Logo Search packages:      
Sourcecode: linux version File versions  Download package

eth1394.c

/*
 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
 *
 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
 *               2000 Bonin Franck <boninf@free.fr>
 *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
 *
 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
 * This driver intends to support RFC 2734, which describes a method for
 * transporting IPv4 datagrams over IEEE-1394 serial busses.
 *
 * TODO:
 * RFC 2734 related:
 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
 *
 * Non-RFC 2734 related:
 * - Handle fragmented skb's coming from the networking layer.
 * - Move generic GASP reception to core 1394 code
 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
 * - Stability improvements
 * - Performance enhancements
 * - Consider garbage collecting old partial datagrams after X amount of time
 */

#include <linux/module.h>

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/workqueue.h>

#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/bitops.h>
#include <linux/ethtool.h>
#include <asm/uaccess.h>
#include <asm/delay.h>
#include <asm/unaligned.h>
#include <net/arp.h>

#include "config_roms.h"
#include "csr1212.h"
#include "eth1394.h"
#include "highlevel.h"
#include "ieee1394.h"
#include "ieee1394_core.h"
#include "ieee1394_hotplug.h"
#include "ieee1394_transactions.h"
#include "ieee1394_types.h"
#include "iso.h"
#include "nodemgr.h"

#define ETH1394_PRINT_G(level, fmt, args...) \
      printk(level "%s: " fmt, driver_name, ## args)

#define ETH1394_PRINT(level, dev_name, fmt, args...) \
      printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)

struct fragment_info {
      struct list_head list;
      int offset;
      int len;
};

struct partial_datagram {
      struct list_head list;
      u16 dgl;
      u16 dg_size;
      u16 ether_type;
      struct sk_buff *skb;
      char *pbuf;
      struct list_head frag_info;
};

struct pdg_list {
      struct list_head list;  /* partial datagram list per node   */
      unsigned int sz;  /* partial datagram list size per node    */
      spinlock_t lock;  /* partial datagram lock            */
};

struct eth1394_host_info {
      struct hpsb_host *host;
      struct net_device *dev;
};

struct eth1394_node_ref {
      struct unit_directory *ud;
      struct list_head list;
};

struct eth1394_node_info {
      u16 maxpayload;         /* max payload                */
      u8 sspd;          /* max speed                  */
      u64 fifo;         /* FIFO address               */
      struct pdg_list pdg;    /* partial RX datagram lists  */
      int dgl;          /* outgoing datagram label    */
};

static const char driver_name[] = "eth1394";

static struct kmem_cache *packet_task_cache;

static struct hpsb_highlevel eth1394_highlevel;

/* Use common.lf to determine header len */
static const int hdr_type_len[] = {
      sizeof(struct eth1394_uf_hdr),
      sizeof(struct eth1394_ff_hdr),
      sizeof(struct eth1394_sf_hdr),
      sizeof(struct eth1394_sf_hdr)
};

static const u16 eth1394_speedto_maxpayload[] = {
/*     S100, S200, S400, S800, S1600, S3200 */
      512, 1024, 2048, 4096,  4096,  4096
};

MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
MODULE_LICENSE("GPL");

/*
 * The max_partial_datagrams parameter is the maximum number of fragmented
 * datagrams per node that eth1394 will keep in memory.  Providing an upper
 * bound allows us to limit the amount of memory that partial datagrams
 * consume in the event that some partial datagrams are never completed.
 */
static int max_partial_datagrams = 25;
module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_partial_datagrams,
             "Maximum number of partially received fragmented datagrams "
             "(default = 25).");


static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
                      unsigned short type, const void *daddr,
                      const void *saddr, unsigned len);
static int ether1394_rebuild_header(struct sk_buff *skb);
static int ether1394_header_parse(const struct sk_buff *skb,
                          unsigned char *haddr);
static int ether1394_header_cache(const struct neighbour *neigh,
                          struct hh_cache *hh);
static void ether1394_header_cache_update(struct hh_cache *hh,
                                const struct net_device *dev,
                                const unsigned char *haddr);
static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
static void ether1394_iso(struct hpsb_iso *iso);

static struct ethtool_ops ethtool_ops;

static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
                     quadlet_t *data, u64 addr, size_t len, u16 flags);
static void ether1394_add_host(struct hpsb_host *host);
static void ether1394_remove_host(struct hpsb_host *host);
static void ether1394_host_reset(struct hpsb_host *host);

/* Function for incoming 1394 packets */
static struct hpsb_address_ops addr_ops = {
      .write =    ether1394_write,
};

/* Ieee1394 highlevel driver functions */
static struct hpsb_highlevel eth1394_highlevel = {
      .name =           driver_name,
      .add_host = ether1394_add_host,
      .remove_host =    ether1394_remove_host,
      .host_reset =     ether1394_host_reset,
};

static int ether1394_recv_init(struct eth1394_priv *priv)
{
      unsigned int iso_buf_size;

      /* FIXME: rawiso limits us to PAGE_SIZE */
      iso_buf_size = min((unsigned int)PAGE_SIZE,
                     2 * (1U << (priv->host->csr.max_rec + 1)));

      priv->iso = hpsb_iso_recv_init(priv->host,
                               ETHER1394_GASP_BUFFERS * iso_buf_size,
                               ETHER1394_GASP_BUFFERS,
                               priv->broadcast_channel,
                               HPSB_ISO_DMA_PACKET_PER_BUFFER,
                               1, ether1394_iso);
      if (priv->iso == NULL) {
            ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
            priv->bc_state = ETHER1394_BC_ERROR;
            return -EAGAIN;
      }

      if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
            priv->bc_state = ETHER1394_BC_STOPPED;
      else
            priv->bc_state = ETHER1394_BC_RUNNING;
      return 0;
}

/* This is called after an "ifup" */
static int ether1394_open(struct net_device *dev)
{
      struct eth1394_priv *priv = netdev_priv(dev);
      int ret;

      if (priv->bc_state == ETHER1394_BC_ERROR) {
            ret = ether1394_recv_init(priv);
            if (ret)
                  return ret;
      }
      netif_start_queue(dev);
      return 0;
}

