Logo Search packages:      
Sourcecode: linux version File versions  Download package

eth_v10.c

/* $Id: ethernet.c,v 1.31 2004/10/18 14:49:03 starvik Exp $
 *
 * e100net.c: A network driver for the ETRAX 100LX network controller.
 *
 * Copyright (c) 1998-2002 Axis Communications AB.
 *
 * The outline of this driver comes from skeleton.c.
 *
 * $Log: ethernet.c,v $
 * Revision 1.31  2004/10/18 14:49:03  starvik
 * Use RX interrupt as random source
 *
 * Revision 1.30  2004/09/29 10:44:04  starvik
 * Enabed MAC-address output again
 *
 * Revision 1.29  2004/08/24 07:14:05  starvik
 * Make use of generic MDIO interface and constants.
 *
 * Revision 1.28  2004/08/20 09:37:11  starvik
 * Added support for Intel LXT972A. Creds to Randy Scarborough.
 *
 * Revision 1.27  2004/08/16 12:37:22  starvik
 * Merge of Linux 2.6.8
 *
 * Revision 1.25  2004/06/21 10:29:57  starvik
 * Merge of Linux 2.6.7
 *
 * Revision 1.23  2004/06/09 05:29:22  starvik
 * Avoid any race where R_DMA_CH1_FIRST is NULL (may trigger cache bug).
 *
 * Revision 1.22  2004/05/14 07:58:03  starvik
 * Merge of changes from 2.4
 *
 * Revision 1.20  2004/03/11 11:38:40  starvik
 * Merge of Linux 2.6.4
 *
 * Revision 1.18  2003/12/03 13:45:46  starvik
 * Use hardware pad for short packets to prevent information leakage.
 *
 * Revision 1.17  2003/07/04 08:27:37  starvik
 * Merge of Linux 2.5.74
 *
 * Revision 1.16  2003/04/24 08:28:22  starvik
 * New LED behaviour: LED off when no link
 *
 * Revision 1.15  2003/04/09 05:20:47  starvik
 * Merge of Linux 2.5.67
 *
 * Revision 1.13  2003/03/06 16:11:01  henriken
 * Off by one error in group address register setting.
 *
 * Revision 1.12  2003/02/27 17:24:19  starvik
 * Corrected Rev to Revision
 *
 * Revision 1.11  2003/01/24 09:53:21  starvik
 * Oops. Initialize GA to 0, not to 1
 *
 * Revision 1.10  2003/01/24 09:50:55  starvik
 * Initialize GA_0 and GA_1 to 0 to avoid matching of unwanted packets
 *
 * Revision 1.9  2002/12/13 07:40:58  starvik
 * Added basic ethtool interface
 * Handled out of memory when allocating new buffers
 *
 * Revision 1.8  2002/12/11 13:13:57  starvik
 * Added arch/ to v10 specific includes
 * Added fix from Linux 2.4 in serial.c (flush_to_flip_buffer)
 *
 * Revision 1.7  2002/11/26 09:41:42  starvik
 * Added e100_set_config (standard interface to set media type)
 * Added protection against preemptive scheduling
 * Added standard MII ioctls
 *
 * Revision 1.6  2002/11/21 07:18:18  starvik
 * Timers must be initialized in 2.5.48
 *
 * Revision 1.5  2002/11/20 11:56:11  starvik
 * Merge of Linux 2.5.48
 *
 * Revision 1.4  2002/11/18 07:26:46  starvik
 * Linux 2.5 port of latest Linux 2.4 ethernet driver
 *
 * Revision 1.33  2002/10/02 20:16:17  hp
 * SETF, SETS: Use underscored IO_x_ macros rather than incorrect token concatenation
 *
 * Revision 1.32  2002/09/16 06:05:58  starvik
 * Align memory returned by dev_alloc_skb
 * Moved handling of sent packets to interrupt to avoid reference counting problem
 *
 * Revision 1.31  2002/09/10 13:28:23  larsv
 * Return -EINVAL for unknown ioctls to avoid confusing tools that tests
 * for supported functionality by issuing special ioctls, i.e. wireless
 * extensions.
 *
 * Revision 1.30  2002/05/07 18:50:08  johana
 * Correct spelling in comments.
 *
 * Revision 1.29  2002/05/06 05:38:49  starvik
 * Performance improvements:
 *    Large packets are not copied (breakpoint set to 256 bytes)
 *    The cache bug workaround is delayed until half of the receive list
 *      has been used
 *    Added transmit list
 *    Transmit interrupts are only enabled when transmit queue is full
 *
 * Revision 1.28.2.1  2002/04/30 08:15:51  starvik
 * Performance improvements:
 *   Large packets are not copied (breakpoint set to 256 bytes)
 *   The cache bug workaround is delayed until half of the receive list
 *     has been used.
 *   Added transmit list
 *   Transmit interrupts are only enabled when transmit queue is full
 *
 * Revision 1.28  2002/04/22 11:47:21  johana
 * Fix according to 2.4.19-pre7. time_after/time_before and
 * missing end of comment.
 * The patch has a typo for ethernet.c in e100_clear_network_leds(),
 *  that is fixed here.
 *
 * Revision 1.27  2002/04/12 11:55:11  bjornw
 * Added TODO
 *
 * Revision 1.26  2002/03/15 17:11:02  bjornw
 * Use prepare_rx_descriptor after the CPU has touched the receiving descs
 *
 * Revision 1.25  2002/03/08 13:07:53  bjornw
 * Unnecessary spinlock removed
 *
 * Revision 1.24  2002/02/20 12:57:43  fredriks
 * Replaced MIN() with min().
 *
 * Revision 1.23  2002/02/20 10:58:14  fredriks
 * Strip the Ethernet checksum (4 bytes) before forwarding a frame to upper layers.
 *
 * Revision 1.22  2002/01/30 07:48:22  matsfg
 * Initiate R_NETWORK_TR_CTRL
 *
 * Revision 1.21  2001/11/23 11:54:49  starvik
 * Added IFF_PROMISC and IFF_ALLMULTI handling in set_multicast_list
 * Removed compiler warnings
 *
 * Revision 1.20  2001/11/12 19:26:00  pkj
 * * Corrected e100_negotiate() to not assign half to current_duplex when
 *   it was supposed to compare them...
 * * Cleaned up failure handling in e100_open().
 * * Fixed compiler warnings.
 *
 * Revision 1.19  2001/11/09 07:43:09  starvik
 * Added full duplex support
 * Added ioctl to set speed and duplex
 * Clear LED timer only runs when LED is lit
 *
 * Revision 1.18  2001/10/03 14:40:43  jonashg
 * Update rx_bytes counter.
 *
 * Revision 1.17  2001/06/11 12:43:46  olof
 * Modified defines for network LED behavior
 *
 * Revision 1.16  2001/05/30 06:12:46  markusl
 * TxDesc.next should not be set to NULL
 *
 * Revision 1.15  2001/05/29 10:27:04  markusl
 * Updated after review remarks:
 * +Use IO_EXTRACT
 * +Handle underrun
 *
 * Revision 1.14  2001/05/29 09:20:14  jonashg
 * Use driver name on printk output so one can tell which driver that complains.
 *
 * Revision 1.13  2001/05/09 12:35:59  johana
 * Use DMA_NBR and IRQ_NBR defines from dma.h and irq.h
 *
 * Revision 1.12  2001/04/05 11:43:11  tobiasa
 * Check dev before panic.
 *
 * Revision 1.11  2001/04/04 11:21:05  markusl
 * Updated according to review remarks
 *
 * Revision 1.10  2001/03/26 16:03:06  bjornw
 * Needs linux/config.h
 *
 * Revision 1.9  2001/03/19 14:47:48  pkj
 * * Make sure there is always a pause after the network LEDs are
 *   changed so they will not look constantly lit during heavy traffic.
 * * Always use HZ when setting times relative to jiffies.
 * * Use LED_NETWORK_SET() when setting the network LEDs.
 *
 * Revision 1.8  2001/02/27 13:52:48  bjornw
 * malloc.h -> slab.h
 *
 * Revision 1.7  2001/02/23 13:46:38  bjornw
 * Spellling check
 *
 * Revision 1.6  2001/01/26 15:21:04  starvik
 * Don't disable interrupts while reading MDIO registers (MDIO is slow)
 * Corrected promiscuous mode
 * Improved deallocation of IRQs ("ifconfig eth0 down" now works)
 *
 * Revision 1.5  2000/11/29 17:22:22  bjornw
 * Get rid of the udword types legacy stuff
 *
 * Revision 1.4  2000/11/22 16:36:09  bjornw
 * Please marketing by using the correct case when spelling Etrax.
 *
 * Revision 1.3  2000/11/21 16:43:04  bjornw
 * Minor short->int change
 *
 * Revision 1.2  2000/11/08 14:27:57  bjornw
 * 2.4 port
 *
 * Revision 1.1  2000/11/06 13:56:00  bjornw
 * Verbatim copy of the 1.24 version of e100net.c from elinux
 *
 * Revision 1.24  2000/10/04 15:55:23  bjornw
 * * Use virt_to_phys etc. for DMA addresses
 * * Removed bogus CHECKSUM_UNNECESSARY
 *
 *
 */


