Logo Search packages:      
Sourcecode: linux version File versions  Download package

filemap.c

/*
 *    linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/aio.h>
#include <linux/capability.h>
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/cpuset.h>
#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
#include "internal.h"

/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
#include <linux/buffer_head.h> /* for generic_osync_inode */

#include <asm/mman.h>

static ssize_t
generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
      loff_t offset, unsigned long nr_segs);

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
 *  ->i_mmap_lock       (vmtruncate)
 *    ->private_lock          (__free_pte->__set_page_dirty_buffers)
 *      ->swap_lock           (exclusive_swap_page, others)
 *        ->mapping->tree_lock
 *          ->zone.lock
 *
 *  ->i_mutex
 *    ->i_mmap_lock           (truncate->unmap_mapping_range)
 *
 *  ->mmap_sem
 *    ->i_mmap_lock
 *      ->page_table_lock or pte_lock     (various, mainly in memory.c)
 *        ->mapping->tree_lock      (arch-dependent flush_dcache_mmap_lock)
 *
 *  ->mmap_sem
 *    ->lock_page       (access_process_vm)
 *
 *  ->i_mutex                 (generic_file_buffered_write)
 *    ->mmap_sem        (fault_in_pages_readable->do_page_fault)
 *
 *  ->i_mutex
 *    ->i_alloc_sem             (various)
 *
 *  ->inode_lock
 *    ->sb_lock               (fs/fs-writeback.c)
 *    ->mapping->tree_lock    (__sync_single_inode)
 *
 *  ->i_mmap_lock
 *    ->anon_vma.lock         (vma_adjust)
 *
 *  ->anon_vma.lock
 *    ->page_table_lock or pte_lock (anon_vma_prepare and various)
 *
 *  ->page_table_lock or pte_lock
 *    ->swap_lock       (try_to_unmap_one)
 *    ->private_lock          (try_to_unmap_one)
 *    ->tree_lock       (try_to_unmap_one)
 *    ->zone.lru_lock         (follow_page->mark_page_accessed)
 *    ->zone.lru_lock         (check_pte_range->isolate_lru_page)
 *    ->private_lock          (page_remove_rmap->set_page_dirty)
 *    ->tree_lock       (page_remove_rmap->set_page_dirty)
 *    ->inode_lock            (page_remove_rmap->set_page_dirty)
 *    ->inode_lock            (zap_pte_range->set_page_dirty)
 *    ->private_lock          (zap_pte_range->__set_page_dirty_buffers)
 *
 *  ->task->proc_lock
 *    ->dcache_lock           (proc_pid_lookup)
 */

/*
 * Remove a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
 */
void __remove_from_page_cache(struct page *page)
{
      struct address_space *mapping = page->mapping;

      radix_tree_delete(&mapping->page_tree, page->index);
      page->mapping = NULL;
      mapping->nrpages--;
      __dec_zone_page_state(page, NR_FILE_PAGES);
      BUG_ON(page_mapped(page));

      /*
       * Some filesystems seem to re-dirty the page even after
       * the VM has canceled the dirty bit (eg ext3 journaling).
       *
       * Fix it up by doing a final dirty accounting check after
       * having removed the page entirely.
       */
      if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
            dec_zone_page_state(page, NR_FILE_DIRTY);
            dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
      }
}

void remove_from_page_cache(struct page *page)
{
      struct address_space *mapping = page->mapping;

      BUG_ON(!PageLocked(page));

      write_lock_irq(&mapping->tree_lock);
      __remove_from_page_cache(page);
      write_unlock_irq(&mapping->tree_lock);
}

static int sync_page(void *word)
{
      struct address_space *mapping;
      struct page *page;

      page = container_of((unsigned long *)word, struct page, flags);

      /*
       * page_mapping() is being called without PG_locked held.
       * Some knowledge of the state and use of the page is used to
       * reduce the requirements down to a memory barrier.
       * The danger here is of a stale page_mapping() return value
       * indicating a struct address_space different from the one it's
       * associated with when it is associated with one.
       * After smp_mb(), it's either the correct page_mapping() for
       * the page, or an old page_mapping() and the page's own
       * page_mapping() has gone NULL.
       * The ->sync_page() address_space operation must tolerate
       * page_mapping() going NULL. By an amazing coincidence,
       * this comes about because none of the users of the page
       * in the ->sync_page() methods make essential use of the
       * page_mapping(), merely passing the page down to the backing
       * device's unplug functions when it's non-NULL, which in turn
       * ignore it for all cases but swap, where only page_private(page) is
       * of interest. When page_mapping() does go NULL, the entire
       * call stack gracefully ignores the page and returns.
       * -- wli
       */
      smp_mb();
      mapping = page_mapping(page);
      if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
            mapping->a_ops->sync_page(page);
      io_schedule();
      return 0;
}

/**
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 * @mapping:      address space structure to write
 * @start:  offset in bytes where the range starts
 * @end:    offset in bytes where the range ends (inclusive)
 * @sync_mode:    enable synchronous operation
 *
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 * opposed to a regular memory cleansing writeback.  The difference between
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
 */
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
                        loff_t end, int sync_mode)
{
      int ret;
      struct writeback_control wbc = {
            .sync_mode = sync_mode,
            .nr_to_write = mapping->nrpages * 2,
            .range_start = start,
            .range_end = end,
      };

      if (!mapping_cap_writeback_dirty(mapping))
            return 0;

      ret = do_writepages(mapping, &wbc);
      return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
      int sync_mode)
{
      return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
}

int filemap_fdatawrite(struct address_space *mapping)
{
      return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
                        loff_t end)
{
      return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}

/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:      target address_space
 *
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
 */
int filemap_flush(struct address_space *mapping)
{
      return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

/**
 * wait_on_page_writeback_range - wait for writeback to complete
 * @mapping:      target address_space
 * @start:  beginning page index
 * @end:    ending page index
 *
 * Wait for writeback to complete against pages indexed by start->end
 * inclusive
 */
int wait_on_page_writeback_range(struct address_space *mapping,
                        pgoff_t start, pgoff_t end)
{
      struct pagevec pvec;
      int nr_pages;
      int ret = 0;
      pgoff_t index;

      if (end < start)
            return 0;

      pagevec_init(&pvec, 0);
      index = start;
      while ((index <= end) &&
                  (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
                  PAGECACHE_TAG_WRITEBACK,
                  min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
            unsigned i;

            for (i = 0; i < nr_pages; i++) {
                  struct page *page = pvec.pages[i];

                  /* until radix tree lookup accepts end_index */
                  if (page->index > end)
                        continue;

                  wait_on_page_writeback(page);
                  if (PageError(page))
                        ret = -EIO;
            }
            pagevec_release(&pvec);
            cond_resched();
      }

      /* Check for outstanding write errors */
      if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
            ret = -ENOSPC;
      if (test_and_clear_bit(AS_EIO, &mapping->flags))
            ret = -EIO;

      return ret;
}

/**
 * sync_page_range - write and wait on all pages in the passed range
 * @inode:  target inode
 * @mapping:      target address_space
 * @pos:    beginning offset in pages to write
 * @count:  number of bytes to write
 *
 * Write and wait upon all the pages in the passed range.  This is a "data
 * integrity" operation.  It waits upon in-flight writeout before starting and
 * waiting upon new writeout.  If there was an IO error, return it.
 *
 * We need to re-take i_mutex during the generic_osync_inode list walk because
 * it is otherwise livelockable.
 */
int sync_page_range(struct inode *inode, struct address_space *mapping,
                  loff_t pos, loff_t count)
{
      pgoff_t start = pos >> PAGE_CACHE_SHIFT;
      pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
      int ret;

      if (!mapping_cap_writeback_dirty(mapping) || !count)
            return 0;
      ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
      if (ret == 0) {
            mutex_lock(&inode->i_mutex);
            ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
            mutex_unlock(&inode->i_mutex);
      }
      if (ret == 0)
            ret = wait_on_page_writeback_range(mapping, start, end);
      return ret;
}
EXPORT_SYMBOL(sync_page_range);