/* This is called after an "ifdown" */
static int ether1394_stop(struct net_device *dev)
{
      /* flush priv->wake */
      flush_scheduled_work();

      netif_stop_queue(dev);
      return 0;
}

/* Return statistics to the caller */
static struct net_device_stats *ether1394_stats(struct net_device *dev)
{
      return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
}

/* FIXME: What to do if we timeout? I think a host reset is probably in order,
 * so that's what we do. Should we increment the stat counters too?  */
static void ether1394_tx_timeout(struct net_device *dev)
{
      struct hpsb_host *host =
                  ((struct eth1394_priv *)netdev_priv(dev))->host;

      ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
      ether1394_host_reset(host);
}

static inline int ether1394_max_mtu(struct hpsb_host* host)
{
      return (1 << (host->csr.max_rec + 1))
                  - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
}

static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
{
      int max_mtu;

      if (new_mtu < 68)
            return -EINVAL;

      max_mtu = ether1394_max_mtu(
                  ((struct eth1394_priv *)netdev_priv(dev))->host);
      if (new_mtu > max_mtu) {
            ETH1394_PRINT(KERN_INFO, dev->name,
                        "Local node constrains MTU to %d\n", max_mtu);
            return -ERANGE;
      }

      dev->mtu = new_mtu;
      return 0;
}

static void purge_partial_datagram(struct list_head *old)
{
      struct partial_datagram *pd;
      struct list_head *lh, *n;
      struct fragment_info *fi;

      pd = list_entry(old, struct partial_datagram, list);

      list_for_each_safe(lh, n, &pd->frag_info) {
            fi = list_entry(lh, struct fragment_info, list);
            list_del(lh);
            kfree(fi);
      }
      list_del(old);
      kfree_skb(pd->skb);
      kfree(pd);
}

/******************************************
 * 1394 bus activity functions
 ******************************************/

static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
                                      struct unit_directory *ud)
{
      struct eth1394_node_ref *node;

      list_for_each_entry(node, inl, list)
            if (node->ud == ud)
                  return node;

      return NULL;
}

static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
                                           u64 guid)
{
      struct eth1394_node_ref *node;

      list_for_each_entry(node, inl, list)
            if (node->ud->ne->guid == guid)
                  return node;

      return NULL;
}

static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
                                           nodeid_t nodeid)
{
      struct eth1394_node_ref *node;

      list_for_each_entry(node, inl, list)
            if (node->ud->ne->nodeid == nodeid)
                  return node;

      return NULL;
}

static int eth1394_new_node(struct eth1394_host_info *hi,
                      struct unit_directory *ud)
{
      struct eth1394_priv *priv;
      struct eth1394_node_ref *new_node;
      struct eth1394_node_info *node_info;

      new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
      if (!new_node)
            return -ENOMEM;

      node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
      if (!node_info) {
            kfree(new_node);
            return -ENOMEM;
      }

      spin_lock_init(&node_info->pdg.lock);
      INIT_LIST_HEAD(&node_info->pdg.list);
      node_info->pdg.sz = 0;
      node_info->fifo = CSR1212_INVALID_ADDR_SPACE;

      ud->device.driver_data = node_info;
      new_node->ud = ud;

      priv = netdev_priv(hi->dev);
      list_add_tail(&new_node->list, &priv->ip_node_list);
      return 0;
}

static int eth1394_probe(struct device *dev)
{
      struct unit_directory *ud;
      struct eth1394_host_info *hi;

      ud = container_of(dev, struct unit_directory, device);
      hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
      if (!hi)
            return -ENOENT;

      return eth1394_new_node(hi, ud);
}

static int eth1394_remove(struct device *dev)
{
      struct unit_directory *ud;
      struct eth1394_host_info *hi;
      struct eth1394_priv *priv;
      struct eth1394_node_ref *old_node;
      struct eth1394_node_info *node_info;
      struct list_head *lh, *n;
      unsigned long flags;

      ud = container_of(dev, struct unit_directory, device);
      hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
      if (!hi)
            return -ENOENT;

      priv = netdev_priv(hi->dev);

      old_node = eth1394_find_node(&priv->ip_node_list, ud);
      if (!old_node)
            return 0;

      list_del(&old_node->list);
      kfree(old_node);

      node_info = (struct eth1394_node_info*)ud->device.driver_data;

      spin_lock_irqsave(&node_info->pdg.lock, flags);
      /* The partial datagram list should be empty, but we'll just
       * make sure anyway... */
      list_for_each_safe(lh, n, &node_info->pdg.list)
            purge_partial_datagram(lh);
      spin_unlock_irqrestore(&node_info->pdg.lock, flags);

      kfree(node_info);
      ud->device.driver_data = NULL;
      return 0;
}

static int eth1394_update(struct unit_directory *ud)
{
      struct eth1394_host_info *hi;
      struct eth1394_priv *priv;
      struct eth1394_node_ref *node;

      hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
      if (!hi)
            return -ENOENT;

      priv = netdev_priv(hi->dev);
      node = eth1394_find_node(&priv->ip_node_list, ud);
      if (node)
            return 0;

      return eth1394_new_node(hi, ud);
}

static struct ieee1394_device_id eth1394_id_table[] = {
      {
            .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
                        IEEE1394_MATCH_VERSION),
            .specifier_id =   ETHER1394_GASP_SPECIFIER_ID,
            .version = ETHER1394_GASP_VERSION,
      },
      {}
};

MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);

static struct hpsb_protocol_driver eth1394_proto_driver = {
      .name       = driver_name,
      .id_table   = eth1394_id_table,
      .update           = eth1394_update,
      .driver           = {
            .probe            = eth1394_probe,
            .remove           = eth1394_remove,
      },
};

static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
{
      unsigned long flags;
      int i;
      struct eth1394_priv *priv = netdev_priv(dev);
      struct hpsb_host *host = priv->host;
      u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
      int max_speed = IEEE1394_SPEED_MAX;

      spin_lock_irqsave(&priv->lock, flags);

      memset(priv->ud_list, 0, sizeof(priv->ud_list));
      priv->bc_maxpayload = 512;

