Logo Search packages:      
Sourcecode: linux version File versions  Download package

efi_32.c

/*
 * Extensible Firmware Interface
 *
 * Based on Extensible Firmware Interface Specification version 1.0
 *
 * Copyright (C) 1999 VA Linux Systems
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 1999-2002 Hewlett-Packard Co.
 *    David Mosberger-Tang <davidm@hpl.hp.com>
 *    Stephane Eranian <eranian@hpl.hp.com>
 *
 * All EFI Runtime Services are not implemented yet as EFI only
 * supports physical mode addressing on SoftSDV. This is to be fixed
 * in a future version.  --drummond 1999-07-20
 *
 * Implemented EFI runtime services and virtual mode calls.  --davidm
 *
 * Goutham Rao: <goutham.rao@intel.com>
 *    Skip non-WB memory and ignore empty memory ranges.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/efi.h>
#include <linux/kexec.h>

#include <asm/setup.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/desc.h>
#include <asm/tlbflush.h>

#define EFI_DEBUG 0
#define PFX             "EFI: "

extern efi_status_t asmlinkage efi_call_phys(void *, ...);

struct efi efi;
EXPORT_SYMBOL(efi);
static struct efi efi_phys;
struct efi_memory_map memmap;

/*
 * We require an early boot_ioremap mapping mechanism initially
 */
extern void * boot_ioremap(unsigned long, unsigned long);

/*
 * To make EFI call EFI runtime service in physical addressing mode we need
 * prelog/epilog before/after the invocation to disable interrupt, to
 * claim EFI runtime service handler exclusively and to duplicate a memory in
 * low memory space say 0 - 3G.
 */

static unsigned long efi_rt_eflags;
static DEFINE_SPINLOCK(efi_rt_lock);
static pgd_t efi_bak_pg_dir_pointer[2];

static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
{
      unsigned long cr4;
      unsigned long temp;
      struct Xgt_desc_struct gdt_descr;

      spin_lock(&efi_rt_lock);
      local_irq_save(efi_rt_eflags);

      /*
       * If I don't have PSE, I should just duplicate two entries in page
       * directory. If I have PSE, I just need to duplicate one entry in
       * page directory.
       */
      cr4 = read_cr4();

      if (cr4 & X86_CR4_PSE) {
            efi_bak_pg_dir_pointer[0].pgd =
                swapper_pg_dir[pgd_index(0)].pgd;
            swapper_pg_dir[0].pgd =
                swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
      } else {
            efi_bak_pg_dir_pointer[0].pgd =
                swapper_pg_dir[pgd_index(0)].pgd;
            efi_bak_pg_dir_pointer[1].pgd =
                swapper_pg_dir[pgd_index(0x400000)].pgd;
            swapper_pg_dir[pgd_index(0)].pgd =
                swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
            temp = PAGE_OFFSET + 0x400000;
            swapper_pg_dir[pgd_index(0x400000)].pgd =
                swapper_pg_dir[pgd_index(temp)].pgd;
      }

      /*
       * After the lock is released, the original page table is restored.
       */
      local_flush_tlb();

      gdt_descr.address = __pa(get_cpu_gdt_table(0));
      gdt_descr.size = GDT_SIZE - 1;
      load_gdt(&gdt_descr);
}

static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
{
      unsigned long cr4;
      struct Xgt_desc_struct gdt_descr;

      gdt_descr.address = (unsigned long)get_cpu_gdt_table(0);
      gdt_descr.size = GDT_SIZE - 1;
      load_gdt(&gdt_descr);

      cr4 = read_cr4();

      if (cr4 & X86_CR4_PSE) {
            swapper_pg_dir[pgd_index(0)].pgd =
                efi_bak_pg_dir_pointer[0].pgd;
      } else {
            swapper_pg_dir[pgd_index(0)].pgd =
                efi_bak_pg_dir_pointer[0].pgd;
            swapper_pg_dir[pgd_index(0x400000)].pgd =
                efi_bak_pg_dir_pointer[1].pgd;
      }

