Logo Search packages:      
Sourcecode: linux version File versions  Download package

fs_enet-main.c

/*
 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
 *
 * Copyright (c) 2003 Intracom S.A.
 *  by Pantelis Antoniou <panto@intracom.gr>
 *
 * 2005 (c) MontaVista Software, Inc.
 * Vitaly Bordug <vbordug@ru.mvista.com>
 *
 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2. This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/phy.h>

#include <linux/vmalloc.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>

#ifdef CONFIG_PPC_CPM_NEW_BINDING
#include <asm/of_platform.h>
#endif

#include "fs_enet.h"

/*************************************************/

#ifndef CONFIG_PPC_CPM_NEW_BINDING
static char version[] __devinitdata =
    DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
#endif

MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
MODULE_DESCRIPTION("Freescale Ethernet Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);

static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
module_param(fs_enet_debug, int, 0);
MODULE_PARM_DESC(fs_enet_debug,
             "Freescale bitmapped debugging message enable value");

#ifdef CONFIG_NET_POLL_CONTROLLER
static void fs_enet_netpoll(struct net_device *dev);
#endif

static void fs_set_multicast_list(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);

      (*fep->ops->set_multicast_list)(dev);
}

static void skb_align(struct sk_buff *skb, int align)
{
      int off = ((unsigned long)skb->data) & (align - 1);

      if (off)
            skb_reserve(skb, align - off);
}

/* NAPI receive function */
static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
{
      struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
      struct net_device *dev = fep->ndev;
      const struct fs_platform_info *fpi = fep->fpi;
      cbd_t __iomem *bdp;
      struct sk_buff *skb, *skbn, *skbt;
      int received = 0;
      u16 pkt_len, sc;
      int curidx;

      /*
       * First, grab all of the stats for the incoming packet.
       * These get messed up if we get called due to a busy condition.
       */
      bdp = fep->cur_rx;

      /* clear RX status bits for napi*/
      (*fep->ops->napi_clear_rx_event)(dev);

      while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
            curidx = bdp - fep->rx_bd_base;

            /*
             * Since we have allocated space to hold a complete frame,
             * the last indicator should be set.
             */
            if ((sc & BD_ENET_RX_LAST) == 0)
                  printk(KERN_WARNING DRV_MODULE_NAME
                         ": %s rcv is not +last\n",
                         dev->name);

            /*
             * Check for errors.
             */
            if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
                    BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
                  fep->stats.rx_errors++;
                  /* Frame too long or too short. */
                  if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
                        fep->stats.rx_length_errors++;
                  /* Frame alignment */
                  if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
                        fep->stats.rx_frame_errors++;
                  /* CRC Error */
                  if (sc & BD_ENET_RX_CR)
                        fep->stats.rx_crc_errors++;
                  /* FIFO overrun */
                  if (sc & BD_ENET_RX_OV)
                        fep->stats.rx_crc_errors++;

                  skb = fep->rx_skbuff[curidx];

                  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
                        L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
                        DMA_FROM_DEVICE);

                  skbn = skb;

            } else {
                  skb = fep->rx_skbuff[curidx];

                  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
                        L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
                        DMA_FROM_DEVICE);

                  /*
                   * Process the incoming frame.
                   */
                  fep->stats.rx_packets++;
                  pkt_len = CBDR_DATLEN(bdp) - 4;     /* remove CRC */
                  fep->stats.rx_bytes += pkt_len + 4;

                  if (pkt_len <= fpi->rx_copybreak) {
                        /* +2 to make IP header L1 cache aligned */
                        skbn = dev_alloc_skb(pkt_len + 2);
                        if (skbn != NULL) {
                              skb_reserve(skbn, 2);   /* align IP header */
                              skb_copy_from_linear_data(skb,
                                          skbn->data, pkt_len);
                              /* swap */
                              skbt = skb;
                              skb = skbn;
                              skbn = skbt;
                        }
                  } else {
                        skbn = dev_alloc_skb(ENET_RX_FRSIZE);

                        if (skbn)
                              skb_align(skbn, ENET_RX_ALIGN);
                  }

                  if (skbn != NULL) {
                        skb_put(skb, pkt_len);  /* Make room */
                        skb->protocol = eth_type_trans(skb, dev);
                        received++;
                        netif_receive_skb(skb);
                  } else {
                        printk(KERN_WARNING DRV_MODULE_NAME
                               ": %s Memory squeeze, dropping packet.\n",
                               dev->name);
                        fep->stats.rx_dropped++;
                        skbn = skb;
                  }
            }

            fep->rx_skbuff[curidx] = skbn;
            CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
                       L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
                       DMA_FROM_DEVICE));
            CBDW_DATLEN(bdp, 0);
            CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);

            /*
             * Update BD pointer to next entry.
             */
            if ((sc & BD_ENET_RX_WRAP) == 0)
                  bdp++;
            else
                  bdp = fep->rx_bd_base;