      /* Determine speed limit */
      /* FIXME: This is broken for nodes with link speed < PHY speed,
       * and it is suboptimal for S200B...S800B hardware.
       * The result of nodemgr's speed probe should be used somehow. */
      for (i = 0; i < host->node_count; i++) {
            /* take care of S100B...S400B PHY ports */
            if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
                  max_speed = IEEE1394_SPEED_100;
                  break;
            }
            if (max_speed > host->speed[i])
                  max_speed = host->speed[i];
      }
      priv->bc_sspd = max_speed;

      if (set_mtu) {
            /* Use the RFC 2734 default 1500 octets or the maximum payload
             * as initial MTU */
            dev->mtu = min(1500, ether1394_max_mtu(host));

            /* Set our hardware address while we're at it */
            memcpy(dev->dev_addr, &guid, sizeof(u64));
            memset(dev->broadcast, 0xff, sizeof(u64));
      }

      spin_unlock_irqrestore(&priv->lock, flags);
}

static const struct header_ops ether1394_header_ops = {
      .create           = ether1394_header,
      .rebuild    = ether1394_rebuild_header,
      .cache      = ether1394_header_cache,
      .cache_update     = ether1394_header_cache_update,
      .parse            = ether1394_header_parse,
};

static void ether1394_init_dev(struct net_device *dev)
{
      dev->open         = ether1394_open;
      dev->stop         = ether1394_stop;
      dev->hard_start_xmit    = ether1394_tx;
      dev->get_stats          = ether1394_stats;
      dev->tx_timeout         = ether1394_tx_timeout;
      dev->change_mtu         = ether1394_change_mtu;

      dev->header_ops         = &ether1394_header_ops;

      SET_ETHTOOL_OPS(dev, &ethtool_ops);

      dev->watchdog_timeo     = ETHER1394_TIMEOUT;
      dev->flags        = IFF_BROADCAST | IFF_MULTICAST;
      dev->features           = NETIF_F_HIGHDMA;
      dev->addr_len           = ETH1394_ALEN;
      dev->hard_header_len    = ETH1394_HLEN;
      dev->type         = ARPHRD_IEEE1394;

      /* FIXME: This value was copied from ether_setup(). Is it too much? */
      dev->tx_queue_len = 1000;
}

/*
 * Wake the queue up after commonly encountered transmit failure conditions are
 * hopefully over.  Currently only tlabel exhaustion is accounted for.
 */
static void ether1394_wake_queue(struct work_struct *work)
{
      struct eth1394_priv *priv;
      struct hpsb_packet *packet;

      priv = container_of(work, struct eth1394_priv, wake);
      packet = hpsb_alloc_packet(0);

      /* This is really bad, but unjam the queue anyway. */
      if (!packet)
            goto out;

      packet->host = priv->host;
      packet->node_id = priv->wake_node;
      /*
       * A transaction label is all we really want.  If we get one, it almost
       * always means we can get a lot more because the ieee1394 core recycled
       * a whole batch of tlabels, at last.
       */
      if (hpsb_get_tlabel(packet) == 0)
            hpsb_free_tlabel(packet);

      hpsb_free_packet(packet);
out:
      netif_wake_queue(priv->wake_dev);
}

/*
 * This function is called every time a card is found. It is generally called
 * when the module is installed. This is where we add all of our ethernet
 * devices. One for each host.
 */
static void ether1394_add_host(struct hpsb_host *host)
{
      struct eth1394_host_info *hi = NULL;
      struct net_device *dev = NULL;
      struct eth1394_priv *priv;
      u64 fifo_addr;

      if (hpsb_config_rom_ip1394_add(host) != 0) {
            ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
            return;
      }

      fifo_addr = hpsb_allocate_and_register_addrspace(
                  &eth1394_highlevel, host, &addr_ops,
                  ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
                  CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
      if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
            ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
            hpsb_config_rom_ip1394_remove(host);
            return;
      }

      dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
      if (dev == NULL) {
            ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
            goto out;
      }

      SET_NETDEV_DEV(dev, &host->device);

      priv = netdev_priv(dev);
      INIT_LIST_HEAD(&priv->ip_node_list);
      spin_lock_init(&priv->lock);
      priv->host = host;
      priv->local_fifo = fifo_addr;
      INIT_WORK(&priv->wake, ether1394_wake_queue);
      priv->wake_dev = dev;

      hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
      if (hi == NULL) {
            ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
            goto out;
      }

      ether1394_reset_priv(dev, 1);

      if (register_netdev(dev)) {
            ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
            goto out;
      }

      ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
                  host->id);

      hi->host = host;
      hi->dev = dev;

      /* Ignore validity in hopes that it will be set in the future.  It'll
       * be checked when the eth device is opened. */
      priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;

      ether1394_recv_init(priv);
      return;
out:
      if (dev)
            free_netdev(dev);
      if (hi)
            hpsb_destroy_hostinfo(&eth1394_highlevel, host);
      hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
      hpsb_config_rom_ip1394_remove(host);
}

/* Remove a card from our list */
static void ether1394_remove_host(struct hpsb_host *host)
{
      struct eth1394_host_info *hi;
      struct eth1394_priv *priv;

      hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
      if (!hi)
            return;
      priv = netdev_priv(hi->dev);
      hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
      hpsb_config_rom_ip1394_remove(host);
      if (priv->iso)
            hpsb_iso_shutdown(priv->iso);
      unregister_netdev(hi->dev);
      free_netdev(hi->dev);
}

/* A bus reset happened */
static void ether1394_host_reset(struct hpsb_host *host)
{
      struct eth1394_host_info *hi;
      struct eth1394_priv *priv;
      struct net_device *dev;
      struct list_head *lh, *n;
      struct eth1394_node_ref *node;
      struct eth1394_node_info *node_info;
      unsigned long flags;

      hi = hpsb_get_hostinfo(&eth1394_highlevel, host);

      /* This can happen for hosts that we don't use */
      if (!hi)
            return;

      dev = hi->dev;
      priv = netdev_priv(dev);

      /* Reset our private host data, but not our MTU */
      netif_stop_queue(dev);
      ether1394_reset_priv(dev, 0);

      list_for_each_entry(node, &priv->ip_node_list, list) {
            node_info = node->ud->device.driver_data;

            spin_lock_irqsave(&node_info->pdg.lock, flags);

            list_for_each_safe(lh, n, &node_info->pdg.list)
                  purge_partial_datagram(lh);