#include <linux/module.h>

#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/bitops.h>

#include <linux/if.h>
#include <linux/mii.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>

#include <asm/arch/svinto.h>/* DMA and register descriptions */
#include <asm/io.h>         /* LED_* I/O functions */
#include <asm/irq.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/ethernet.h>
#include <asm/cache.h>
#include <asm/arch/io_interface_mux.h>

//#define ETHDEBUG
#define D(x)

/*
 * The name of the card. Is used for messages and in the requests for
 * io regions, irqs and dma channels
 */

static const char* cardname = "ETRAX 100LX built-in ethernet controller";

/* A default ethernet address. Highlevel SW will set the real one later */

static struct sockaddr default_mac = {
      0,
      { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
};

/* Information that need to be kept for each board. */
struct net_local {
      struct net_device_stats stats;
      struct mii_if_info mii_if;

      /* Tx control lock.  This protects the transmit buffer ring
       * state along with the "tx full" state of the driver.  This
       * means all netif_queue flow control actions are protected
       * by this lock as well.
       */
      spinlock_t lock;

      spinlock_t led_lock; /* Protect LED state */
      spinlock_t transceiver_lock; /* Protect transceiver state. */
};

typedef struct etrax_eth_descr
{
      etrax_dma_descr descr;
      struct sk_buff* skb;
} etrax_eth_descr;

/* Some transceivers requires special handling */
struct transceiver_ops
{
      unsigned int oui;
      void (*check_speed)(struct net_device* dev);
      void (*check_duplex)(struct net_device* dev);
};

/* Duplex settings */
enum duplex
{
      half,
      full,
      autoneg
};

/* Dma descriptors etc. */

#define MAX_MEDIA_DATA_SIZE 1522

#define MIN_PACKET_LEN      46
#define ETHER_HEAD_LEN      14

/*
** MDIO constants.
*/
#define MDIO_START                          0x1
#define MDIO_READ                           0x2
#define MDIO_WRITE                          0x1
#define MDIO_PREAMBLE              0xfffffffful

/* Broadcom specific */
#define MDIO_AUX_CTRL_STATUS_REG           0x18
#define MDIO_BC_FULL_DUPLEX_IND             0x1
#define MDIO_BC_SPEED                       0x2

/* TDK specific */
#define MDIO_TDK_DIAGNOSTIC_REG              18
#define MDIO_TDK_DIAGNOSTIC_RATE          0x400
#define MDIO_TDK_DIAGNOSTIC_DPLX          0x800

/*Intel LXT972A specific*/
#define MDIO_INT_STATUS_REG_2             0x0011
#define MDIO_INT_FULL_DUPLEX_IND       (1 << 9)
#define MDIO_INT_SPEED                (1 << 14)

/* Network flash constants */
#define NET_FLASH_TIME                  (HZ/50) /* 20 ms */
#define NET_FLASH_PAUSE                (HZ/100) /* 10 ms */
#define NET_LINK_UP_CHECK_INTERVAL       (2*HZ) /* 2 s   */
#define NET_DUPLEX_CHECK_INTERVAL        (2*HZ) /* 2 s   */

#define NO_NETWORK_ACTIVITY 0
#define NETWORK_ACTIVITY    1

#define NBR_OF_RX_DESC     32
#define NBR_OF_TX_DESC     16

/* Large packets are sent directly to upper layers while small packets are */
/* copied (to reduce memory waste). The following constant decides the breakpoint */
#define RX_COPYBREAK 256

/* Due to a chip bug we need to flush the cache when descriptors are returned */
/* to the DMA. To decrease performance impact we return descriptors in chunks. */
/* The following constant determines the number of descriptors to return. */
#define RX_QUEUE_THRESHOLD  NBR_OF_RX_DESC/2

#define GET_BIT(bit,val)   (((val) >> (bit)) & 0x01)

/* Define some macros to access ETRAX 100 registers */
#define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
                                IO_FIELD_(reg##_, field##_, val)
#define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
                                IO_STATE_(reg##_, field##_, _##val)

static etrax_eth_descr *myNextRxDesc;  /* Points to the next descriptor to
                                          to be processed */
static etrax_eth_descr *myLastRxDesc;  /* The last processed descriptor */

static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));

static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
static etrax_eth_descr* myLastTxDesc;  /* End of send queue */
static etrax_eth_descr* myNextTxDesc;  /* Next descriptor to use */
static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));

static unsigned int network_rec_config_shadow = 0;

static unsigned int network_tr_ctrl_shadow = 0;

/* Network speed indication. */
static DEFINE_TIMER(speed_timer, NULL, 0, 0);
static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
static int current_speed; /* Speed read from transceiver */
static int current_speed_selection; /* Speed selected by user */
static unsigned long led_next_time;
static int led_active;
static int rx_queue_len;

