Logo Search packages:      
Sourcecode: linux version File versions  Download package

ieee1394_core.c

/*
 * IEEE 1394 for Linux
 *
 * Core support: hpsb_packet management, packet handling and forwarding to
 *               highlevel or lowlevel code
 *
 * Copyright (C) 1999, 2000 Andreas E. Bombe
 *                     2002 Manfred Weihs <weihs@ict.tuwien.ac.at>
 *
 * This code is licensed under the GPL.  See the file COPYING in the root
 * directory of the kernel sources for details.
 *
 *
 * Contributions:
 *
 * Manfred Weihs <weihs@ict.tuwien.ac.at>
 *        loopback functionality in hpsb_send_packet
 *        allow highlevel drivers to disable automatic response generation
 *              and to generate responses themselves (deferred)
 *
 */

#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/bitops.h>
#include <linux/kdev_t.h>
#include <linux/freezer.h>
#include <linux/suspend.h>
#include <linux/kthread.h>
#include <linux/preempt.h>
#include <linux/time.h>

#include <asm/system.h>
#include <asm/byteorder.h>

#include "ieee1394_types.h"
#include "ieee1394.h"
#include "hosts.h"
#include "ieee1394_core.h"
#include "highlevel.h"
#include "ieee1394_transactions.h"
#include "csr.h"
#include "nodemgr.h"
#include "dma.h"
#include "iso.h"
#include "config_roms.h"

/*
 * Disable the nodemgr detection and config rom reading functionality.
 */
static int disable_nodemgr;
module_param(disable_nodemgr, int, 0444);
MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality.");

/* Disable Isochronous Resource Manager functionality */
int hpsb_disable_irm = 0;
module_param_named(disable_irm, hpsb_disable_irm, bool, 0444);
MODULE_PARM_DESC(disable_irm,
             "Disable Isochronous Resource Manager functionality.");

/* We are GPL, so treat us special */
MODULE_LICENSE("GPL");

/* Some globals used */
const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" };
struct class *hpsb_protocol_class;

#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
{
      int i;

      size /= 4;
      size = (size > 4 ? 4 : size);

      printk(KERN_DEBUG "ieee1394: %s", text);
      if (speed > -1 && speed < 6)
            printk(" at %s", hpsb_speedto_str[speed]);
      printk(":");
      for (i = 0; i < size; i++)
            printk(" %08x", data[i]);
      printk("\n");
}
#else
#define dump_packet(a,b,c,d) do {} while (0)
#endif

static void abort_requests(struct hpsb_host *host);
static void queue_packet_complete(struct hpsb_packet *packet);


/**
 * hpsb_set_packet_complete_task - set task that runs when a packet completes
 * @packet: the packet whose completion we want the task added to
 * @routine: function to call
 * @data: data (if any) to pass to the above function
 *
 * Set the task that runs when a packet completes. You cannot call this more
 * than once on a single packet before it is sent.
 *
 * Typically, the complete @routine is responsible to call hpsb_free_packet().
 */
void hpsb_set_packet_complete_task(struct hpsb_packet *packet,
                           void (*routine)(void *), void *data)
{
      WARN_ON(packet->complete_routine != NULL);
      packet->complete_routine = routine;
      packet->complete_data = data;
      return;
}

/**
 * hpsb_alloc_packet - allocate new packet structure
 * @data_size: size of the data block to be allocated, in bytes
 *
 * This function allocates, initializes and returns a new &struct hpsb_packet.
 * It can be used in interrupt context.  A header block is always included and
 * initialized with zeros.  Its size is big enough to contain all possible 1394
 * headers.  The data block is only allocated if @data_size is not zero.
 *
 * For packets for which responses will be received the @data_size has to be big
 * enough to contain the response's data block since no further allocation
 * occurs at response matching time.
 *
 * The packet's generation value will be set to the current generation number
 * for ease of use.  Remember to overwrite it with your own recorded generation
 * number if you can not be sure that your code will not race with a bus reset.
 *
 * Return value: A pointer to a &struct hpsb_packet or NULL on allocation
 * failure.
 */
struct hpsb_packet *hpsb_alloc_packet(size_t data_size)
{
      struct hpsb_packet *packet;

      data_size = ((data_size + 3) & ~3);

      packet = kzalloc(sizeof(*packet) + data_size, GFP_ATOMIC);
      if (!packet)
            return NULL;

      packet->state = hpsb_unused;
      packet->generation = -1;
      INIT_LIST_HEAD(&packet->driver_list);
      INIT_LIST_HEAD(&packet->queue);
      atomic_set(&packet->refcnt, 1);

      if (data_size) {
            packet->data = packet->embedded_data;
            packet->allocated_data_size = data_size;
      }
      return packet;
}

/**
 * hpsb_free_packet - free packet and data associated with it
 * @packet: packet to free (is NULL safe)
 *
 * Frees @packet->data only if it was allocated through hpsb_alloc_packet().
 */
void hpsb_free_packet(struct hpsb_packet *packet)
{
      if (packet && atomic_dec_and_test(&packet->refcnt)) {
            BUG_ON(!list_empty(&packet->driver_list) ||
                   !list_empty(&packet->queue));
            kfree(packet);
      }
}