            INIT_LIST_HEAD(&(node_info->pdg.list));
            node_info->pdg.sz = 0;

            spin_unlock_irqrestore(&node_info->pdg.lock, flags);
      }

      netif_wake_queue(dev);
}

/******************************************
 * HW Header net device functions
 ******************************************/
/* These functions have been adapted from net/ethernet/eth.c */

/* Create a fake MAC header for an arbitrary protocol layer.
 * saddr=NULL means use device source address
 * daddr=NULL means leave destination address (eg unresolved arp). */
static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
                      unsigned short type, const void *daddr,
                      const void *saddr, unsigned len)
{
      struct eth1394hdr *eth =
                  (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);

      eth->h_proto = htons(type);

      if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
            memset(eth->h_dest, 0, dev->addr_len);
            return dev->hard_header_len;
      }

      if (daddr) {
            memcpy(eth->h_dest, daddr, dev->addr_len);
            return dev->hard_header_len;
      }

      return -dev->hard_header_len;
}

/* Rebuild the faked MAC header. This is called after an ARP
 * (or in future other address resolution) has completed on this
 * sk_buff. We now let ARP fill in the other fields.
 *
 * This routine CANNOT use cached dst->neigh!
 * Really, it is used only when dst->neigh is wrong.
 */
static int ether1394_rebuild_header(struct sk_buff *skb)
{
      struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;

      if (eth->h_proto == htons(ETH_P_IP))
            return arp_find((unsigned char *)&eth->h_dest, skb);

      ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
                  "unable to resolve type %04x addresses\n",
                  ntohs(eth->h_proto));
      return 0;
}

static int ether1394_header_parse(const struct sk_buff *skb,
                          unsigned char *haddr)
{
      memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
      return ETH1394_ALEN;
}

static int ether1394_header_cache(const struct neighbour *neigh,
                          struct hh_cache *hh)
{
      unsigned short type = hh->hh_type;
      struct net_device *dev = neigh->dev;
      struct eth1394hdr *eth =
            (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);

      if (type == htons(ETH_P_802_3))
            return -1;

      eth->h_proto = type;
      memcpy(eth->h_dest, neigh->ha, dev->addr_len);

      hh->hh_len = ETH1394_HLEN;
      return 0;
}

/* Called by Address Resolution module to notify changes in address. */
static void ether1394_header_cache_update(struct hh_cache *hh,
                                const struct net_device *dev,
                                const unsigned char * haddr)
{
      memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
}

/******************************************
 * Datagram reception code
 ******************************************/

/* Copied from net/ethernet/eth.c */
static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
{
      struct eth1394hdr *eth;
      unsigned char *rawp;

      skb_reset_mac_header(skb);
      skb_pull(skb, ETH1394_HLEN);
      eth = eth1394_hdr(skb);

      if (*eth->h_dest & 1) {
            if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
                  skb->pkt_type = PACKET_BROADCAST;
#if 0
            else
                  skb->pkt_type = PACKET_MULTICAST;
#endif
      } else {
            if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
                  skb->pkt_type = PACKET_OTHERHOST;
      }

      if (ntohs(eth->h_proto) >= 1536)
            return eth->h_proto;

      rawp = skb->data;

      if (*(unsigned short *)rawp == 0xFFFF)
            return htons(ETH_P_802_3);

      return htons(ETH_P_802_2);
}

/* Parse an encapsulated IP1394 header into an ethernet frame packet.
 * We also perform ARP translation here, if need be.  */
static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
                         nodeid_t srcid, nodeid_t destid,
                         u16 ether_type)
{
      struct eth1394_priv *priv = netdev_priv(dev);
      u64 dest_hw;
      unsigned short ret = 0;

      /* Setup our hw addresses. We use these to build the ethernet header. */
      if (destid == (LOCAL_BUS | ALL_NODES))
            dest_hw = ~0ULL;  /* broadcast */
      else
            dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
                              priv->host->csr.guid_lo);

      /* If this is an ARP packet, convert it. First, we want to make
       * use of some of the fields, since they tell us a little bit
       * about the sending machine.  */
      if (ether_type == htons(ETH_P_ARP)) {
            struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
            struct arphdr *arp = (struct arphdr *)skb->data;
            unsigned char *arp_ptr = (unsigned char *)(arp + 1);
            u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
                                 ntohl(arp1394->fifo_lo);
            u8 max_rec = min(priv->host->csr.max_rec,
                         (u8)(arp1394->max_rec));
            int sspd = arp1394->sspd;
            u16 maxpayload;
            struct eth1394_node_ref *node;
            struct eth1394_node_info *node_info;
            __be64 guid;

            /* Sanity check. MacOSX seems to be sending us 131 in this
             * field (atleast on my Panther G5). Not sure why. */
            if (sspd > 5 || sspd < 0)
                  sspd = 0;

            maxpayload = min(eth1394_speedto_maxpayload[sspd],
                         (u16)(1 << (max_rec + 1)));

            guid = get_unaligned(&arp1394->s_uniq_id);
            node = eth1394_find_node_guid(&priv->ip_node_list,
                                    be64_to_cpu(guid));
            if (!node)
                  return 0;

            node_info =
                (struct eth1394_node_info *)node->ud->device.driver_data;

            /* Update our speed/payload/fifo_offset table */
            node_info->maxpayload = maxpayload;
            node_info->sspd = sspd;
            node_info->fifo = fifo_addr;

            /* Now that we're done with the 1394 specific stuff, we'll
             * need to alter some of the data.  Believe it or not, all
             * that needs to be done is sender_IP_address needs to be
             * moved, the destination hardware address get stuffed
             * in and the hardware address length set to 8.
             *
             * IMPORTANT: The code below overwrites 1394 specific data
             * needed above so keep the munging of the data for the
             * higher level IP stack last. */

            arp->ar_hln = 8;
            arp_ptr += arp->ar_hln;       /* skip over sender unique id */
            *(u32 *)arp_ptr = arp1394->sip;     /* move sender IP addr */
            arp_ptr += arp->ar_pln;       /* skip over sender IP addr */

            if (arp->ar_op == htons(ARPOP_REQUEST))
                  memset(arp_ptr, 0, sizeof(u64));
            else
                  memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
      }