/* Duplex */
static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
static int full_duplex;
static enum duplex current_duplex;

/* Index to functions, as function prototypes. */

static int etrax_ethernet_init(void);

static int e100_open(struct net_device *dev);
static int e100_set_mac_address(struct net_device *dev, void *addr);
static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
static void e100_rx(struct net_device *dev);
static int e100_close(struct net_device *dev);
static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
static int e100_set_config(struct net_device* dev, struct ifmap* map);
static void e100_tx_timeout(struct net_device *dev);
static struct net_device_stats *e100_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
static void update_rx_stats(struct net_device_stats *);
static void update_tx_stats(struct net_device_stats *);
static int e100_probe_transceiver(struct net_device* dev);

static void e100_check_speed(unsigned long priv);
static void e100_set_speed(struct net_device* dev, unsigned long speed);
static void e100_check_duplex(unsigned long priv);
static void e100_set_duplex(struct net_device* dev, enum duplex);
static void e100_negotiate(struct net_device* dev);

static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);

static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
static void e100_send_mdio_bit(unsigned char bit);
static unsigned char e100_receive_mdio_bit(void);
static void e100_reset_transceiver(struct net_device* net);

static void e100_clear_network_leds(unsigned long dummy);
static void e100_set_network_leds(int active);

static const struct ethtool_ops e100_ethtool_ops;
#if defined(CONFIG_ETRAX_NO_PHY)
static void dummy_check_speed(struct net_device* dev);
static void dummy_check_duplex(struct net_device* dev);
#else
static void broadcom_check_speed(struct net_device* dev);
static void broadcom_check_duplex(struct net_device* dev);
static void tdk_check_speed(struct net_device* dev);
static void tdk_check_duplex(struct net_device* dev);
static void intel_check_speed(struct net_device* dev);
static void intel_check_duplex(struct net_device* dev);
static void generic_check_speed(struct net_device* dev);
static void generic_check_duplex(struct net_device* dev);
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
static void e100_netpoll(struct net_device* dev);
#endif

static int autoneg_normal = 1;

struct transceiver_ops transceivers[] =
{
#if defined(CONFIG_ETRAX_NO_PHY)
      {0x0000, dummy_check_speed, dummy_check_duplex}        /* Dummy */
#else
      {0x1018, broadcom_check_speed, broadcom_check_duplex},  /* Broadcom */
      {0xC039, tdk_check_speed, tdk_check_duplex},            /* TDK 2120 */
      {0x039C, tdk_check_speed, tdk_check_duplex},            /* TDK 2120C */
        {0x04de, intel_check_speed, intel_check_duplex},          /* Intel LXT972A*/
      {0x0000, generic_check_speed, generic_check_duplex}     /* Generic, must be last */
#endif
};

struct transceiver_ops* transceiver = &transceivers[0];

#define tx_done(dev) (*R_DMA_CH0_CMD == 0)

/*
 * Check for a network adaptor of this type, and return '0' if one exists.
 * If dev->base_addr == 0, probe all likely locations.
 * If dev->base_addr == 1, always return failure.
 * If dev->base_addr == 2, allocate space for the device and return success
 * (detachable devices only).
 */

static int __init
etrax_ethernet_init(void)
{
      struct net_device *dev;
        struct net_local* np;
      int i, err;

      printk(KERN_INFO
             "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");

      if (cris_request_io_interface(if_eth, cardname)) {
            printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
            return -EBUSY;
      }

      dev = alloc_etherdev(sizeof(struct net_local));
      if (!dev)
            return -ENOMEM;

      np = netdev_priv(dev);

      /* we do our own locking */
      dev->features |= NETIF_F_LLTX;

      dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */

      /* now setup our etrax specific stuff */

      dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
      dev->dma = NETWORK_RX_DMA_NBR;

      /* fill in our handlers so the network layer can talk to us in the future */

      dev->open               = e100_open;
      dev->hard_start_xmit    = e100_send_packet;
      dev->stop               = e100_close;
      dev->get_stats          = e100_get_stats;
      dev->set_multicast_list = set_multicast_list;
      dev->set_mac_address    = e100_set_mac_address;
      dev->ethtool_ops  = &e100_ethtool_ops;
      dev->do_ioctl           = e100_ioctl;
      dev->set_config         = e100_set_config;
      dev->tx_timeout         = e100_tx_timeout;
#ifdef CONFIG_NET_POLL_CONTROLLER
      dev->poll_controller = e100_netpoll;
#endif

      spin_lock_init(&np->lock);
      spin_lock_init(&np->led_lock);
      spin_lock_init(&np->transceiver_lock);

      /* Initialise the list of Etrax DMA-descriptors */

      /* Initialise receive descriptors */

      for (i = 0; i < NBR_OF_RX_DESC; i++) {
            /* Allocate two extra cachelines to make sure that buffer used
             * by DMA does not share cacheline with any other data (to
             * avoid cache bug)
             */
            RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
            if (!RxDescList[i].skb)
                  return -ENOMEM;
            RxDescList[i].descr.ctrl   = 0;
            RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
            RxDescList[i].descr.next   = virt_to_phys(&RxDescList[i + 1]);
            RxDescList[i].descr.buf    = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
            RxDescList[i].descr.status = 0;
            RxDescList[i].descr.hw_len = 0;
            prepare_rx_descriptor(&RxDescList[i].descr);
      }

      RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl   = d_eol;
      RxDescList[NBR_OF_RX_DESC - 1].descr.next   = virt_to_phys(&RxDescList[0]);
      rx_queue_len = 0;

      /* Initialize transmit descriptors */
      for (i = 0; i < NBR_OF_TX_DESC; i++) {
            TxDescList[i].descr.ctrl   = 0;
            TxDescList[i].descr.sw_len = 0;
            TxDescList[i].descr.next   = virt_to_phys(&TxDescList[i + 1].descr);
            TxDescList[i].descr.buf    = 0;
            TxDescList[i].descr.status = 0;
            TxDescList[i].descr.hw_len = 0;
            TxDescList[i].skb = 0;
      }

      TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl   = d_eol;
      TxDescList[NBR_OF_TX_DESC - 1].descr.next   = virt_to_phys(&TxDescList[0].descr);

      /* Initialise initial pointers */

      myNextRxDesc  = &RxDescList[0];
      myLastRxDesc  = &RxDescList[NBR_OF_RX_DESC - 1];
      myFirstTxDesc = &TxDescList[0];
      myNextTxDesc  = &TxDescList[0];
      myLastTxDesc  = &TxDescList[NBR_OF_TX_DESC - 1];

      /* Register device */
      err = register_netdev(dev);
      if (err) {
            free_netdev(dev);
            return err;
      }

      /* set the default MAC address */

      e100_set_mac_address(dev, &default_mac);

      /* Initialize speed indicator stuff. */

      current_speed = 10;
      current_speed_selection = 0; /* Auto */
      speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
      speed_timer.data = (unsigned long)dev;
      speed_timer.function = e100_check_speed;

      clear_led_timer.function = e100_clear_network_leds;
      clear_led_timer.data = (unsigned long)dev;

      full_duplex = 0;
      current_duplex = autoneg;
      duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
        duplex_timer.data = (unsigned long)dev;
      duplex_timer.function = e100_check_duplex;

