* Unmap and complete */
      kunmap_atomic(virt_addr, KM_BOUNCE_READ);

      if (PageHighMem(pg))
            local_irq_restore(flags);
}

/* FIXME - should return -1 */
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
{
      struct csrow_info *csrows = mci->csrows;
      int row, i;

      debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
      row = -1;

      for (i = 0; i < mci->nr_csrows; i++) {
            struct csrow_info *csrow = &csrows[i];

            if (csrow->nr_pages == 0)
                  continue;

            debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
                  "mask(0x%lx)\n", mci->mc_idx, __func__,
                  csrow->first_page, page, csrow->last_page,
                  csrow->page_mask);

            if ((page >= csrow->first_page) &&
                (page <= csrow->last_page) &&
                ((page & csrow->page_mask) ==
                 (csrow->first_page & csrow->page_mask))) {
                  row = i;
                  break;
            }
      }

      if (row == -1)
            edac_mc_printk(mci, KERN_ERR,
                  "could not look up page error address %lx\n",
                  (unsigned long)page);

      return row;
}
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);

/* FIXME - setable log (warning/emerg) levels */
/* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
void edac_mc_handle_ce(struct mem_ctl_info *mci,
            unsigned long page_frame_number,
            unsigned long offset_in_page, unsigned long syndrome,
            int row, int channel, const char *msg)
{
      unsigned long remapped_page;

      debugf3("MC%d: %s()\n", mci->mc_idx, __func__);

      /* FIXME - maybe make panic on INTERNAL ERROR an option */
      if (row >= mci->nr_csrows || row < 0) {
            /* something is wrong */
            edac_mc_printk(mci, KERN_ERR,
                  "INTERNAL ERROR: row out of range "
                  "(%d >= %d)\n", row, mci->nr_csrows);
            edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
            return;
      }

      if (channel >= mci->csrows[row].nr_channels || channel < 0) {
            /* something is wrong */
            edac_mc_printk(mci, KERN_ERR,
                  "INTERNAL ERROR: channel out of range "
                  "(%d >= %d)\n", channel,
                  mci->csrows[row].nr_channels);
            edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
            return;
      }

      if (edac_mc_get_log_ce())
            /* FIXME - put in DIMM location */
            edac_mc_printk(mci, KERN_WARNING,
                  "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
                  "0x%lx, row %d, channel %d, label \"%s\": %s\n",
                  page_frame_number, offset_in_page,
                  mci->csrows[row].grain, syndrome, row, channel,
                  mci->csrows[row].channels[channel].label, msg);

      mci->ce_count++;
      mci->csrows[row].ce_count++;
      mci->csrows[row].channels[channel].ce_count++;

      if (mci->scrub_mode & SCRUB_SW_SRC) {
            /*
             * Some MC's can remap memory so that it is still available
             * at a different address when PCI devices map into memory.
             * MC's that can't do this lose the memory where PCI devices
             * are mapped.  This mapping is MC dependant and so we call
             * back into the MC driver for it to map the MC page to
             * a physical (CPU) page which can then be mapped to a virtual
             * page - which can then be scrubbed.
             */
            remapped_page = mci->ctl_page_to_phys ?
                  mci->ctl_page_to_phys(mci, page_frame_number) :
                  page_frame_number;

            edac_mc_scrub_block(remapped_page, offset_in_page,
                        mci->csrows[row].grain);
      }
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ce);

void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
{
      if (edac_mc_get_log_ce())
            edac_mc_printk(mci, KERN_WARNING,
                  "CE - no information available: %s\n", msg);

      mci->ce_noinfo_count++;
      mci->ce_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);

void edac_mc_handle_ue(struct mem_ctl_info *mci,
            unsigned long page_frame_number,
            unsigned long offset_in_page, int row, const char *msg)
{
      int len = EDAC_MC_LABEL_LEN * 4;
      char labels[len + 1];
      char *pos = labels;
      int chan;
      int chars;

      debugf3("MC%d: %s()\n", mci->mc_idx, __func__);

      /* FIXME - maybe make panic on INTERNAL ERROR an option */
      if (row >= mci->nr_csrows || row < 0) {
            /* something is wrong */
            edac_mc_printk(mci, KERN_ERR,
                  "INTERNAL ERROR: row out of range "
                  "(%d >= %d)\n", row, mci->nr_csrows);
            edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
            return;
      }

      chars = snprintf(pos, len + 1, "%s",
                   mci->csrows[row].channels[0].label);
      len -= chars;
      pos += chars;

      for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
            chan++) {
            chars = snprintf(pos, len + 1, ":%s",
                         mci->csrows[row].channels[chan].label);
            len -= chars;
            pos += chars;
      }

      if (edac_mc_get_log_ue())
            edac_mc_printk(mci, KERN_EMERG,
                  "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
                  "labels \"%s\": %s\n", page_frame_number,
                  offset_in_page, mci->csrows[row].grain, row,
                  labels, msg);

      if (edac_mc_get_panic_on_ue())
            panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
                  "row %d, labels \"%s\": %s\n", mci->mc_idx,
                  page_frame_number, offset_in_page,
                  mci->csrows[row].grain, row, labels, msg);

      mci->ue_count++;
      mci->csrows[row].ue_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ue);

void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
{
      if (edac_mc_get_panic_on_ue())
            panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);

      if (edac_mc_get_log_ue())
            edac_mc_printk(mci, KERN_WARNING,
                  "UE - no information available: %s\n", msg);
      mci->ue_noinfo_count++;
      mci->ue_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);