/**
 * sync_page_range_nolock
 * @inode:  target inode
 * @mapping:      target address_space
 * @pos:    beginning offset in pages to write
 * @count:  number of bytes to write
 *
 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
 * as it forces O_SYNC writers to different parts of the same file
 * to be serialised right until io completion.
 */
int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
                     loff_t pos, loff_t count)
{
      pgoff_t start = pos >> PAGE_CACHE_SHIFT;
      pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
      int ret;

      if (!mapping_cap_writeback_dirty(mapping) || !count)
            return 0;
      ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
      if (ret == 0)
            ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
      if (ret == 0)
            ret = wait_on_page_writeback_range(mapping, start, end);
      return ret;
}
EXPORT_SYMBOL(sync_page_range_nolock);

/**
 * filemap_fdatawait - wait for all under-writeback pages to complete
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.
 */
int filemap_fdatawait(struct address_space *mapping)
{
      loff_t i_size = i_size_read(mapping->host);

      if (i_size == 0)
            return 0;

      return wait_on_page_writeback_range(mapping, 0,
                        (i_size - 1) >> PAGE_CACHE_SHIFT);
}
EXPORT_SYMBOL(filemap_fdatawait);

int filemap_write_and_wait(struct address_space *mapping)
{
      int err = 0;

      if (mapping->nrpages) {
            err = filemap_fdatawrite(mapping);
            /*
             * Even if the above returned error, the pages may be
             * written partially (e.g. -ENOSPC), so we wait for it.
             * But the -EIO is special case, it may indicate the worst
             * thing (e.g. bug) happened, so we avoid waiting for it.
             */
            if (err != -EIO) {
                  int err2 = filemap_fdatawait(mapping);
                  if (!err)
                        err = err2;
            }
      }
      return err;
}
EXPORT_SYMBOL(filemap_write_and_wait);

/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:      the address_space for the pages
 * @lstart: offset in bytes where the range starts
 * @lend:   offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that `lend' is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 */
int filemap_write_and_wait_range(struct address_space *mapping,
                         loff_t lstart, loff_t lend)
{
      int err = 0;

      if (mapping->nrpages) {
            err = __filemap_fdatawrite_range(mapping, lstart, lend,
                                     WB_SYNC_ALL);
            /* See comment of filemap_write_and_wait() */
            if (err != -EIO) {
                  int err2 = wait_on_page_writeback_range(mapping,
                                    lstart >> PAGE_CACHE_SHIFT,
                                    lend >> PAGE_CACHE_SHIFT);
                  if (!err)
                        err = err2;
            }
      }
      return err;
}

/**
 * add_to_page_cache - add newly allocated pagecache pages
 * @page:   page to add
 * @mapping:      the page's address_space
 * @offset: page index
 * @gfp_mask:     page allocation mode
 *
 * This function is used to add newly allocated pagecache pages;
 * the page is new, so we can just run SetPageLocked() against it.
 * The other page state flags were set by rmqueue().
 *
 * This function does not add the page to the LRU.  The caller must do that.
 */
int add_to_page_cache(struct page *page, struct address_space *mapping,
            pgoff_t offset, gfp_t gfp_mask)
{
      int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);

      if (error == 0) {
            write_lock_irq(&mapping->tree_lock);
            error = radix_tree_insert(&mapping->page_tree, offset, page);
            if (!error) {
                  page_cache_get(page);
                  SetPageLocked(page);
                  page->mapping = mapping;
                  page->index = offset;
                  mapping->nrpages++;
                  __inc_zone_page_state(page, NR_FILE_PAGES);
            }
            write_unlock_irq(&mapping->tree_lock);
            radix_tree_preload_end();
      }
      return error;
}
EXPORT_SYMBOL(add_to_page_cache);

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
                        pgoff_t offset, gfp_t gfp_mask)
{
      int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
      if (ret == 0)
            lru_cache_add(page);
      return ret;
}

#ifdef CONFIG_NUMA
struct page *__page_cache_alloc(gfp_t gfp)
{
      if (cpuset_do_page_mem_spread()) {
            int n = cpuset_mem_spread_node();
            return alloc_pages_node(n, gfp, 0);
      }
      return alloc_pages(gfp, 0);
}
EXPORT_SYMBOL(__page_cache_alloc);
#endif

static int __sleep_on_page_lock(void *word)
{
      io_schedule();
      return 0;
}

/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
static wait_queue_head_t *page_waitqueue(struct page *page)
{
      const struct zone *zone = page_zone(page);

      return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
}

static inline void wake_up_page(struct page *page, int bit)
{
      __wake_up_bit(page_waitqueue(page), &page->flags, bit);
}

void fastcall wait_on_page_bit(struct page *page, int bit_nr)
{
      DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);

      if (test_bit(bit_nr, &page->flags))
            __wait_on_bit(page_waitqueue(page), &wait, sync_page,
                                          TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_on_page_bit);

/**
 * unlock_page - unlock a locked page
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 * mechananism between PageLocked pages and PageWriteback pages is shared.
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
 * The first mb is necessary to safely close the critical section opened by the
 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
 * parallel wait_on_page_locked()).
 */
void fastcall unlock_page(struct page *page)
{
      smp_mb__before_clear_bit();
      if (!TestClearPageLocked(page))
            BUG();
      smp_mb__after_clear_bit(); 
      wake_up_page(page, PG_locked);
}
EXPORT_SYMBOL(unlock_page);

/**
 * end_page_writeback - end writeback against a page
 * @page: the page
 */
void end_page_writeback(struct page *page)
{
      if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
            if (!test_clear_page_writeback(page))
                  BUG();
      }
      smp_mb__after_clear_bit();
      wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 * @page: the page to lock
 *
 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
 * chances are that on the second loop, the block layer's plug list is empty,
 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
 */
void fastcall __lock_page(struct page *page)
{
      DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);

      __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
                                          TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(__lock_page);

/*
 * Variant of lock_page that does not require the caller to hold a reference
 * on the page's mapping.
 */
void fastcall __lock_page_nosync(struct page *page)
{
      DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
      __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
                                          TASK_UNINTERRUPTIBLE);
}

/**
 * find_get_page - find and get a page reference
 * @mapping: the address_space to search
 * @offset: the page index
 *
 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 * If yes, increment its refcount and return it; if no, return NULL.
 */
struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
{
      struct page *page;

      read_lock_irq(&mapping->tree_lock);
      page = radix_tree_lookup(&mapping->page_tree, offset);
      if (page)
            page_cache_get(page);
      read_unlock_irq(&mapping->tree_lock);
      return page;
}
EXPORT_SYMBOL(find_get_page);

/**
 * find_lock_page - locate, pin and lock a pagecache page
 * @mapping: the address_space to search
 * @offset: the page index
 *
 * Locates the desired pagecache page, locks it, increments its reference
 * count and returns its address.
 *
 * Returns zero if the page was not present. find_lock_page() may sleep.
 */
struct page *find_lock_page(struct address_space *mapping,
                        pgoff_t offset)
{
      struct page *page;

repeat:
      read_lock_irq(&mapping->tree_lock);
      page = radix_tree_lookup(&mapping->page_tree, offset);
      if (page) {
            page_cache_get(page);
            if (TestSetPageLocked(page)) {
                  read_unlock_irq(&mapping->tree_lock);
                  __lock_page(page);

                  /* Has the page been truncated while we slept? */
                  if (unlikely(page->mapping != mapping)) {
                        unlock_page(page);
                        page_cache_release(page);
                        goto repeat;
                  }
                  VM_BUG_ON(page->index != offset);
                  goto out;
            }
      }
      read_unlock_irq(&mapping->tree_lock);
out:
      return page;
}
EXPORT_SYMBOL(find_lock_page);

/**
 * find_or_create_page - locate or add a pagecache page
 * @mapping: the page's address_space
 * @index: the page's index into the mapping
 * @gfp_mask: page allocation mode
 *
 * Locates a page in the pagecache.  If the page is not present, a new page
 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 * LRU list.  The returned page is locked and has its reference count
 * incremented.
 *
 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 * allocation!
 *
 * find_or_create_page() returns the desired page's address, or zero on
 * memory exhaustion.
 */
struct page *find_or_create_page(struct address_space *mapping,
            pgoff_t index, gfp_t gfp_mask)
{
      struct page *page;
      int err;
repeat:
      page = find_lock_page(mapping, index);
      if (!page) {
            page = __page_cache_alloc(gfp_mask);
            if (!page)
                  return NULL;
            err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
            if (unlikely(err)) {
                  page_cache_release(page);
                  page = NULL;
                  if (err == -EEXIST)
                        goto repeat;
            }
      }
      return page;
}
EXPORT_SYMBOL(find_or_create_page);