      /*
       * After the lock is released, the original page table is restored.
       */
      local_flush_tlb();

      local_irq_restore(efi_rt_eflags);
      spin_unlock(&efi_rt_lock);
}

static efi_status_t
phys_efi_set_virtual_address_map(unsigned long memory_map_size,
                         unsigned long descriptor_size,
                         u32 descriptor_version,
                         efi_memory_desc_t *virtual_map)
{
      efi_status_t status;

      efi_call_phys_prelog();
      status = efi_call_phys(efi_phys.set_virtual_address_map,
                             memory_map_size, descriptor_size,
                             descriptor_version, virtual_map);
      efi_call_phys_epilog();
      return status;
}

static efi_status_t
phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
{
      efi_status_t status;

      efi_call_phys_prelog();
      status = efi_call_phys(efi_phys.get_time, tm, tc);
      efi_call_phys_epilog();
      return status;
}

inline int efi_set_rtc_mmss(unsigned long nowtime)
{
      int real_seconds, real_minutes;
      efi_status_t      status;
      efi_time_t  eft;
      efi_time_cap_t    cap;

      spin_lock(&efi_rt_lock);
      status = efi.get_time(&eft, &cap);
      spin_unlock(&efi_rt_lock);
      if (status != EFI_SUCCESS)
            panic("Ooops, efitime: can't read time!\n");
      real_seconds = nowtime % 60;
      real_minutes = nowtime / 60;

      if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
            real_minutes += 30;
      real_minutes %= 60;

      eft.minute = real_minutes;
      eft.second = real_seconds;

      if (status != EFI_SUCCESS) {
            printk("Ooops: efitime: can't read time!\n");
            return -1;
      }
      return 0;
}
/*
 * This is used during kernel init before runtime
 * services have been remapped and also during suspend, therefore,
 * we'll need to call both in physical and virtual modes.
 */
inline unsigned long efi_get_time(void)
{
      efi_status_t status;
      efi_time_t eft;
      efi_time_cap_t cap;

      if (efi.get_time) {
            /* if we are in virtual mode use remapped function */
            status = efi.get_time(&eft, &cap);
      } else {
            /* we are in physical mode */
            status = phys_efi_get_time(&eft, &cap);
      }

      if (status != EFI_SUCCESS)
            printk("Oops: efitime: can't read time status: 0x%lx\n",status);

      return mktime(eft.year, eft.month, eft.day, eft.hour,
                  eft.minute, eft.second);
}

int is_available_memory(efi_memory_desc_t * md)
{
      if (!(md->attribute & EFI_MEMORY_WB))
            return 0;

      switch (md->type) {
            case EFI_LOADER_CODE:
            case EFI_LOADER_DATA:
            case EFI_BOOT_SERVICES_CODE:
            case EFI_BOOT_SERVICES_DATA:
            case EFI_CONVENTIONAL_MEMORY:
                  return 1;
      }
      return 0;
}

/*
 * We need to map the EFI memory map again after paging_init().
 */
void __init efi_map_memmap(void)
{
      memmap.map = NULL;

      memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
                  (memmap.nr_map * memmap.desc_size));
      if (memmap.map == NULL)
            printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");

      memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
}

#if EFI_DEBUG
static void __init print_efi_memmap(void)
{
      efi_memory_desc_t *md;
      void *p;
      int i;

      for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
            md = p;
            printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
                  "range=[0x%016llx-0x%016llx) (%lluMB)\n",
                  i, md->type, md->attribute, md->phys_addr,
                  md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
                  (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
      }
}
#endif  /*  EFI_DEBUG  */

/*
 * Walks the EFI memory map and calls CALLBACK once for each EFI
 * memory descriptor that has memory that is available for kernel use.
 */
void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
{
      int prev_valid = 0;
      struct range {
            unsigned long start;
            unsigned long end;
      } uninitialized_var(prev), curr;
      efi_memory_desc_t *md;
      unsigned long start, end;
      void *p;

      for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
            md = p;

            if ((md->num_pages == 0) || (!is_available_memory(md)))
                  continue;

            curr.start = md->phys_addr;
            curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);