            (*fep->ops->rx_bd_done)(dev);

            if (received >= budget)
                  break;
      }

      fep->cur_rx = bdp;

      if (received < budget) {
            /* done */
            netif_rx_complete(dev, napi);
            (*fep->ops->napi_enable_rx)(dev);
      }
      return received;
}

/* non NAPI receive function */
static int fs_enet_rx_non_napi(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      const struct fs_platform_info *fpi = fep->fpi;
      cbd_t __iomem *bdp;
      struct sk_buff *skb, *skbn, *skbt;
      int received = 0;
      u16 pkt_len, sc;
      int curidx;
      /*
       * First, grab all of the stats for the incoming packet.
       * These get messed up if we get called due to a busy condition.
       */
      bdp = fep->cur_rx;

      while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {

            curidx = bdp - fep->rx_bd_base;

            /*
             * Since we have allocated space to hold a complete frame,
             * the last indicator should be set.
             */
            if ((sc & BD_ENET_RX_LAST) == 0)
                  printk(KERN_WARNING DRV_MODULE_NAME
                         ": %s rcv is not +last\n",
                         dev->name);

            /*
             * Check for errors.
             */
            if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
                    BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
                  fep->stats.rx_errors++;
                  /* Frame too long or too short. */
                  if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
                        fep->stats.rx_length_errors++;
                  /* Frame alignment */
                  if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
                        fep->stats.rx_frame_errors++;
                  /* CRC Error */
                  if (sc & BD_ENET_RX_CR)
                        fep->stats.rx_crc_errors++;
                  /* FIFO overrun */
                  if (sc & BD_ENET_RX_OV)
                        fep->stats.rx_crc_errors++;

                  skb = fep->rx_skbuff[curidx];

                  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
                        L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
                        DMA_FROM_DEVICE);

                  skbn = skb;

            } else {

                  skb = fep->rx_skbuff[curidx];

                  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
                        L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
                        DMA_FROM_DEVICE);

                  /*
                   * Process the incoming frame.
                   */
                  fep->stats.rx_packets++;
                  pkt_len = CBDR_DATLEN(bdp) - 4;     /* remove CRC */
                  fep->stats.rx_bytes += pkt_len + 4;

                  if (pkt_len <= fpi->rx_copybreak) {
                        /* +2 to make IP header L1 cache aligned */
                        skbn = dev_alloc_skb(pkt_len + 2);
                        if (skbn != NULL) {
                              skb_reserve(skbn, 2);   /* align IP header */
                              skb_copy_from_linear_data(skb,
                                          skbn->data, pkt_len);
                              /* swap */
                              skbt = skb;
                              skb = skbn;
                              skbn = skbt;
                        }
                  } else {
                        skbn = dev_alloc_skb(ENET_RX_FRSIZE);

                        if (skbn)
                              skb_align(skbn, ENET_RX_ALIGN);
                  }

                  if (skbn != NULL) {
                        skb_put(skb, pkt_len);  /* Make room */
                        skb->protocol = eth_type_trans(skb, dev);
                        received++;
                        netif_rx(skb);
                  } else {
                        printk(KERN_WARNING DRV_MODULE_NAME
                               ": %s Memory squeeze, dropping packet.\n",
                               dev->name);
                        fep->stats.rx_dropped++;
                        skbn = skb;
                  }
            }

            fep->rx_skbuff[curidx] = skbn;
            CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
                       L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
                       DMA_FROM_DEVICE));
            CBDW_DATLEN(bdp, 0);
            CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);

            /*
             * Update BD pointer to next entry.
             */
            if ((sc & BD_ENET_RX_WRAP) == 0)
                  bdp++;
            else
                  bdp = fep->rx_bd_base;

            (*fep->ops->rx_bd_done)(dev);
      }

      fep->cur_rx = bdp;

      return 0;
}

static void fs_enet_tx(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      cbd_t __iomem *bdp;
      struct sk_buff *skb;
      int dirtyidx, do_wake, do_restart;
      u16 sc;

      spin_lock(&fep->tx_lock);
      bdp = fep->dirty_tx;

      do_wake = do_restart = 0;
      while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
            dirtyidx = bdp - fep->tx_bd_base;

            if (fep->tx_free == fep->tx_ring)
                  break;

            skb = fep->tx_skbuff[dirtyidx];

            /*
             * Check for errors.
             */
            if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
                    BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {

                  if (sc & BD_ENET_TX_HB) /* No heartbeat */
                        fep->stats.tx_heartbeat_errors++;
                  if (sc & BD_ENET_TX_LC) /* Late collision */
                        fep->stats.tx_window_errors++;
                  if (sc & BD_ENET_TX_RL) /* Retrans limit */
                        fep->stats.tx_aborted_errors++;
                  if (sc & BD_ENET_TX_UN) /* Underrun */
                        fep->stats.tx_fifo_errors++;
                  if (sc & BD_ENET_TX_CSL)      /* Carrier lost */
                        fep->stats.tx_carrier_errors++;

                  if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
                        fep->stats.tx_errors++;
                        do_restart = 1;
                  }
            } else
                  fep->stats.tx_packets++;

            if (sc & BD_ENET_TX_READY)
                  printk(KERN_WARNING DRV_MODULE_NAME
                         ": %s HEY! Enet xmit interrupt and TX_READY.\n",
                         dev->name);

