Logo Search packages:      
Sourcecode: linux version File versions  Download package

inode.c

/*
 * inode.c
 *
 * PURPOSE
 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
 *
 * COPYRIGHT
 *  This file is distributed under the terms of the GNU General Public
 *  License (GPL). Copies of the GPL can be obtained from:
 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 *  Each contributing author retains all rights to their own work.
 *
 *  (C) 1998 Dave Boynton
 *  (C) 1998-2004 Ben Fennema
 *  (C) 1999-2000 Stelias Computing Inc
 *
 * HISTORY
 *
 *  10/04/98 dgb  Added rudimentary directory functions
 *  10/07/98      Fully working udf_block_map! It works!
 *  11/25/98      bmap altered to better support extents
 *  12/06/98 blf  partition support in udf_iget, udf_block_map and udf_read_inode
 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
 *                block boundaries (which is not actually allowed)
 *  12/20/98      added support for strategy 4096
 *  03/07/99      rewrote udf_block_map (again)
 *                New funcs, inode_bmap, udf_next_aext
 *  04/19/99      Support for writing device EA's for major/minor #
 */

#include "udfdecl.h"
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/slab.h>

#include "udf_i.h"
#include "udf_sb.h"

MODULE_AUTHOR("Ben Fennema");
MODULE_DESCRIPTION("Universal Disk Format Filesystem");
MODULE_LICENSE("GPL");

#define EXTENT_MERGE_SIZE 5

static mode_t udf_convert_permissions(struct fileEntry *);
static int udf_update_inode(struct inode *, int);
static void udf_fill_inode(struct inode *, struct buffer_head *);
static int udf_alloc_i_data(struct inode *inode, size_t size);
static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
                              long *, int *);
static int8_t udf_insert_aext(struct inode *, struct extent_position,
                        kernel_lb_addr, uint32_t);
static void udf_split_extents(struct inode *, int *, int, int,
                        kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_prealloc_extents(struct inode *, int, int,
                         kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_merge_extents(struct inode *,
                        kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_update_extents(struct inode *,
                         kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
                         struct extent_position *);
static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);

/*
 * udf_delete_inode
 *
 * PURPOSE
 *    Clean-up before the specified inode is destroyed.
 *
 * DESCRIPTION
 *    This routine is called when the kernel destroys an inode structure
 *    ie. when iput() finds i_count == 0.
 *
 * HISTORY
 *    July 1, 1997 - Andrew E. Mileski
 *    Written, tested, and released.
 *
 *  Called at the last iput() if i_nlink is zero.
 */
void udf_delete_inode(struct inode *inode)
{
      truncate_inode_pages(&inode->i_data, 0);

      if (is_bad_inode(inode))
            goto no_delete;

      inode->i_size = 0;
      udf_truncate(inode);
      lock_kernel();

      udf_update_inode(inode, IS_SYNC(inode));
      udf_free_inode(inode);

      unlock_kernel();
      return;

no_delete:
      clear_inode(inode);
}

/*
 * If we are going to release inode from memory, we discard preallocation and
 * truncate last inode extent to proper length. We could use drop_inode() but
 * it's called under inode_lock and thus we cannot mark inode dirty there.  We
 * use clear_inode() but we have to make sure to write inode as it's not written
 * automatically.
 */
void udf_clear_inode(struct inode *inode)
{
      if (!(inode->i_sb->s_flags & MS_RDONLY)) {
            lock_kernel();
            /* Discard preallocation for directories, symlinks, etc. */
            udf_discard_prealloc(inode);
            udf_truncate_tail_extent(inode);
            unlock_kernel();
            write_inode_now(inode, 1);
      }
      kfree(UDF_I_DATA(inode));
      UDF_I_DATA(inode) = NULL;
}

static int udf_writepage(struct page *page, struct writeback_control *wbc)
{
      return block_write_full_page(page, udf_get_block, wbc);
}

static int udf_readpage(struct file *file, struct page *page)
{
      return block_read_full_page(page, udf_get_block);
}

static int udf_write_begin(struct file *file, struct address_space *mapping,
                  loff_t pos, unsigned len, unsigned flags,
                  struct page **pagep, void **fsdata)
{
      *pagep = NULL;
      return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
                        udf_get_block);
}

static sector_t udf_bmap(struct address_space *mapping, sector_t block)
{
      return generic_block_bmap(mapping, block, udf_get_block);
}

const struct address_space_operations udf_aops = {
      .readpage   = udf_readpage,
      .writepage  = udf_writepage,
      .sync_page  = block_sync_page,
      .write_begin            = udf_write_begin,
      .write_end        = generic_write_end,
      .bmap       = udf_bmap,
};

void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
{
      struct page *page;
      char *kaddr;
      struct writeback_control udf_wbc = {
            .sync_mode = WB_SYNC_NONE,
            .nr_to_write = 1,
      };

      /* from now on we have normal address_space methods */
      inode->i_data.a_ops = &udf_aops;

      if (!UDF_I_LENALLOC(inode)) {
            if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
                  UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
            else
                  UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
            mark_inode_dirty(inode);
            return;
      }

      page = grab_cache_page(inode->i_mapping, 0);
      BUG_ON(!PageLocked(page));

      if (!PageUptodate(page)) {
            kaddr = kmap(page);
            memset(kaddr + UDF_I_LENALLOC(inode), 0x00,
                   PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode));
            memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode),
                   UDF_I_LENALLOC(inode));
            flush_dcache_page(page);
            SetPageUptodate(page);
            kunmap(page);
      }
      memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00,
             UDF_I_LENALLOC(inode));
      UDF_I_LENALLOC(inode) = 0;
      if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
            UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
      else
            UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;

      inode->i_data.a_ops->writepage(page, &udf_wbc);
      page_cache_release(page);

      mark_inode_dirty(inode);
}

struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
                                 int *err)
{
      int newblock;
      struct buffer_head *dbh = NULL;
      kernel_lb_addr eloc;
      uint32_t elen;
      uint8_t alloctype;
      struct extent_position epos;

      struct udf_fileident_bh sfibh, dfibh;
      loff_t f_pos = udf_ext0_offset(inode) >> 2;
      int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
      struct fileIdentDesc cfi, *sfi, *dfi;

      if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
            alloctype = ICBTAG_FLAG_AD_SHORT;
      else
            alloctype = ICBTAG_FLAG_AD_LONG;

      if (!inode->i_size) {
            UDF_I_ALLOCTYPE(inode) = alloctype;
            mark_inode_dirty(inode);
            return NULL;
      }