/**
 * hpsb_reset_bus - initiate bus reset on the given host
 * @host: host controller whose bus to reset
 * @type: one of enum reset_types
 *
 * Returns 1 if bus reset already in progress, 0 otherwise.
 */
int hpsb_reset_bus(struct hpsb_host *host, int type)
{
      if (!host->in_bus_reset) {
            host->driver->devctl(host, RESET_BUS, type);
            return 0;
      } else {
            return 1;
      }
}

/**
 * hpsb_read_cycle_timer - read cycle timer register and system time
 * @host: host whose isochronous cycle timer register is read
 * @cycle_timer: address of bitfield to return the register contents
 * @local_time: address to return the system time
 *
 * The format of * @cycle_timer, is described in OHCI 1.1 clause 5.13. This
 * format is also read from non-OHCI controllers. * @local_time contains the
 * system time in microseconds since the Epoch, read at the moment when the
 * cycle timer was read.
 *
 * Return value: 0 for success or error number otherwise.
 */
int hpsb_read_cycle_timer(struct hpsb_host *host, u32 *cycle_timer,
                    u64 *local_time)
{
      int ctr;
      struct timeval tv;
      unsigned long flags;

      if (!host || !cycle_timer || !local_time)
            return -EINVAL;

      preempt_disable();
      local_irq_save(flags);

      ctr = host->driver->devctl(host, GET_CYCLE_COUNTER, 0);
      if (ctr)
            do_gettimeofday(&tv);

      local_irq_restore(flags);
      preempt_enable();

      if (!ctr)
            return -EIO;
      *cycle_timer = ctr;
      *local_time = tv.tv_sec * 1000000ULL + tv.tv_usec;
      return 0;
}

/**
 * hpsb_bus_reset - notify a bus reset to the core
 *
 * For host driver module usage.  Safe to use in interrupt context, although
 * quite complex; so you may want to run it in the bottom rather than top half.
 *
 * Returns 1 if bus reset already in progress, 0 otherwise.
 */
int hpsb_bus_reset(struct hpsb_host *host)
{
      if (host->in_bus_reset) {
            HPSB_NOTICE("%s called while bus reset already in progress",
                      __FUNCTION__);
            return 1;
      }

      abort_requests(host);
      host->in_bus_reset = 1;
      host->irm_id = -1;
      host->is_irm = 0;
      host->busmgr_id = -1;
      host->is_busmgr = 0;
      host->is_cycmst = 0;
      host->node_count = 0;
      host->selfid_count = 0;

      return 0;
}


/*
 * Verify num_of_selfids SelfIDs and return number of nodes.  Return zero in
 * case verification failed.
 */
static int check_selfids(struct hpsb_host *host)
{
      int nodeid = -1;
      int rest_of_selfids = host->selfid_count;
      struct selfid *sid = (struct selfid *)host->topology_map;
      struct ext_selfid *esid;
      int esid_seq = 23;

      host->nodes_active = 0;

      while (rest_of_selfids--) {
            if (!sid->extended) {
                  nodeid++;
                  esid_seq = 0;

                  if (sid->phy_id != nodeid) {
                        HPSB_INFO("SelfIDs failed monotony check with "
                                "%d", sid->phy_id);
                        return 0;
                  }

                  if (sid->link_active) {
                        host->nodes_active++;
                        if (sid->contender)
                              host->irm_id = LOCAL_BUS | sid->phy_id;
                  }
            } else {
                  esid = (struct ext_selfid *)sid;

                  if ((esid->phy_id != nodeid)
                      || (esid->seq_nr != esid_seq)) {
                        HPSB_INFO("SelfIDs failed monotony check with "
                                "%d/%d", esid->phy_id, esid->seq_nr);
                        return 0;
                  }
                  esid_seq++;
            }
            sid++;
      }

      esid = (struct ext_selfid *)(sid - 1);
      while (esid->extended) {
            if ((esid->porta == SELFID_PORT_PARENT) ||
                (esid->portb == SELFID_PORT_PARENT) ||
                (esid->portc == SELFID_PORT_PARENT) ||
                (esid->portd == SELFID_PORT_PARENT) ||
                (esid->porte == SELFID_PORT_PARENT) ||
                (esid->portf == SELFID_PORT_PARENT) ||
                (esid->portg == SELFID_PORT_PARENT) ||
                (esid->porth == SELFID_PORT_PARENT)) {
                  HPSB_INFO("SelfIDs failed root check on "
                          "extended SelfID");
                  return 0;
            }
            esid--;
      }

      sid = (struct selfid *)esid;
      if ((sid->port0 == SELFID_PORT_PARENT) ||
          (sid->port1 == SELFID_PORT_PARENT) ||
          (sid->port2 == SELFID_PORT_PARENT)) {
            HPSB_INFO("SelfIDs failed root check");
            return 0;
      }

      host->node_count = nodeid + 1;
      return 1;
}

static void build_speed_map(struct hpsb_host *host, int nodecount)
{
      u8 cldcnt[nodecount];
      u8 *map = host->speed_map;
      u8 *speedcap = host->speed;
      struct selfid *sid;
      struct ext_selfid *esid;
      int i, j, n;

      for (i = 0; i < (nodecount * 64); i += 64) {
            for (j = 0; j < nodecount; j++) {
                  map[i+j] = IEEE1394_SPEED_MAX;
            }
      }

      for (i = 0; i < nodecount; i++) {
            cldcnt[i] = 0;
      }

      /* find direct children count and speed */
      for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1],
                 n = nodecount - 1;
           (void *)sid >= (void *)host->topology_map; sid--) {
            if (sid->extended) {
                  esid = (struct ext_selfid *)sid;

                  if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++;
                  if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++;
                  if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++;
                  if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++;
                  if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++;
                  if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++;
                  if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++;
                  if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++;
                } else {
                  if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++;
                  if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++;
                  if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++;

                  speedcap[n] = sid->speed;
                  n--;
            }
      }

      /* set self mapping */
      for (i = 0; i < nodecount; i++) {
            map[64*i + i] = speedcap[i];
      }