        /* Initialize mii interface */
      np->mii_if.phy_id_mask = 0x1f;
      np->mii_if.reg_num_mask = 0x1f;
      np->mii_if.dev = dev;
      np->mii_if.mdio_read = e100_get_mdio_reg;
      np->mii_if.mdio_write = e100_set_mdio_reg;

      /* Initialize group address registers to make sure that no */
      /* unwanted addresses are matched */
      *R_NETWORK_GA_0 = 0x00000000;
      *R_NETWORK_GA_1 = 0x00000000;

      /* Initialize next time the led can flash */
      led_next_time = jiffies;
      return 0;
}

/* set MAC address of the interface. called from the core after a
 * SIOCSIFADDR ioctl, and from the bootup above.
 */

static int
e100_set_mac_address(struct net_device *dev, void *p)
{
      struct net_local *np = netdev_priv(dev);
      struct sockaddr *addr = p;
      DECLARE_MAC_BUF(mac);

      spin_lock(&np->lock); /* preemption protection */

      /* remember it */

      memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);

      /* Write it to the hardware.
       * Note the way the address is wrapped:
       * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
       * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
       */

      *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
            (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
      *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
      *R_NETWORK_SA_2 = 0;

      /* show it in the log as well */

      printk(KERN_INFO "%s: changed MAC to %s\n",
             dev->name, print_mac(mac, dev->dev_addr));

      spin_unlock(&np->lock);

      return 0;
}

/*
 * Open/initialize the board. This is called (in the current kernel)
 * sometime after booting when the 'ifconfig' program is run.
 *
 * This routine should set everything up anew at each open, even
 * registers that "should" only need to be set once at boot, so that
 * there is non-reboot way to recover if something goes wrong.
 */

static int
e100_open(struct net_device *dev)
{
      unsigned long flags;

      /* enable the MDIO output pin */

      *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);

      *R_IRQ_MASK0_CLR =
            IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
            IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
            IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);

      /* clear dma0 and 1 eop and descr irq masks */
      *R_IRQ_MASK2_CLR =
            IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
            IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
            IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
            IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);

      /* Reset and wait for the DMA channels */

      RESET_DMA(NETWORK_TX_DMA_NBR);
      RESET_DMA(NETWORK_RX_DMA_NBR);
      WAIT_DMA(NETWORK_TX_DMA_NBR);
      WAIT_DMA(NETWORK_RX_DMA_NBR);

      /* Initialise the etrax network controller */

      /* allocate the irq corresponding to the receiving DMA */

      if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt,
                  IRQF_SAMPLE_RANDOM, cardname, (void *)dev)) {
            goto grace_exit0;
      }

      /* allocate the irq corresponding to the transmitting DMA */

      if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
                  cardname, (void *)dev)) {
            goto grace_exit1;
      }

      /* allocate the irq corresponding to the network errors etc */

      if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
                  cardname, (void *)dev)) {
            goto grace_exit2;
      }

      /*
       * Always allocate the DMA channels after the IRQ,
       * and clean up on failure.
       */

      if (cris_request_dma(NETWORK_TX_DMA_NBR,
                           cardname,
                           DMA_VERBOSE_ON_ERROR,
                           dma_eth)) {
            goto grace_exit3;
        }

      if (cris_request_dma(NETWORK_RX_DMA_NBR,
                           cardname,
                           DMA_VERBOSE_ON_ERROR,
                           dma_eth)) {
            goto grace_exit4;
        }

      /* give the HW an idea of what MAC address we want */

      *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
            (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
      *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
      *R_NETWORK_SA_2 = 0;

#if 0
      /* use promiscuous mode for testing */
      *R_NETWORK_GA_0 = 0xffffffff;
      *R_NETWORK_GA_1 = 0xffffffff;

      *R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
#else
      SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
      SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
      SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
      SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
      *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
#endif

      *R_NETWORK_GEN_CONFIG =
            IO_STATE(R_NETWORK_GEN_CONFIG, phy,    mii_clk) |
            IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);

      SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
      SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
      SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
      SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
      SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
      SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
      SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
      *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;

      local_irq_save(flags);

      /* enable the irq's for ethernet DMA */

      *R_IRQ_MASK2_SET =
            IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
            IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);

      *R_IRQ_MASK0_SET =
            IO_STATE(R_IRQ_MASK0_SET, overrun,       set) |
            IO_STATE(R_IRQ_MASK0_SET, underrun,      set) |
            IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);

      /* make sure the irqs are cleared */

      *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
      *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);

      /* make sure the rec and transmit error counters are cleared */

      (void)*R_REC_COUNTERS;  /* dummy read */
      (void)*R_TR_COUNTERS;   /* dummy read */

      /* start the receiving DMA channel so we can receive packets from now on */

      *R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
      *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);

      /* Set up transmit DMA channel so it can be restarted later */

      *R_DMA_CH0_FIRST = 0;
      *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
      netif_start_queue(dev);

      local_irq_restore(flags);

      /* Probe for transceiver */
      if (e100_probe_transceiver(dev))
            goto grace_exit5;

      /* Start duplex/speed timers */
      add_timer(&speed_timer);
      add_timer(&duplex_timer);

      /* We are now ready to accept transmit requeusts from
       * the queueing layer of the networking.
       */
      netif_carrier_on(dev);

      return 0;

grace_exit5:
      cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
grace_exit4:
      cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
grace_exit3:
      free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
grace_exit2:
      free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
grace_exit1:
      free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
grace_exit0:
      return -EAGAIN;
}

#if defined(CONFIG_ETRAX_NO_PHY)
static void
dummy_check_speed(struct net_device* dev)
{
      current_speed = 100;
}
#else
static void
generic_check_speed(struct net_device* dev)
{
      unsigned long data;
      struct net_local *np = netdev_priv(dev);

      data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
      if ((data & ADVERTISE_100FULL) ||
          (data & ADVERTISE_100HALF))
            current_speed = 100;
      else
            current_speed = 10;
}

static void
tdk_check_speed(struct net_device* dev)
{
      unsigned long data;
      struct net_local *np = netdev_priv(dev);

      data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
                         MDIO_TDK_DIAGNOSTIC_REG);
      current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
}

static void
broadcom_check_speed(struct net_device* dev)
{
      unsigned long data;
      struct net_local *np = netdev_priv(dev);

      data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
                         MDIO_AUX_CTRL_STATUS_REG);
      current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
}

static void
intel_check_speed(struct net_device* dev)
{
      unsigned long data;
      struct net_local *np = netdev_priv(dev);

      data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
                         MDIO_INT_STATUS_REG_2);
      current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
}
#endif
static void
e100_check_speed(unsigned long priv)
{
      struct net_device* dev = (struct net_device*)priv;
      struct net_local *np = netdev_priv(dev);
      static int led_initiated = 0;
      unsigned long data;
      int old_speed = current_speed;

      spin_lock(&np->transceiver_lock);

      data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
      if (!(data & BMSR_LSTATUS)) {
            current_speed = 0;
      } else {
            transceiver->check_speed(dev);
      }

      spin_lock(&np->led_lock);
      if ((old_speed != current_speed) || !led_initiated) {
            led_initiated = 1;
            e100_set_network_leds(NO_NETWORK_ACTIVITY);
            if (current_speed)
                  netif_carrier_on(dev);
            else
                  netif_carrier_off(dev);
      }
      spin_unlock(&np->led_lock);