/**
 * find_get_pages - gang pagecache lookup
 * @mapping:      The address_space to search
 * @start:  The starting page index
 * @nr_pages:     The maximum number of pages
 * @pages:  Where the resulting pages are placed
 *
 * find_get_pages() will search for and return a group of up to
 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 * find_get_pages() takes a reference against the returned pages.
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
 *
 * find_get_pages() returns the number of pages which were found.
 */
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
                      unsigned int nr_pages, struct page **pages)
{
      unsigned int i;
      unsigned int ret;

      read_lock_irq(&mapping->tree_lock);
      ret = radix_tree_gang_lookup(&mapping->page_tree,
                        (void **)pages, start, nr_pages);
      for (i = 0; i < ret; i++)
            page_cache_get(pages[i]);
      read_unlock_irq(&mapping->tree_lock);
      return ret;
}

/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:      The address_space to search
 * @index:  The starting page index
 * @nr_pages:     The maximum number of pages
 * @pages:  Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
 * find_get_pages_contig() returns the number of pages which were found.
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
                         unsigned int nr_pages, struct page **pages)
{
      unsigned int i;
      unsigned int ret;

      read_lock_irq(&mapping->tree_lock);
      ret = radix_tree_gang_lookup(&mapping->page_tree,
                        (void **)pages, index, nr_pages);
      for (i = 0; i < ret; i++) {
            if (pages[i]->mapping == NULL || pages[i]->index != index)
                  break;

            page_cache_get(pages[i]);
            index++;
      }
      read_unlock_irq(&mapping->tree_lock);
      return i;
}
EXPORT_SYMBOL(find_get_pages_contig);

/**
 * find_get_pages_tag - find and return pages that match @tag
 * @mapping:      the address_space to search
 * @index:  the starting page index
 * @tag:    the tag index
 * @nr_pages:     the maximum number of pages
 * @pages:  where the resulting pages are placed
 *
 * Like find_get_pages, except we only return pages which are tagged with
 * @tag.   We update @index to index the next page for the traversal.
 */
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
                  int tag, unsigned int nr_pages, struct page **pages)
{
      unsigned int i;
      unsigned int ret;

      read_lock_irq(&mapping->tree_lock);
      ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
                        (void **)pages, *index, nr_pages, tag);
      for (i = 0; i < ret; i++)
            page_cache_get(pages[i]);
      if (ret)
            *index = pages[ret - 1]->index + 1;
      read_unlock_irq(&mapping->tree_lock);
      return ret;
}
EXPORT_SYMBOL(find_get_pages_tag);

/**
 * grab_cache_page_nowait - returns locked page at given index in given cache
 * @mapping: target address_space
 * @index: the page index
 *
 * Same as grab_cache_page(), but do not wait if the page is unavailable.
 * This is intended for speculative data generators, where the data can
 * be regenerated if the page couldn't be grabbed.  This routine should
 * be safe to call while holding the lock for another page.
 *
 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 * and deadlock against the caller's locked page.
 */
struct page *
grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
{
      struct page *page = find_get_page(mapping, index);

      if (page) {
            if (!TestSetPageLocked(page))
                  return page;
            page_cache_release(page);
            return NULL;
      }
      page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
      if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
            page_cache_release(page);
            page = NULL;
      }
      return page;
}
EXPORT_SYMBOL(grab_cache_page_nowait);

/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
static void shrink_readahead_size_eio(struct file *filp,
                              struct file_ra_state *ra)
{
      if (!ra->ra_pages)
            return;

      ra->ra_pages /= 4;
}

/**
 * do_generic_mapping_read - generic file read routine
 * @mapping:      address_space to be read
 * @ra:           file's readahead state
 * @filp:   the file to read
 * @ppos:   current file position
 * @desc:   read_descriptor
 * @actor:  read method
 *
 * This is a generic file read routine, and uses the
 * mapping->a_ops->readpage() function for the actual low-level stuff.
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
 *
 * Note the struct file* is only passed for the use of readpage.
 * It may be NULL.
 */
void do_generic_mapping_read(struct address_space *mapping,
                       struct file_ra_state *ra,
                       struct file *filp,
                       loff_t *ppos,
                       read_descriptor_t *desc,
                       read_actor_t actor)
{
      struct inode *inode = mapping->host;
      pgoff_t index;
      pgoff_t last_index;
      pgoff_t prev_index;
      unsigned long offset;      /* offset into pagecache page */
      unsigned int prev_offset;
      int error;

      index = *ppos >> PAGE_CACHE_SHIFT;
      prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
      prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
      last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
      offset = *ppos & ~PAGE_CACHE_MASK;

      for (;;) {
            struct page *page;
            pgoff_t end_index;
            loff_t isize;
            unsigned long nr, ret;

            cond_resched();
find_page:
            page = find_get_page(mapping, index);
            if (!page) {
                  page_cache_sync_readahead(mapping,
                              ra, filp,
                              index, last_index - index);
                  page = find_get_page(mapping, index);
                  if (unlikely(page == NULL))
                        goto no_cached_page;
            }
            if (PageReadahead(page)) {
                  page_cache_async_readahead(mapping,
                              ra, filp, page,
                              index, last_index - index);
            }
            if (!PageUptodate(page))
                  goto page_not_up_to_date;
page_ok:
            /*
             * i_size must be checked after we know the page is Uptodate.
             *
             * Checking i_size after the check allows us to calculate
             * the correct value for "nr", which means the zero-filled
             * part of the page is not copied back to userspace (unless
             * another truncate extends the file - this is desired though).
             */

            isize = i_size_read(inode);
            end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
            if (unlikely(!isize || index > end_index)) {
                  page_cache_release(page);
                  goto out;
            }

            /* nr is the maximum number of bytes to copy from this page */
            nr = PAGE_CACHE_SIZE;
            if (index == end_index) {
                  nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
                  if (nr <= offset) {
                        page_cache_release(page);
                        goto out;
                  }
            }
            nr = nr - offset;

            /* If users can be writing to this page using arbitrary
             * virtual addresses, take care about potential aliasing
             * before reading the page on the kernel side.
             */
            if (mapping_writably_mapped(mapping))
                  flush_dcache_page(page);

            /*
             * When a sequential read accesses a page several times,
             * only mark it as accessed the first time.
             */
            if (prev_index != index || offset != prev_offset)
                  mark_page_accessed(page);
            prev_index = index;

            /*
             * Ok, we have the page, and it's up-to-date, so
             * now we can copy it to user space...
             *
             * The actor routine returns how many bytes were actually used..
             * NOTE! This may not be the same as how much of a user buffer
             * we filled up (we may be padding etc), so we can only update
             * "pos" here (the actor routine has to update the user buffer
             * pointers and the remaining count).
             */
            ret = actor(desc, page, offset, nr);
            offset += ret;
            index += offset >> PAGE_CACHE_SHIFT;
            offset &= ~PAGE_CACHE_MASK;
            prev_offset = offset;

            page_cache_release(page);
            if (ret == nr && desc->count)
                  continue;
            goto out;

page_not_up_to_date:
            /* Get exclusive access to the page ... */
            lock_page(page);

            /* Did it get truncated before we got the lock? */
            if (!page->mapping) {
                  unlock_page(page);
                  page_cache_release(page);
                  continue;
            }

