Logo Search packages:      
Sourcecode: linux version File versions  Download package

i2o.h

/*
 * I2O kernel space accessible structures/APIs
 *
 * (c) Copyright 1999, 2000 Red Hat Software
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 *************************************************************************
 *
 * This header file defined the I2O APIs/structures for use by
 * the I2O kernel modules.
 *
 */

#ifndef _I2O_H
#define _I2O_H

#ifdef __KERNEL__       /* This file to be included by kernel only */

#include <linux/i2o-dev.h>

/* How many different OSM's are we allowing */
#define I2O_MAX_DRIVERS       8

#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/workqueue.h>  /* work_struct */
#include <linux/mempool.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>

#include <asm/io.h>
#include <asm/semaphore.h>    /* Needed for MUTEX init macros */

/* message queue empty */
#define I2O_QUEUE_EMPTY       0xffffffff

/*
 *    Cache strategies
 */

/*    The NULL strategy leaves everything up to the controller. This tends to be a
 *    pessimal but functional choice.
 */
#define CACHE_NULL            0
/*    Prefetch data when reading. We continually attempt to load the next 32 sectors
 *    into the controller cache.
 */
#define CACHE_PREFETCH        1
/*    Prefetch data when reading. We sometimes attempt to load the next 32 sectors
 *    into the controller cache. When an I/O is less <= 8K we assume its probably
 *    not sequential and don't prefetch (default)
 */
#define CACHE_SMARTFETCH      2
/*    Data is written to the cache and then out on to the disk. The I/O must be
 *    physically on the medium before the write is acknowledged (default without
 *    NVRAM)
 */
#define CACHE_WRITETHROUGH    17
/*    Data is written to the cache and then out on to the disk. The controller
 *    is permitted to write back the cache any way it wants. (default if battery
 *    backed NVRAM is present). It can be useful to set this for swap regardless of
 *    battery state.
 */
#define CACHE_WRITEBACK       18
/*    Optimise for under powered controllers, especially on RAID1 and RAID0. We
 *    write large I/O's directly to disk bypassing the cache to avoid the extra
 *    memory copy hits. Small writes are writeback cached
 */
#define CACHE_SMARTBACK       19
/*    Optimise for under powered controllers, especially on RAID1 and RAID0. We
 *    write large I/O's directly to disk bypassing the cache to avoid the extra
 *    memory copy hits. Small writes are writethrough cached. Suitable for devices
 *    lacking battery backup
 */
#define CACHE_SMARTTHROUGH    20

/*
 *    Ioctl structures
 */

#define     BLKI2OGRSTRAT     _IOR('2', 1, int)
#define     BLKI2OGWSTRAT     _IOR('2', 2, int)
#define     BLKI2OSRSTRAT     _IOW('2', 3, int)
#define     BLKI2OSWSTRAT     _IOW('2', 4, int)

/*
 *    I2O Function codes
 */

/*
 *    Executive Class
 */
#define     I2O_CMD_ADAPTER_ASSIGN        0xB3
#define     I2O_CMD_ADAPTER_READ          0xB2
#define     I2O_CMD_ADAPTER_RELEASE       0xB5
#define     I2O_CMD_BIOS_INFO_SET         0xA5
#define     I2O_CMD_BOOT_DEVICE_SET       0xA7
#define     I2O_CMD_CONFIG_VALIDATE       0xBB
#define     I2O_CMD_CONN_SETUP            0xCA
#define     I2O_CMD_DDM_DESTROY           0xB1
#define     I2O_CMD_DDM_ENABLE            0xD5
#define     I2O_CMD_DDM_QUIESCE           0xC7
#define     I2O_CMD_DDM_RESET       0xD9
#define     I2O_CMD_DDM_SUSPEND           0xAF
#define     I2O_CMD_DEVICE_ASSIGN         0xB7
#define     I2O_CMD_DEVICE_RELEASE        0xB9
#define     I2O_CMD_HRT_GET               0xA8
#define     I2O_CMD_ADAPTER_CLEAR         0xBE
#define     I2O_CMD_ADAPTER_CONNECT       0xC9
#define     I2O_CMD_ADAPTER_RESET         0xBD
#define     I2O_CMD_LCT_NOTIFY            0xA2
#define     I2O_CMD_OUTBOUND_INIT         0xA1
#define     I2O_CMD_PATH_ENABLE           0xD3
#define     I2O_CMD_PATH_QUIESCE          0xC5
#define     I2O_CMD_PATH_RESET            0xD7
#define     I2O_CMD_STATIC_MF_CREATE      0xDD
#define     I2O_CMD_STATIC_MF_RELEASE     0xDF
#define     I2O_CMD_STATUS_GET            0xA0
#define     I2O_CMD_SW_DOWNLOAD           0xA9
#define     I2O_CMD_SW_UPLOAD       0xAB
#define     I2O_CMD_SW_REMOVE       0xAD
#define     I2O_CMD_SYS_ENABLE            0xD1
#define     I2O_CMD_SYS_MODIFY            0xC1
#define     I2O_CMD_SYS_QUIESCE           0xC3
#define     I2O_CMD_SYS_TAB_SET           0xA3