            /*
             * Deferred means some collisions occurred during transmit,
             * but we eventually sent the packet OK.
             */
            if (sc & BD_ENET_TX_DEF)
                  fep->stats.collisions++;

            /* unmap */
            dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
                        skb->len, DMA_TO_DEVICE);

            /*
             * Free the sk buffer associated with this last transmit.
             */
            dev_kfree_skb_irq(skb);
            fep->tx_skbuff[dirtyidx] = NULL;

            /*
             * Update pointer to next buffer descriptor to be transmitted.
             */
            if ((sc & BD_ENET_TX_WRAP) == 0)
                  bdp++;
            else
                  bdp = fep->tx_bd_base;

            /*
             * Since we have freed up a buffer, the ring is no longer
             * full.
             */
            if (!fep->tx_free++)
                  do_wake = 1;
      }

      fep->dirty_tx = bdp;

      if (do_restart)
            (*fep->ops->tx_restart)(dev);

      spin_unlock(&fep->tx_lock);

      if (do_wake)
            netif_wake_queue(dev);
}

/*
 * The interrupt handler.
 * This is called from the MPC core interrupt.
 */
static irqreturn_t
fs_enet_interrupt(int irq, void *dev_id)
{
      struct net_device *dev = dev_id;
      struct fs_enet_private *fep;
      const struct fs_platform_info *fpi;
      u32 int_events;
      u32 int_clr_events;
      int nr, napi_ok;
      int handled;

      fep = netdev_priv(dev);
      fpi = fep->fpi;

      nr = 0;
      while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
            nr++;

            int_clr_events = int_events;
            if (fpi->use_napi)
                  int_clr_events &= ~fep->ev_napi_rx;

            (*fep->ops->clear_int_events)(dev, int_clr_events);

            if (int_events & fep->ev_err)
                  (*fep->ops->ev_error)(dev, int_events);

            if (int_events & fep->ev_rx) {
                  if (!fpi->use_napi)
                        fs_enet_rx_non_napi(dev);
                  else {
                        napi_ok = napi_schedule_prep(&fep->napi);

                        (*fep->ops->napi_disable_rx)(dev);
                        (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);

                        /* NOTE: it is possible for FCCs in NAPI mode    */
                        /* to submit a spurious interrupt while in poll  */
                        if (napi_ok)
                              __netif_rx_schedule(dev, &fep->napi);
                  }
            }

            if (int_events & fep->ev_tx)
                  fs_enet_tx(dev);
      }

      handled = nr > 0;
      return IRQ_RETVAL(handled);
}

void fs_init_bds(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      cbd_t __iomem *bdp;
      struct sk_buff *skb;
      int i;

      fs_cleanup_bds(dev);

      fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
      fep->tx_free = fep->tx_ring;
      fep->cur_rx = fep->rx_bd_base;

      /*
       * Initialize the receive buffer descriptors.
       */
      for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
            skb = dev_alloc_skb(ENET_RX_FRSIZE);
            if (skb == NULL) {
                  printk(KERN_WARNING DRV_MODULE_NAME
                         ": %s Memory squeeze, unable to allocate skb\n",
                         dev->name);
                  break;
            }
            skb_align(skb, ENET_RX_ALIGN);
            fep->rx_skbuff[i] = skb;
            CBDW_BUFADDR(bdp,
                  dma_map_single(fep->dev, skb->data,
                        L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
                        DMA_FROM_DEVICE));
            CBDW_DATLEN(bdp, 0);    /* zero */
            CBDW_SC(bdp, BD_ENET_RX_EMPTY |
                  ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
      }
      /*
       * if we failed, fillup remainder
       */
      for (; i < fep->rx_ring; i++, bdp++) {
            fep->rx_skbuff[i] = NULL;
            CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
      }

      /*
       * ...and the same for transmit.
       */
      for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
            fep->tx_skbuff[i] = NULL;
            CBDW_BUFADDR(bdp, 0);
            CBDW_DATLEN(bdp, 0);
            CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
      }
}

void fs_cleanup_bds(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      struct sk_buff *skb;
      cbd_t __iomem *bdp;
      int i;

      /*
       * Reset SKB transmit buffers.
       */
      for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
            if ((skb = fep->tx_skbuff[i]) == NULL)
                  continue;

            /* unmap */
            dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
                        skb->len, DMA_TO_DEVICE);

            fep->tx_skbuff[i] = NULL;
            dev_kfree_skb(skb);
      }

      /*
       * Reset SKB receive buffers
       */
      for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
            if ((skb = fep->rx_skbuff[i]) == NULL)
                  continue;