      /* Reinitialize the timer. */
      speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
      add_timer(&speed_timer);

      spin_unlock(&np->transceiver_lock);
}

static void
e100_negotiate(struct net_device* dev)
{
      struct net_local *np = netdev_priv(dev);
      unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
                                    MII_ADVERTISE);

      /* Discard old speed and duplex settings */
      data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
                ADVERTISE_10HALF | ADVERTISE_10FULL);

      switch (current_speed_selection) {
            case 10:
                  if (current_duplex == full)
                        data |= ADVERTISE_10FULL;
                  else if (current_duplex == half)
                        data |= ADVERTISE_10HALF;
                  else
                        data |= ADVERTISE_10HALF | ADVERTISE_10FULL;
                  break;

            case 100:
                   if (current_duplex == full)
                        data |= ADVERTISE_100FULL;
                  else if (current_duplex == half)
                        data |= ADVERTISE_100HALF;
                  else
                        data |= ADVERTISE_100HALF | ADVERTISE_100FULL;
                  break;

            case 0: /* Auto */
                   if (current_duplex == full)
                        data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
                  else if (current_duplex == half)
                        data |= ADVERTISE_100HALF | ADVERTISE_10HALF;
                  else
                        data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
                          ADVERTISE_100HALF | ADVERTISE_100FULL;
                  break;

            default: /* assume autoneg speed and duplex */
                  data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
                          ADVERTISE_100HALF | ADVERTISE_100FULL;
                  break;
      }

      e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);

      /* Renegotiate with link partner */
      if (autoneg_normal) {
        data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
      data |= BMCR_ANENABLE | BMCR_ANRESTART;
      }
      e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
}

static void
e100_set_speed(struct net_device* dev, unsigned long speed)
{
      struct net_local *np = netdev_priv(dev);

      spin_lock(&np->transceiver_lock);
      if (speed != current_speed_selection) {
            current_speed_selection = speed;
            e100_negotiate(dev);
      }
      spin_unlock(&np->transceiver_lock);
}

static void
e100_check_duplex(unsigned long priv)
{
      struct net_device *dev = (struct net_device *)priv;
      struct net_local *np = netdev_priv(dev);
      int old_duplex;

      spin_lock(&np->transceiver_lock);
      old_duplex = full_duplex;
      transceiver->check_duplex(dev);
      if (old_duplex != full_duplex) {
            /* Duplex changed */
            SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
            *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
      }

      /* Reinitialize the timer. */
      duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
      add_timer(&duplex_timer);
      np->mii_if.full_duplex = full_duplex;
      spin_unlock(&np->transceiver_lock);
}
#if defined(CONFIG_ETRAX_NO_PHY)
static void
dummy_check_duplex(struct net_device* dev)
{
      full_duplex = 1;
}
#else
static void
generic_check_duplex(struct net_device* dev)
{
      unsigned long data;
      struct net_local *np = netdev_priv(dev);

      data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
      if ((data & ADVERTISE_10FULL) ||
          (data & ADVERTISE_100FULL))
            full_duplex = 1;
      else
            full_duplex = 0;
}

static void
tdk_check_duplex(struct net_device* dev)
{
      unsigned long data;
      struct net_local *np = netdev_priv(dev);

      data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
                         MDIO_TDK_DIAGNOSTIC_REG);
      full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
}

static void
broadcom_check_duplex(struct net_device* dev)
{
      unsigned long data;
      struct net_local *np = netdev_priv(dev);

      data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
                         MDIO_AUX_CTRL_STATUS_REG);
      full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
}

static void
intel_check_duplex(struct net_device* dev)
{
      unsigned long data;
      struct net_local *np = netdev_priv(dev);

      data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
                         MDIO_INT_STATUS_REG_2);
      full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
}
#endif
static void
e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
{
      struct net_local *np = netdev_priv(dev);

      spin_lock(&np->transceiver_lock);
      if (new_duplex != current_duplex) {
            current_duplex = new_duplex;
            e100_negotiate(dev);
      }
      spin_unlock(&np->transceiver_lock);
}

static int
e100_probe_transceiver(struct net_device* dev)
{
      int ret = 0;

#if !defined(CONFIG_ETRAX_NO_PHY)
      unsigned int phyid_high;
      unsigned int phyid_low;
      unsigned int oui;
      struct transceiver_ops* ops = NULL;
      struct net_local *np = netdev_priv(dev);

      spin_lock(&np->transceiver_lock);

      /* Probe MDIO physical address */
      for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
           np->mii_if.phy_id++) {
            if (e100_get_mdio_reg(dev,
                              np->mii_if.phy_id, MII_BMSR) != 0xffff)
                  break;
      }
      if (np->mii_if.phy_id == 32) {
            ret = -ENODEV;
            goto out;
      }

      /* Get manufacturer */
      phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
      phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
      oui = (phyid_high << 6) | (phyid_low >> 10);

      for (ops = &transceivers[0]; ops->oui; ops++) {
            if (ops->oui == oui)
                  break;
      }
      transceiver = ops;
out:
      spin_unlock(&np->transceiver_lock);
#endif
      return ret;
}

static int
e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
{
      unsigned short cmd;    /* Data to be sent on MDIO port */
      int data;   /* Data read from MDIO */
      int bitCounter;

      /* Start of frame, OP Code, Physical Address, Register Address */
      cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
            (location << 2);

      e100_send_mdio_cmd(cmd, 0);

      data = 0;

      /* Data... */
      for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
            data |= (e100_receive_mdio_bit() << bitCounter);
      }

      return data;
}

static void
e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
{
      int bitCounter;
      unsigned short cmd;

      cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
            (location << 2);

      e100_send_mdio_cmd(cmd, 1);

      /* Data... */
      for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
            e100_send_mdio_bit(GET_BIT(bitCounter, value));
      }

}

static void
e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
{
      int bitCounter;
      unsigned char data = 0x2;

      /* Preamble */
      for (bitCounter = 31; bitCounter>= 0; bitCounter--)
            e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));

      for (bitCounter = 15; bitCounter >= 2; bitCounter--)
            e100_send_mdio_bit(GET_BIT(bitCounter, cmd));