            if (!prev_valid) {
                  prev = curr;
                  prev_valid = 1;
            } else {
                  if (curr.start < prev.start)
                        printk(KERN_INFO PFX "Unordered memory map\n");
                  if (prev.end == curr.start)
                        prev.end = curr.end;
                  else {
                        start =
                            (unsigned long) (PAGE_ALIGN(prev.start));
                        end = (unsigned long) (prev.end & PAGE_MASK);
                        if ((end > start)
                            && (*callback) (start, end, arg) < 0)
                              return;
                        prev = curr;
                  }
            }
      }
      if (prev_valid) {
            start = (unsigned long) PAGE_ALIGN(prev.start);
            end = (unsigned long) (prev.end & PAGE_MASK);
            if (end > start)
                  (*callback) (start, end, arg);
      }
}

void __init efi_init(void)
{
      efi_config_table_t *config_tables;
      efi_runtime_services_t *runtime;
      efi_char16_t *c16;
      char vendor[100] = "unknown";
      unsigned long num_config_tables;
      int i = 0;

      memset(&efi, 0, sizeof(efi) );
      memset(&efi_phys, 0, sizeof(efi_phys));

      efi_phys.systab =
            (efi_system_table_t *)boot_params.efi_info.efi_systab;
      memmap.phys_map = (void *)boot_params.efi_info.efi_memmap;
      memmap.nr_map = boot_params.efi_info.efi_memmap_size/
            boot_params.efi_info.efi_memdesc_size;
      memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
      memmap.desc_size = boot_params.efi_info.efi_memdesc_size;

      efi.systab = (efi_system_table_t *)
            boot_ioremap((unsigned long) efi_phys.systab,
                  sizeof(efi_system_table_t));
      /*
       * Verify the EFI Table
       */
      if (efi.systab == NULL)
            printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
      if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
            printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
      if ((efi.systab->hdr.revision >> 16) == 0)
            printk(KERN_ERR PFX "Warning: EFI system table version "
                   "%d.%02d, expected 1.00 or greater\n",
                   efi.systab->hdr.revision >> 16,
                   efi.systab->hdr.revision & 0xffff);

      /*
       * Grab some details from the system table
       */
      num_config_tables = efi.systab->nr_tables;
      config_tables = (efi_config_table_t *)efi.systab->tables;
      runtime = efi.systab->runtime;

      /*
       * Show what we know for posterity
       */
      c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
      if (c16) {
            for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
                  vendor[i] = *c16++;
            vendor[i] = '\0';
      } else
            printk(KERN_ERR PFX "Could not map the firmware vendor!\n");

      printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
             efi.systab->hdr.revision >> 16,
             efi.systab->hdr.revision & 0xffff, vendor);

      /*
       * Let's see what config tables the firmware passed to us.
       */
      config_tables = (efi_config_table_t *)
                        boot_ioremap((unsigned long) config_tables,
                          num_config_tables * sizeof(efi_config_table_t));

      if (config_tables == NULL)
            printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");

      efi.mps        = EFI_INVALID_TABLE_ADDR;
      efi.acpi       = EFI_INVALID_TABLE_ADDR;
      efi.acpi20     = EFI_INVALID_TABLE_ADDR;
      efi.smbios     = EFI_INVALID_TABLE_ADDR;
      efi.sal_systab = EFI_INVALID_TABLE_ADDR;
      efi.boot_info  = EFI_INVALID_TABLE_ADDR;
      efi.hcdp       = EFI_INVALID_TABLE_ADDR;
      efi.uga        = EFI_INVALID_TABLE_ADDR;

      for (i = 0; i < num_config_tables; i++) {
            if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
                  efi.mps = config_tables[i].table;
                  printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
            } else
                if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
                  efi.acpi20 = config_tables[i].table;
                  printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
            } else
                if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
                  efi.acpi = config_tables[i].table;
                  printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
            } else
                if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
                  efi.smbios = config_tables[i].table;
                  printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
            } else
                if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
                  efi.hcdp = config_tables[i].table;
                  printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
            } else
                if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
                  efi.uga = config_tables[i].table;
                  printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
            }
      }
      printk("\n");