      /* fix up direct children count to total children count;
       * also fix up speedcaps for sibling and parent communication */
      for (i = 1; i < nodecount; i++) {
            for (j = cldcnt[i], n = i - 1; j > 0; j--) {
                  cldcnt[i] += cldcnt[n];
                  speedcap[n] = min(speedcap[n], speedcap[i]);
                  n -= cldcnt[n] + 1;
            }
      }

      for (n = 0; n < nodecount; n++) {
            for (i = n - cldcnt[n]; i <= n; i++) {
                  for (j = 0; j < (n - cldcnt[n]); j++) {
                        map[j*64 + i] = map[i*64 + j] =
                              min(map[i*64 + j], speedcap[n]);
                  }
                  for (j = n + 1; j < nodecount; j++) {
                        map[j*64 + i] = map[i*64 + j] =
                              min(map[i*64 + j], speedcap[n]);
                  }
            }
      }

#if SELFID_SPEED_UNKNOWN != IEEE1394_SPEED_MAX
      /* assume maximum speed for 1394b PHYs, nodemgr will correct it */
      for (n = 0; n < nodecount; n++)
            if (speedcap[n] == SELFID_SPEED_UNKNOWN)
                  speedcap[n] = IEEE1394_SPEED_MAX;
#endif
}


/**
 * hpsb_selfid_received - hand over received selfid packet to the core
 *
 * For host driver module usage.  Safe to use in interrupt context.
 *
 * The host driver should have done a successful complement check (second
 * quadlet is complement of first) beforehand.
 */
void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid)
{
      if (host->in_bus_reset) {
            HPSB_VERBOSE("Including SelfID 0x%x", sid);
            host->topology_map[host->selfid_count++] = sid;
      } else {
            HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d",
                      sid, NODEID_TO_BUS(host->node_id));
      }
}

/**
 * hpsb_selfid_complete - notify completion of SelfID stage to the core
 *
 * For host driver module usage.  Safe to use in interrupt context, although
 * quite complex; so you may want to run it in the bottom rather than top half.
 *
 * Notify completion of SelfID stage to the core and report new physical ID
 * and whether host is root now.
 */
void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot)
{
      if (!host->in_bus_reset)
            HPSB_NOTICE("SelfID completion called outside of bus reset!");

      host->node_id = LOCAL_BUS | phyid;
      host->is_root = isroot;

      if (!check_selfids(host)) {
            if (host->reset_retries++ < 20) {
                  /* selfid stage did not complete without error */
                  HPSB_NOTICE("Error in SelfID stage, resetting");
                  host->in_bus_reset = 0;
                  /* this should work from ohci1394 now... */
                  hpsb_reset_bus(host, LONG_RESET);
                  return;
            } else {
                  HPSB_NOTICE("Stopping out-of-control reset loop");
                  HPSB_NOTICE("Warning - topology map and speed map will not be valid");
                  host->reset_retries = 0;
            }
      } else {
            host->reset_retries = 0;
            build_speed_map(host, host->node_count);
      }

      HPSB_VERBOSE("selfid_complete called with successful SelfID stage "
                 "... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id);

      /* irm_id is kept up to date by check_selfids() */
      if (host->irm_id == host->node_id) {
            host->is_irm = 1;
      } else {
            host->is_busmgr = 0;
            host->is_irm = 0;
      }

      if (isroot) {
            host->driver->devctl(host, ACT_CYCLE_MASTER, 1);
            host->is_cycmst = 1;
      }
      atomic_inc(&host->generation);
      host->in_bus_reset = 0;
      highlevel_host_reset(host);
}

static DEFINE_SPINLOCK(pending_packets_lock);

/**
 * hpsb_packet_sent - notify core of sending a packet
 *
 * For host driver module usage.  Safe to call from within a transmit packet
 * routine.
 *
 * Notify core of sending a packet.  Ackcode is the ack code returned for async
 * transmits or ACKX_SEND_ERROR if the transmission failed completely; ACKX_NONE
 * for other cases (internal errors that don't justify a panic).
 */
void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet,
                  int ackcode)
{
      unsigned long flags;

      spin_lock_irqsave(&pending_packets_lock, flags);

      packet->ack_code = ackcode;

      if (packet->no_waiter || packet->state == hpsb_complete) {
            /* if packet->no_waiter, must not have a tlabel allocated */
            spin_unlock_irqrestore(&pending_packets_lock, flags);
            hpsb_free_packet(packet);
            return;
      }

      atomic_dec(&packet->refcnt);  /* drop HC's reference */
      /* here the packet must be on the host->pending_packets queue */

      if (ackcode != ACK_PENDING || !packet->expect_response) {
            packet->state = hpsb_complete;
            list_del_init(&packet->queue);
            spin_unlock_irqrestore(&pending_packets_lock, flags);
            queue_packet_complete(packet);
            return;
      }