      /* alloc block, and copy data to it */
      *block = udf_new_block(inode->i_sb, inode,
                         UDF_I_LOCATION(inode).partitionReferenceNum,
                         UDF_I_LOCATION(inode).logicalBlockNum, err);
      if (!(*block))
            return NULL;
      newblock = udf_get_pblock(inode->i_sb, *block,
                          UDF_I_LOCATION(inode).partitionReferenceNum, 0);
      if (!newblock)
            return NULL;
      dbh = udf_tgetblk(inode->i_sb, newblock);
      if (!dbh)
            return NULL;
      lock_buffer(dbh);
      memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
      set_buffer_uptodate(dbh);
      unlock_buffer(dbh);
      mark_buffer_dirty_inode(dbh, inode);

      sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
      sfibh.sbh = sfibh.ebh = NULL;
      dfibh.soffset = dfibh.eoffset = 0;
      dfibh.sbh = dfibh.ebh = dbh;
      while ((f_pos < size)) {
            UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
            sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL);
            if (!sfi) {
                  brelse(dbh);
                  return NULL;
            }
            UDF_I_ALLOCTYPE(inode) = alloctype;
            sfi->descTag.tagLocation = cpu_to_le32(*block);
            dfibh.soffset = dfibh.eoffset;
            dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
            dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
            if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
                         sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) {
                  UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
                  brelse(dbh);
                  return NULL;
            }
      }
      mark_buffer_dirty_inode(dbh, inode);

      memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode));
      UDF_I_LENALLOC(inode) = 0;
      eloc.logicalBlockNum = *block;
      eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
      elen = inode->i_size;
      UDF_I_LENEXTENTS(inode) = elen;
      epos.bh = NULL;
      epos.block = UDF_I_LOCATION(inode);
      epos.offset = udf_file_entry_alloc_offset(inode);
      udf_add_aext(inode, &epos, eloc, elen, 0);
      /* UniqueID stuff */

      brelse(epos.bh);
      mark_inode_dirty(inode);
      return dbh;
}

static int udf_get_block(struct inode *inode, sector_t block,
                   struct buffer_head *bh_result, int create)
{
      int err, new;
      struct buffer_head *bh;
      unsigned long phys;

      if (!create) {
            phys = udf_block_map(inode, block);
            if (phys)
                  map_bh(bh_result, inode->i_sb, phys);
            return 0;
      }

      err = -EIO;
      new = 0;
      bh = NULL;

      lock_kernel();

      if (block < 0)
            goto abort_negative;

      if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) {
            UDF_I_NEXT_ALLOC_BLOCK(inode)++;
            UDF_I_NEXT_ALLOC_GOAL(inode)++;
      }

      err = 0;

      bh = inode_getblk(inode, block, &err, &phys, &new);
      BUG_ON(bh);
      if (err)
            goto abort;
      BUG_ON(!phys);

      if (new)
            set_buffer_new(bh_result);
      map_bh(bh_result, inode->i_sb, phys);

abort:
      unlock_kernel();
      return err;

abort_negative:
      udf_warning(inode->i_sb, "udf_get_block", "block < 0");
      goto abort;
}

static struct buffer_head *udf_getblk(struct inode *inode, long block,
                              int create, int *err)
{
      struct buffer_head *bh;
      struct buffer_head dummy;

      dummy.b_state = 0;
      dummy.b_blocknr = -1000;
      *err = udf_get_block(inode, block, &dummy, create);
      if (!*err && buffer_mapped(&dummy)) {
            bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
            if (buffer_new(&dummy)) {
                  lock_buffer(bh);
                  memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
                  set_buffer_uptodate(bh);
                  unlock_buffer(bh);
                  mark_buffer_dirty_inode(bh, inode);
            }
            return bh;
      }

      return NULL;
}

/* Extend the file by 'blocks' blocks, return the number of extents added */
int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
                kernel_long_ad * last_ext, sector_t blocks)
{
      sector_t add;
      int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
      struct super_block *sb = inode->i_sb;
      kernel_lb_addr prealloc_loc = {};
      int prealloc_len = 0;

      /* The previous extent is fake and we should not extend by anything
       * - there's nothing to do... */
      if (!blocks && fake)
            return 0;

      /* Round the last extent up to a multiple of block size */
      if (last_ext->extLength & (sb->s_blocksize - 1)) {
            last_ext->extLength =
                  (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
                  (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
                    sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
            UDF_I_LENEXTENTS(inode) =
                  (UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) &
                  ~(sb->s_blocksize - 1);
      }

      /* Last extent are just preallocated blocks? */
      if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) {
            /* Save the extent so that we can reattach it to the end */
            prealloc_loc = last_ext->extLocation;
            prealloc_len = last_ext->extLength;
            /* Mark the extent as a hole */
            last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
                  (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
            last_ext->extLocation.logicalBlockNum = 0;
                  last_ext->extLocation.partitionReferenceNum = 0;
      }

      /* Can we merge with the previous extent? */
      if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) {
            add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength &
                                          UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits;
            if (add > blocks)
                  add = blocks;
            blocks -= add;
            last_ext->extLength += add << sb->s_blocksize_bits;
      }

      if (fake) {
            udf_add_aext(inode, last_pos, last_ext->extLocation,
                       last_ext->extLength, 1);
            count++;
      } else {
            udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1);
      }

      /* Managed to do everything necessary? */
      if (!blocks)
            goto out;

      /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
      last_ext->extLocation.logicalBlockNum = 0;
            last_ext->extLocation.partitionReferenceNum = 0;
      add = (1 << (30-sb->s_blocksize_bits)) - 1;
      last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits);

      /* Create enough extents to cover the whole hole */
      while (blocks > add) {
            blocks -= add;
            if (udf_add_aext(inode, last_pos, last_ext->extLocation,
                         last_ext->extLength, 1) == -1)
                  return -1;
            count++;
      }
      if (blocks) {
            last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
                  (blocks << sb->s_blocksize_bits);
            if (udf_add_aext(inode, last_pos, last_ext->extLocation,
                         last_ext->extLength, 1) == -1)
                  return -1;
            count++;
      }

out:
      /* Do we have some preallocated blocks saved? */
      if (prealloc_len) {
            if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1)
                  return -1;
            last_ext->extLocation = prealloc_loc;
            last_ext->extLength = prealloc_len;
            count++;
      }

      /* last_pos should point to the last written extent... */
      if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
            last_pos->offset -= sizeof(short_ad);
      else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
            last_pos->offset -= sizeof(long_ad);
      else
            return -1;

      return count;
}

static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
                              int *err, long *phys, int *new)
{
      static sector_t last_block;
      struct buffer_head *result = NULL;
      kernel_long_ad laarr[EXTENT_MERGE_SIZE];
      struct extent_position prev_epos, cur_epos, next_epos;
      int count = 0, startnum = 0, endnum = 0;
      uint32_t elen = 0, tmpelen;
      kernel_lb_addr eloc, tmpeloc;
      int c = 1;
      loff_t lbcount = 0, b_off = 0;
      uint32_t newblocknum, newblock;
      sector_t offset = 0;
      int8_t etype;
      int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum;
      int lastblock = 0;

      prev_epos.offset = udf_file_entry_alloc_offset(inode);
      prev_epos.block = UDF_I_LOCATION(inode);
      prev_epos.bh = NULL;
      cur_epos = next_epos = prev_epos;
      b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;