/*
 * Utility Class
 */
#define I2O_CMD_UTIL_NOP            0x00
#define I2O_CMD_UTIL_ABORT          0x01
#define I2O_CMD_UTIL_CLAIM          0x09
#define I2O_CMD_UTIL_RELEASE        0x0B
#define I2O_CMD_UTIL_PARAMS_GET           0x06
#define I2O_CMD_UTIL_PARAMS_SET           0x05
#define I2O_CMD_UTIL_EVT_REGISTER   0x13
#define I2O_CMD_UTIL_EVT_ACK        0x14
#define I2O_CMD_UTIL_CONFIG_DIALOG  0x10
#define I2O_CMD_UTIL_DEVICE_RESERVE 0x0D
#define I2O_CMD_UTIL_DEVICE_RELEASE 0x0F
#define I2O_CMD_UTIL_LOCK           0x17
#define I2O_CMD_UTIL_LOCK_RELEASE   0x19
#define I2O_CMD_UTIL_REPLY_FAULT_NOTIFY   0x15

/*
 * SCSI Host Bus Adapter Class
 */
#define I2O_CMD_SCSI_EXEC           0x81
#define I2O_CMD_SCSI_ABORT          0x83
#define I2O_CMD_SCSI_BUSRESET       0x27

/*
 * Bus Adapter Class
 */
#define I2O_CMD_BUS_ADAPTER_RESET   0x85
#define I2O_CMD_BUS_RESET           0x87
#define I2O_CMD_BUS_SCAN            0x89
#define I2O_CMD_BUS_QUIESCE         0x8b

/*
 * Random Block Storage Class
 */
#define I2O_CMD_BLOCK_READ          0x30
#define I2O_CMD_BLOCK_WRITE         0x31
#define I2O_CMD_BLOCK_CFLUSH        0x37
#define I2O_CMD_BLOCK_MLOCK         0x49
#define I2O_CMD_BLOCK_MUNLOCK       0x4B
#define I2O_CMD_BLOCK_MMOUNT        0x41
#define I2O_CMD_BLOCK_MEJECT        0x43
#define I2O_CMD_BLOCK_POWER         0x70

#define I2O_CMD_PRIVATE             0xFF

/* Command status values  */

#define I2O_CMD_IN_PROGRESS   0x01
#define I2O_CMD_REJECTED      0x02
#define I2O_CMD_FAILED        0x03
#define I2O_CMD_COMPLETED     0x04

/* I2O API function return values */

#define I2O_RTN_NO_ERROR                  0
#define I2O_RTN_NOT_INIT                  1
#define I2O_RTN_FREE_Q_EMPTY              2
#define I2O_RTN_TCB_ERROR                 3
#define I2O_RTN_TRANSACTION_ERROR         4
#define I2O_RTN_ADAPTER_ALREADY_INIT            5
#define I2O_RTN_MALLOC_ERROR              6
#define I2O_RTN_ADPTR_NOT_REGISTERED            7
#define I2O_RTN_MSG_REPLY_TIMEOUT         8
#define I2O_RTN_NO_STATUS                 9
#define I2O_RTN_NO_FIRM_VER               10
#define     I2O_RTN_NO_LINK_SPEED               11

/* Reply message status defines for all messages */

#define I2O_REPLY_STATUS_SUCCESS                      0x00
#define I2O_REPLY_STATUS_ABORT_DIRTY                  0x01
#define I2O_REPLY_STATUS_ABORT_NO_DATA_TRANSFER       0x02
#define     I2O_REPLY_STATUS_ABORT_PARTIAL_TRANSFER         0x03
#define     I2O_REPLY_STATUS_ERROR_DIRTY              0x04
#define     I2O_REPLY_STATUS_ERROR_NO_DATA_TRANSFER         0x05
#define     I2O_REPLY_STATUS_ERROR_PARTIAL_TRANSFER         0x06
#define     I2O_REPLY_STATUS_PROCESS_ABORT_DIRTY            0x08
#define     I2O_REPLY_STATUS_PROCESS_ABORT_NO_DATA_TRANSFER 0x09
#define     I2O_REPLY_STATUS_PROCESS_ABORT_PARTIAL_TRANSFER 0x0A
#define     I2O_REPLY_STATUS_TRANSACTION_ERROR        0x0B
#define     I2O_REPLY_STATUS_PROGRESS_REPORT          0x80