      packet->state = hpsb_pending;
      packet->sendtime = jiffies;

      spin_unlock_irqrestore(&pending_packets_lock, flags);

      mod_timer(&host->timeout, jiffies + host->timeout_interval);
}

/**
 * hpsb_send_phy_config - transmit a PHY configuration packet on the bus
 * @host: host that PHY config packet gets sent through
 * @rootid: root whose force_root bit should get set (-1 = don't set force_root)
 * @gapcnt: gap count value to set (-1 = don't set gap count)
 *
 * This function sends a PHY config packet on the bus through the specified
 * host.
 *
 * Return value: 0 for success or negative error number otherwise.
 */
int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt)
{
      struct hpsb_packet *packet;
      quadlet_t d = 0;
      int retval = 0;

      if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 ||
         (rootid == -1 && gapcnt == -1)) {
            HPSB_DEBUG("Invalid Parameter: rootid = %d   gapcnt = %d",
                     rootid, gapcnt);
            return -EINVAL;
      }

      if (rootid != -1)
            d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT;
      if (gapcnt != -1)
            d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT;

      packet = hpsb_make_phypacket(host, d);
      if (!packet)
            return -ENOMEM;

      packet->generation = get_hpsb_generation(host);
      retval = hpsb_send_packet_and_wait(packet);
      hpsb_free_packet(packet);

      return retval;
}

/**
 * hpsb_send_packet - transmit a packet on the bus
 * @packet: packet to send
 *
 * The packet is sent through the host specified in the packet->host field.
 * Before sending, the packet's transmit speed is automatically determined
 * using the local speed map when it is an async, non-broadcast packet.
 *
 * Possibilities for failure are that host is either not initialized, in bus
 * reset, the packet's generation number doesn't match the current generation
 * number or the host reports a transmit error.
 *
 * Return value: 0 on success, negative errno on failure.
 */
int hpsb_send_packet(struct hpsb_packet *packet)
{
      struct hpsb_host *host = packet->host;

      if (host->is_shutdown)
            return -EINVAL;
      if (host->in_bus_reset ||
          (packet->generation != get_hpsb_generation(host)))
            return -EAGAIN;

      packet->state = hpsb_queued;

      /* This just seems silly to me */
      WARN_ON(packet->no_waiter && packet->expect_response);

      if (!packet->no_waiter || packet->expect_response) {
            unsigned long flags;

            atomic_inc(&packet->refcnt);
            /* Set the initial "sendtime" to 10 seconds from now, to
               prevent premature expiry.  If a packet takes more than
               10 seconds to hit the wire, we have bigger problems :) */
            packet->sendtime = jiffies + 10 * HZ;
            spin_lock_irqsave(&pending_packets_lock, flags);
            list_add_tail(&packet->queue, &host->pending_packets);
            spin_unlock_irqrestore(&pending_packets_lock, flags);
      }

      if (packet->node_id == host->node_id) {
            /* it is a local request, so handle it locally */

            quadlet_t *data;
            size_t size = packet->data_size + packet->header_size;

            data = kmalloc(size, GFP_ATOMIC);
            if (!data) {
                  HPSB_ERR("unable to allocate memory for concatenating header and data");
                  return -ENOMEM;
            }

            memcpy(data, packet->header, packet->header_size);

            if (packet->data_size)
                  memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);

            dump_packet("send packet local", packet->header, packet->header_size, -1);

            hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
            hpsb_packet_received(host, data, size, 0);

            kfree(data);

            return 0;
      }

      if (packet->type == hpsb_async &&
          NODEID_TO_NODE(packet->node_id) != ALL_NODES)
            packet->speed_code =
                  host->speed[NODEID_TO_NODE(packet->node_id)];

      dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);

      return host->driver->transmit_packet(host, packet);
}

/* We could just use complete() directly as the packet complete
 * callback, but this is more typesafe, in the sense that we get a
 * compiler error if the prototype for complete() changes. */

static void complete_packet(void *data)
{
      complete((struct completion *) data);
}

/**
 * hpsb_send_packet_and_wait - enqueue packet, block until transaction completes
 * @packet: packet to send
 *
 * Return value: 0 on success, negative errno on failure.
 */
int hpsb_send_packet_and_wait(struct hpsb_packet *packet)
{
      struct completion done;
      int retval;

      init_completion(&done);
      hpsb_set_packet_complete_task(packet, complete_packet, &done);
      retval = hpsb_send_packet(packet);
      if (retval == 0)
            wait_for_completion(&done);

      return retval;
}

static void send_packet_nocare(struct hpsb_packet *packet)
{
      if (hpsb_send_packet(packet) < 0) {
            hpsb_free_packet(packet);
      }
}

static size_t packet_size_to_data_size(size_t packet_size, size_t header_size,
                               size_t buffer_size, int tcode)
{
      size_t ret = packet_size <= header_size ? 0 : packet_size - header_size;

      if (unlikely(ret > buffer_size))
            ret = buffer_size;

      if (unlikely(ret + header_size != packet_size))
            HPSB_ERR("unexpected packet size %zd (tcode %d), bug?",
                   packet_size, tcode);
      return ret;
}

static void handle_packet_response(struct hpsb_host *host, int tcode,
                           quadlet_t *data, size_t size)
{
      struct hpsb_packet *packet;
      int tlabel = (data[0] >> 10) & 0x3f;
      size_t header_size;
      unsigned long flags;