      /* find the extent which contains the block we are looking for.
         alternate between laarr[0] and laarr[1] for locations of the
         current extent, and the previous extent */
      do {
            if (prev_epos.bh != cur_epos.bh) {
                  brelse(prev_epos.bh);
                  get_bh(cur_epos.bh);
                  prev_epos.bh = cur_epos.bh;
            }
            if (cur_epos.bh != next_epos.bh) {
                  brelse(cur_epos.bh);
                  get_bh(next_epos.bh);
                  cur_epos.bh = next_epos.bh;
            }

            lbcount += elen;

            prev_epos.block = cur_epos.block;
            cur_epos.block = next_epos.block;

            prev_epos.offset = cur_epos.offset;
            cur_epos.offset = next_epos.offset;

            if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1)
                  break;

            c = !c;

            laarr[c].extLength = (etype << 30) | elen;
            laarr[c].extLocation = eloc;

            if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
                  pgoal = eloc.logicalBlockNum +
                        ((elen + inode->i_sb->s_blocksize - 1) >>
                         inode->i_sb->s_blocksize_bits);

            count++;
      } while (lbcount + elen <= b_off);

      b_off -= lbcount;
      offset = b_off >> inode->i_sb->s_blocksize_bits;
      /*
       * Move prev_epos and cur_epos into indirect extent if we are at
       * the pointer to it
       */
      udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
      udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);

      /* if the extent is allocated and recorded, return the block
         if the extent is not a multiple of the blocksize, round up */

      if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
            if (elen & (inode->i_sb->s_blocksize - 1)) {
                  elen = EXT_RECORDED_ALLOCATED |
                        ((elen + inode->i_sb->s_blocksize - 1) &
                         ~(inode->i_sb->s_blocksize - 1));
                  etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
            }
            brelse(prev_epos.bh);
            brelse(cur_epos.bh);
            brelse(next_epos.bh);
            newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
            *phys = newblock;
            return NULL;
      }

      last_block = block;
      /* Are we beyond EOF? */
      if (etype == -1) {
            int ret;

            if (count) {
                  if (c)
                        laarr[0] = laarr[1];
                  startnum = 1;
            } else {
                  /* Create a fake extent when there's not one */
                  memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr));
                  laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
                  /* Will udf_extend_file() create real extent from a fake one? */
                  startnum = (offset > 0);
            }
            /* Create extents for the hole between EOF and offset */
            ret = udf_extend_file(inode, &prev_epos, laarr, offset);
            if (ret == -1) {
                  brelse(prev_epos.bh);
                  brelse(cur_epos.bh);
                  brelse(next_epos.bh);
                  /* We don't really know the error here so we just make
                   * something up */
                  *err = -ENOSPC;
                  return NULL;
            }
            c = 0;
            offset = 0;
            count += ret;
            /* We are not covered by a preallocated extent? */
            if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) {
                  /* Is there any real extent? - otherwise we overwrite
                   * the fake one... */
                  if (count)
                        c = !c;
                  laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
                        inode->i_sb->s_blocksize;
                  memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr));
                  count++;
                  endnum++;
            }
            endnum = c + 1;
            lastblock = 1;
      } else {
            endnum = startnum = ((count > 2) ? 2 : count);

            /* if the current extent is in position 0, swap it with the previous */
            if (!c && count != 1) {
                  laarr[2] = laarr[0];
                  laarr[0] = laarr[1];
                  laarr[1] = laarr[2];
                  c = 1;
            }

            /* if the current block is located in an extent, read the next extent */
            if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) {
                  laarr[c + 1].extLength = (etype << 30) | elen;
                  laarr[c + 1].extLocation = eloc;
                  count++;
                  startnum++;
                  endnum++;
            } else {
                  lastblock = 1;
            }
      }

      /* if the current extent is not recorded but allocated, get the
       * block in the extent corresponding to the requested block */
      if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
            newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
      } else { /* otherwise, allocate a new block */
            if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block)
                  goal = UDF_I_NEXT_ALLOC_GOAL(inode);

            if (!goal) {
                  if (!(goal = pgoal))
                        goal = UDF_I_LOCATION(inode).logicalBlockNum + 1;
            }

            if (!(newblocknum = udf_new_block(inode->i_sb, inode,
                                      UDF_I_LOCATION(inode).partitionReferenceNum,
                                      goal, err))) {
                  brelse(prev_epos.bh);
                  *err = -ENOSPC;
                  return NULL;
            }
            UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize;
      }

      /* if the extent the requsted block is located in contains multiple blocks,
       * split the extent into at most three extents. blocks prior to requested
       * block, requested block, and blocks after requested block */
      udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);

#ifdef UDF_PREALLOCATE
      /* preallocate blocks */
      udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
#endif

      /* merge any continuous blocks in laarr */
      udf_merge_extents(inode, laarr, &endnum);

      /* write back the new extents, inserting new extents if the new number
       * of extents is greater than the old number, and deleting extents if
       * the new number of extents is less than the old number */
      udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);

      brelse(prev_epos.bh);

      if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum,
                              UDF_I_LOCATION(inode).partitionReferenceNum, 0))) {
            return NULL;
      }
      *phys = newblock;
      *err = 0;
      *new = 1;
      UDF_I_NEXT_ALLOC_BLOCK(inode) = block;
      UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum;
      inode->i_ctime = current_fs_time(inode->i_sb);

      if (IS_SYNC(inode))
            udf_sync_inode(inode);
      else
            mark_inode_dirty(inode);

      return result;
}

static void udf_split_extents(struct inode *inode, int *c, int offset,
                        int newblocknum,
                        kernel_long_ad laarr[EXTENT_MERGE_SIZE],
                        int *endnum)
{
      if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
          (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
            int curr = *c;
            int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
                      inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
            int8_t etype = (laarr[curr].extLength >> 30);

            if (blen == 1) {
                  ;
            } else if (!offset || blen == offset + 1) {
                  laarr[curr + 2] = laarr[curr + 1];
                  laarr[curr + 1] = laarr[curr];
            } else {
                  laarr[curr + 3] = laarr[curr + 1];
                  laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
            }

            if (offset) {
                  if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
                        udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset);
                        laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
                              (offset << inode->i_sb->s_blocksize_bits);
                        laarr[curr].extLocation.logicalBlockNum = 0;
                        laarr[curr].extLocation.partitionReferenceNum = 0;
                  } else {
                        laarr[curr].extLength = (etype << 30) |
                              (offset << inode->i_sb->s_blocksize_bits);
                  }
                  curr++;
                  (*c)++;
                  (*endnum)++;
            }

            laarr[curr].extLocation.logicalBlockNum = newblocknum;
            if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
                  laarr[curr].extLocation.partitionReferenceNum =
                        UDF_I_LOCATION(inode).partitionReferenceNum;
            laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
                  inode->i_sb->s_blocksize;
            curr++;