            /* Did somebody else fill it already? */
            if (PageUptodate(page)) {
                  unlock_page(page);
                  goto page_ok;
            }

readpage:
            /* Start the actual read. The read will unlock the page. */
            error = mapping->a_ops->readpage(filp, page);

            if (unlikely(error)) {
                  if (error == AOP_TRUNCATED_PAGE) {
                        page_cache_release(page);
                        goto find_page;
                  }
                  goto readpage_error;
            }

            if (!PageUptodate(page)) {
                  lock_page(page);
                  if (!PageUptodate(page)) {
                        if (page->mapping == NULL) {
                              /*
                               * invalidate_inode_pages got it
                               */
                              unlock_page(page);
                              page_cache_release(page);
                              goto find_page;
                        }
                        unlock_page(page);
                        error = -EIO;
                        shrink_readahead_size_eio(filp, ra);
                        goto readpage_error;
                  }
                  unlock_page(page);
            }

            goto page_ok;

readpage_error:
            /* UHHUH! A synchronous read error occurred. Report it */
            desc->error = error;
            page_cache_release(page);
            goto out;

no_cached_page:
            /*
             * Ok, it wasn't cached, so we need to create a new
             * page..
             */
            page = page_cache_alloc_cold(mapping);
            if (!page) {
                  desc->error = -ENOMEM;
                  goto out;
            }
            error = add_to_page_cache_lru(page, mapping,
                                    index, GFP_KERNEL);
            if (error) {
                  page_cache_release(page);
                  if (error == -EEXIST)
                        goto find_page;
                  desc->error = error;
                  goto out;
            }
            goto readpage;
      }

out:
      ra->prev_pos = prev_index;
      ra->prev_pos <<= PAGE_CACHE_SHIFT;
      ra->prev_pos |= prev_offset;

      *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
      if (filp)
            file_accessed(filp);
}
EXPORT_SYMBOL(do_generic_mapping_read);

int file_read_actor(read_descriptor_t *desc, struct page *page,
                  unsigned long offset, unsigned long size)
{
      char *kaddr;
      unsigned long left, count = desc->count;

      if (size > count)
            size = count;

      /*
       * Faults on the destination of a read are common, so do it before
       * taking the kmap.
       */
      if (!fault_in_pages_writeable(desc->arg.buf, size)) {
            kaddr = kmap_atomic(page, KM_USER0);
            left = __copy_to_user_inatomic(desc->arg.buf,
                                    kaddr + offset, size);
            kunmap_atomic(kaddr, KM_USER0);
            if (left == 0)
                  goto success;
      }

      /* Do it the slow way */
      kaddr = kmap(page);
      left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
      kunmap(page);

      if (left) {
            size -= left;
            desc->error = -EFAULT;
      }
success:
      desc->count = count - size;
      desc->written += size;
      desc->arg.buf += size;
      return size;
}

/*
 * Performs necessary checks before doing a write
 * @iov:    io vector request
 * @nr_segs:      number of segments in the iovec
 * @count:  number of bytes to write
 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
 *
 * Adjust number of segments and amount of bytes to write (nr_segs should be
 * properly initialized first). Returns appropriate error code that caller
 * should return or zero in case that write should be allowed.
 */
int generic_segment_checks(const struct iovec *iov,
                  unsigned long *nr_segs, size_t *count, int access_flags)
{
      unsigned long   seg;
      size_t cnt = 0;
      for (seg = 0; seg < *nr_segs; seg++) {
            const struct iovec *iv = &iov[seg];

            /*
             * If any segment has a negative length, or the cumulative
             * length ever wraps negative then return -EINVAL.
             */
            cnt += iv->iov_len;
            if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
                  return -EINVAL;
            if (access_ok(access_flags, iv->iov_base, iv->iov_len))
                  continue;
            if (seg == 0)
                  return -EFAULT;
            *nr_segs = seg;
            cnt -= iv->iov_len;     /* This segment is no good */
            break;
      }
      *count = cnt;
      return 0;
}
EXPORT_SYMBOL(generic_segment_checks);

/**
 * generic_file_aio_read - generic filesystem read routine
 * @iocb:   kernel I/O control block
 * @iov:    io vector request
 * @nr_segs:      number of segments in the iovec
 * @pos:    current file position
 *
 * This is the "read()" routine for all filesystems
 * that can use the page cache directly.
 */
ssize_t
generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
            unsigned long nr_segs, loff_t pos)
{
      struct file *filp = iocb->ki_filp;
      ssize_t retval;
      unsigned long seg;
      size_t count;
      loff_t *ppos = &iocb->ki_pos;

      count = 0;
      retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
      if (retval)
            return retval;

      /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
      if (filp->f_flags & O_DIRECT) {
            loff_t size;
            struct address_space *mapping;
            struct inode *inode;

            mapping = filp->f_mapping;
            inode = mapping->host;
            retval = 0;
            if (!count)
                  goto out; /* skip atime */
            size = i_size_read(inode);
            if (pos < size) {
                  retval = generic_file_direct_IO(READ, iocb,
                                    iov, pos, nr_segs);
                  if (retval > 0)
                        *ppos = pos + retval;
            }
            if (likely(retval != 0)) {
                  file_accessed(filp);
                  goto out;
            }
      }

      retval = 0;
      if (count) {
            for (seg = 0; seg < nr_segs; seg++) {
                  read_descriptor_t desc;

                  desc.written = 0;
                  desc.arg.buf = iov[seg].iov_base;
                  desc.count = iov[seg].iov_len;
                  if (desc.count == 0)
                        continue;
                  desc.error = 0;
                  do_generic_file_read(filp,ppos,&desc,file_read_actor);
                  retval += desc.written;
                  if (desc.error) {
                        retval = retval ?: desc.error;
                        break;
                  }
                  if (desc.count > 0)
                        break;
            }
      }
out:
      return retval;
}
EXPORT_SYMBOL(generic_file_aio_read);

static ssize_t
do_readahead(struct address_space *mapping, struct file *filp,
           pgoff_t index, unsigned long nr)
{
      if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
            return -EINVAL;

      force_page_cache_readahead(mapping, filp, index,
                              max_sane_readahead(nr));
      return 0;
}

asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
{
      ssize_t ret;
      struct file *file;

      ret = -EBADF;
      file = fget(fd);
      if (file) {
            if (file->f_mode & FMODE_READ) {
                  struct address_space *mapping = file->f_mapping;
                  pgoff_t start = offset >> PAGE_CACHE_SHIFT;
                  pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
                  unsigned long len = end - start + 1;
                  ret = do_readahead(mapping, file, start, len);
            }
            fput(file);
      }
      return ret;
}

#ifdef CONFIG_MMU
/**
 * page_cache_read - adds requested page to the page cache if not already there
 * @file:   file to read
 * @offset: page index
 *
 * This adds the requested page to the page cache if it isn't already there,
 * and schedules an I/O to read in its contents from disk.
 */
static int fastcall page_cache_read(struct file * file, pgoff_t offset)
{
      struct address_space *mapping = file->f_mapping;
      struct page *page; 
      int ret;

      do {
            page = page_cache_alloc_cold(mapping);
            if (!page)
                  return -ENOMEM;

            ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
            if (ret == 0)
                  ret = mapping->a_ops->readpage(file, page);
            else if (ret == -EEXIST)
                  ret = 0; /* losing race to add is OK */

            page_cache_release(page);

      } while (ret == AOP_TRUNCATED_PAGE);
            
      return ret;
}

#define MMAP_LOTSAMISS  (100)

/**
 * filemap_fault - read in file data for page fault handling
 * @vma:    vma in which the fault was taken
 * @vmf:    struct vm_fault containing details of the fault
 *
 * filemap_fault() is invoked via the vma operations vector for a
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
 */
int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
      int error;
      struct file *file = vma->vm_file;
      struct address_space *mapping = file->f_mapping;
      struct file_ra_state *ra = &file->f_ra;
      struct inode *inode = mapping->host;
      struct page *page;
      unsigned long size;
      int did_readaround = 0;
      int ret = 0;

      size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
      if (vmf->pgoff >= size)
            return VM_FAULT_SIGBUS;

      /* If we don't want any read-ahead, don't bother */
      if (VM_RandomReadHint(vma))
            goto no_cached_page;