      spin_lock_irqsave(&pending_packets_lock, flags);

      list_for_each_entry(packet, &host->pending_packets, queue)
            if (packet->tlabel == tlabel &&
                packet->node_id == (data[1] >> 16))
                  goto found;

      spin_unlock_irqrestore(&pending_packets_lock, flags);
      HPSB_DEBUG("unsolicited response packet received - %s",
               "no tlabel match");
      dump_packet("contents", data, 16, -1);
      return;

found:
      switch (packet->tcode) {
      case TCODE_WRITEQ:
      case TCODE_WRITEB:
            if (unlikely(tcode != TCODE_WRITE_RESPONSE))
                  break;
            header_size = 12;
            size = 0;
            goto dequeue;

      case TCODE_READQ:
            if (unlikely(tcode != TCODE_READQ_RESPONSE))
                  break;
            header_size = 16;
            size = 0;
            goto dequeue;

      case TCODE_READB:
            if (unlikely(tcode != TCODE_READB_RESPONSE))
                  break;
            header_size = 16;
            size = packet_size_to_data_size(size, header_size,
                                    packet->allocated_data_size,
                                    tcode);
            goto dequeue;

      case TCODE_LOCK_REQUEST:
            if (unlikely(tcode != TCODE_LOCK_RESPONSE))
                  break;
            header_size = 16;
            size = packet_size_to_data_size(min(size, (size_t)(16 + 8)),
                                    header_size,
                                    packet->allocated_data_size,
                                    tcode);
            goto dequeue;
      }

      spin_unlock_irqrestore(&pending_packets_lock, flags);
      HPSB_DEBUG("unsolicited response packet received - %s",
               "tcode mismatch");
      dump_packet("contents", data, 16, -1);
      return;

dequeue:
      list_del_init(&packet->queue);
      spin_unlock_irqrestore(&pending_packets_lock, flags);

      if (packet->state == hpsb_queued) {
            packet->sendtime = jiffies;
            packet->ack_code = ACK_PENDING;
      }
      packet->state = hpsb_complete;

      memcpy(packet->header, data, header_size);
      if (size)
            memcpy(packet->data, data + 4, size);

      queue_packet_complete(packet);
}


static struct hpsb_packet *create_reply_packet(struct hpsb_host *host,
                                     quadlet_t *data, size_t dsize)
{
      struct hpsb_packet *p;

      p = hpsb_alloc_packet(dsize);
      if (unlikely(p == NULL)) {
            /* FIXME - send data_error response */
            HPSB_ERR("out of memory, cannot send response packet");
            return NULL;
      }

      p->type = hpsb_async;
      p->state = hpsb_unused;
      p->host = host;
      p->node_id = data[1] >> 16;
      p->tlabel = (data[0] >> 10) & 0x3f;
      p->no_waiter = 1;

      p->generation = get_hpsb_generation(host);

      if (dsize % 4)
            p->data[dsize / 4] = 0;

      return p;
}

#define PREP_ASYNC_HEAD_RCODE(tc) \
      packet->tcode = tc; \
      packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
            | (1 << 8) | (tc << 4); \
      packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
      packet->header[2] = 0

static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
                        quadlet_t data)
{
      PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
      packet->header[3] = data;
      packet->header_size = 16;
      packet->data_size = 0;
}

static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
                         int length)
{
      if (rcode != RCODE_COMPLETE)
            length = 0;

      PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
      packet->header[3] = length << 16;
      packet->header_size = 16;
      packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
}

static void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
{
      PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
      packet->header_size = 12;
      packet->data_size = 0;
}

static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
                    int length)
{
      if (rcode != RCODE_COMPLETE)
            length = 0;

      PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
      packet->header[3] = (length << 16) | extcode;
      packet->header_size = 16;
      packet->data_size = length;
}

static void handle_incoming_packet(struct hpsb_host *host, int tcode,
                           quadlet_t *data, size_t size,
                           int write_acked)
{
      struct hpsb_packet *packet;
      int length, rcode, extcode;
      quadlet_t buffer;
      nodeid_t source = data[1] >> 16;
      nodeid_t dest = data[0] >> 16;
      u16 flags = (u16) data[0];
      u64 addr;

      /* FIXME?
       * Out-of-bounds lengths are left for highlevel_read|write to cap. */

      switch (tcode) {
      case TCODE_WRITEQ:
            addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
            rcode = highlevel_write(host, source, dest, data + 3,
                              addr, 4, flags);
            goto handle_write_request;

      case TCODE_WRITEB:
            addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
            rcode = highlevel_write(host, source, dest, data + 4,
                              addr, data[3] >> 16, flags);
handle_write_request:
            if (rcode < 0 || write_acked ||
                NODEID_TO_NODE(data[0] >> 16) == NODE_MASK)
                  return;
            /* not a broadcast write, reply */
            packet = create_reply_packet(host, data, 0);
            if (packet) {
                  fill_async_write_resp(packet, rcode);
                  send_packet_nocare(packet);
            }
            return;

      case TCODE_READQ:
            addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
            rcode = highlevel_read(host, source, &buffer, addr, 4, flags);
            if (rcode < 0)
                  return;

            packet = create_reply_packet(host, data, 0);
            if (packet) {
                  fill_async_readquad_resp(packet, rcode, buffer);
                  send_packet_nocare(packet);
            }
            return;