      /* Now add the ethernet header. */
      if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
                      skb->len) >= 0)
            ret = ether1394_type_trans(skb, dev);

      return ret;
}

static int fragment_overlap(struct list_head *frag_list, int offset, int len)
{
      struct fragment_info *fi;
      int end = offset + len;

      list_for_each_entry(fi, frag_list, list)
            if (offset < fi->offset + fi->len && end > fi->offset)
                  return 1;

      return 0;
}

static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
{
      struct partial_datagram *pd;

      list_for_each_entry(pd, pdgl, list)
            if (pd->dgl == dgl)
                  return &pd->list;

      return NULL;
}

/* Assumes that new fragment does not overlap any existing fragments */
static int new_fragment(struct list_head *frag_info, int offset, int len)
{
      struct list_head *lh;
      struct fragment_info *fi, *fi2, *new;

      list_for_each(lh, frag_info) {
            fi = list_entry(lh, struct fragment_info, list);
            if (fi->offset + fi->len == offset) {
                  /* The new fragment can be tacked on to the end */
                  fi->len += len;
                  /* Did the new fragment plug a hole? */
                  fi2 = list_entry(lh->next, struct fragment_info, list);
                  if (fi->offset + fi->len == fi2->offset) {
                        /* glue fragments together */
                        fi->len += fi2->len;
                        list_del(lh->next);
                        kfree(fi2);
                  }
                  return 0;
            } else if (offset + len == fi->offset) {
                  /* The new fragment can be tacked on to the beginning */
                  fi->offset = offset;
                  fi->len += len;
                  /* Did the new fragment plug a hole? */
                  fi2 = list_entry(lh->prev, struct fragment_info, list);
                  if (fi2->offset + fi2->len == fi->offset) {
                        /* glue fragments together */
                        fi2->len += fi->len;
                        list_del(lh);
                        kfree(fi);
                  }
                  return 0;
            } else if (offset > fi->offset + fi->len) {
                  break;
            } else if (offset + len < fi->offset) {
                  lh = lh->prev;
                  break;
            }
      }

      new = kmalloc(sizeof(*new), GFP_ATOMIC);
      if (!new)
            return -ENOMEM;

      new->offset = offset;
      new->len = len;

      list_add(&new->list, lh);
      return 0;
}

static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
                        int dgl, int dg_size, char *frag_buf,
                        int frag_off, int frag_len)
{
      struct partial_datagram *new;

      new = kmalloc(sizeof(*new), GFP_ATOMIC);
      if (!new)
            return -ENOMEM;

      INIT_LIST_HEAD(&new->frag_info);

      if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
            kfree(new);
            return -ENOMEM;
      }

      new->dgl = dgl;
      new->dg_size = dg_size;

      new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
      if (!new->skb) {
            struct fragment_info *fi = list_entry(new->frag_info.next,
                                          struct fragment_info,
                                          list);
            kfree(fi);
            kfree(new);
            return -ENOMEM;
      }

      skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
      new->pbuf = skb_put(new->skb, dg_size);
      memcpy(new->pbuf + frag_off, frag_buf, frag_len);

      list_add(&new->list, pdgl);
      return 0;
}

static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
                           char *frag_buf, int frag_off, int frag_len)
{
      struct partial_datagram *pd =
                  list_entry(lh, struct partial_datagram, list);

      if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
            return -ENOMEM;

      memcpy(pd->pbuf + frag_off, frag_buf, frag_len);

      /* Move list entry to beginnig of list so that oldest partial
       * datagrams percolate to the end of the list */
      list_move(lh, pdgl);
      return 0;
}

static int is_datagram_complete(struct list_head *lh, int dg_size)
{
      struct partial_datagram *pd;
      struct fragment_info *fi;

      pd = list_entry(lh, struct partial_datagram, list);
      fi = list_entry(pd->frag_info.next, struct fragment_info, list);

      return (fi->len == dg_size);
}

/* Packet reception. We convert the IP1394 encapsulation header to an
 * ethernet header, and fill it with some of our other fields. This is
 * an incoming packet from the 1394 bus.  */
static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
                          char *buf, int len)
{
      struct sk_buff *skb;
      unsigned long flags;
      struct eth1394_priv *priv = netdev_priv(dev);
      union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
      u16 ether_type = 0;  /* initialized to clear warning */
      int hdr_len;
      struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
      struct eth1394_node_info *node_info;

      if (!ud) {
            struct eth1394_node_ref *node;
            node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
            if (unlikely(!node)) {
                  HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
                           "lookup failure: " NODE_BUS_FMT,
                           NODE_BUS_ARGS(priv->host, srcid));
                  priv->stats.rx_dropped++;
                  return -1;
            }
            ud = node->ud;

            priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
      }

      node_info = (struct eth1394_node_info *)ud->device.driver_data;

      /* First, did we receive a fragmented or unfragmented datagram? */
      hdr->words.word1 = ntohs(hdr->words.word1);

      hdr_len = hdr_type_len[hdr->common.lf];

      if (hdr->common.lf == ETH1394_HDR_LF_UF) {
            /* An unfragmented datagram has been received by the ieee1394
             * bus. Build an skbuff around it so we can pass it to the
             * high level network layer. */

            skb = dev_alloc_skb(len + dev->hard_header_len + 15);
            if (unlikely(!skb)) {
                  ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
                  priv->stats.rx_dropped++;
                  return -1;
            }
            skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
            memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
                   len - hdr_len);
            ether_type = hdr->uf.ether_type;
      } else {
            /* A datagram fragment has been received, now the fun begins. */

            struct list_head *pdgl, *lh;
            struct partial_datagram *pd;
            int fg_off;
            int fg_len = len - hdr_len;
            int dg_size;
            int dgl;
            int retval;
            struct pdg_list *pdg = &(node_info->pdg);

            hdr->words.word3 = ntohs(hdr->words.word3);
            /* The 4th header word is reserved so no need to do ntohs() */

            if (hdr->common.lf == ETH1394_HDR_LF_FF) {
                  ether_type = hdr->ff.ether_type;
                  dgl = hdr->ff.dgl;
                  dg_size = hdr->ff.dg_size + 1;
                  fg_off = 0;
            } else {
                  hdr->words.word2 = ntohs(hdr->words.word2);
                  dgl = hdr->sf.dgl;
                  dg_size = hdr->sf.dg_size + 1;
                  fg_off = hdr->sf.fg_off;
            }
            spin_lock_irqsave(&pdg->lock, flags);