            /* unmap */
            dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
                  L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
                  DMA_FROM_DEVICE);

            fep->rx_skbuff[i] = NULL;

            dev_kfree_skb(skb);
      }
}

/**********************************************************************************/

static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      cbd_t __iomem *bdp;
      int curidx;
      u16 sc;
      unsigned long flags;

      spin_lock_irqsave(&fep->tx_lock, flags);

      /*
       * Fill in a Tx ring entry
       */
      bdp = fep->cur_tx;

      if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
            netif_stop_queue(dev);
            spin_unlock_irqrestore(&fep->tx_lock, flags);

            /*
             * Ooops.  All transmit buffers are full.  Bail out.
             * This should not happen, since the tx queue should be stopped.
             */
            printk(KERN_WARNING DRV_MODULE_NAME
                   ": %s tx queue full!.\n", dev->name);
            return NETDEV_TX_BUSY;
      }

      curidx = bdp - fep->tx_bd_base;
      /*
       * Clear all of the status flags.
       */
      CBDC_SC(bdp, BD_ENET_TX_STATS);

      /*
       * Save skb pointer.
       */
      fep->tx_skbuff[curidx] = skb;

      fep->stats.tx_bytes += skb->len;

      /*
       * Push the data cache so the CPM does not get stale memory data.
       */
      CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
                        skb->data, skb->len, DMA_TO_DEVICE));
      CBDW_DATLEN(bdp, skb->len);

      dev->trans_start = jiffies;

      /*
       * If this was the last BD in the ring, start at the beginning again.
       */
      if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
            fep->cur_tx++;
      else
            fep->cur_tx = fep->tx_bd_base;

      if (!--fep->tx_free)
            netif_stop_queue(dev);

      /* Trigger transmission start */
      sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
           BD_ENET_TX_LAST | BD_ENET_TX_TC;

      /* note that while FEC does not have this bit
       * it marks it as available for software use
       * yay for hw reuse :) */
      if (skb->len <= 60)
            sc |= BD_ENET_TX_PAD;
      CBDS_SC(bdp, sc);

      (*fep->ops->tx_kickstart)(dev);

      spin_unlock_irqrestore(&fep->tx_lock, flags);

      return NETDEV_TX_OK;
}

static int fs_request_irq(struct net_device *dev, int irq, const char *name,
            irq_handler_t irqf)
{
      struct fs_enet_private *fep = netdev_priv(dev);

      (*fep->ops->pre_request_irq)(dev, irq);
      return request_irq(irq, irqf, IRQF_SHARED, name, dev);
}

static void fs_free_irq(struct net_device *dev, int irq)
{
      struct fs_enet_private *fep = netdev_priv(dev);

      free_irq(irq, dev);
      (*fep->ops->post_free_irq)(dev, irq);
}

static void fs_timeout(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      unsigned long flags;
      int wake = 0;

      fep->stats.tx_errors++;

      spin_lock_irqsave(&fep->lock, flags);

      if (dev->flags & IFF_UP) {
            phy_stop(fep->phydev);
            (*fep->ops->stop)(dev);
            (*fep->ops->restart)(dev);
            phy_start(fep->phydev);
      }

      phy_start(fep->phydev);
      wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
      spin_unlock_irqrestore(&fep->lock, flags);

      if (wake)
            netif_wake_queue(dev);
}

/*-----------------------------------------------------------------------------
 *  generic link-change handler - should be sufficient for most cases
 *-----------------------------------------------------------------------------*/
static void generic_adjust_link(struct  net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      struct phy_device *phydev = fep->phydev;
      int new_state = 0;

      if (phydev->link) {
            /* adjust to duplex mode */
            if (phydev->duplex != fep->oldduplex) {
                  new_state = 1;
                  fep->oldduplex = phydev->duplex;
            }

            if (phydev->speed != fep->oldspeed) {
                  new_state = 1;
                  fep->oldspeed = phydev->speed;
            }

            if (!fep->oldlink) {
                  new_state = 1;
                  fep->oldlink = 1;
                  netif_schedule(dev);
                  netif_carrier_on(dev);
                  netif_start_queue(dev);
            }

            if (new_state)
                  fep->ops->restart(dev);
      } else if (fep->oldlink) {
            new_state = 1;
            fep->oldlink = 0;
            fep->oldspeed = 0;
            fep->oldduplex = -1;
            netif_carrier_off(dev);
            netif_stop_queue(dev);
      }

      if (new_state && netif_msg_link(fep))
            phy_print_status(phydev);
}


static void fs_adjust_link(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      unsigned long flags;

      spin_lock_irqsave(&fep->lock, flags);

      if(fep->ops->adjust_link)
            fep->ops->adjust_link(dev);
      else
            generic_adjust_link(dev);

      spin_unlock_irqrestore(&fep->lock, flags);
}

static int fs_init_phy(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      struct phy_device *phydev;

      fep->oldlink = 0;
      fep->oldspeed = 0;
      fep->oldduplex = -1;
      if(fep->fpi->bus_id)
            phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
                        PHY_INTERFACE_MODE_MII);
      else {
            printk("No phy bus ID specified in BSP code\n");
            return -EINVAL;
      }
      if (IS_ERR(phydev)) {
            printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
            return PTR_ERR(phydev);
      }

      fep->phydev = phydev;

      return 0;
}

static int fs_enet_open(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      int r;
      int err;

      if (fep->fpi->use_napi)
            napi_enable(&fep->napi);