      /*
       * Do we have something in the page cache already?
       */
retry_find:
      page = find_lock_page(mapping, vmf->pgoff);
      /*
       * For sequential accesses, we use the generic readahead logic.
       */
      if (VM_SequentialReadHint(vma)) {
            if (!page) {
                  page_cache_sync_readahead(mapping, ra, file,
                                             vmf->pgoff, 1);
                  page = find_lock_page(mapping, vmf->pgoff);
                  if (!page)
                        goto no_cached_page;
            }
            if (PageReadahead(page)) {
                  page_cache_async_readahead(mapping, ra, file, page,
                                             vmf->pgoff, 1);
            }
      }

      if (!page) {
            unsigned long ra_pages;

            ra->mmap_miss++;

            /*
             * Do we miss much more than hit in this file? If so,
             * stop bothering with read-ahead. It will only hurt.
             */
            if (ra->mmap_miss > MMAP_LOTSAMISS)
                  goto no_cached_page;

            /*
             * To keep the pgmajfault counter straight, we need to
             * check did_readaround, as this is an inner loop.
             */
            if (!did_readaround) {
                  ret = VM_FAULT_MAJOR;
                  count_vm_event(PGMAJFAULT);
            }
            did_readaround = 1;
            ra_pages = max_sane_readahead(file->f_ra.ra_pages);
            if (ra_pages) {
                  pgoff_t start = 0;

                  if (vmf->pgoff > ra_pages / 2)
                        start = vmf->pgoff - ra_pages / 2;
                  do_page_cache_readahead(mapping, file, start, ra_pages);
            }
            page = find_lock_page(mapping, vmf->pgoff);
            if (!page)
                  goto no_cached_page;
      }

      if (!did_readaround)
            ra->mmap_miss--;

      /*
       * We have a locked page in the page cache, now we need to check
       * that it's up-to-date. If not, it is going to be due to an error.
       */
      if (unlikely(!PageUptodate(page)))
            goto page_not_uptodate;

      /* Must recheck i_size under page lock */
      size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
      if (unlikely(vmf->pgoff >= size)) {
            unlock_page(page);
            page_cache_release(page);
            return VM_FAULT_SIGBUS;
      }

      /*
       * Found the page and have a reference on it.
       */
      mark_page_accessed(page);
      ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
      vmf->page = page;
      return ret | VM_FAULT_LOCKED;

no_cached_page:
      /*
       * We're only likely to ever get here if MADV_RANDOM is in
       * effect.
       */
      error = page_cache_read(file, vmf->pgoff);

      /*
       * The page we want has now been added to the page cache.
       * In the unlikely event that someone removed it in the
       * meantime, we'll just come back here and read it again.
       */
      if (error >= 0)
            goto retry_find;

      /*
       * An error return from page_cache_read can result if the
       * system is low on memory, or a problem occurs while trying
       * to schedule I/O.
       */
      if (error == -ENOMEM)
            return VM_FAULT_OOM;
      return VM_FAULT_SIGBUS;

page_not_uptodate:
      /* IO error path */
      if (!did_readaround) {
            ret = VM_FAULT_MAJOR;
            count_vm_event(PGMAJFAULT);
      }

      /*
       * Umm, take care of errors if the page isn't up-to-date.
       * Try to re-read it _once_. We do this synchronously,
       * because there really aren't any performance issues here
       * and we need to check for errors.
       */
      ClearPageError(page);
      error = mapping->a_ops->readpage(file, page);
      page_cache_release(page);

      if (!error || error == AOP_TRUNCATED_PAGE)
            goto retry_find;

      /* Things didn't work out. Return zero to tell the mm layer so. */
      shrink_readahead_size_eio(file, ra);
      return VM_FAULT_SIGBUS;
}
EXPORT_SYMBOL(filemap_fault);

struct vm_operations_struct generic_file_vm_ops = {
      .fault            = filemap_fault,
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
      struct address_space *mapping = file->f_mapping;

      if (!mapping->a_ops->readpage)
            return -ENOEXEC;
      file_accessed(file);
      vma->vm_ops = &generic_file_vm_ops;
      vma->vm_flags |= VM_CAN_NONLINEAR;
      return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
      if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
            return -EINVAL;
      return generic_file_mmap(file, vma);
}
#else
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
      return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
      return -ENOSYS;
}
#endif /* CONFIG_MMU */

EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

static struct page *__read_cache_page(struct address_space *mapping,
                        pgoff_t index,
                        int (*filler)(void *,struct page*),
                        void *data)
{
      struct page *page;
      int err;
repeat:
      page = find_get_page(mapping, index);
      if (!page) {
            page = page_cache_alloc_cold(mapping);
            if (!page)
                  return ERR_PTR(-ENOMEM);
            err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
            if (unlikely(err)) {
                  page_cache_release(page);
                  if (err == -EEXIST)
                        goto repeat;
                  /* Presumably ENOMEM for radix tree node */
                  return ERR_PTR(err);
            }
            err = filler(data, page);
            if (err < 0) {
                  page_cache_release(page);
                  page = ERR_PTR(err);
            }
      }
      return page;
}

/*
 * Same as read_cache_page, but don't wait for page to become unlocked
 * after submitting it to the filler.
 */
struct page *read_cache_page_async(struct address_space *mapping,
                        pgoff_t index,
                        int (*filler)(void *,struct page*),
                        void *data)
{
      struct page *page;
      int err;

retry:
      page = __read_cache_page(mapping, index, filler, data);
      if (IS_ERR(page))
            return page;
      if (PageUptodate(page))
            goto out;

      lock_page(page);
      if (!page->mapping) {
            unlock_page(page);
            page_cache_release(page);
            goto retry;
      }
      if (PageUptodate(page)) {
            unlock_page(page);
            goto out;
      }
      err = filler(data, page);
      if (err < 0) {
            page_cache_release(page);
            return ERR_PTR(err);
      }
out:
      mark_page_accessed(page);
      return page;
}
EXPORT_SYMBOL(read_cache_page_async);

/**
 * read_cache_page - read into page cache, fill it if needed
 * @mapping:      the page's address_space
 * @index:  the page index
 * @filler: function to perform the read
 * @data:   destination for read data
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
 * not set, try to fill the page then wait for it to become unlocked.
 *
 * If the page does not get brought uptodate, return -EIO.
 */
struct page *read_cache_page(struct address_space *mapping,
                        pgoff_t index,
                        int (*filler)(void *,struct page*),
                        void *data)
{
      struct page *page;

      page = read_cache_page_async(mapping, index, filler, data);
      if (IS_ERR(page))
            goto out;
      wait_on_page_locked(page);
      if (!PageUptodate(page)) {
            page_cache_release(page);
            page = ERR_PTR(-EIO);
      }
 out:
      return page;
}
EXPORT_SYMBOL(read_cache_page);

/*
 * The logic we want is
 *
 *    if suid or (sgid and xgrp)
 *          remove privs
 */
int should_remove_suid(struct dentry *dentry)
{
      mode_t mode = dentry->d_inode->i_mode;
      int kill = 0;

      /* suid always must be killed */
      if (unlikely(mode & S_ISUID))
            kill = ATTR_KILL_SUID;

      /*
       * sgid without any exec bits is just a mandatory locking mark; leave
       * it alone.  If some exec bits are set, it's a real sgid; kill it.
       */
      if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
            kill |= ATTR_KILL_SGID;

      if (unlikely(kill && !capable(CAP_FSETID)))
            return kill;

      return 0;
}
EXPORT_SYMBOL(should_remove_suid);

int __remove_suid(struct dentry *dentry, int kill)
{
      struct iattr newattrs;

      newattrs.ia_valid = ATTR_FORCE | kill;
      return notify_change(dentry, &newattrs);
}

int remove_suid(struct dentry *dentry)
{
      int killsuid = should_remove_suid(dentry);
      int killpriv = security_inode_need_killpriv(dentry);
      int error = 0;

      if (killpriv < 0)
            return killpriv;
      if (killpriv)
            error = security_inode_killpriv(dentry);
      if (!error && killsuid)
            error = __remove_suid(dentry, killsuid);

      return error;
}
EXPORT_SYMBOL(remove_suid);

static size_t __iovec_copy_from_user_inatomic(char *vaddr,
                  const struct iovec *iov, size_t base, size_t bytes)
{
      size_t copied = 0, left = 0;

      while (bytes) {
            char __user *buf = iov->iov_base + base;
            int copy = min(bytes, iov->iov_len - base);

            base = 0;
            left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
            copied += copy;
            bytes -= copy;
            vaddr += copy;
            iov++;

            if (unlikely(left))
                  break;
      }
      return copied - left;
}