            pdgl = &(pdg->list);
            lh = find_partial_datagram(pdgl, dgl);

            if (lh == NULL) {
                  while (pdg->sz >= max_partial_datagrams) {
                        /* remove the oldest */
                        purge_partial_datagram(pdgl->prev);
                        pdg->sz--;
                  }

                  retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
                                          buf + hdr_len, fg_off,
                                          fg_len);
                  if (retval < 0) {
                        spin_unlock_irqrestore(&pdg->lock, flags);
                        goto bad_proto;
                  }
                  pdg->sz++;
                  lh = find_partial_datagram(pdgl, dgl);
            } else {
                  pd = list_entry(lh, struct partial_datagram, list);

                  if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
                        /* Overlapping fragments, obliterate old
                         * datagram and start new one. */
                        purge_partial_datagram(lh);
                        retval = new_partial_datagram(dev, pdgl, dgl,
                                                dg_size,
                                                buf + hdr_len,
                                                fg_off, fg_len);
                        if (retval < 0) {
                              pdg->sz--;
                              spin_unlock_irqrestore(&pdg->lock, flags);
                              goto bad_proto;
                        }
                  } else {
                        retval = update_partial_datagram(pdgl, lh,
                                                 buf + hdr_len,
                                                 fg_off, fg_len);
                        if (retval < 0) {
                              /* Couldn't save off fragment anyway
                               * so might as well obliterate the
                               * datagram now. */
                              purge_partial_datagram(lh);
                              pdg->sz--;
                              spin_unlock_irqrestore(&pdg->lock, flags);
                              goto bad_proto;
                        }
                  } /* fragment overlap */
            } /* new datagram or add to existing one */

            pd = list_entry(lh, struct partial_datagram, list);

            if (hdr->common.lf == ETH1394_HDR_LF_FF)
                  pd->ether_type = ether_type;

            if (is_datagram_complete(lh, dg_size)) {
                  ether_type = pd->ether_type;
                  pdg->sz--;
                  skb = skb_get(pd->skb);
                  purge_partial_datagram(lh);
                  spin_unlock_irqrestore(&pdg->lock, flags);
            } else {
                  /* Datagram is not complete, we're done for the
                   * moment. */
                  spin_unlock_irqrestore(&pdg->lock, flags);
                  return 0;
            }
      } /* unframgented datagram or fragmented one */

      /* Write metadata, and then pass to the receive level */
      skb->dev = dev;
      skb->ip_summed = CHECKSUM_UNNECESSARY;    /* don't check it */

      /* Parse the encapsulation header. This actually does the job of
       * converting to an ethernet frame header, aswell as arp
       * conversion if needed. ARP conversion is easier in this
       * direction, since we are using ethernet as our backend.  */
      skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
                                    ether_type);

      spin_lock_irqsave(&priv->lock, flags);

      if (!skb->protocol) {
            priv->stats.rx_errors++;
            priv->stats.rx_dropped++;
            dev_kfree_skb_any(skb);
      } else if (netif_rx(skb) == NET_RX_DROP) {
            priv->stats.rx_errors++;
            priv->stats.rx_dropped++;
      } else {
            priv->stats.rx_packets++;
            priv->stats.rx_bytes += skb->len;
      }

      spin_unlock_irqrestore(&priv->lock, flags);

bad_proto:
      if (netif_queue_stopped(dev))
            netif_wake_queue(dev);

      dev->last_rx = jiffies;

      return 0;
}

static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
                     quadlet_t *data, u64 addr, size_t len, u16 flags)
{
      struct eth1394_host_info *hi;

      hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
      if (unlikely(!hi)) {
            ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
                        host->id);
            return RCODE_ADDRESS_ERROR;
      }

      if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
            return RCODE_ADDRESS_ERROR;
      else
            return RCODE_COMPLETE;
}

static void ether1394_iso(struct hpsb_iso *iso)
{
      quadlet_t *data;
      char *buf;
      struct eth1394_host_info *hi;
      struct net_device *dev;
      struct eth1394_priv *priv;
      unsigned int len;
      u32 specifier_id;
      u16 source_id;
      int i;
      int nready;

      hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
      if (unlikely(!hi)) {
            ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
                        iso->host->id);
            return;
      }

      dev = hi->dev;

      nready = hpsb_iso_n_ready(iso);
      for (i = 0; i < nready; i++) {
            struct hpsb_iso_packet_info *info =
                  &iso->infos[(iso->first_packet + i) % iso->buf_packets];
            data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);

            /* skip over GASP header */
            buf = (char *)data + 8;
            len = info->len - 8;

            specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
                         (be32_to_cpu(data[1]) & 0xff000000) >> 24;
            source_id = be32_to_cpu(data[0]) >> 16;

            priv = netdev_priv(dev);

            if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
                || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
                  /* This packet is not for us */
                  continue;
            }
            ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
                               buf, len);
      }

      hpsb_iso_recv_release_packets(iso, i);

      dev->last_rx = jiffies;
}

/******************************************
 * Datagram transmission code
 ******************************************/

/* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
 * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
 * needs to be munged a bit.  The remainder of the arphdr is formatted based
 * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
 * judge.
 *
 * Now that the EUI is used for the hardware address all we need to do to make
 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
 * speed, and unicast FIFO address information between the sender_unique_id
 * and the IP addresses.
 */
static void ether1394_arp_to_1394arp(struct sk_buff *skb,
                             struct net_device *dev)
{
      struct eth1394_priv *priv = netdev_priv(dev);
      struct arphdr *arp = (struct arphdr *)skb->data;
      unsigned char *arp_ptr = (unsigned char *)(arp + 1);
      struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;

      arp1394->hw_addr_len    = 16;
      arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
      arp1394->max_rec  = priv->host->csr.max_rec;
      arp1394->sspd           = priv->host->csr.lnk_spd;
      arp1394->fifo_hi  = htons(priv->local_fifo >> 32);
      arp1394->fifo_lo  = htonl(priv->local_fifo & ~0x0);
}