            if (blen != offset + 1) {
                  if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
                        laarr[curr].extLocation.logicalBlockNum += (offset + 1);
                  laarr[curr].extLength = (etype << 30) |
                        ((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits);
                  curr++;
                  (*endnum)++;
            }
      }
}

static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
                         kernel_long_ad laarr[EXTENT_MERGE_SIZE],
                         int *endnum)
{
      int start, length = 0, currlength = 0, i;

      if (*endnum >= (c + 1)) {
            if (!lastblock)
                  return;
            else
                  start = c;
      } else {
            if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
                  start = c + 1;
                  length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
                                    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
            } else {
                  start = c;
            }
      }

      for (i = start + 1; i <= *endnum; i++) {
            if (i == *endnum) {
                  if (lastblock)
                        length += UDF_DEFAULT_PREALLOC_BLOCKS;
            } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
                  length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                            inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
            } else {
                  break;
            }
      }

      if (length) {
            int next = laarr[start].extLocation.logicalBlockNum +
                  (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
                    inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
            int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
                                       laarr[start].extLocation.partitionReferenceNum,
                                       next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length :
                                            UDF_DEFAULT_PREALLOC_BLOCKS) - currlength);
            if (numalloc)     {
                  if (start == (c + 1)) {
                        laarr[start].extLength +=
                              (numalloc << inode->i_sb->s_blocksize_bits);
                  } else {
                        memmove(&laarr[c + 2], &laarr[c + 1],
                              sizeof(long_ad) * (*endnum - (c + 1)));
                        (*endnum)++;
                        laarr[c + 1].extLocation.logicalBlockNum = next;
                        laarr[c + 1].extLocation.partitionReferenceNum =
                              laarr[c].extLocation.partitionReferenceNum;
                        laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED |
                              (numalloc << inode->i_sb->s_blocksize_bits);
                        start = c + 1;
                  }

                  for (i = start + 1; numalloc && i < *endnum; i++) {
                        int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                                  inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;

                        if (elen > numalloc) {
                              laarr[i].extLength -=
                                    (numalloc << inode->i_sb->s_blocksize_bits);
                              numalloc = 0;
                        } else {
                              numalloc -= elen;
                              if (*endnum > (i + 1))
                                    memmove(&laarr[i], &laarr[i + 1],
                                          sizeof(long_ad) * (*endnum - (i + 1)));
                              i--;
                              (*endnum)--;
                        }
                  }
                  UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits;
            }
      }
}

static void udf_merge_extents(struct inode *inode,
                        kernel_long_ad laarr[EXTENT_MERGE_SIZE],
                        int *endnum)
{
      int i;

      for (i = 0; i < (*endnum - 1); i++) {
            if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) {
                  if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
                      ((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) ==
                       (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                         inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) {
                        if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                             (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
                             inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
                              laarr[i + 1].extLength = (laarr[i + 1].extLength -
                                                  (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                                                  UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
                              laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
                                    (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
                              laarr[i + 1].extLocation.logicalBlockNum =
                                    laarr[i].extLocation.logicalBlockNum +
                                    ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >>
                                     inode->i_sb->s_blocksize_bits);
                        } else {
                              laarr[i].extLength = laarr[i + 1].extLength +
                                    (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                                      inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
                              if (*endnum > (i + 2))
                                    memmove(&laarr[i + 1], &laarr[i + 2],
                                          sizeof(long_ad) * (*endnum - (i + 2)));
                              i--;
                              (*endnum)--;
                        }
                  }
            } else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
                     ((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
                  udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
                              ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                               inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
                  laarr[i].extLocation.logicalBlockNum = 0;
                  laarr[i].extLocation.partitionReferenceNum = 0;

                  if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                       (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
                       inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
                        laarr[i + 1].extLength = (laarr[i + 1].extLength -
                                            (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                                            UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
                        laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
                              (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
                  } else {
                        laarr[i].extLength = laarr[i + 1].extLength +
                              (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                                inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
                        if (*endnum > (i + 2))
                              memmove(&laarr[i + 1], &laarr[i + 2],
                                    sizeof(long_ad) * (*endnum - (i + 2)));
                        i--;
                        (*endnum)--;
                  }
            } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
                  udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
                              ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
                               inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
                  laarr[i].extLocation.logicalBlockNum = 0;
                  laarr[i].extLocation.partitionReferenceNum = 0;
                  laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) |
                        EXT_NOT_RECORDED_NOT_ALLOCATED;
            }
      }
}

static void udf_update_extents(struct inode *inode,
                         kernel_long_ad laarr[EXTENT_MERGE_SIZE],
                         int startnum, int endnum,
                         struct extent_position *epos)
{
      int start = 0, i;
      kernel_lb_addr tmploc;
      uint32_t tmplen;

      if (startnum > endnum) {
            for (i = 0; i < (startnum - endnum); i++)
                  udf_delete_aext(inode, *epos, laarr[i].extLocation,
                              laarr[i].extLength);
      } else if (startnum < endnum) {
            for (i = 0; i < (endnum - startnum); i++) {
                  udf_insert_aext(inode, *epos, laarr[i].extLocation,
                              laarr[i].extLength);
                  udf_next_aext(inode, epos, &laarr[i].extLocation,
                              &laarr[i].extLength, 1);
                  start++;
            }
      }

      for (i = start; i < endnum; i++) {
            udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
            udf_write_aext(inode, epos, laarr[i].extLocation,
                         laarr[i].extLength, 1);
      }
}

struct buffer_head *udf_bread(struct inode *inode, int block,
                        int create, int *err)
{
      struct buffer_head *bh = NULL;

      bh = udf_getblk(inode, block, create, err);
      if (!bh)
            return NULL;

      if (buffer_uptodate(bh))
            return bh;

      ll_rw_block(READ, 1, &bh);

      wait_on_buffer(bh);
      if (buffer_uptodate(bh))
            return bh;

      brelse(bh);
      *err = -EIO;
      return NULL;
}

void udf_truncate(struct inode *inode)
{
      int offset;
      int err;

      if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
            S_ISLNK(inode->i_mode)))
            return;
      if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
            return;

      lock_kernel();
      if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
            if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) +
                                    inode->i_size)) {
                  udf_expand_file_adinicb(inode, inode->i_size, &err);
                  if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
                        inode->i_size = UDF_I_LENALLOC(inode);
                        unlock_kernel();
                        return;
                  } else {
                        udf_truncate_extents(inode);
                  }
            } else {
                  offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
                  memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00,
                         inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode));
                  UDF_I_LENALLOC(inode) = inode->i_size;
            }
      } else {
            block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block);
            udf_truncate_extents(inode);
      }

      inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
      if (IS_SYNC(inode))
            udf_sync_inode(inode);
      else
            mark_inode_dirty(inode);
      unlock_kernel();
}

static void __udf_read_inode(struct inode *inode)
{
      struct buffer_head *bh = NULL;
      struct fileEntry *fe;
      uint16_t ident;