      /* Install our interrupt handler. */
      r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
      if (r != 0) {
            printk(KERN_ERR DRV_MODULE_NAME
                   ": %s Could not allocate FS_ENET IRQ!", dev->name);
            if (fep->fpi->use_napi)
                  napi_disable(&fep->napi);
            return -EINVAL;
      }

      err = fs_init_phy(dev);
      if (err) {
            if (fep->fpi->use_napi)
                  napi_disable(&fep->napi);
            return err;
      }
      phy_start(fep->phydev);

      return 0;
}

static int fs_enet_close(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      unsigned long flags;

      netif_stop_queue(dev);
      netif_carrier_off(dev);
      napi_disable(&fep->napi);
      phy_stop(fep->phydev);

      spin_lock_irqsave(&fep->lock, flags);
      spin_lock(&fep->tx_lock);
      (*fep->ops->stop)(dev);
      spin_unlock(&fep->tx_lock);
      spin_unlock_irqrestore(&fep->lock, flags);

      /* release any irqs */
      phy_disconnect(fep->phydev);
      fep->phydev = NULL;
      fs_free_irq(dev, fep->interrupt);

      return 0;
}

static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      return &fep->stats;
}

/*************************************************************************/

static void fs_get_drvinfo(struct net_device *dev,
                      struct ethtool_drvinfo *info)
{
      strcpy(info->driver, DRV_MODULE_NAME);
      strcpy(info->version, DRV_MODULE_VERSION);
}

static int fs_get_regs_len(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);

      return (*fep->ops->get_regs_len)(dev);
}

static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
                   void *p)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      unsigned long flags;
      int r, len;

      len = regs->len;

      spin_lock_irqsave(&fep->lock, flags);
      r = (*fep->ops->get_regs)(dev, p, &len);
      spin_unlock_irqrestore(&fep->lock, flags);

      if (r == 0)
            regs->version = 0;
}

static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
      struct fs_enet_private *fep = netdev_priv(dev);

      if (!fep->phydev)
            return -ENODEV;

      return phy_ethtool_gset(fep->phydev, cmd);
}

static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
      struct fs_enet_private *fep = netdev_priv(dev);

      if (!fep->phydev)
            return -ENODEV;

      return phy_ethtool_sset(fep->phydev, cmd);
}

static int fs_nway_reset(struct net_device *dev)
{
      return 0;
}

static u32 fs_get_msglevel(struct net_device *dev)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      return fep->msg_enable;
}

static void fs_set_msglevel(struct net_device *dev, u32 value)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      fep->msg_enable = value;
}

static const struct ethtool_ops fs_ethtool_ops = {
      .get_drvinfo = fs_get_drvinfo,
      .get_regs_len = fs_get_regs_len,
      .get_settings = fs_get_settings,
      .set_settings = fs_set_settings,
      .nway_reset = fs_nway_reset,
      .get_link = ethtool_op_get_link,
      .get_msglevel = fs_get_msglevel,
      .set_msglevel = fs_set_msglevel,
      .set_tx_csum = ethtool_op_set_tx_csum,    /* local! */
      .set_sg = ethtool_op_set_sg,
      .get_regs = fs_get_regs,
};

static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
      struct fs_enet_private *fep = netdev_priv(dev);
      struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
      unsigned long flags;
      int rc;

      if (!netif_running(dev))
            return -EINVAL;

      spin_lock_irqsave(&fep->lock, flags);
      rc = phy_mii_ioctl(fep->phydev, mii, cmd);
      spin_unlock_irqrestore(&fep->lock, flags);
      return rc;
}

extern int fs_mii_connect(struct net_device *dev);
extern void fs_mii_disconnect(struct net_device *dev);

#ifndef CONFIG_PPC_CPM_NEW_BINDING
static struct net_device *fs_init_instance(struct device *dev,
            struct fs_platform_info *fpi)
{
      struct net_device *ndev = NULL;
      struct fs_enet_private *fep = NULL;
      int privsize, i, r, err = 0, registered = 0;

      fpi->fs_no = fs_get_id(fpi);
      /* guard */
      if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
            return ERR_PTR(-EINVAL);

      privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
                      (fpi->rx_ring + fpi->tx_ring));

      ndev = alloc_etherdev(privsize);
      if (!ndev) {
            err = -ENOMEM;
            goto err;
      }

      fep = netdev_priv(ndev);

      fep->dev = dev;
      dev_set_drvdata(dev, ndev);
      fep->fpi = fpi;
      if (fpi->init_ioports)
            fpi->init_ioports((struct fs_platform_info *)fpi);