      /*
       * Check out the runtime services table. We need to map
       * the runtime services table so that we can grab the physical
       * address of several of the EFI runtime functions, needed to
       * set the firmware into virtual mode.
       */

      runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
                                    runtime,
                                          sizeof(efi_runtime_services_t));
      if (runtime != NULL) {
            /*
             * We will only need *early* access to the following
             * two EFI runtime services before set_virtual_address_map
             * is invoked.
             */
            efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
            efi_phys.set_virtual_address_map =
                  (efi_set_virtual_address_map_t *)
                        runtime->set_virtual_address_map;
      } else
            printk(KERN_ERR PFX "Could not map the runtime service table!\n");

      /* Map the EFI memory map for use until paging_init() */
      memmap.map = boot_ioremap(boot_params.efi_info.efi_memmap,
                          boot_params.efi_info.efi_memmap_size);
      if (memmap.map == NULL)
            printk(KERN_ERR PFX "Could not map the EFI memory map!\n");

      memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);

#if EFI_DEBUG
      print_efi_memmap();
#endif
}

static inline void __init check_range_for_systab(efi_memory_desc_t *md)
{
      if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
            ((unsigned long)efi_phys.systab < md->phys_addr +
            ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
            unsigned long addr;

            addr = md->virt_addr - md->phys_addr +
                  (unsigned long)efi_phys.systab;
            efi.systab = (efi_system_table_t *)addr;
      }
}

/*
 * Wrap all the virtual calls in a way that forces the parameters on the stack.
 */

#define efi_call_virt(f, args...) \
     ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)

static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
{
      return efi_call_virt(get_time, tm, tc);
}

static efi_status_t virt_efi_set_time (efi_time_t *tm)
{
      return efi_call_virt(set_time, tm);
}

static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled,
                                    efi_bool_t *pending,
                                    efi_time_t *tm)
{
      return efi_call_virt(get_wakeup_time, enabled, pending, tm);
}

static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled,
                                    efi_time_t *tm)
{
      return efi_call_virt(set_wakeup_time, enabled, tm);
}

static efi_status_t virt_efi_get_variable (efi_char16_t *name,
                                 efi_guid_t *vendor, u32 *attr,
                                 unsigned long *data_size, void *data)
{
      return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
}

static efi_status_t virt_efi_get_next_variable (unsigned long *name_size,
                                    efi_char16_t *name,
                                    efi_guid_t *vendor)
{
      return efi_call_virt(get_next_variable, name_size, name, vendor);
}

static efi_status_t virt_efi_set_variable (efi_char16_t *name,
                                 efi_guid_t *vendor,
                                 unsigned long attr,
                                 unsigned long data_size, void *data)
{
      return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
}

static efi_status_t virt_efi_get_next_high_mono_count (u32 *count)
{
      return efi_call_virt(get_next_high_mono_count, count);
}

static void virt_efi_reset_system (int reset_type, efi_status_t status,
                           unsigned long data_size,
                           efi_char16_t *data)
{
      efi_call_virt(reset_system, reset_type, status, data_size, data);
}

/*
 * This function will switch the EFI runtime services to virtual mode.
 * Essentially, look through the EFI memmap and map every region that
 * has the runtime attribute bit set in its memory descriptor and update
 * that memory descriptor with the virtual address obtained from ioremap().
 * This enables the runtime services to be called without having to
 * thunk back into physical mode for every invocation.
 */

void __init efi_enter_virtual_mode(void)
{
      efi_memory_desc_t *md;
      efi_status_t status;
      void *p;

      efi.systab = NULL;

      for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
            md = p;

            if (!(md->attribute & EFI_MEMORY_RUNTIME))
                  continue;

            md->virt_addr = (unsigned long)ioremap(md->phys_addr,
                  md->num_pages << EFI_PAGE_SHIFT);
            if (!(unsigned long)md->virt_addr) {
                  printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
                        (unsigned long)md->phys_addr);
            }
            /* update the virtual address of the EFI system table */
            check_range_for_systab(md);
      }