      /*
       * Set defaults, but the inode is still incomplete!
       * Note: get_new_inode() sets the following on a new inode:
       *      i_sb = sb
       *      i_no = ino
       *      i_flags = sb->s_flags
       *      i_state = 0
       * clean_inode(): zero fills and sets
       *      i_count = 1
       *      i_nlink = 1
       *      i_op = NULL;
       */
      bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident);
      if (!bh) {
            printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
                   inode->i_ino);
            make_bad_inode(inode);
            return;
      }

      if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
          ident != TAG_IDENT_USE) {
            printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n",
                   inode->i_ino, ident);
            brelse(bh);
            make_bad_inode(inode);
            return;
      }

      fe = (struct fileEntry *)bh->b_data;

      if (le16_to_cpu(fe->icbTag.strategyType) == 4096) {
            struct buffer_head *ibh = NULL, *nbh = NULL;
            struct indirectEntry *ie;

            ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident);
            if (ident == TAG_IDENT_IE) {
                  if (ibh) {
                        kernel_lb_addr loc;
                        ie = (struct indirectEntry *)ibh->b_data;

                        loc = lelb_to_cpu(ie->indirectICB.extLocation);

                        if (ie->indirectICB.extLength &&
                            (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) {
                              if (ident == TAG_IDENT_FE ||
                                  ident == TAG_IDENT_EFE) {
                                    memcpy(&UDF_I_LOCATION(inode), &loc,
                                           sizeof(kernel_lb_addr));
                                    brelse(bh);
                                    brelse(ibh);
                                    brelse(nbh);
                                    __udf_read_inode(inode);
                                    return;
                              } else {
                                    brelse(nbh);
                                    brelse(ibh);
                              }
                        } else {
                              brelse(ibh);
                        }
                  }
            } else {
                  brelse(ibh);
            }
      } else if (le16_to_cpu(fe->icbTag.strategyType) != 4) {
            printk(KERN_ERR "udf: unsupported strategy type: %d\n",
                   le16_to_cpu(fe->icbTag.strategyType));
            brelse(bh);
            make_bad_inode(inode);
            return;
      }
      udf_fill_inode(inode, bh);

      brelse(bh);
}

static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
{
      struct fileEntry *fe;
      struct extendedFileEntry *efe;
      time_t convtime;
      long convtime_usec;
      int offset;

      fe = (struct fileEntry *)bh->b_data;
      efe = (struct extendedFileEntry *)bh->b_data;

      if (le16_to_cpu(fe->icbTag.strategyType) == 4)
            UDF_I_STRAT4096(inode) = 0;
      else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
            UDF_I_STRAT4096(inode) = 1;

      UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK;
      UDF_I_UNIQUE(inode) = 0;
      UDF_I_LENEATTR(inode) = 0;
      UDF_I_LENEXTENTS(inode) = 0;
      UDF_I_LENALLOC(inode) = 0;
      UDF_I_NEXT_ALLOC_BLOCK(inode) = 0;
      UDF_I_NEXT_ALLOC_GOAL(inode) = 0;
      if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) {
            UDF_I_EFE(inode) = 1;
            UDF_I_USE(inode) = 0;
            if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) {
                  make_bad_inode(inode);
                  return;
            }
            memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry),
                   inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
      } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) {
            UDF_I_EFE(inode) = 0;
            UDF_I_USE(inode) = 0;
            if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) {
                  make_bad_inode(inode);
                  return;
            }
            memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry),
                   inode->i_sb->s_blocksize - sizeof(struct fileEntry));
      } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
            UDF_I_EFE(inode) = 0;
            UDF_I_USE(inode) = 1;
            UDF_I_LENALLOC(inode) =
                le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs);
            if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) {
                  make_bad_inode(inode);
                  return;
            }
            memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry),
                   inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
            return;
      }

      inode->i_uid = le32_to_cpu(fe->uid);
      if (inode->i_uid == -1 ||
          UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
          UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
            inode->i_uid = UDF_SB(inode->i_sb)->s_uid;

      inode->i_gid = le32_to_cpu(fe->gid);
      if (inode->i_gid == -1 ||
          UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
          UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
            inode->i_gid = UDF_SB(inode->i_sb)->s_gid;

      inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
      if (!inode->i_nlink)
            inode->i_nlink = 1;

      inode->i_size = le64_to_cpu(fe->informationLength);
      UDF_I_LENEXTENTS(inode) = inode->i_size;

      inode->i_mode = udf_convert_permissions(fe);
      inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;

      if (UDF_I_EFE(inode) == 0) {
            inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
                  (inode->i_sb->s_blocksize_bits - 9);

            if (udf_stamp_to_time(&convtime, &convtime_usec,
                              lets_to_cpu(fe->accessTime))) {
                  inode->i_atime.tv_sec = convtime;
                  inode->i_atime.tv_nsec = convtime_usec * 1000;
            } else {
                  inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
            }

            if (udf_stamp_to_time(&convtime, &convtime_usec,
                              lets_to_cpu(fe->modificationTime))) {
                  inode->i_mtime.tv_sec = convtime;
                  inode->i_mtime.tv_nsec = convtime_usec * 1000;
            } else {
                  inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
            }

            if (udf_stamp_to_time(&convtime, &convtime_usec,
                              lets_to_cpu(fe->attrTime))) {
                  inode->i_ctime.tv_sec = convtime;
                  inode->i_ctime.tv_nsec = convtime_usec * 1000;
            } else {
                  inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
            }

            UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID);
            UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr);
            UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs);
            offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode);
      } else {
            inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
                (inode->i_sb->s_blocksize_bits - 9);

            if (udf_stamp_to_time(&convtime, &convtime_usec,
                              lets_to_cpu(efe->accessTime))) {
                  inode->i_atime.tv_sec = convtime;
                  inode->i_atime.tv_nsec = convtime_usec * 1000;
            } else {
                  inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
            }

            if (udf_stamp_to_time(&convtime, &convtime_usec,
                              lets_to_cpu(efe->modificationTime))) {
                  inode->i_mtime.tv_sec = convtime;
                  inode->i_mtime.tv_nsec = convtime_usec * 1000;
            } else {
                  inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
            }

            if (udf_stamp_to_time(&convtime, &convtime_usec,
                              lets_to_cpu(efe->createTime))) {
                  UDF_I_CRTIME(inode).tv_sec = convtime;
                  UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000;
            } else {
                  UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb);
            }

            if (udf_stamp_to_time(&convtime, &convtime_usec,
                              lets_to_cpu(efe->attrTime))) {
                  inode->i_ctime.tv_sec = convtime;
                  inode->i_ctime.tv_nsec = convtime_usec * 1000;
            } else {
                  inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
            }

            UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID);
            UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr);
            UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs);
            offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode);
      }

      switch (fe->icbTag.fileType) {
      case ICBTAG_FILE_TYPE_DIRECTORY:
            inode->i_op = &udf_dir_inode_operations;
            inode->i_fop = &udf_dir_operations;
            inode->i_mode |= S_IFDIR;
            inc_nlink(inode);
            break;
      case ICBTAG_FILE_TYPE_REALTIME:
      case ICBTAG_FILE_TYPE_REGULAR:
      case ICBTAG_FILE_TYPE_UNDEF:
            if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB)
                  inode->i_data.a_ops = &udf_adinicb_aops;
            else
                  inode->i_data.a_ops = &udf_aops;
            inode->i_op = &udf_file_inode_operations;
            inode->i_fop = &udf_file_operations;
            inode->i_mode |= S_IFREG;
            break;
      case ICBTAG_FILE_TYPE_BLOCK:
            inode->i_mode |= S_IFBLK;
            break;
      case ICBTAG_FILE_TYPE_CHAR:
            inode->i_mode |= S_IFCHR;
            break;
      case ICBTAG_FILE_TYPE_FIFO:
            init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
            break;
      case ICBTAG_FILE_TYPE_SOCKET:
            init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
            break;
      case ICBTAG_FILE_TYPE_SYMLINK:
            inode->i_data.a_ops = &udf_symlink_aops;
            inode->i_op = &page_symlink_inode_operations;
            inode->i_mode = S_IFLNK | S_IRWXUGO;
            break;
      default:
            printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
                   inode->i_ino, fe->icbTag.fileType);
            make_bad_inode(inode);
            return;
      }
      if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
            struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
            if (dsea) {
                  init_special_inode(inode, inode->i_mode,
                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
                                     le32_to_cpu(dsea->minorDeviceIdent)));
                  /* Developer ID ??? */
            } else {
                  make_bad_inode(inode);
            }
      }
}

static int udf_alloc_i_data(struct inode *inode, size_t size)
{
      UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL);

      if (!UDF_I_DATA(inode)) {
            printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n",
                   inode->i_ino);
            return -ENOMEM;
      }

      return 0;
}

static mode_t udf_convert_permissions(struct fileEntry *fe)
{
      mode_t mode;
      uint32_t permissions;
      uint32_t flags;

      permissions = le32_to_cpu(fe->permissions);
      flags = le16_to_cpu(fe->icbTag.flags);

      mode =      (( permissions      ) & S_IRWXO) |
            (( permissions >> 2 ) & S_IRWXG) |
            (( permissions >> 4 ) & S_IRWXU) |
            (( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
            (( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
            (( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);

      return mode;
}

/*
 * udf_write_inode
 *
 * PURPOSE
 *    Write out the specified inode.
 *
 * DESCRIPTION
 *    This routine is called whenever an inode is synced.
 *    Currently this routine is just a placeholder.
 *
 * HISTORY
 *    July 1, 1997 - Andrew E. Mileski
 *    Written, tested, and released.
 */

int udf_write_inode(struct inode *inode, int sync)
{
      int ret;

      lock_kernel();
      ret = udf_update_inode(inode, sync);
      unlock_kernel();

      return ret;
}

int udf_sync_inode(struct inode *inode)
{
      return udf_update_inode(inode, 1);
}

static int udf_update_inode(struct inode *inode, int do_sync)
{
      struct buffer_head *bh = NULL;
      struct fileEntry *fe;
      struct extendedFileEntry *efe;
      uint32_t udfperms;
      uint16_t icbflags;
      uint16_t crclen;
      int i;
      kernel_timestamp cpu_time;
      int err = 0;

      bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0));
      if (!bh) {
            udf_debug("bread failure\n");
            return -EIO;
      }

      memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);

      fe = (struct fileEntry *)bh->b_data;
      efe = (struct extendedFileEntry *)bh->b_data;

      if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
            struct unallocSpaceEntry *use =
                  (struct unallocSpaceEntry *)bh->b_data;

            use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
            memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode),
                   inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
            crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag);
            use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
            use->descTag.descCRCLength = cpu_to_le16(crclen);
            use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0));

            use->descTag.tagChecksum = 0;
            for (i = 0; i < 16; i++) {
                  if (i != 4)
                        use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i];
            }

            mark_buffer_dirty(bh);
            brelse(bh);
            return err;
      }

      if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
            fe->uid = cpu_to_le32(-1);
      else
            fe->uid = cpu_to_le32(inode->i_uid);

      if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
            fe->gid = cpu_to_le32(-1);
      else
            fe->gid = cpu_to_le32(inode->i_gid);

      udfperms =  ((inode->i_mode & S_IRWXO)     ) |
                  ((inode->i_mode & S_IRWXG) << 2) |
                  ((inode->i_mode & S_IRWXU) << 4);

      udfperms |= (le32_to_cpu(fe->permissions) &
                  (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
                   FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
                   FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
      fe->permissions = cpu_to_le32(udfperms);

      if (S_ISDIR(inode->i_mode))
            fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
      else
            fe->fileLinkCount = cpu_to_le16(inode->i_nlink);

      fe->informationLength = cpu_to_le64(inode->i_size);

      if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
            regid *eid;
            struct deviceSpec *dsea =
                  (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
            if (!dsea) {
                  dsea = (struct deviceSpec *)
                        udf_add_extendedattr(inode,
                                         sizeof(struct deviceSpec) +
                                         sizeof(regid), 12, 0x3);
                  dsea->attrType = cpu_to_le32(12);
                  dsea->attrSubtype = 1;
                  dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) +
                                           sizeof(regid));
                  dsea->impUseLength = cpu_to_le32(sizeof(regid));
            }
            eid = (regid *)dsea->impUse;
            memset(eid, 0, sizeof(regid));
            strcpy(eid->ident, UDF_ID_DEVELOPER);
            eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
            eid->identSuffix[1] = UDF_OS_ID_LINUX;
            dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
            dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
      }

      if (UDF_I_EFE(inode) == 0) {
            memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode),
                   inode->i_sb->s_blocksize - sizeof(struct fileEntry));
            fe->logicalBlocksRecorded = cpu_to_le64(
                  (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
                  (inode->i_sb->s_blocksize_bits - 9));

            if (udf_time_to_stamp(&cpu_time, inode->i_atime))
                  fe->accessTime = cpu_to_lets(cpu_time);
            if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
                  fe->modificationTime = cpu_to_lets(cpu_time);
            if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
                  fe->attrTime = cpu_to_lets(cpu_time);
            memset(&(fe->impIdent), 0, sizeof(regid));
            strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
            fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
            fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
            fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
            fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
            fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
            fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
            crclen = sizeof(struct fileEntry);
      } else {
            memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode),
                   inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
            efe->objectSize = cpu_to_le64(inode->i_size);
            efe->logicalBlocksRecorded = cpu_to_le64(
                  (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
                  (inode->i_sb->s_blocksize_bits - 9));

            if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec ||
                (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec &&
                 UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) {
                  UDF_I_CRTIME(inode) = inode->i_atime;
            }
            if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec ||
                (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec &&
                 UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) {
                  UDF_I_CRTIME(inode) = inode->i_mtime;
            }
            if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec ||
                (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec &&
                 UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) {
                  UDF_I_CRTIME(inode) = inode->i_ctime;
            }