/* We need to encapsulate the standard header with our own. We use the
 * ethernet header's proto for our own. */
static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
                                     __be16 proto,
                                     union eth1394_hdr *hdr,
                                     u16 dg_size, u16 dgl)
{
      unsigned int adj_max_payload =
                        max_payload - hdr_type_len[ETH1394_HDR_LF_UF];

      /* Does it all fit in one packet? */
      if (dg_size <= adj_max_payload) {
            hdr->uf.lf = ETH1394_HDR_LF_UF;
            hdr->uf.ether_type = proto;
      } else {
            hdr->ff.lf = ETH1394_HDR_LF_FF;
            hdr->ff.ether_type = proto;
            hdr->ff.dg_size = dg_size - 1;
            hdr->ff.dgl = dgl;
            adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
      }
      return (dg_size + adj_max_payload - 1) / adj_max_payload;
}

static unsigned int ether1394_encapsulate(struct sk_buff *skb,
                                unsigned int max_payload,
                                union eth1394_hdr *hdr)
{
      union eth1394_hdr *bufhdr;
      int ftype = hdr->common.lf;
      int hdrsz = hdr_type_len[ftype];
      unsigned int adj_max_payload = max_payload - hdrsz;

      switch (ftype) {
      case ETH1394_HDR_LF_UF:
            bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
            bufhdr->words.word1 = htons(hdr->words.word1);
            bufhdr->words.word2 = hdr->words.word2;
            break;

      case ETH1394_HDR_LF_FF:
            bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
            bufhdr->words.word1 = htons(hdr->words.word1);
            bufhdr->words.word2 = hdr->words.word2;
            bufhdr->words.word3 = htons(hdr->words.word3);
            bufhdr->words.word4 = 0;

            /* Set frag type here for future interior fragments */
            hdr->common.lf = ETH1394_HDR_LF_IF;
            hdr->sf.fg_off = 0;
            break;

      default:
            hdr->sf.fg_off += adj_max_payload;
            bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
            if (max_payload >= skb->len)
                  hdr->common.lf = ETH1394_HDR_LF_LF;
            bufhdr->words.word1 = htons(hdr->words.word1);
            bufhdr->words.word2 = htons(hdr->words.word2);
            bufhdr->words.word3 = htons(hdr->words.word3);
            bufhdr->words.word4 = 0;
      }
      return min(max_payload, skb->len);
}

static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
{
      struct hpsb_packet *p;

      p = hpsb_alloc_packet(0);
      if (p) {
            p->host = host;
            p->generation = get_hpsb_generation(host);
            p->type = hpsb_async;
      }
      return p;
}

static int ether1394_prep_write_packet(struct hpsb_packet *p,
                               struct hpsb_host *host, nodeid_t node,
                               u64 addr, void *data, int tx_len)
{
      p->node_id = node;

      if (hpsb_get_tlabel(p))
            return -EAGAIN;

      p->tcode = TCODE_WRITEB;
      p->header_size = 16;
      p->expect_response = 1;
      p->header[0] =
            p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
      p->header[1] = host->node_id << 16 | addr >> 32;
      p->header[2] = addr & 0xffffffff;
      p->header[3] = tx_len << 16;
      p->data_size = (tx_len + 3) & ~3;
      p->data = data;

      return 0;
}

static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
                               struct eth1394_priv *priv,
                               struct sk_buff *skb, int length)
{
      p->header_size = 4;
      p->tcode = TCODE_STREAM_DATA;

      p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
                   TCODE_STREAM_DATA << 4;
      p->data_size = length;
      p->data = (quadlet_t *)skb->data - 2;
      p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
                         ETHER1394_GASP_SPECIFIER_ID_HI);
      p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
                         ETHER1394_GASP_VERSION);

      p->speed_code = priv->bc_sspd;

      /* prevent hpsb_send_packet() from overriding our speed code */
      p->node_id = LOCAL_BUS | ALL_NODES;
}

static void ether1394_free_packet(struct hpsb_packet *packet)
{
      if (packet->tcode != TCODE_STREAM_DATA)
            hpsb_free_tlabel(packet);
      hpsb_free_packet(packet);
}

static void ether1394_complete_cb(void *__ptask);

static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
{
      struct eth1394_priv *priv = ptask->priv;
      struct hpsb_packet *packet = NULL;

      packet = ether1394_alloc_common_packet(priv->host);
      if (!packet)
            return -ENOMEM;

      if (ptask->tx_type == ETH1394_GASP) {
            int length = tx_len + 2 * sizeof(quadlet_t);

            ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
      } else if (ether1394_prep_write_packet(packet, priv->host,
                                     ptask->dest_node,
                                     ptask->addr, ptask->skb->data,
                                     tx_len)) {
            hpsb_free_packet(packet);
            return -EAGAIN;
      }

      ptask->packet = packet;
      hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
                              ptask);

      if (hpsb_send_packet(packet) < 0) {
            ether1394_free_packet(packet);
            return -EIO;
      }

      return 0;
}

/* Task function to be run when a datagram transmission is completed */
static void ether1394_dg_complete(struct packet_task *ptask, int fail)
{
      struct sk_buff *skb = ptask->skb;
      struct eth1394_priv *priv = netdev_priv(skb->dev);
      unsigned long flags;

      /* Statistics */
      spin_lock_irqsave(&priv->lock, flags);
      if (fail) {
            priv->stats.tx_dropped++;
            priv->stats.tx_errors++;
      } else {
            priv->stats.tx_bytes += skb->len;
            priv->stats.tx_packets++;
      }
      spin_unlock_irqrestore(&priv->lock, flags);

      dev_kfree_skb_any(skb);
      kmem_cache_free(packet_task_cache, ptask);
}

/* Callback for when a packet has been sent and the status of that packet is
 * known */
static void ether1394_complete_cb(void *__ptask)
{
      struct packet_task *ptask = (struct packet_task *)__ptask;
      struct hpsb_packet *packet = ptask->packet;
      int fail = 0;

      if (packet->tcode != TCODE_STREAM_DATA)
            fail = hpsb_packet_success(packet);

      ether1394_free_packet(packet);

      ptask->outstanding_pkts--;
      if (ptask->outstanding_pkts > 0 && !fail) {
            int tx_len, err;