/*************************************************************
 * On Fully Buffered DIMM modules, this help function is
 * called to process UE events
 */
void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
                  unsigned int csrow,
                  unsigned int channela,
                  unsigned int channelb, char *msg)
{
      int len = EDAC_MC_LABEL_LEN * 4;
      char labels[len + 1];
      char *pos = labels;
      int chars;

      if (csrow >= mci->nr_csrows) {
            /* something is wrong */
            edac_mc_printk(mci, KERN_ERR,
                  "INTERNAL ERROR: row out of range (%d >= %d)\n",
                  csrow, mci->nr_csrows);
            edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
            return;
      }

      if (channela >= mci->csrows[csrow].nr_channels) {
            /* something is wrong */
            edac_mc_printk(mci, KERN_ERR,
                  "INTERNAL ERROR: channel-a out of range "
                  "(%d >= %d)\n",
                  channela, mci->csrows[csrow].nr_channels);
            edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
            return;
      }

      if (channelb >= mci->csrows[csrow].nr_channels) {
            /* something is wrong */
            edac_mc_printk(mci, KERN_ERR,
                  "INTERNAL ERROR: channel-b out of range "
                  "(%d >= %d)\n",
                  channelb, mci->csrows[csrow].nr_channels);
            edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
            return;
      }

      mci->ue_count++;
      mci->csrows[csrow].ue_count++;

      /* Generate the DIMM labels from the specified channels */
      chars = snprintf(pos, len + 1, "%s",
                   mci->csrows[csrow].channels[channela].label);
      len -= chars;
      pos += chars;
      chars = snprintf(pos, len + 1, "-%s",
                   mci->csrows[csrow].channels[channelb].label);

      if (edac_mc_get_log_ue())
            edac_mc_printk(mci, KERN_EMERG,
                  "UE row %d, channel-a= %d channel-b= %d "
                  "labels \"%s\": %s\n", csrow, channela, channelb,
                  labels, msg);

      if (edac_mc_get_panic_on_ue())
            panic("UE row %d, channel-a= %d channel-b= %d "
                  "labels \"%s\": %s\n", csrow, channela,
                  channelb, labels, msg);
}
EXPORT_SYMBOL(edac_mc_handle_fbd_ue);

/*************************************************************
 * On Fully Buffered DIMM modules, this help function is
 * called to process CE events
 */
void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
                  unsigned int csrow, unsigned int channel, char *msg)
{

      /* Ensure boundary values */
      if (csrow >= mci->nr_csrows) {
            /* something is wrong */
            edac_mc_printk(mci, KERN_ERR,
                  "INTERNAL ERROR: row out of range (%d >= %d)\n",
                  csrow, mci->nr_csrows);
            edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
            return;
      }
      if (channel >= mci->csrows[csrow].nr_channels) {
            /* something is wrong */
            edac_mc_printk(mci, KERN_ERR,
                  "INTERNAL ERROR: channel out of range (%d >= %d)\n",
                  channel, mci->csrows[csrow].nr_channels);
            edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
            return;
      }

      if (edac_mc_get_log_ce())
            /* FIXME - put in DIMM location */
            edac_mc_printk(mci, KERN_WARNING,
                  "CE row %d, channel %d, label \"%s\": %s\n",
                  csrow, channel,
                  mci->csrows[csrow].channels[channel].label, msg);

      mci->ce_count++;
      mci->csrows[csrow].ce_count++;
      mci->csrows[csrow].channels[channel].ce_count++;
}
EXPORT_SYMBOL(edac_mc_handle_fbd_ce);

/*
 * Iterate over all MC instances and check for ECC, et al, errors
 */
void edac_check_mc_devices(void)
{
      struct list_head *item;
      struct mem_ctl_info *mci;

      debugf3("%s()\n", __func__);
      mutex_lock(&mem_ctls_mutex);

      list_for_each(item, &mc_devices) {
            mci = list_entry(item, struct mem_ctl_info, link);

            if (mci->edac_check != NULL)
                  mci->edac_check(mci);
      }

      mutex_unlock(&mem_ctls_mutex);
}

Generated by  Doxygen 1.6.0   Back to index