/* Status codes and Error Information for Parameter functions */

#define I2O_PARAMS_STATUS_SUCCESS         0x00
#define I2O_PARAMS_STATUS_BAD_KEY_ABORT         0x01
#define I2O_PARAMS_STATUS_BAD_KEY_CONTINUE      0x02
#define I2O_PARAMS_STATUS_BUFFER_FULL           0x03
#define I2O_PARAMS_STATUS_BUFFER_TOO_SMALL      0x04
#define I2O_PARAMS_STATUS_FIELD_UNREADABLE      0x05
#define I2O_PARAMS_STATUS_FIELD_UNWRITEABLE     0x06
#define I2O_PARAMS_STATUS_INSUFFICIENT_FIELDS   0x07
#define I2O_PARAMS_STATUS_INVALID_GROUP_ID      0x08
#define I2O_PARAMS_STATUS_INVALID_OPERATION     0x09
#define I2O_PARAMS_STATUS_NO_KEY_FIELD          0x0A
#define I2O_PARAMS_STATUS_NO_SUCH_FIELD         0x0B
#define I2O_PARAMS_STATUS_NON_DYNAMIC_GROUP     0x0C
#define I2O_PARAMS_STATUS_OPERATION_ERROR 0x0D
#define I2O_PARAMS_STATUS_SCALAR_ERROR          0x0E
#define I2O_PARAMS_STATUS_TABLE_ERROR           0x0F
#define I2O_PARAMS_STATUS_WRONG_GROUP_TYPE      0x10

/* DetailedStatusCode defines for Executive, DDM, Util and Transaction error
 * messages: Table 3-2 Detailed Status Codes.*/

#define I2O_DSC_SUCCESS                        0x0000
#define I2O_DSC_BAD_KEY                        0x0002
#define I2O_DSC_TCL_ERROR                      0x0003
#define I2O_DSC_REPLY_BUFFER_FULL              0x0004
#define I2O_DSC_NO_SUCH_PAGE                   0x0005
#define I2O_DSC_INSUFFICIENT_RESOURCE_SOFT     0x0006
#define I2O_DSC_INSUFFICIENT_RESOURCE_HARD     0x0007
#define I2O_DSC_CHAIN_BUFFER_TOO_LARGE         0x0009
#define I2O_DSC_UNSUPPORTED_FUNCTION           0x000A
#define I2O_DSC_DEVICE_LOCKED                  0x000B
#define I2O_DSC_DEVICE_RESET                   0x000C
#define I2O_DSC_INAPPROPRIATE_FUNCTION         0x000D
#define I2O_DSC_INVALID_INITIATOR_ADDRESS      0x000E
#define I2O_DSC_INVALID_MESSAGE_FLAGS          0x000F
#define I2O_DSC_INVALID_OFFSET                 0x0010
#define I2O_DSC_INVALID_PARAMETER              0x0011
#define I2O_DSC_INVALID_REQUEST                0x0012
#define I2O_DSC_INVALID_TARGET_ADDRESS         0x0013
#define I2O_DSC_MESSAGE_TOO_LARGE              0x0014
#define I2O_DSC_MESSAGE_TOO_SMALL              0x0015
#define I2O_DSC_MISSING_PARAMETER              0x0016
#define I2O_DSC_TIMEOUT                        0x0017
#define I2O_DSC_UNKNOWN_ERROR                  0x0018
#define I2O_DSC_UNKNOWN_FUNCTION               0x0019
#define I2O_DSC_UNSUPPORTED_VERSION            0x001A
#define I2O_DSC_DEVICE_BUSY                    0x001B
#define I2O_DSC_DEVICE_NOT_AVAILABLE           0x001C

/* DetailedStatusCode defines for Block Storage Operation: Table 6-7 Detailed
   Status Codes.*/

#define I2O_BSA_DSC_SUCCESS               0x0000
#define I2O_BSA_DSC_MEDIA_ERROR           0x0001
#define I2O_BSA_DSC_ACCESS_ERROR          0x0002
#define I2O_BSA_DSC_DEVICE_FAILURE        0x0003
#define I2O_BSA_DSC_DEVICE_NOT_READY      0x0004
#define I2O_BSA_DSC_MEDIA_NOT_PRESENT     0x0005
#define I2O_BSA_DSC_MEDIA_LOCKED          0x0006
#define I2O_BSA_DSC_MEDIA_FAILURE         0x0007
#define I2O_BSA_DSC_PROTOCOL_FAILURE      0x0008
#define I2O_BSA_DSC_BUS_FAILURE           0x0009
#define I2O_BSA_DSC_ACCESS_VIOLATION      0x000A
#define I2O_BSA_DSC_WRITE_PROTECTED       0x000B
#define I2O_BSA_DSC_DEVICE_RESET          0x000C
#define I2O_BSA_DSC_VOLUME_CHANGED        0x000D
#define I2O_BSA_DSC_TIMEOUT               0x000E