/*
 * Copy as much as we can into the page and return the number of bytes which
 * were sucessfully copied.  If a fault is encountered then return the number of
 * bytes which were copied.
 */
size_t iov_iter_copy_from_user_atomic(struct page *page,
            struct iov_iter *i, unsigned long offset, size_t bytes)
{
      char *kaddr;
      size_t copied;

      BUG_ON(!in_atomic());
      kaddr = kmap_atomic(page, KM_USER0);
      if (likely(i->nr_segs == 1)) {
            int left;
            char __user *buf = i->iov->iov_base + i->iov_offset;
            left = __copy_from_user_inatomic_nocache(kaddr + offset,
                                          buf, bytes);
            copied = bytes - left;
      } else {
            copied = __iovec_copy_from_user_inatomic(kaddr + offset,
                                    i->iov, i->iov_offset, bytes);
      }
      kunmap_atomic(kaddr, KM_USER0);

      return copied;
}
EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);

/*
 * This has the same sideeffects and return value as
 * iov_iter_copy_from_user_atomic().
 * The difference is that it attempts to resolve faults.
 * Page must not be locked.
 */
size_t iov_iter_copy_from_user(struct page *page,
            struct iov_iter *i, unsigned long offset, size_t bytes)
{
      char *kaddr;
      size_t copied;

      kaddr = kmap(page);
      if (likely(i->nr_segs == 1)) {
            int left;
            char __user *buf = i->iov->iov_base + i->iov_offset;
            left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
            copied = bytes - left;
      } else {
            copied = __iovec_copy_from_user_inatomic(kaddr + offset,
                                    i->iov, i->iov_offset, bytes);
      }
      kunmap(page);
      return copied;
}
EXPORT_SYMBOL(iov_iter_copy_from_user);

static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
{
      if (likely(i->nr_segs == 1)) {
            i->iov_offset += bytes;
      } else {
            const struct iovec *iov = i->iov;
            size_t base = i->iov_offset;

            /*
             * The !iov->iov_len check ensures we skip over unlikely
             * zero-length segments.
             */
            while (bytes || !iov->iov_len) {
                  int copy = min(bytes, iov->iov_len - base);

                  bytes -= copy;
                  base += copy;
                  if (iov->iov_len == base) {
                        iov++;
                        base = 0;
                  }
            }
            i->iov = iov;
            i->iov_offset = base;
      }
}

void iov_iter_advance(struct iov_iter *i, size_t bytes)
{
      BUG_ON(i->count < bytes);

      __iov_iter_advance_iov(i, bytes);
      i->count -= bytes;
}
EXPORT_SYMBOL(iov_iter_advance);

/*
 * Fault in the first iovec of the given iov_iter, to a maximum length
 * of bytes. Returns 0 on success, or non-zero if the memory could not be
 * accessed (ie. because it is an invalid address).
 *
 * writev-intensive code may want this to prefault several iovecs -- that
 * would be possible (callers must not rely on the fact that _only_ the
 * first iovec will be faulted with the current implementation).
 */
int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
{
      char __user *buf = i->iov->iov_base + i->iov_offset;
      bytes = min(bytes, i->iov->iov_len - i->iov_offset);
      return fault_in_pages_readable(buf, bytes);
}
EXPORT_SYMBOL(iov_iter_fault_in_readable);

/*
 * Return the count of just the current iov_iter segment.
 */
size_t iov_iter_single_seg_count(struct iov_iter *i)
{
      const struct iovec *iov = i->iov;
      if (i->nr_segs == 1)
            return i->count;
      else
            return min(i->count, iov->iov_len - i->iov_offset);
}
EXPORT_SYMBOL(iov_iter_single_seg_count);

/*
 * Performs necessary checks before doing a write
 *
 * Can adjust writing position or amount of bytes to write.
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
{
      struct inode *inode = file->f_mapping->host;
      unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;

        if (unlikely(*pos < 0))
                return -EINVAL;

      if (!isblk) {
            /* FIXME: this is for backwards compatibility with 2.4 */
            if (file->f_flags & O_APPEND)
                        *pos = i_size_read(inode);

            if (limit != RLIM_INFINITY) {
                  if (*pos >= limit) {
                        send_sig(SIGXFSZ, current, 0);
                        return -EFBIG;
                  }
                  if (*count > limit - (typeof(limit))*pos) {
                        *count = limit - (typeof(limit))*pos;
                  }
            }
      }

      /*
       * LFS rule
       */
      if (unlikely(*pos + *count > MAX_NON_LFS &&
                        !(file->f_flags & O_LARGEFILE))) {
            if (*pos >= MAX_NON_LFS) {
                  return -EFBIG;
            }
            if (*count > MAX_NON_LFS - (unsigned long)*pos) {
                  *count = MAX_NON_LFS - (unsigned long)*pos;
            }
      }

      /*
       * Are we about to exceed the fs block limit ?
       *
       * If we have written data it becomes a short write.  If we have
       * exceeded without writing data we send a signal and return EFBIG.
       * Linus frestrict idea will clean these up nicely..
       */
      if (likely(!isblk)) {
            if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
                  if (*count || *pos > inode->i_sb->s_maxbytes) {
                        return -EFBIG;
                  }
                  /* zero-length writes at ->s_maxbytes are OK */
            }

            if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
                  *count = inode->i_sb->s_maxbytes - *pos;
      } else {
#ifdef CONFIG_BLOCK
            loff_t isize;
            if (bdev_read_only(I_BDEV(inode)))
                  return -EPERM;
            isize = i_size_read(inode);
            if (*pos >= isize) {
                  if (*count || *pos > isize)
                        return -ENOSPC;
            }

            if (*pos + *count > isize)
                  *count = isize - *pos;
#else
            return -EPERM;
#endif
      }
      return 0;
}
EXPORT_SYMBOL(generic_write_checks);

int pagecache_write_begin(struct file *file, struct address_space *mapping,
                        loff_t pos, unsigned len, unsigned flags,
                        struct page **pagep, void **fsdata)
{
      const struct address_space_operations *aops = mapping->a_ops;

      if (aops->write_begin) {
            return aops->write_begin(file, mapping, pos, len, flags,
                                          pagep, fsdata);
      } else {
            int ret;
            pgoff_t index = pos >> PAGE_CACHE_SHIFT;
            unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
            struct inode *inode = mapping->host;
            struct page *page;
again:
            page = __grab_cache_page(mapping, index);
            *pagep = page;
            if (!page)
                  return -ENOMEM;

            if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
                  /*
                   * There is no way to resolve a short write situation
                   * for a !Uptodate page (except by double copying in
                   * the caller done by generic_perform_write_2copy).
                   *
                   * Instead, we have to bring it uptodate here.
                   */
                  ret = aops->readpage(file, page);
                  page_cache_release(page);
                  if (ret) {
                        if (ret == AOP_TRUNCATED_PAGE)
                              goto again;
                        return ret;
                  }
                  goto again;
            }

            ret = aops->prepare_write(file, page, offset, offset+len);
            if (ret) {
                  unlock_page(page);
                  page_cache_release(page);
                  if (pos + len > inode->i_size)
                        vmtruncate(inode, inode->i_size);
            }
            return ret;
      }
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
                        loff_t pos, unsigned len, unsigned copied,
                        struct page *page, void *fsdata)
{
      const struct address_space_operations *aops = mapping->a_ops;
      int ret;

      if (aops->write_end) {
            mark_page_accessed(page);
            ret = aops->write_end(file, mapping, pos, len, copied,
                                          page, fsdata);
      } else {
            unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
            struct inode *inode = mapping->host;

            flush_dcache_page(page);
            ret = aops->commit_write(file, page, offset, offset+len);
            unlock_page(page);
            mark_page_accessed(page);
            page_cache_release(page);

            if (ret < 0) {
                  if (pos + len > inode->i_size)
                        vmtruncate(inode, inode->i_size);
            } else if (ret > 0)
                  ret = min_t(size_t, copied, ret);
            else
                  ret = copied;
      }

      return ret;
}
EXPORT_SYMBOL(pagecache_write_end);

ssize_t
generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
            unsigned long *nr_segs, loff_t pos, loff_t *ppos,
            size_t count, size_t ocount)
{
      struct file *file = iocb->ki_filp;
      struct address_space *mapping = file->f_mapping;
      struct inode      *inode = mapping->host;
      ssize_t           written;

      if (count != ocount)
            *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);

      written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
      if (written > 0) {
            loff_t end = pos + written;
            if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
                  i_size_write(inode,  end);
                  mark_inode_dirty(inode);
            }
            *ppos = end;
      }