#ifdef CONFIG_FS_ENET_HAS_FEC
      if (fs_get_fec_index(fpi->fs_no) >= 0)
            fep->ops = &fs_fec_ops;
#endif

#ifdef CONFIG_FS_ENET_HAS_SCC
      if (fs_get_scc_index(fpi->fs_no) >=0)
            fep->ops = &fs_scc_ops;
#endif

#ifdef CONFIG_FS_ENET_HAS_FCC
      if (fs_get_fcc_index(fpi->fs_no) >= 0)
            fep->ops = &fs_fcc_ops;
#endif

      if (fep->ops == NULL) {
            printk(KERN_ERR DRV_MODULE_NAME
                   ": %s No matching ops found (%d).\n",
                   ndev->name, fpi->fs_no);
            err = -EINVAL;
            goto err;
      }

      r = (*fep->ops->setup_data)(ndev);
      if (r != 0) {
            printk(KERN_ERR DRV_MODULE_NAME
                   ": %s setup_data failed\n",
                  ndev->name);
            err = r;
            goto err;
      }

      /* point rx_skbuff, tx_skbuff */
      fep->rx_skbuff = (struct sk_buff **)&fep[1];
      fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;

      /* init locks */
      spin_lock_init(&fep->lock);
      spin_lock_init(&fep->tx_lock);

      /*
       * Set the Ethernet address.
       */
      for (i = 0; i < 6; i++)
            ndev->dev_addr[i] = fpi->macaddr[i];

      r = (*fep->ops->allocate_bd)(ndev);

      if (fep->ring_base == NULL) {
            printk(KERN_ERR DRV_MODULE_NAME
                   ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
            err = r;
            goto err;
      }

      /*
       * Set receive and transmit descriptor base.
       */
      fep->rx_bd_base = fep->ring_base;
      fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;

      /* initialize ring size variables */
      fep->tx_ring = fpi->tx_ring;
      fep->rx_ring = fpi->rx_ring;

      /*
       * The FEC Ethernet specific entries in the device structure.
       */
      ndev->open = fs_enet_open;
      ndev->hard_start_xmit = fs_enet_start_xmit;
      ndev->tx_timeout = fs_timeout;
      ndev->watchdog_timeo = 2 * HZ;
      ndev->stop = fs_enet_close;
      ndev->get_stats = fs_enet_get_stats;
      ndev->set_multicast_list = fs_set_multicast_list;

#ifdef CONFIG_NET_POLL_CONTROLLER
      ndev->poll_controller = fs_enet_netpoll;
#endif

      netif_napi_add(ndev, &fep->napi,
                   fs_enet_rx_napi, fpi->napi_weight);

      ndev->ethtool_ops = &fs_ethtool_ops;
      ndev->do_ioctl = fs_ioctl;

      init_timer(&fep->phy_timer_list);

      netif_carrier_off(ndev);

      err = register_netdev(ndev);
      if (err != 0) {
            printk(KERN_ERR DRV_MODULE_NAME
                   ": %s register_netdev failed.\n", ndev->name);
            goto err;
      }
      registered = 1;


      return ndev;

err:
      if (ndev != NULL) {
            if (registered)
                  unregister_netdev(ndev);

            if (fep != NULL) {
                  (*fep->ops->free_bd)(ndev);
                  (*fep->ops->cleanup_data)(ndev);
            }

            free_netdev(ndev);
      }

      dev_set_drvdata(dev, NULL);

      return ERR_PTR(err);
}

static int fs_cleanup_instance(struct net_device *ndev)
{
      struct fs_enet_private *fep;
      const struct fs_platform_info *fpi;
      struct device *dev;

      if (ndev == NULL)
            return -EINVAL;

      fep = netdev_priv(ndev);
      if (fep == NULL)
            return -EINVAL;

      fpi = fep->fpi;

      unregister_netdev(ndev);

      dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
                    (void __force *)fep->ring_base, fep->ring_mem_addr);

      /* reset it */
      (*fep->ops->cleanup_data)(ndev);

      dev = fep->dev;
      if (dev != NULL) {
            dev_set_drvdata(dev, NULL);
            fep->dev = NULL;
      }

      free_netdev(ndev);

      return 0;
}
#endif

/**************************************************************************************/

/* handy pointer to the immap */
void __iomem *fs_enet_immap = NULL;

static int setup_immap(void)
{
#ifdef CONFIG_CPM1
      fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
      WARN_ON(!fs_enet_immap);
#elif defined(CONFIG_CPM2)
      fs_enet_immap = cpm2_immr;
#endif

      return 0;
}

static void cleanup_immap(void)
{
#if defined(CONFIG_CPM1)
      iounmap(fs_enet_immap);
#endif
}