      case TCODE_READB:
            length = data[3] >> 16;
            packet = create_reply_packet(host, data, length);
            if (!packet)
                  return;

            addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
            rcode = highlevel_read(host, source, packet->data, addr,
                               length, flags);
            if (rcode < 0) {
                  hpsb_free_packet(packet);
                  return;
            }
            fill_async_readblock_resp(packet, rcode, length);
            send_packet_nocare(packet);
            return;

      case TCODE_LOCK_REQUEST:
            length = data[3] >> 16;
            extcode = data[3] & 0xffff;
            addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];

            packet = create_reply_packet(host, data, 8);
            if (!packet)
                  return;

            if (extcode == 0 || extcode >= 7) {
                  /* let switch default handle error */
                  length = 0;
            }

            switch (length) {
            case 4:
                  rcode = highlevel_lock(host, source, packet->data, addr,
                                     data[4], 0, extcode, flags);
                  fill_async_lock_resp(packet, rcode, extcode, 4);
                  break;
            case 8:
                  if (extcode != EXTCODE_FETCH_ADD &&
                      extcode != EXTCODE_LITTLE_ADD) {
                        rcode = highlevel_lock(host, source,
                                           packet->data, addr,
                                           data[5], data[4],
                                           extcode, flags);
                        fill_async_lock_resp(packet, rcode, extcode, 4);
                  } else {
                        rcode = highlevel_lock64(host, source,
                                   (octlet_t *)packet->data, addr,
                                   *(octlet_t *)(data + 4), 0ULL,
                                   extcode, flags);
                        fill_async_lock_resp(packet, rcode, extcode, 8);
                  }
                  break;
            case 16:
                  rcode = highlevel_lock64(host, source,
                                     (octlet_t *)packet->data, addr,
                                     *(octlet_t *)(data + 6),
                                     *(octlet_t *)(data + 4),
                                     extcode, flags);
                  fill_async_lock_resp(packet, rcode, extcode, 8);
                  break;
            default:
                  rcode = RCODE_TYPE_ERROR;
                  fill_async_lock_resp(packet, rcode, extcode, 0);
            }

            if (rcode < 0)
                  hpsb_free_packet(packet);
            else
                  send_packet_nocare(packet);
            return;
      }
}

/**
 * hpsb_packet_received - hand over received packet to the core
 *
 * For host driver module usage.
 *
 * The contents of data are expected to be the full packet but with the CRCs
 * left out (data block follows header immediately), with the header (i.e. the
 * first four quadlets) in machine byte order and the data block in big endian.
 * *@data can be safely overwritten after this call.
 *
 * If the packet is a write request, @write_acked is to be set to true if it was
 * ack_complete'd already, false otherwise.  This argument is ignored for any
 * other packet type.
 */
void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
                    int write_acked)
{
      int tcode;

      if (unlikely(host->in_bus_reset)) {
            HPSB_DEBUG("received packet during reset; ignoring");
            return;
      }

      dump_packet("received packet", data, size, -1);

      tcode = (data[0] >> 4) & 0xf;

      switch (tcode) {
      case TCODE_WRITE_RESPONSE:
      case TCODE_READQ_RESPONSE:
      case TCODE_READB_RESPONSE:
      case TCODE_LOCK_RESPONSE:
            handle_packet_response(host, tcode, data, size);
            break;

      case TCODE_WRITEQ:
      case TCODE_WRITEB:
      case TCODE_READQ:
      case TCODE_READB:
      case TCODE_LOCK_REQUEST:
            handle_incoming_packet(host, tcode, data, size, write_acked);
            break;

      case TCODE_CYCLE_START:
            /* simply ignore this packet if it is passed on */
            break;

      default:
            HPSB_DEBUG("received packet with bogus transaction code %d",
                     tcode);
            break;
      }
}

static void abort_requests(struct hpsb_host *host)
{
      struct hpsb_packet *packet, *p;
      struct list_head tmp;
      unsigned long flags;

      host->driver->devctl(host, CANCEL_REQUESTS, 0);

      INIT_LIST_HEAD(&tmp);
      spin_lock_irqsave(&pending_packets_lock, flags);
      list_splice_init(&host->pending_packets, &tmp);
      spin_unlock_irqrestore(&pending_packets_lock, flags);

      list_for_each_entry_safe(packet, p, &tmp, queue) {
            list_del_init(&packet->queue);
            packet->state = hpsb_complete;
            packet->ack_code = ACKX_ABORTED;
            queue_packet_complete(packet);
      }
}

void abort_timedouts(unsigned long __opaque)
{
      struct hpsb_host *host = (struct hpsb_host *)__opaque;
      struct hpsb_packet *packet, *p;
      struct list_head tmp;
      unsigned long flags, expire, j;

      spin_lock_irqsave(&host->csr.lock, flags);
      expire = host->csr.expire;
      spin_unlock_irqrestore(&host->csr.lock, flags);

      j = jiffies;
      INIT_LIST_HEAD(&tmp);
      spin_lock_irqsave(&pending_packets_lock, flags);

      list_for_each_entry_safe(packet, p, &host->pending_packets, queue) {
            if (time_before(packet->sendtime + expire, j))
                  list_move_tail(&packet->queue, &tmp);
            else
                  /* Since packets are added to the tail, the oldest
                   * ones are first, always. When we get to one that
                   * isn't timed out, the rest aren't either. */
                  break;
      }
      if (!list_empty(&host->pending_packets))
            mod_timer(&host->timeout, j + host->timeout_interval);