      /*
       * Sync the fs metadata but not the minor inode changes and
       * of course not the data as we did direct DMA for the IO.
       * i_mutex is held, which protects generic_osync_inode() from
       * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
       */
      if ((written >= 0 || written == -EIOCBQUEUED) &&
          ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
            int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
            if (err < 0)
                  written = err;
      }
      return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
{
      int status;
      struct page *page;
repeat:
      page = find_lock_page(mapping, index);
      if (likely(page))
            return page;

      page = page_cache_alloc(mapping);
      if (!page)
            return NULL;
      status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
      if (unlikely(status)) {
            page_cache_release(page);
            if (status == -EEXIST)
                  goto repeat;
            return NULL;
      }
      return page;
}
EXPORT_SYMBOL(__grab_cache_page);

static ssize_t generic_perform_write_2copy(struct file *file,
                        struct iov_iter *i, loff_t pos)
{
      struct address_space *mapping = file->f_mapping;
      const struct address_space_operations *a_ops = mapping->a_ops;
      struct inode *inode = mapping->host;
      long status = 0;
      ssize_t written = 0;

      do {
            struct page *src_page;
            struct page *page;
            pgoff_t index;          /* Pagecache index for current page */
            unsigned long offset;   /* Offset into pagecache page */
            unsigned long bytes;    /* Bytes to write to page */
            size_t copied;          /* Bytes copied from user */

            offset = (pos & (PAGE_CACHE_SIZE - 1));
            index = pos >> PAGE_CACHE_SHIFT;
            bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
                                    iov_iter_count(i));

            /*
             * a non-NULL src_page indicates that we're doing the
             * copy via get_user_pages and kmap.
             */
            src_page = NULL;

            /*
             * Bring in the user page that we will copy from _first_.
             * Otherwise there's a nasty deadlock on copying from the
             * same page as we're writing to, without it being marked
             * up-to-date.
             *
             * Not only is this an optimisation, but it is also required
             * to check that the address is actually valid, when atomic
             * usercopies are used, below.
             */
            if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
                  status = -EFAULT;
                  break;
            }

            page = __grab_cache_page(mapping, index);
            if (!page) {
                  status = -ENOMEM;
                  break;
            }

            /*
             * non-uptodate pages cannot cope with short copies, and we
             * cannot take a pagefault with the destination page locked.
             * So pin the source page to copy it.
             */
            if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
                  unlock_page(page);

                  src_page = alloc_page(GFP_KERNEL);
                  if (!src_page) {
                        page_cache_release(page);
                        status = -ENOMEM;
                        break;
                  }

                  /*
                   * Cannot get_user_pages with a page locked for the
                   * same reason as we can't take a page fault with a
                   * page locked (as explained below).
                   */
                  copied = iov_iter_copy_from_user(src_page, i,
                                                offset, bytes);
                  if (unlikely(copied == 0)) {
                        status = -EFAULT;
                        page_cache_release(page);
                        page_cache_release(src_page);
                        break;
                  }
                  bytes = copied;

                  lock_page(page);
                  /*
                   * Can't handle the page going uptodate here, because
                   * that means we would use non-atomic usercopies, which
                   * zero out the tail of the page, which can cause
                   * zeroes to become transiently visible. We could just
                   * use a non-zeroing copy, but the APIs aren't too
                   * consistent.
                   */
                  if (unlikely(!page->mapping || PageUptodate(page))) {
                        unlock_page(page);
                        page_cache_release(page);
                        page_cache_release(src_page);
                        continue;
                  }
            }

            status = a_ops->prepare_write(file, page, offset, offset+bytes);
            if (unlikely(status))
                  goto fs_write_aop_error;

            if (!src_page) {
                  /*
                   * Must not enter the pagefault handler here, because
                   * we hold the page lock, so we might recursively
                   * deadlock on the same lock, or get an ABBA deadlock
                   * against a different lock, or against the mmap_sem
                   * (which nests outside the page lock).  So increment
                   * preempt count, and use _atomic usercopies.
                   *
                   * The page is uptodate so we are OK to encounter a
                   * short copy: if unmodified parts of the page are
                   * marked dirty and written out to disk, it doesn't
                   * really matter.
                   */
                  pagefault_disable();
                  copied = iov_iter_copy_from_user_atomic(page, i,
                                                offset, bytes);
                  pagefault_enable();
            } else {
                  void *src, *dst;
                  src = kmap_atomic(src_page, KM_USER0);
                  dst = kmap_atomic(page, KM_USER1);
                  memcpy(dst + offset, src + offset, bytes);
                  kunmap_atomic(dst, KM_USER1);
                  kunmap_atomic(src, KM_USER0);
                  copied = bytes;
            }
            flush_dcache_page(page);

            status = a_ops->commit_write(file, page, offset, offset+bytes);
            if (unlikely(status < 0))
                  goto fs_write_aop_error;
            if (unlikely(status > 0)) /* filesystem did partial write */
                  copied = min_t(size_t, copied, status);

            unlock_page(page);
            mark_page_accessed(page);
            page_cache_release(page);
            if (src_page)
                  page_cache_release(src_page);

            iov_iter_advance(i, copied);
            pos += copied;
            written += copied;

            balance_dirty_pages_ratelimited(mapping);
            cond_resched();
            continue;

fs_write_aop_error:
            unlock_page(page);
            page_cache_release(page);
            if (src_page)
                  page_cache_release(src_page);

            /*
             * prepare_write() may have instantiated a few blocks
             * outside i_size.  Trim these off again. Don't need
             * i_size_read because we hold i_mutex.
             */
            if (pos + bytes > inode->i_size)
                  vmtruncate(inode, inode->i_size);
            break;
      } while (iov_iter_count(i));

      return written ? written : status;
}

static ssize_t generic_perform_write(struct file *file,
                        struct iov_iter *i, loff_t pos)
{
      struct address_space *mapping = file->f_mapping;
      const struct address_space_operations *a_ops = mapping->a_ops;
      long status = 0;
      ssize_t written = 0;
      unsigned int flags = 0;

      /*
       * Copies from kernel address space cannot fail (NFSD is a big user).
       */
      if (segment_eq(get_fs(), KERNEL_DS))
            flags |= AOP_FLAG_UNINTERRUPTIBLE;

      do {
            struct page *page;
            pgoff_t index;          /* Pagecache index for current page */
            unsigned long offset;   /* Offset into pagecache page */
            unsigned long bytes;    /* Bytes to write to page */
            size_t copied;          /* Bytes copied from user */
            void *fsdata;

            offset = (pos & (PAGE_CACHE_SIZE - 1));
            index = pos >> PAGE_CACHE_SHIFT;
            bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
                                    iov_iter_count(i));

again:

            /*
             * Bring in the user page that we will copy from _first_.
             * Otherwise there's a nasty deadlock on copying from the
             * same page as we're writing to, without it being marked
             * up-to-date.
             *
             * Not only is this an optimisation, but it is also required
             * to check that the address is actually valid, when atomic
             * usercopies are used, below.
             */
            if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
                  status = -EFAULT;
                  break;
            }

            status = a_ops->write_begin(file, mapping, pos, bytes, flags,
                                    &page, &fsdata);
            if (unlikely(status))
                  break;

            pagefault_disable();
            copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
            pagefault_enable();
            flush_dcache_page(page);

            status = a_ops->write_end(file, mapping, pos, bytes, copied,
                                    page, fsdata);
            if (unlikely(status < 0))
                  break;
            copied = status;

            cond_resched();

            iov_iter_advance(i, copied);
            if (unlikely(copied == 0)) {
                  /*
                   * If we were unable to copy any data at all, we must
                   * fall back to a single segment length write.
                   *
                   * If we didn't fallback here, we could livelock
                   * because not all segments in the iov can be copied at
                   * once without a pagefault.
                   */
                  bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
                                    iov_iter_single_seg_count(i));
                  goto again;
            }
            pos += copied;
            written += copied;

            balance_dirty_pages_ratelimited(mapping);