/**************************************************************************************/

#ifdef CONFIG_PPC_CPM_NEW_BINDING
static int __devinit find_phy(struct device_node *np,
                              struct fs_platform_info *fpi)
{
      struct device_node *phynode, *mdionode;
      struct resource res;
      int ret = 0, len;

      const u32 *data = of_get_property(np, "phy-handle", &len);
      if (!data || len != 4)
            return -EINVAL;

      phynode = of_find_node_by_phandle(*data);
      if (!phynode)
            return -EINVAL;

      mdionode = of_get_parent(phynode);
      if (!mdionode)
            goto out_put_phy;

      ret = of_address_to_resource(mdionode, 0, &res);
      if (ret)
            goto out_put_mdio;

      data = of_get_property(phynode, "reg", &len);
      if (!data || len != 4)
            goto out_put_mdio;

      snprintf(fpi->bus_id, 16, PHY_ID_FMT, res.start, *data);

out_put_mdio:
      of_node_put(mdionode);
out_put_phy:
      of_node_put(phynode);
      return ret;
}

#ifdef CONFIG_FS_ENET_HAS_FEC
#define IS_FEC(match) ((match)->data == &fs_fec_ops)
#else
#define IS_FEC(match) 0
#endif

static int __devinit fs_enet_probe(struct of_device *ofdev,
                                   const struct of_device_id *match)
{
      struct net_device *ndev;
      struct fs_enet_private *fep;
      struct fs_platform_info *fpi;
      const u32 *data;
      const u8 *mac_addr;
      int privsize, len, ret = -ENODEV;

      fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
      if (!fpi)
            return -ENOMEM;

      if (!IS_FEC(match)) {
            data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
            if (!data || len != 4)
                  goto out_free_fpi;

            fpi->cp_command = *data;
      }

      fpi->rx_ring = 32;
      fpi->tx_ring = 32;
      fpi->rx_copybreak = 240;
      fpi->use_napi = 1;
      fpi->napi_weight = 17;

      ret = find_phy(ofdev->node, fpi);
      if (ret)
            goto out_free_fpi;

      privsize = sizeof(*fep) +
                 sizeof(struct sk_buff **) *
                 (fpi->rx_ring + fpi->tx_ring);

      ndev = alloc_etherdev(privsize);
      if (!ndev) {
            ret = -ENOMEM;
            goto out_free_fpi;
      }

      dev_set_drvdata(&ofdev->dev, ndev);

      fep = netdev_priv(ndev);
      fep->dev = &ofdev->dev;
      fep->ndev = ndev;
      fep->fpi = fpi;
      fep->ops = match->data;

      ret = fep->ops->setup_data(ndev);
      if (ret)
            goto out_free_dev;

      fep->rx_skbuff = (struct sk_buff **)&fep[1];
      fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;

      spin_lock_init(&fep->lock);
      spin_lock_init(&fep->tx_lock);

      mac_addr = of_get_mac_address(ofdev->node);
      if (mac_addr)
            memcpy(ndev->dev_addr, mac_addr, 6);

      ret = fep->ops->allocate_bd(ndev);
      if (ret)
            goto out_cleanup_data;

      fep->rx_bd_base = fep->ring_base;
      fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;

      fep->tx_ring = fpi->tx_ring;
      fep->rx_ring = fpi->rx_ring;

      ndev->open = fs_enet_open;
      ndev->hard_start_xmit = fs_enet_start_xmit;
      ndev->tx_timeout = fs_timeout;
      ndev->watchdog_timeo = 2 * HZ;
      ndev->stop = fs_enet_close;
      ndev->get_stats = fs_enet_get_stats;
      ndev->set_multicast_list = fs_set_multicast_list;

      if (fpi->use_napi)
            netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
                           fpi->napi_weight);

      ndev->ethtool_ops = &fs_ethtool_ops;
      ndev->do_ioctl = fs_ioctl;

      init_timer(&fep->phy_timer_list);

      netif_carrier_off(ndev);

      ret = register_netdev(ndev);
      if (ret)
            goto out_free_bd;

      printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
             ndev->name,
             ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
             ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);

      return 0;

out_free_bd:
      fep->ops->free_bd(ndev);
out_cleanup_data:
      fep->ops->cleanup_data(ndev);
out_free_dev:
      free_netdev(ndev);
      dev_set_drvdata(&ofdev->dev, NULL);
out_free_fpi:
      kfree(fpi);
      return ret;
}

static int fs_enet_remove(struct of_device *ofdev)
{
      struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
      struct fs_enet_private *fep = netdev_priv(ndev);

      unregister_netdev(ndev);

      fep->ops->free_bd(ndev);
      fep->ops->cleanup_data(ndev);
      dev_set_drvdata(fep->dev, NULL);