      spin_unlock_irqrestore(&pending_packets_lock, flags);

      list_for_each_entry_safe(packet, p, &tmp, queue) {
            list_del_init(&packet->queue);
            packet->state = hpsb_complete;
            packet->ack_code = ACKX_TIMEOUT;
            queue_packet_complete(packet);
      }
}

static struct task_struct *khpsbpkt_thread;
static LIST_HEAD(hpsbpkt_queue);

static void queue_packet_complete(struct hpsb_packet *packet)
{
      unsigned long flags;

      if (packet->no_waiter) {
            hpsb_free_packet(packet);
            return;
      }
      if (packet->complete_routine != NULL) {
            spin_lock_irqsave(&pending_packets_lock, flags);
            list_add_tail(&packet->queue, &hpsbpkt_queue);
            spin_unlock_irqrestore(&pending_packets_lock, flags);
            wake_up_process(khpsbpkt_thread);
      }
      return;
}

/*
 * Kernel thread which handles packets that are completed.  This way the
 * packet's "complete" function is asynchronously run in process context.
 * Only packets which have a "complete" function may be sent here.
 */
static int hpsbpkt_thread(void *__hi)
{
      struct hpsb_packet *packet, *p;
      struct list_head tmp;
      int may_schedule;

      while (!kthread_should_stop()) {

            INIT_LIST_HEAD(&tmp);
            spin_lock_irq(&pending_packets_lock);
            list_splice_init(&hpsbpkt_queue, &tmp);
            spin_unlock_irq(&pending_packets_lock);

            list_for_each_entry_safe(packet, p, &tmp, queue) {
                  list_del_init(&packet->queue);
                  packet->complete_routine(packet->complete_data);
            }

            set_current_state(TASK_INTERRUPTIBLE);
            spin_lock_irq(&pending_packets_lock);
            may_schedule = list_empty(&hpsbpkt_queue);
            spin_unlock_irq(&pending_packets_lock);
            if (may_schedule)
                  schedule();
            __set_current_state(TASK_RUNNING);
      }
      return 0;
}

static int __init ieee1394_init(void)
{
      int i, ret;

      /* non-fatal error */
      if (hpsb_init_config_roms()) {
            HPSB_ERR("Failed to initialize some config rom entries.\n");
            HPSB_ERR("Some features may not be available\n");
      }

      khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt");
      if (IS_ERR(khpsbpkt_thread)) {
            HPSB_ERR("Failed to start hpsbpkt thread!\n");
            ret = PTR_ERR(khpsbpkt_thread);
            goto exit_cleanup_config_roms;
      }

      if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) {
            HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR);
            ret = -ENODEV;
            goto exit_release_kernel_thread;
      }

      ret = bus_register(&ieee1394_bus_type);
      if (ret < 0) {
            HPSB_INFO("bus register failed");
            goto release_chrdev;
      }

      for (i = 0; fw_bus_attrs[i]; i++) {
            ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]);
            if (ret < 0) {
                  while (i >= 0) {
                        bus_remove_file(&ieee1394_bus_type,
                                    fw_bus_attrs[i--]);
                  }
                  bus_unregister(&ieee1394_bus_type);
                  goto release_chrdev;
            }
      }

      ret = class_register(&hpsb_host_class);
      if (ret < 0)
            goto release_all_bus;

      hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol");
      if (IS_ERR(hpsb_protocol_class)) {
            ret = PTR_ERR(hpsb_protocol_class);
            goto release_class_host;
      }

      ret = init_csr();
      if (ret) {
            HPSB_INFO("init csr failed");
            ret = -ENOMEM;
            goto release_class_protocol;
      }

      if (disable_nodemgr) {
            HPSB_INFO("nodemgr and IRM functionality disabled");
            /* We shouldn't contend for IRM with nodemgr disabled, since
               nodemgr implements functionality required of ieee1394a-2000
               IRMs */
            hpsb_disable_irm = 1;

            return 0;
      }

      if (hpsb_disable_irm) {
            HPSB_INFO("IRM functionality disabled");
      }

      ret = init_ieee1394_nodemgr();
      if (ret < 0) {
            HPSB_INFO("init nodemgr failed");
            goto cleanup_csr;
      }

      return 0;

cleanup_csr:
      cleanup_csr();
release_class_protocol:
      class_destroy(hpsb_protocol_class);
release_class_host:
      class_unregister(&hpsb_host_class);
release_all_bus:
      for (i = 0; fw_bus_attrs[i]; i++)
            bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
      bus_unregister(&ieee1394_bus_type);
release_chrdev:
      unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
exit_release_kernel_thread:
      kthread_stop(khpsbpkt_thread);
exit_cleanup_config_roms:
      hpsb_cleanup_config_roms();
      return ret;
}

static void __exit ieee1394_cleanup(void)
{
      int i;

      if (!disable_nodemgr)
            cleanup_ieee1394_nodemgr();

      cleanup_csr();

      class_destroy(hpsb_protocol_class);
      class_unregister(&hpsb_host_class);
      for (i = 0; fw_bus_attrs[i]; i++)
            bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
      bus_unregister(&ieee1394_bus_type);

      kthread_stop(khpsbpkt_thread);

      hpsb_cleanup_config_roms();

      unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
}

module_init(ieee1394_init);
module_exit(ieee1394_cleanup);