      /* Turnaround */
      for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
            if (write_cmd)
                  e100_send_mdio_bit(GET_BIT(bitCounter, data));
            else
                  e100_receive_mdio_bit();
}

static void
e100_send_mdio_bit(unsigned char bit)
{
      *R_NETWORK_MGM_CTRL =
            IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
            IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
      udelay(1);
      *R_NETWORK_MGM_CTRL =
            IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
            IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
            IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
      udelay(1);
}

static unsigned char
e100_receive_mdio_bit()
{
      unsigned char bit;
      *R_NETWORK_MGM_CTRL = 0;
      bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
      udelay(1);
      *R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
      udelay(1);
      return bit;
}

static void
e100_reset_transceiver(struct net_device* dev)
{
      struct net_local *np = netdev_priv(dev);
      unsigned short cmd;
      unsigned short data;
      int bitCounter;

      data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);

      cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);

      e100_send_mdio_cmd(cmd, 1);

      data |= 0x8000;

      for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
            e100_send_mdio_bit(GET_BIT(bitCounter, data));
      }
}

/* Called by upper layers if they decide it took too long to complete
 * sending a packet - we need to reset and stuff.
 */

static void
e100_tx_timeout(struct net_device *dev)
{
      struct net_local *np = netdev_priv(dev);
      unsigned long flags;

      spin_lock_irqsave(&np->lock, flags);

      printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
             tx_done(dev) ? "IRQ problem" : "network cable problem");

      /* remember we got an error */

      np->stats.tx_errors++;

      /* reset the TX DMA in case it has hung on something */

      RESET_DMA(NETWORK_TX_DMA_NBR);
      WAIT_DMA(NETWORK_TX_DMA_NBR);

      /* Reset the transceiver. */

      e100_reset_transceiver(dev);

      /* and get rid of the packets that never got an interrupt */
      while (myFirstTxDesc != myNextTxDesc) {
            dev_kfree_skb(myFirstTxDesc->skb);
            myFirstTxDesc->skb = 0;
            myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
      }

      /* Set up transmit DMA channel so it can be restarted later */
      *R_DMA_CH0_FIRST = 0;
      *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);

      /* tell the upper layers we're ok again */

      netif_wake_queue(dev);
      spin_unlock_irqrestore(&np->lock, flags);
}


/* This will only be invoked if the driver is _not_ in XOFF state.
 * What this means is that we need not check it, and that this
 * invariant will hold if we make sure that the netif_*_queue()
 * calls are done at the proper times.
 */

static int
e100_send_packet(struct sk_buff *skb, struct net_device *dev)
{
      struct net_local *np = netdev_priv(dev);
      unsigned char *buf = skb->data;
      unsigned long flags;

#ifdef ETHDEBUG
      printk("send packet len %d\n", length);
#endif
      spin_lock_irqsave(&np->lock, flags);  /* protect from tx_interrupt and ourself */

      myNextTxDesc->skb = skb;

      dev->trans_start = jiffies;

      e100_hardware_send_packet(np, buf, skb->len);

      myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);

      /* Stop queue if full */
      if (myNextTxDesc == myFirstTxDesc) {
            netif_stop_queue(dev);
      }

      spin_unlock_irqrestore(&np->lock, flags);

      return 0;
}

/*
 * The typical workload of the driver:
 *   Handle the network interface interrupts.
 */

static irqreturn_t
e100rxtx_interrupt(int irq, void *dev_id)
{
      struct net_device *dev = (struct net_device *)dev_id;
      struct net_local *np = netdev_priv(dev);
      unsigned long irqbits;

      /*
       * Note that both rx and tx interrupts are blocked at this point,
       * regardless of which got us here.
       */

      irqbits = *R_IRQ_MASK2_RD;

      /* Handle received packets */
      if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
            /* acknowledge the eop interrupt */

            *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);

            /* check if one or more complete packets were indeed received */

            while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
                   (myNextRxDesc != myLastRxDesc)) {
                  /* Take out the buffer and give it to the OS, then
                   * allocate a new buffer to put a packet in.
                   */
                  e100_rx(dev);
                  np->stats.rx_packets++;
                  /* restart/continue on the channel, for safety */
                  *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
                  /* clear dma channel 1 eop/descr irq bits */
                  *R_DMA_CH1_CLR_INTR =
                        IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
                        IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);

                  /* now, we might have gotten another packet
                     so we have to loop back and check if so */
            }
      }

      /* Report any packets that have been sent */
      while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
             (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
            np->stats.tx_bytes += myFirstTxDesc->skb->len;
            np->stats.tx_packets++;

            /* dma is ready with the transmission of the data in tx_skb, so now
               we can release the skb memory */
            dev_kfree_skb_irq(myFirstTxDesc->skb);
            myFirstTxDesc->skb = 0;
            myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
                /* Wake up queue. */
            netif_wake_queue(dev);
      }

      if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
            /* acknowledge the eop interrupt. */
            *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
      }

      return IRQ_HANDLED;
}

static irqreturn_t
e100nw_interrupt(int irq, void *dev_id)
{
      struct net_device *dev = (struct net_device *)dev_id;
      struct net_local *np = netdev_priv(dev);
      unsigned long irqbits = *R_IRQ_MASK0_RD;

      /* check for underrun irq */
      if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
            SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
            *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
            SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
            np->stats.tx_errors++;
            D(printk("ethernet receiver underrun!\n"));
      }

      /* check for overrun irq */
      if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
            update_rx_stats(&np->stats); /* this will ack the irq */
            D(printk("ethernet receiver overrun!\n"));
      }
      /* check for excessive collision irq */
      if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
            SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
            *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
            SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
            np->stats.tx_errors++;
            D(printk("ethernet excessive collisions!\n"));
      }
      return IRQ_HANDLED;
}

/* We have a good packet(s), get it/them out of the buffers. */
static void
e100_rx(struct net_device *dev)
{
      struct sk_buff *skb;
      int length = 0;
      struct net_local *np = netdev_priv(dev);
      unsigned char *skb_data_ptr;
#ifdef ETHDEBUG
      int i;
#endif
      etrax_eth_descr *prevRxDesc;  /* The descriptor right before myNextRxDesc */
      spin_lock(&np->led_lock);
      if (!led_active && time_after(jiffies, led_next_time)) {
            /* light the network leds depending on the current speed. */
            e100_set_network_leds(NETWORK_ACTIVITY);

            /* Set the earliest time we may clear the LED */
            led_next_time = jiffies + NET_FLASH_TIME;
            led_active = 1;
            mod_timer(&clear_led_timer, jiffies + HZ/10);
      }
      spin_unlock(&np->led_lock);

      length = myNextRxDesc->descr.hw_len - 4;
      np->stats.rx_bytes += length;

#ifdef ETHDEBUG
      printk("Got a packet of length %d:\n", length);
      /* dump the first bytes in the packet */
      skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
      for (i = 0; i < 8; i++) {
            printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
                   skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
                   skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
            skb_data_ptr += 8;
      }
#endif

      if (length < RX_COPYBREAK) {
            /* Small packet, copy data */
            skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
            if (!skb) {
                  np->stats.rx_errors++;
                  printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
                  goto update_nextrxdesc;
            }

            skb_put(skb, length - ETHER_HEAD_LEN);        /* allocate room for the packet body */
            skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */

#ifdef ETHDEBUG
            printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
                   skb->head, skb->data, skb_tail_pointer(skb),
                   skb_end_pointer(skb));
            printk("copying packet to 0x%x.\n", skb_data_ptr);
#endif

            memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
      }
      else {
            /* Large packet, send directly to upper layers and allocate new
             * memory (aligned to cache line boundary to avoid bug).
             * Before sending the skb to upper layers we must make sure
             * that skb->data points to the aligned start of the packet.
             */
            int align;
            struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
            if (!new_skb) {
                  np->stats.rx_errors++;
                  printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
                  goto update_nextrxdesc;
            }
            skb = myNextRxDesc->skb;
            align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
            skb_put(skb, length + align);
            skb_pull(skb, align); /* Remove alignment bytes */
            myNextRxDesc->skb = new_skb;
            myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
      }

      skb->protocol = eth_type_trans(skb, dev);

      /* Send the packet to the upper layers */
      netif_rx(skb);

  update_nextrxdesc:
      /* Prepare for next packet */
      myNextRxDesc->descr.status = 0;
      prevRxDesc = myNextRxDesc;
      myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);

      rx_queue_len++;

      /* Check if descriptors should be returned */
      if (rx_queue_len == RX_QUEUE_THRESHOLD) {
            flush_etrax_cache();
            prevRxDesc->descr.ctrl |= d_eol;
            myLastRxDesc->descr.ctrl &= ~d_eol;
            myLastRxDesc = prevRxDesc;
            rx_queue_len = 0;
      }
}

/* The inverse routine to net_open(). */
static int
e100_close(struct net_device *dev)
{
      struct net_local *np = netdev_priv(dev);

      printk(KERN_INFO "Closing %s.\n", dev->name);

      netif_stop_queue(dev);

      *R_IRQ_MASK0_CLR =
            IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
            IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
            IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);

      *R_IRQ_MASK2_CLR =
            IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
            IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
            IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
            IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);

      /* Stop the receiver and the transmitter */

      RESET_DMA(NETWORK_TX_DMA_NBR);
      RESET_DMA(NETWORK_RX_DMA_NBR);

      /* Flush the Tx and disable Rx here. */

      free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
      free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
      free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);

      cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
      cris_free_dma(NETWORK_RX_DMA_NBR, cardname);

      /* Update the statistics here. */

      update_rx_stats(&np->stats);
      update_tx_stats(&np->stats);

      /* Stop speed/duplex timers */
      del_timer(&speed_timer);
      del_timer(&duplex_timer);

      return 0;
}

static int
e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
      struct mii_ioctl_data *data = if_mii(ifr);
      struct net_local *np = netdev_priv(dev);
      int rc = 0;
        int old_autoneg;

      spin_lock(&np->lock); /* Preempt protection */
      switch (cmd) {
            /* The ioctls below should be considered obsolete but are */
            /* still present for compatability with old scripts/apps  */
            case SET_ETH_SPEED_10:                  /* 10 Mbps */
                  e100_set_speed(dev, 10);
                  break;
            case SET_ETH_SPEED_100:                /* 100 Mbps */
                  e100_set_speed(dev, 100);
                  break;
            case SET_ETH_SPEED_AUTO:        /* Auto-negotiate speed */
                  e100_set_speed(dev, 0);
                  break;
            case SET_ETH_DUPLEX_HALF:       /* Half duplex */
                  e100_set_duplex(dev, half);
                  break;
            case SET_ETH_DUPLEX_FULL:       /* Full duplex */
                  e100_set_duplex(dev, full);
                  break;
            case SET_ETH_DUPLEX_AUTO:       /* Auto-negotiate duplex */
                  e100_set_duplex(dev, autoneg);
                  break;
              case SET_ETH_AUTONEG:
                  old_autoneg = autoneg_normal;
                    autoneg_normal = *(int*)data;
                  if (autoneg_normal != old_autoneg)
                        e100_negotiate(dev);
                  break;
            default:
                  rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
                                    cmd, NULL);
                  break;
      }
      spin_unlock(&np->lock);
      return rc;
}

static int e100_get_settings(struct net_device *dev,
                       struct ethtool_cmd *cmd)
{
      struct net_local *np = netdev_priv(dev);
      int err;

      spin_lock_irq(&np->lock);
      err = mii_ethtool_gset(&np->mii_if, cmd);
      spin_unlock_irq(&np->lock);

      /* The PHY may support 1000baseT, but the Etrax100 does not.  */
      cmd->supported &= ~(SUPPORTED_1000baseT_Half
                      | SUPPORTED_1000baseT_Full);
      return err;
}

static int e100_set_settings(struct net_device *dev,
                       struct ethtool_cmd *ecmd)
{
      if (ecmd->autoneg == AUTONEG_ENABLE) {
            e100_set_duplex(dev, autoneg);
            e100_set_speed(dev, 0);
      } else {
            e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full);
            e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100);
      }

      return 0;
}

static void e100_get_drvinfo(struct net_device *dev,
                       struct ethtool_drvinfo *info)
{
      strncpy(info->driver, "ETRAX 100LX", sizeof(info->driver) - 1);
      strncpy(info->version, "$Revision: 1.31 $", sizeof(info->version) - 1);
      strncpy(info->fw_version, "N/A", sizeof(info->fw_version) - 1);
      strncpy(info->bus_info, "N/A", sizeof(info->bus_info) - 1);
}

static int e100_nway_reset(struct net_device *dev)
{
      if (current_duplex == autoneg && current_speed_selection == 0)
            e100_negotiate(dev);
      return 0;
}

static const struct ethtool_ops e100_ethtool_ops = {
      .get_settings     = e100_get_settings,
      .set_settings     = e100_set_settings,
      .get_drvinfo      = e100_get_drvinfo,
      .nway_reset = e100_nway_reset,
      .get_link   = ethtool_op_get_link,
};

static int
e100_set_config(struct net_device *dev, struct ifmap *map)
{
      struct net_local *np = netdev_priv(dev);

      spin_lock(&np->lock); /* Preempt protection */

      switch(map->port) {
            case IF_PORT_UNKNOWN:
                  /* Use autoneg */
                  e100_set_speed(dev, 0);
                  e100_set_duplex(dev, autoneg);
                  break;
            case IF_PORT_10BASET:
                  e100_set_speed(dev, 10);
                  e100_set_duplex(dev, autoneg);
                  break;
            case IF_PORT_100BASET:
            case IF_PORT_100BASETX:
                  e100_set_speed(dev, 100);
                  e100_set_duplex(dev, autoneg);
                  break;
            case IF_PORT_100BASEFX:
            case IF_PORT_10BASE2:
            case IF_PORT_AUI:
                  spin_unlock(&np->lock);
                  return -EOPNOTSUPP;
                  break;
            default:
                  printk(KERN_ERR "%s: Invalid media selected", dev->name);
                  spin_unlock(&np->lock);
                  return -EINVAL;
      }
      spin_unlock(&np->lock);
      return 0;
}

static void
update_rx_stats(struct net_device_stats *es)
{
      unsigned long r = *R_REC_COUNTERS;
      /* update stats relevant to reception errors */
      es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
      es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
      es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
      es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
}

static void
update_tx_stats(struct net_device_stats *es)
{
      unsigned long r = *R_TR_COUNTERS;
      /* update stats relevant to transmission errors */
      es->collisions +=
            IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
            IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
}