            if (udf_time_to_stamp(&cpu_time, inode->i_atime))
                  efe->accessTime = cpu_to_lets(cpu_time);
            if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
                  efe->modificationTime = cpu_to_lets(cpu_time);
            if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode)))
                  efe->createTime = cpu_to_lets(cpu_time);
            if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
                  efe->attrTime = cpu_to_lets(cpu_time);

            memset(&(efe->impIdent), 0, sizeof(regid));
            strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
            efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
            efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
            efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
            efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
            efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
            efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
            crclen = sizeof(struct extendedFileEntry);
      }
      if (UDF_I_STRAT4096(inode)) {
            fe->icbTag.strategyType = cpu_to_le16(4096);
            fe->icbTag.strategyParameter = cpu_to_le16(1);
            fe->icbTag.numEntries = cpu_to_le16(2);
      } else {
            fe->icbTag.strategyType = cpu_to_le16(4);
            fe->icbTag.numEntries = cpu_to_le16(1);
      }

      if (S_ISDIR(inode->i_mode))
            fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
      else if (S_ISREG(inode->i_mode))
            fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
      else if (S_ISLNK(inode->i_mode))
            fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
      else if (S_ISBLK(inode->i_mode))
            fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
      else if (S_ISCHR(inode->i_mode))
            fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
      else if (S_ISFIFO(inode->i_mode))
            fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
      else if (S_ISSOCK(inode->i_mode))
            fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;

      icbflags =  UDF_I_ALLOCTYPE(inode) |
                  ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
                  ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
                  ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
                  (le16_to_cpu(fe->icbTag.flags) &
                        ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
                        ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));

      fe->icbTag.flags = cpu_to_le16(icbflags);
      if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
            fe->descTag.descVersion = cpu_to_le16(3);
      else
            fe->descTag.descVersion = cpu_to_le16(2);
      fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb));
      fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
      crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag);
      fe->descTag.descCRCLength = cpu_to_le16(crclen);
      fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0));

      fe->descTag.tagChecksum = 0;
      for (i = 0; i < 16; i++) {
            if (i != 4)
                  fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i];
      }

      /* write the data blocks */
      mark_buffer_dirty(bh);
      if (do_sync) {
            sync_dirty_buffer(bh);
            if (buffer_req(bh) && !buffer_uptodate(bh)) {
                  printk("IO error syncing udf inode [%s:%08lx]\n",
                         inode->i_sb->s_id, inode->i_ino);
                  err = -EIO;
            }
      }
      brelse(bh);

      return err;
}

struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
{
      unsigned long block = udf_get_lb_pblock(sb, ino, 0);
      struct inode *inode = iget_locked(sb, block);

      if (!inode)
            return NULL;

      if (inode->i_state & I_NEW) {
            memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr));
            __udf_read_inode(inode);
            unlock_new_inode(inode);
      }

      if (is_bad_inode(inode))
            goto out_iput;

      if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) {
            udf_debug("block=%d, partition=%d out of range\n",
                    ino.logicalBlockNum, ino.partitionReferenceNum);
            make_bad_inode(inode);
            goto out_iput;
      }

      return inode;

 out_iput:
      iput(inode);
      return NULL;
}

int8_t udf_add_aext(struct inode * inode, struct extent_position * epos,
                kernel_lb_addr eloc, uint32_t elen, int inc)
{
      int adsize;
      short_ad *sad = NULL;
      long_ad *lad = NULL;
      struct allocExtDesc *aed;
      int8_t etype;
      uint8_t *ptr;

      if (!epos->bh)
            ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
      else
            ptr = epos->bh->b_data + epos->offset;

      if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
            adsize = sizeof(short_ad);
      else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
            adsize = sizeof(long_ad);
      else
            return -1;

      if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
            char *sptr, *dptr;
            struct buffer_head *nbh;
            int err, loffset;
            kernel_lb_addr obloc = epos->block;

            if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
                                                  obloc.partitionReferenceNum,
                                                  obloc.logicalBlockNum, &err))) {
                  return -1;
            }
            if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
                                                       epos->block, 0)))) {
                  return -1;
            }
            lock_buffer(nbh);
            memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
            set_buffer_uptodate(nbh);
            unlock_buffer(nbh);
            mark_buffer_dirty_inode(nbh, inode);

            aed = (struct allocExtDesc *)(nbh->b_data);
            if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
                  aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
            if (epos->offset + adsize > inode->i_sb->s_blocksize) {
                  loffset = epos->offset;
                  aed->lengthAllocDescs = cpu_to_le32(adsize);
                  sptr = ptr - adsize;
                  dptr = nbh->b_data + sizeof(struct allocExtDesc);
                  memcpy(dptr, sptr, adsize);
                  epos->offset = sizeof(struct allocExtDesc) + adsize;
            } else {
                  loffset = epos->offset + adsize;
                  aed->lengthAllocDescs = cpu_to_le32(0);
                  sptr = ptr;
                  epos->offset = sizeof(struct allocExtDesc);

                  if (epos->bh) {
                        aed = (struct allocExtDesc *)epos->bh->b_data;
                        aed->lengthAllocDescs =
                              cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
                  } else {
                        UDF_I_LENALLOC(inode) += adsize;
                        mark_inode_dirty(inode);
                  }
            }
            if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
                  udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
                            epos->block.logicalBlockNum, sizeof(tag));
            else
                  udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
                            epos->block.logicalBlockNum, sizeof(tag));
            switch (UDF_I_ALLOCTYPE(inode)) {
            case ICBTAG_FLAG_AD_SHORT:
                  sad = (short_ad *)sptr;
                  sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
                                         inode->i_sb->s_blocksize);
                  sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum);
                  break;
            case ICBTAG_FLAG_AD_LONG:
                  lad = (long_ad *)sptr;
                  lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
                                         inode->i_sb->s_blocksize);
                  lad->extLocation = cpu_to_lelb(epos->block);
                  memset(lad->impUse, 0x00, sizeof(lad->impUse));
                  break;
            }
            if (epos->bh) {
                  if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
                      UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
                        udf_update_tag(epos->bh->b_data, loffset);
                  else
                        udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
                  mark_buffer_dirty_inode(epos->bh, inode);
                  brelse(epos->bh);
            } else {
                  mark_inode_dirty(inode);
            }
            epos->bh = nbh;
      }

      etype = udf_write_aext(inode, epos, eloc, elen, inc);

      if (!epos->bh) {
            UDF_I_LENALLOC(inode) += adsize;
            mark_inode_dirty(inode);
      } else {
            aed = (struct allocExtDesc *)epos->bh->b_data;
            aed->lengthAllocDescs =
                  cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
            if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
                  udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize));
            else
                  udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
            mark_buffer_dirty_inode(epos->bh, inode);
      }

      return etype;
}

int8_t udf_write_aext(struct inode * inode, struct extent_position * epos,
                  kernel_lb_addr eloc, uint32_t elen, int inc)
{
      int adsize;
      uint8_t *ptr;
      short_ad *sad;
      long_ad *lad;