      BUG_ON(!efi.systab);

      status = phys_efi_set_virtual_address_map(
                  memmap.desc_size * memmap.nr_map,
                  memmap.desc_size,
                  memmap.desc_version,
                        memmap.phys_map);

      if (status != EFI_SUCCESS) {
            printk (KERN_ALERT "You are screwed! "
                  "Unable to switch EFI into virtual mode "
                  "(status=%lx)\n", status);
            panic("EFI call to SetVirtualAddressMap() failed!");
      }

      /*
       * Now that EFI is in virtual mode, update the function
       * pointers in the runtime service table to the new virtual addresses.
       */

      efi.get_time = virt_efi_get_time;
      efi.set_time = virt_efi_set_time;
      efi.get_wakeup_time = virt_efi_get_wakeup_time;
      efi.set_wakeup_time = virt_efi_set_wakeup_time;
      efi.get_variable = virt_efi_get_variable;
      efi.get_next_variable = virt_efi_get_next_variable;
      efi.set_variable = virt_efi_set_variable;
      efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
      efi.reset_system = virt_efi_reset_system;
}

void __init
efi_initialize_iomem_resources(struct resource *code_resource,
                         struct resource *data_resource,
                         struct resource *bss_resource)
{
      struct resource *res;
      efi_memory_desc_t *md;
      void *p;

      for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
            md = p;

            if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
                0x100000000ULL)
                  continue;
            res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
            switch (md->type) {
            case EFI_RESERVED_TYPE:
                  res->name = "Reserved Memory";
                  break;
            case EFI_LOADER_CODE:
                  res->name = "Loader Code";
                  break;
            case EFI_LOADER_DATA:
                  res->name = "Loader Data";
                  break;
            case EFI_BOOT_SERVICES_DATA:
                  res->name = "BootServices Data";
                  break;
            case EFI_BOOT_SERVICES_CODE:
                  res->name = "BootServices Code";
                  break;
            case EFI_RUNTIME_SERVICES_CODE:
                  res->name = "Runtime Service Code";
                  break;
            case EFI_RUNTIME_SERVICES_DATA:
                  res->name = "Runtime Service Data";
                  break;
            case EFI_CONVENTIONAL_MEMORY:
                  res->name = "Conventional Memory";
                  break;
            case EFI_UNUSABLE_MEMORY:
                  res->name = "Unusable Memory";
                  break;
            case EFI_ACPI_RECLAIM_MEMORY:
                  res->name = "ACPI Reclaim";
                  break;
            case EFI_ACPI_MEMORY_NVS:
                  res->name = "ACPI NVS";
                  break;
            case EFI_MEMORY_MAPPED_IO:
                  res->name = "Memory Mapped IO";
                  break;
            case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
                  res->name = "Memory Mapped IO Port Space";
                  break;
            default:
                  res->name = "Reserved";
                  break;
            }
            res->start = md->phys_addr;
            res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
            res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
            if (request_resource(&iomem_resource, res) < 0)
                  printk(KERN_ERR PFX "Failed to allocate res %s : "
                        "0x%llx-0x%llx\n", res->name,
                        (unsigned long long)res->start,
                        (unsigned long long)res->end);
            /*
             * We don't know which region contains kernel data so we try
             * it repeatedly and let the resource manager test it.
             */
            if (md->type == EFI_CONVENTIONAL_MEMORY) {
                  request_resource(res, code_resource);
                  request_resource(res, data_resource);
                  request_resource(res, bss_resource);
#ifdef CONFIG_KEXEC
                  request_resource(res, &crashk_res);
#endif
            }
      }
}

/*
 * Convenience functions to obtain memory types and attributes
 */

u32 efi_mem_type(unsigned long phys_addr)
{
      efi_memory_desc_t *md;
      void *p;

      for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
            md = p;
            if ((md->phys_addr <= phys_addr) && (phys_addr <
                  (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
                  return md->type;
      }
      return 0;
}

u64 efi_mem_attributes(unsigned long phys_addr)
{
      efi_memory_desc_t *md;
      void *p;

      for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
            md = p;
            if ((md->phys_addr <= phys_addr) && (phys_addr <
                  (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
                  return md->attribute;
      }
      return 0;
}

Generated by  Doxygen 1.6.0   Back to index