      } while (iov_iter_count(i));

      return written ? written : status;
}

ssize_t
generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
            unsigned long nr_segs, loff_t pos, loff_t *ppos,
            size_t count, ssize_t written)
{
      struct file *file = iocb->ki_filp;
      struct address_space *mapping = file->f_mapping;
      const struct address_space_operations *a_ops = mapping->a_ops;
      struct inode *inode = mapping->host;
      ssize_t status;
      struct iov_iter i;

      iov_iter_init(&i, iov, nr_segs, count, written);
      if (a_ops->write_begin)
            status = generic_perform_write(file, &i, pos);
      else
            status = generic_perform_write_2copy(file, &i, pos);

      if (likely(status >= 0)) {
            written += status;
            *ppos = pos + status;

            /*
             * For now, when the user asks for O_SYNC, we'll actually give
             * O_DSYNC
             */
            if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
                  if (!a_ops->writepage || !is_sync_kiocb(iocb))
                        status = generic_osync_inode(inode, mapping,
                                    OSYNC_METADATA|OSYNC_DATA);
            }
      }
      
      /*
       * If we get here for O_DIRECT writes then we must have fallen through
       * to buffered writes (block instantiation inside i_size).  So we sync
       * the file data here, to try to honour O_DIRECT expectations.
       */
      if (unlikely(file->f_flags & O_DIRECT) && written)
            status = filemap_write_and_wait(mapping);

      return written ? written : status;
}
EXPORT_SYMBOL(generic_file_buffered_write);

static ssize_t
__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
                        unsigned long nr_segs, loff_t *ppos)
{
      struct file *file = iocb->ki_filp;
      struct address_space * mapping = file->f_mapping;
      size_t ocount;          /* original count */
      size_t count;           /* after file limit checks */
      struct inode      *inode = mapping->host;
      loff_t            pos;
      ssize_t           written;
      ssize_t           err;

      ocount = 0;
      err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
      if (err)
            return err;

      count = ocount;
      pos = *ppos;

      vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);

      /* We can write back this queue in page reclaim */
      current->backing_dev_info = mapping->backing_dev_info;
      written = 0;

      err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
      if (err)
            goto out;

      if (count == 0)
            goto out;

      err = remove_suid(file->f_path.dentry);
      if (err)
            goto out;

      file_update_time(file);

      /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
      if (unlikely(file->f_flags & O_DIRECT)) {
            loff_t endbyte;
            ssize_t written_buffered;

            written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
                                          ppos, count, ocount);
            if (written < 0 || written == count)
                  goto out;
            /*
             * direct-io write to a hole: fall through to buffered I/O
             * for completing the rest of the request.
             */
            pos += written;
            count -= written;
            written_buffered = generic_file_buffered_write(iocb, iov,
                                    nr_segs, pos, ppos, count,
                                    written);
            /*
             * If generic_file_buffered_write() retuned a synchronous error
             * then we want to return the number of bytes which were
             * direct-written, or the error code if that was zero.  Note
             * that this differs from normal direct-io semantics, which
             * will return -EFOO even if some bytes were written.
             */
            if (written_buffered < 0) {
                  err = written_buffered;
                  goto out;
            }

            /*
             * We need to ensure that the page cache pages are written to
             * disk and invalidated to preserve the expected O_DIRECT
             * semantics.
             */
            endbyte = pos + written_buffered - written - 1;
            err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
                                  SYNC_FILE_RANGE_WAIT_BEFORE|
                                  SYNC_FILE_RANGE_WRITE|
                                  SYNC_FILE_RANGE_WAIT_AFTER);
            if (err == 0) {
                  written = written_buffered;
                  invalidate_mapping_pages(mapping,
                                     pos >> PAGE_CACHE_SHIFT,
                                     endbyte >> PAGE_CACHE_SHIFT);
            } else {
                  /*
                   * We don't know how much we wrote, so just return
                   * the number of bytes which were direct-written
                   */
            }
      } else {
            written = generic_file_buffered_write(iocb, iov, nr_segs,
                        pos, ppos, count, written);
      }
out:
      current->backing_dev_info = NULL;
      return written ? written : err;
}

ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
            const struct iovec *iov, unsigned long nr_segs, loff_t pos)
{
      struct file *file = iocb->ki_filp;
      struct address_space *mapping = file->f_mapping;
      struct inode *inode = mapping->host;
      ssize_t ret;

      BUG_ON(iocb->ki_pos != pos);

      ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
                  &iocb->ki_pos);

      if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
            ssize_t err;

            err = sync_page_range_nolock(inode, mapping, pos, ret);
            if (err < 0)
                  ret = err;
      }
      return ret;
}
EXPORT_SYMBOL(generic_file_aio_write_nolock);

ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
            unsigned long nr_segs, loff_t pos)
{
      struct file *file = iocb->ki_filp;
      struct address_space *mapping = file->f_mapping;
      struct inode *inode = mapping->host;
      ssize_t ret;

      BUG_ON(iocb->ki_pos != pos);

      mutex_lock(&inode->i_mutex);
      ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
                  &iocb->ki_pos);
      mutex_unlock(&inode->i_mutex);

      if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
            ssize_t err;

            err = sync_page_range(inode, mapping, pos, ret);
            if (err < 0)
                  ret = err;
      }
      return ret;
}
EXPORT_SYMBOL(generic_file_aio_write);

/*
 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
 * went wrong during pagecache shootdown.
 */
static ssize_t
generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
      loff_t offset, unsigned long nr_segs)
{
      struct file *file = iocb->ki_filp;
      struct address_space *mapping = file->f_mapping;
      ssize_t retval;
      size_t write_len;
      pgoff_t end = 0; /* silence gcc */

      /*
       * If it's a write, unmap all mmappings of the file up-front.  This
       * will cause any pte dirty bits to be propagated into the pageframes
       * for the subsequent filemap_write_and_wait().
       */
      if (rw == WRITE) {
            write_len = iov_length(iov, nr_segs);
            end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
                  if (mapping_mapped(mapping))
                  unmap_mapping_range(mapping, offset, write_len, 0);
      }

      retval = filemap_write_and_wait(mapping);
      if (retval)
            goto out;

      /*
       * After a write we want buffered reads to be sure to go to disk to get
       * the new data.  We invalidate clean cached page from the region we're
       * about to write.  We do this *before* the write so that we can return
       * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
       */
      if (rw == WRITE && mapping->nrpages) {
            retval = invalidate_inode_pages2_range(mapping,
                              offset >> PAGE_CACHE_SHIFT, end);
            if (retval)
                  goto out;
      }

      retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);

      /*
       * Finally, try again to invalidate clean pages which might have been
       * cached by non-direct readahead, or faulted in by get_user_pages()
       * if the source of the write was an mmap'ed region of the file
       * we're writing.  Either one is a pretty crazy thing to do,
       * so we don't support it 100%.  If this invalidation
       * fails, tough, the write still worked...
       */
      if (rw == WRITE && mapping->nrpages) {
            invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
      }
out:
      return retval;
}

/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
 * (presumably at page->private).  If the release was successful, return `1'.
 * Otherwise return zero.
 *
 * The @gfp_mask argument specifies whether I/O may be performed to release
 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
 *
 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
      struct address_space * const mapping = page->mapping;

      BUG_ON(!PageLocked(page));
      if (PageWriteback(page))
            return 0;

      if (mapping && mapping->a_ops->releasepage)
            return mapping->a_ops->releasepage(page, gfp_mask);
      return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);

Generated by  Doxygen 1.6.0   Back to index