      if (!epos->bh)
            ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
      else
            ptr = epos->bh->b_data + epos->offset;

      switch (UDF_I_ALLOCTYPE(inode)) {
      case ICBTAG_FLAG_AD_SHORT:
            sad = (short_ad *)ptr;
            sad->extLength = cpu_to_le32(elen);
            sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
            adsize = sizeof(short_ad);
            break;
      case ICBTAG_FLAG_AD_LONG:
            lad = (long_ad *)ptr;
            lad->extLength = cpu_to_le32(elen);
            lad->extLocation = cpu_to_lelb(eloc);
            memset(lad->impUse, 0x00, sizeof(lad->impUse));
            adsize = sizeof(long_ad);
            break;
      default:
            return -1;
      }

      if (epos->bh) {
            if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
                UDF_SB_UDFREV(inode->i_sb) >= 0x0201) {
                  struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data;
                  udf_update_tag(epos->bh->b_data,
                               le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc));
            }
            mark_buffer_dirty_inode(epos->bh, inode);
      } else {
            mark_inode_dirty(inode);
      }

      if (inc)
            epos->offset += adsize;

      return (elen >> 30);
}

int8_t udf_next_aext(struct inode * inode, struct extent_position * epos,
                 kernel_lb_addr * eloc, uint32_t * elen, int inc)
{
      int8_t etype;

      while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
             (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
            epos->block = *eloc;
            epos->offset = sizeof(struct allocExtDesc);
            brelse(epos->bh);
            if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) {
                  udf_debug("reading block %d failed!\n",
                          udf_get_lb_pblock(inode->i_sb, epos->block, 0));
                  return -1;
            }
      }

      return etype;
}

int8_t udf_current_aext(struct inode * inode, struct extent_position * epos,
                  kernel_lb_addr * eloc, uint32_t * elen, int inc)
{
      int alen;
      int8_t etype;
      uint8_t *ptr;
      short_ad *sad;
      long_ad *lad;


      if (!epos->bh) {
            if (!epos->offset)
                  epos->offset = udf_file_entry_alloc_offset(inode);
            ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
            alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode);
      } else {
            if (!epos->offset)
                  epos->offset = sizeof(struct allocExtDesc);
            ptr = epos->bh->b_data + epos->offset;
            alen = sizeof(struct allocExtDesc) +
                  le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs);
      }

      switch (UDF_I_ALLOCTYPE(inode)) {
      case ICBTAG_FLAG_AD_SHORT:
            if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc)))
                  return -1;
            etype = le32_to_cpu(sad->extLength) >> 30;
            eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
            eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
            *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
            break;
      case ICBTAG_FLAG_AD_LONG:
            if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc)))
                  return -1;
            etype = le32_to_cpu(lad->extLength) >> 30;
            *eloc = lelb_to_cpu(lad->extLocation);
            *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
            break;
      default:
            udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode));
            return -1;
      }

      return etype;
}

static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
                        kernel_lb_addr neloc, uint32_t nelen)
{
      kernel_lb_addr oeloc;
      uint32_t oelen;
      int8_t etype;

      if (epos.bh)
            get_bh(epos.bh);

      while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
            udf_write_aext(inode, &epos, neloc, nelen, 1);
            neloc = oeloc;
            nelen = (etype << 30) | oelen;
      }
      udf_add_aext(inode, &epos, neloc, nelen, 1);
      brelse(epos.bh);

      return (nelen >> 30);
}

int8_t udf_delete_aext(struct inode * inode, struct extent_position epos,
                   kernel_lb_addr eloc, uint32_t elen)
{
      struct extent_position oepos;
      int adsize;
      int8_t etype;
      struct allocExtDesc *aed;

      if (epos.bh) {
            get_bh(epos.bh);
            get_bh(epos.bh);
      }

      if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
            adsize = sizeof(short_ad);
      else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
            adsize = sizeof(long_ad);
      else
            adsize = 0;

      oepos = epos;
      if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
            return -1;

      while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
            udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
            if (oepos.bh != epos.bh) {
                  oepos.block = epos.block;
                  brelse(oepos.bh);
                  get_bh(epos.bh);
                  oepos.bh = epos.bh;
                  oepos.offset = epos.offset - adsize;
            }
      }
      memset(&eloc, 0x00, sizeof(kernel_lb_addr));
      elen = 0;

      if (epos.bh != oepos.bh) {
            udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
            udf_write_aext(inode, &oepos, eloc, elen, 1);
            udf_write_aext(inode, &oepos, eloc, elen, 1);
            if (!oepos.bh) {
                  UDF_I_LENALLOC(inode) -= (adsize * 2);
                  mark_inode_dirty(inode);
            } else {
                  aed = (struct allocExtDesc *)oepos.bh->b_data;
                  aed->lengthAllocDescs =
                        cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize));
                  if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
                      UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
                        udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize));
                  else
                        udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
                  mark_buffer_dirty_inode(oepos.bh, inode);
            }
      } else {
            udf_write_aext(inode, &oepos, eloc, elen, 1);
            if (!oepos.bh) {
                  UDF_I_LENALLOC(inode) -= adsize;
                  mark_inode_dirty(inode);
            } else {
                  aed = (struct allocExtDesc *)oepos.bh->b_data;
                  aed->lengthAllocDescs =
                        cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize);
                  if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
                      UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
                        udf_update_tag(oepos.bh->b_data, epos.offset - adsize);
                  else
                        udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
                  mark_buffer_dirty_inode(oepos.bh, inode);
            }
      }

      brelse(epos.bh);
      brelse(oepos.bh);

      return (elen >> 30);
}

int8_t inode_bmap(struct inode * inode, sector_t block,
              struct extent_position * pos, kernel_lb_addr * eloc,
              uint32_t * elen, sector_t * offset)
{
      loff_t lbcount = 0, bcount =
          (loff_t) block << inode->i_sb->s_blocksize_bits;
      int8_t etype;

      if (block < 0) {
            printk(KERN_ERR "udf: inode_bmap: block < 0\n");
            return -1;
      }

      pos->offset = 0;
      pos->block = UDF_I_LOCATION(inode);
      pos->bh = NULL;
      *elen = 0;

      do {
            if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) {
                  *offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits;
                  UDF_I_LENEXTENTS(inode) = lbcount;
                  return -1;
            }
            lbcount += *elen;
      } while (lbcount <= bcount);

      *offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits;

      return etype;
}

long udf_block_map(struct inode *inode, sector_t block)
{
      kernel_lb_addr eloc;
      uint32_t elen;
      sector_t offset;
      struct extent_position epos = {};
      int ret;

      lock_kernel();

      if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30))
            ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
      else
            ret = 0;

      unlock_kernel();
      brelse(epos.bh);

      if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
            return udf_fixed_to_variable(ret);
      else
            return ret;
}

Generated by  Doxygen 1.6.0   Back to index