      free_netdev(ndev);
      return 0;
}

static struct of_device_id fs_enet_match[] = {
#ifdef CONFIG_FS_ENET_HAS_SCC
      {
            .compatible = "fsl,cpm1-scc-enet",
            .data = (void *)&fs_scc_ops,
      },
#endif
#ifdef CONFIG_FS_ENET_HAS_FCC
      {
            .compatible = "fsl,cpm2-fcc-enet",
            .data = (void *)&fs_fcc_ops,
      },
#endif
#ifdef CONFIG_FS_ENET_HAS_FEC
      {
            .compatible = "fsl,pq1-fec-enet",
            .data = (void *)&fs_fec_ops,
      },
#endif
      {}
};

static struct of_platform_driver fs_enet_driver = {
      .name = "fs_enet",
      .match_table = fs_enet_match,
      .probe = fs_enet_probe,
      .remove = fs_enet_remove,
};

static int __init fs_init(void)
{
      int r = setup_immap();
      if (r != 0)
            return r;

      r = of_register_platform_driver(&fs_enet_driver);
      if (r != 0)
            goto out;

      return 0;

out:
      cleanup_immap();
      return r;
}

static void __exit fs_cleanup(void)
{
      of_unregister_platform_driver(&fs_enet_driver);
      cleanup_immap();
}
#else
static int __devinit fs_enet_probe(struct device *dev)
{
      struct net_device *ndev;

      /* no fixup - no device */
      if (dev->platform_data == NULL) {
            printk(KERN_INFO "fs_enet: "
                        "probe called with no platform data; "
                        "remove unused devices\n");
            return -ENODEV;
      }

      ndev = fs_init_instance(dev, dev->platform_data);
      if (IS_ERR(ndev))
            return PTR_ERR(ndev);
      return 0;
}

static int fs_enet_remove(struct device *dev)
{
      return fs_cleanup_instance(dev_get_drvdata(dev));
}

static struct device_driver fs_enet_fec_driver = {
      .name       = "fsl-cpm-fec",
      .bus        = &platform_bus_type,
      .probe            = fs_enet_probe,
      .remove           = fs_enet_remove,
#ifdef CONFIG_PM
/*    .suspend    = fs_enet_suspend,      TODO */
/*    .resume           = fs_enet_resume, TODO */
#endif
};

static struct device_driver fs_enet_scc_driver = {
      .name       = "fsl-cpm-scc",
      .bus        = &platform_bus_type,
      .probe            = fs_enet_probe,
      .remove           = fs_enet_remove,
#ifdef CONFIG_PM
/*    .suspend    = fs_enet_suspend,      TODO */
/*    .resume           = fs_enet_resume, TODO */
#endif
};

static struct device_driver fs_enet_fcc_driver = {
      .name       = "fsl-cpm-fcc",
      .bus        = &platform_bus_type,
      .probe            = fs_enet_probe,
      .remove           = fs_enet_remove,
#ifdef CONFIG_PM
/*    .suspend    = fs_enet_suspend,      TODO */
/*    .resume           = fs_enet_resume, TODO */
#endif
};

static int __init fs_init(void)
{
      int r;

      printk(KERN_INFO
                  "%s", version);

      r = setup_immap();
      if (r != 0)
            return r;

#ifdef CONFIG_FS_ENET_HAS_FCC
      /* let's insert mii stuff */
      r = fs_enet_mdio_bb_init();

      if (r != 0) {
            printk(KERN_ERR DRV_MODULE_NAME
                  "BB PHY init failed.\n");
            return r;
      }
      r = driver_register(&fs_enet_fcc_driver);
      if (r != 0)
            goto err;
#endif

#ifdef CONFIG_FS_ENET_HAS_FEC
      r =  fs_enet_mdio_fec_init();
      if (r != 0) {
            printk(KERN_ERR DRV_MODULE_NAME
                  "FEC PHY init failed.\n");
            return r;
      }

      r = driver_register(&fs_enet_fec_driver);
      if (r != 0)
            goto err;
#endif

#ifdef CONFIG_FS_ENET_HAS_SCC
      r = driver_register(&fs_enet_scc_driver);
      if (r != 0)
            goto err;
#endif

      return 0;
err:
      cleanup_immap();
      return r;
}

static void __exit fs_cleanup(void)
{
      driver_unregister(&fs_enet_fec_driver);
      driver_unregister(&fs_enet_fcc_driver);
      driver_unregister(&fs_enet_scc_driver);
      cleanup_immap();
}
#endif

#ifdef CONFIG_NET_POLL_CONTROLLER
static void fs_enet_netpoll(struct net_device *dev)
{
       disable_irq(dev->irq);
       fs_enet_interrupt(dev->irq, dev, NULL);
       enable_irq(dev->irq);
}
#endif

/**************************************************************************************/

module_init(fs_init);
module_exit(fs_cleanup);

Generated by  Doxygen 1.6.0   Back to index