/*
 * Get the current statistics.
 * This may be called with the card open or closed.
 */
static struct net_device_stats *
e100_get_stats(struct net_device *dev)
{
      struct net_local *lp = netdev_priv(dev);
      unsigned long flags;

      spin_lock_irqsave(&lp->lock, flags);

      update_rx_stats(&lp->stats);
      update_tx_stats(&lp->stats);

      spin_unlock_irqrestore(&lp->lock, flags);
      return &lp->stats;
}

/*
 * Set or clear the multicast filter for this adaptor.
 * num_addrs == -1      Promiscuous mode, receive all packets
 * num_addrs == 0 Normal mode, clear multicast list
 * num_addrs > 0  Multicast mode, receive normal and MC packets,
 *                and do best-effort filtering.
 */
static void
set_multicast_list(struct net_device *dev)
{
      struct net_local *lp = netdev_priv(dev);
      int num_addr = dev->mc_count;
      unsigned long int lo_bits;
      unsigned long int hi_bits;

      spin_lock(&lp->lock);
      if (dev->flags & IFF_PROMISC) {
            /* promiscuous mode */
            lo_bits = 0xfffffffful;
            hi_bits = 0xfffffffful;

            /* Enable individual receive */
            SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
            *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
      } else if (dev->flags & IFF_ALLMULTI) {
            /* enable all multicasts */
            lo_bits = 0xfffffffful;
            hi_bits = 0xfffffffful;

            /* Disable individual receive */
            SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
            *R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
      } else if (num_addr == 0) {
            /* Normal, clear the mc list */
            lo_bits = 0x00000000ul;
            hi_bits = 0x00000000ul;

            /* Disable individual receive */
            SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
            *R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
      } else {
            /* MC mode, receive normal and MC packets */
            char hash_ix;
            struct dev_mc_list *dmi = dev->mc_list;
            int i;
            char *baddr;

            lo_bits = 0x00000000ul;
            hi_bits = 0x00000000ul;
            for (i = 0; i < num_addr; i++) {
                  /* Calculate the hash index for the GA registers */

                  hash_ix = 0;
                  baddr = dmi->dmi_addr;
                  hash_ix ^= (*baddr) & 0x3f;
                  hash_ix ^= ((*baddr) >> 6) & 0x03;
                  ++baddr;
                  hash_ix ^= ((*baddr) << 2) & 0x03c;
                  hash_ix ^= ((*baddr) >> 4) & 0xf;
                  ++baddr;
                  hash_ix ^= ((*baddr) << 4) & 0x30;
                  hash_ix ^= ((*baddr) >> 2) & 0x3f;
                  ++baddr;
                  hash_ix ^= (*baddr) & 0x3f;
                  hash_ix ^= ((*baddr) >> 6) & 0x03;
                  ++baddr;
                  hash_ix ^= ((*baddr) << 2) & 0x03c;
                  hash_ix ^= ((*baddr) >> 4) & 0xf;
                  ++baddr;
                  hash_ix ^= ((*baddr) << 4) & 0x30;
                  hash_ix ^= ((*baddr) >> 2) & 0x3f;

                  hash_ix &= 0x3f;

                  if (hash_ix >= 32) {
                        hi_bits |= (1 << (hash_ix-32));
                  } else {
                        lo_bits |= (1 << hash_ix);
                  }
                  dmi = dmi->next;
            }
            /* Disable individual receive */
            SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
            *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
      }
      *R_NETWORK_GA_0 = lo_bits;
      *R_NETWORK_GA_1 = hi_bits;
      spin_unlock(&lp->lock);
}

void
e100_hardware_send_packet(struct net_local *np, char *buf, int length)
{
      D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));

      spin_lock(&np->led_lock);
      if (!led_active && time_after(jiffies, led_next_time)) {
            /* light the network leds depending on the current speed. */
            e100_set_network_leds(NETWORK_ACTIVITY);

            /* Set the earliest time we may clear the LED */
            led_next_time = jiffies + NET_FLASH_TIME;
            led_active = 1;
            mod_timer(&clear_led_timer, jiffies + HZ/10);
      }
      spin_unlock(&np->led_lock);

      /* configure the tx dma descriptor */
      myNextTxDesc->descr.sw_len = length;
      myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
      myNextTxDesc->descr.buf = virt_to_phys(buf);

        /* Move end of list */
        myLastTxDesc->descr.ctrl &= ~d_eol;
        myLastTxDesc = myNextTxDesc;

      /* Restart DMA channel */
      *R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
}

static void
e100_clear_network_leds(unsigned long dummy)
{
      struct net_device *dev = (struct net_device *)dummy;
      struct net_local *np = netdev_priv(dev);

      spin_lock(&np->led_lock);

      if (led_active && time_after(jiffies, led_next_time)) {
            e100_set_network_leds(NO_NETWORK_ACTIVITY);

            /* Set the earliest time we may set the LED */
            led_next_time = jiffies + NET_FLASH_PAUSE;
            led_active = 0;
      }

      spin_unlock(&np->led_lock);
}

static void
e100_set_network_leds(int active)
{
#if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
      int light_leds = (active == NO_NETWORK_ACTIVITY);
#elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
      int light_leds = (active == NETWORK_ACTIVITY);
#else
#error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
#endif

      if (!current_speed) {
            /* Make LED red, link is down */
#if defined(CONFIG_ETRAX_NETWORK_RED_ON_NO_CONNECTION)
            LED_NETWORK_SET(LED_RED);
#else
            LED_NETWORK_SET(LED_OFF);
#endif
      } else if (light_leds) {
            if (current_speed == 10) {
                  LED_NETWORK_SET(LED_ORANGE);
            } else {
                  LED_NETWORK_SET(LED_GREEN);
            }
      } else {
            LED_NETWORK_SET(LED_OFF);
      }
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void
e100_netpoll(struct net_device* netdev)
{
      e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev, NULL);
}
#endif

static int
etrax_init_module(void)
{
      return etrax_ethernet_init();
}

static int __init
e100_boot_setup(char* str)
{
      struct sockaddr sa = {0};
      int i;

      /* Parse the colon separated Ethernet station address */
      for (i = 0; i <  ETH_ALEN; i++) {
            unsigned int tmp;
            if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
                  printk(KERN_WARNING "Malformed station address");
                  return 0;
            }
            sa.sa_data[i] = (char)tmp;
      }

      default_mac = sa;
      return 1;
}

__setup("etrax100_eth=", e100_boot_setup);

module_init(etrax_init_module);

Generated by  Doxygen 1.6.0   Back to index