            /* Add the encapsulation header to the fragment */
            tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
                                     &ptask->hdr);
            err = ether1394_send_packet(ptask, tx_len);
            if (err) {
                  if (err == -EAGAIN)
                        ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");

                  ether1394_dg_complete(ptask, 1);
            }
      } else {
            ether1394_dg_complete(ptask, fail);
      }
}

/* Transmit a packet (called by kernel) */
static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
{
      struct eth1394hdr hdr_buf;
      struct eth1394_priv *priv = netdev_priv(dev);
      __be16 proto;
      unsigned long flags;
      nodeid_t dest_node;
      eth1394_tx_type tx_type;
      unsigned int tx_len;
      unsigned int max_payload;
      u16 dg_size;
      u16 dgl;
      struct packet_task *ptask;
      struct eth1394_node_ref *node;
      struct eth1394_node_info *node_info = NULL;

      ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
      if (ptask == NULL)
            goto fail;

      /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
       * it does not set our validity bit. We need to compensate for
       * that somewhere else, but not in eth1394. */
#if 0
      if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
            goto fail;
#endif

      skb = skb_share_check(skb, GFP_ATOMIC);
      if (!skb)
            goto fail;

      /* Get rid of the fake eth1394 header, but first make a copy.
       * We might need to rebuild the header on tx failure. */
      memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
      skb_pull(skb, ETH1394_HLEN);

      proto = hdr_buf.h_proto;
      dg_size = skb->len;

      /* Set the transmission type for the packet.  ARP packets and IP
       * broadcast packets are sent via GASP. */
      if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
          proto == htons(ETH_P_ARP) ||
          (proto == htons(ETH_P_IP) &&
           IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
            tx_type = ETH1394_GASP;
            dest_node = LOCAL_BUS | ALL_NODES;
            max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
            BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
            dgl = priv->bc_dgl;
            if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
                  priv->bc_dgl++;
      } else {
            __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);

            node = eth1394_find_node_guid(&priv->ip_node_list,
                                    be64_to_cpu(guid));
            if (!node)
                  goto fail;

            node_info =
                (struct eth1394_node_info *)node->ud->device.driver_data;
            if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
                  goto fail;

            dest_node = node->ud->ne->nodeid;
            max_payload = node_info->maxpayload;
            BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);

            dgl = node_info->dgl;
            if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
                  node_info->dgl++;
            tx_type = ETH1394_WRREQ;
      }

      /* If this is an ARP packet, convert it */
      if (proto == htons(ETH_P_ARP))
            ether1394_arp_to_1394arp(skb, dev);

      ptask->hdr.words.word1 = 0;
      ptask->hdr.words.word2 = 0;
      ptask->hdr.words.word3 = 0;
      ptask->hdr.words.word4 = 0;
      ptask->skb = skb;
      ptask->priv = priv;
      ptask->tx_type = tx_type;

      if (tx_type != ETH1394_GASP) {
            u64 addr;

            spin_lock_irqsave(&priv->lock, flags);
            addr = node_info->fifo;
            spin_unlock_irqrestore(&priv->lock, flags);

            ptask->addr = addr;
            ptask->dest_node = dest_node;
      }

      ptask->tx_type = tx_type;
      ptask->max_payload = max_payload;
      ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
                              proto, &ptask->hdr, dg_size, dgl);

      /* Add the encapsulation header to the fragment */
      tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
      dev->trans_start = jiffies;
      if (ether1394_send_packet(ptask, tx_len)) {
            if (dest_node == (LOCAL_BUS | ALL_NODES))
                  goto fail;

            /* At this point we want to restore the packet.  When we return
             * here with NETDEV_TX_BUSY we will get another entrance in this
             * routine with the same skb and we need it to look the same.
             * So we pull 4 more bytes, then build the header again. */
            skb_pull(skb, 4);
            ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
                         hdr_buf.h_dest, NULL, 0);

            /* Most failures of ether1394_send_packet are recoverable. */
            netif_stop_queue(dev);
            priv->wake_node = dest_node;
            schedule_work(&priv->wake);
            kmem_cache_free(packet_task_cache, ptask);
            return NETDEV_TX_BUSY;
      }

      return NETDEV_TX_OK;
fail:
      if (ptask)
            kmem_cache_free(packet_task_cache, ptask);

      if (skb != NULL)
            dev_kfree_skb(skb);

      spin_lock_irqsave(&priv->lock, flags);
      priv->stats.tx_dropped++;
      priv->stats.tx_errors++;
      spin_unlock_irqrestore(&priv->lock, flags);

      /*
       * FIXME: According to a patch from 2003-02-26, "returning non-zero
       * causes serious problems" here, allegedly.  Before that patch,
       * -ERRNO was returned which is not appropriate under Linux 2.6.
       * Perhaps more needs to be done?  Stop the queue in serious
       * conditions and restart it elsewhere?
       */
      /* return NETDEV_TX_BUSY; */
      return NETDEV_TX_OK;
}

static void ether1394_get_drvinfo(struct net_device *dev,
                          struct ethtool_drvinfo *info)
{
      strcpy(info->driver, driver_name);
      strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
}

static struct ethtool_ops ethtool_ops = {
      .get_drvinfo = ether1394_get_drvinfo
};

static int __init ether1394_init_module(void)
{
      int err;

      packet_task_cache = kmem_cache_create("packet_task",
                                    sizeof(struct packet_task),
                                    0, 0, NULL);
      if (!packet_task_cache)
            return -ENOMEM;

      hpsb_register_highlevel(&eth1394_highlevel);
      err = hpsb_register_protocol(&eth1394_proto_driver);
      if (err) {
            hpsb_unregister_highlevel(&eth1394_highlevel);
            kmem_cache_destroy(packet_task_cache);
      }
      return err;
}

static void __exit ether1394_exit_module(void)
{
      hpsb_unregister_protocol(&eth1394_proto_driver);
      hpsb_unregister_highlevel(&eth1394_highlevel);
      kmem_cache_destroy(packet_task_cache);
}

module_init(ether1394_init_module);
module_exit(ether1394_exit_module);

Generated by  Doxygen 1.6.0   Back to index