/* Exported symbols */

/** hosts.c **/
EXPORT_SYMBOL(hpsb_alloc_host);
EXPORT_SYMBOL(hpsb_add_host);
EXPORT_SYMBOL(hpsb_resume_host);
EXPORT_SYMBOL(hpsb_remove_host);
EXPORT_SYMBOL(hpsb_update_config_rom_image);

/** ieee1394_core.c **/
EXPORT_SYMBOL(hpsb_speedto_str);
EXPORT_SYMBOL(hpsb_protocol_class);
EXPORT_SYMBOL(hpsb_set_packet_complete_task);
EXPORT_SYMBOL(hpsb_alloc_packet);
EXPORT_SYMBOL(hpsb_free_packet);
EXPORT_SYMBOL(hpsb_send_packet);
EXPORT_SYMBOL(hpsb_reset_bus);
EXPORT_SYMBOL(hpsb_read_cycle_timer);
EXPORT_SYMBOL(hpsb_bus_reset);
EXPORT_SYMBOL(hpsb_selfid_received);
EXPORT_SYMBOL(hpsb_selfid_complete);
EXPORT_SYMBOL(hpsb_packet_sent);
EXPORT_SYMBOL(hpsb_packet_received);
EXPORT_SYMBOL_GPL(hpsb_disable_irm);

/** ieee1394_transactions.c **/
EXPORT_SYMBOL(hpsb_get_tlabel);
EXPORT_SYMBOL(hpsb_free_tlabel);
EXPORT_SYMBOL(hpsb_make_readpacket);
EXPORT_SYMBOL(hpsb_make_writepacket);
EXPORT_SYMBOL(hpsb_make_streampacket);
EXPORT_SYMBOL(hpsb_make_lockpacket);
EXPORT_SYMBOL(hpsb_make_lock64packet);
EXPORT_SYMBOL(hpsb_make_phypacket);
EXPORT_SYMBOL(hpsb_read);
EXPORT_SYMBOL(hpsb_write);
EXPORT_SYMBOL(hpsb_packet_success);

/** highlevel.c **/
EXPORT_SYMBOL(hpsb_register_highlevel);
EXPORT_SYMBOL(hpsb_unregister_highlevel);
EXPORT_SYMBOL(hpsb_register_addrspace);
EXPORT_SYMBOL(hpsb_unregister_addrspace);
EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace);
EXPORT_SYMBOL(hpsb_get_hostinfo);
EXPORT_SYMBOL(hpsb_create_hostinfo);
EXPORT_SYMBOL(hpsb_destroy_hostinfo);
EXPORT_SYMBOL(hpsb_set_hostinfo_key);
EXPORT_SYMBOL(hpsb_get_hostinfo_bykey);
EXPORT_SYMBOL(hpsb_set_hostinfo);

/** nodemgr.c **/
EXPORT_SYMBOL(hpsb_node_fill_packet);
EXPORT_SYMBOL(hpsb_node_write);
EXPORT_SYMBOL(__hpsb_register_protocol);
EXPORT_SYMBOL(hpsb_unregister_protocol);

/** csr.c **/
EXPORT_SYMBOL(hpsb_update_config_rom);

/** dma.c **/
EXPORT_SYMBOL(dma_prog_region_init);
EXPORT_SYMBOL(dma_prog_region_alloc);
EXPORT_SYMBOL(dma_prog_region_free);
EXPORT_SYMBOL(dma_region_init);
EXPORT_SYMBOL(dma_region_alloc);
EXPORT_SYMBOL(dma_region_free);
EXPORT_SYMBOL(dma_region_sync_for_cpu);
EXPORT_SYMBOL(dma_region_sync_for_device);
EXPORT_SYMBOL(dma_region_mmap);
EXPORT_SYMBOL(dma_region_offset_to_bus);

/** iso.c **/
EXPORT_SYMBOL(hpsb_iso_xmit_init);
EXPORT_SYMBOL(hpsb_iso_recv_init);
EXPORT_SYMBOL(hpsb_iso_xmit_start);
EXPORT_SYMBOL(hpsb_iso_recv_start);
EXPORT_SYMBOL(hpsb_iso_recv_listen_channel);
EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel);
EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask);
EXPORT_SYMBOL(hpsb_iso_stop);
EXPORT_SYMBOL(hpsb_iso_shutdown);
EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet);
EXPORT_SYMBOL(hpsb_iso_xmit_sync);
EXPORT_SYMBOL(hpsb_iso_recv_release_packets);
EXPORT_SYMBOL(hpsb_iso_n_ready);
EXPORT_SYMBOL(hpsb_iso_packet_sent);
EXPORT_SYMBOL(hpsb_iso_packet_received);
EXPORT_SYMBOL(hpsb_iso_wake);
EXPORT_SYMBOL(hpsb_iso_recv_flush);

/** csr1212.c **/
EXPORT_SYMBOL(csr1212_attach_keyval_to_directory);
EXPORT_SYMBOL(csr1212_detach_keyval_from_directory);
EXPORT_SYMBOL(csr1212_get_keyval);
EXPORT_SYMBOL(csr1212_new_directory);
EXPORT_SYMBOL(csr1212_parse_keyval);
EXPORT_SYMBOL(csr1212_read);
EXPORT_SYMBOL(csr1212_release_keyval);

Generated by  Doxygen 1.6.0   Back to index