/* FailureStatusCodes, Table 3-3 Message Failure Codes */

#define I2O_FSC_TRANSPORT_SERVICE_SUSPENDED             0x81
#define I2O_FSC_TRANSPORT_SERVICE_TERMINATED            0x82
#define I2O_FSC_TRANSPORT_CONGESTION                    0x83
#define I2O_FSC_TRANSPORT_FAILURE                       0x84
#define I2O_FSC_TRANSPORT_STATE_ERROR                   0x85
#define I2O_FSC_TRANSPORT_TIME_OUT                      0x86
#define I2O_FSC_TRANSPORT_ROUTING_FAILURE               0x87
#define I2O_FSC_TRANSPORT_INVALID_VERSION               0x88
#define I2O_FSC_TRANSPORT_INVALID_OFFSET                0x89
#define I2O_FSC_TRANSPORT_INVALID_MSG_FLAGS             0x8A
#define I2O_FSC_TRANSPORT_FRAME_TOO_SMALL               0x8B
#define I2O_FSC_TRANSPORT_FRAME_TOO_LARGE               0x8C
#define I2O_FSC_TRANSPORT_INVALID_TARGET_ID             0x8D
#define I2O_FSC_TRANSPORT_INVALID_INITIATOR_ID          0x8E
#define I2O_FSC_TRANSPORT_INVALID_INITIATOR_CONTEXT     0x8F
#define I2O_FSC_TRANSPORT_UNKNOWN_FAILURE               0xFF

/* Device Claim Types */
#define     I2O_CLAIM_PRIMARY                         0x01000000
#define     I2O_CLAIM_MANAGEMENT                            0x02000000
#define     I2O_CLAIM_AUTHORIZED                            0x03000000
#define     I2O_CLAIM_SECONDARY                             0x04000000

/* Message header defines for VersionOffset */
#define I2OVER15  0x0001
#define I2OVER20  0x0002

/* Default is 1.5 */
#define I2OVERSION      I2OVER15

#define SGL_OFFSET_0    I2OVERSION
#define SGL_OFFSET_4    (0x0040 | I2OVERSION)
#define SGL_OFFSET_5    (0x0050 | I2OVERSION)
#define SGL_OFFSET_6    (0x0060 | I2OVERSION)
#define SGL_OFFSET_7    (0x0070 | I2OVERSION)
#define SGL_OFFSET_8    (0x0080 | I2OVERSION)
#define SGL_OFFSET_9    (0x0090 | I2OVERSION)
#define SGL_OFFSET_10   (0x00A0 | I2OVERSION)
#define SGL_OFFSET_11   (0x00B0 | I2OVERSION)
#define SGL_OFFSET_12   (0x00C0 | I2OVERSION)
#define SGL_OFFSET(x)   (((x)<<4) | I2OVERSION)

/* Transaction Reply Lists (TRL) Control Word structure */
#define TRL_SINGLE_FIXED_LENGTH           0x00
#define TRL_SINGLE_VARIABLE_LENGTH  0x40
#define TRL_MULTIPLE_FIXED_LENGTH   0x80

 /* msg header defines for MsgFlags */
#define MSG_STATIC      0x0100
#define MSG_64BIT_CNTXT 0x0200
#define MSG_MULTI_TRANS 0x1000
#define MSG_FAIL  0x2000
#define MSG_FINAL 0x4000
#define MSG_REPLY 0x8000

 /* minimum size msg */
#define THREE_WORD_MSG_SIZE   0x00030000
#define FOUR_WORD_MSG_SIZE    0x00040000
#define FIVE_WORD_MSG_SIZE    0x00050000
#define SIX_WORD_MSG_SIZE     0x00060000
#define SEVEN_WORD_MSG_SIZE   0x00070000
#define EIGHT_WORD_MSG_SIZE   0x00080000
#define NINE_WORD_MSG_SIZE    0x00090000
#define TEN_WORD_MSG_SIZE     0x000A0000
#define ELEVEN_WORD_MSG_SIZE  0x000B0000
#define I2O_MESSAGE_SIZE(x)   ((x)<<16)

/* special TID assignments */
#define ADAPTER_TID           0
#define HOST_TID        1

/* outbound queue defines */
#define I2O_MAX_OUTBOUND_MSG_FRAMES 128
#define I2O_OUTBOUND_MSG_FRAME_SIZE 128   /* in 32-bit words */

/* inbound queue definitions */
#define I2O_MSG_INPOOL_MIN          32
#define I2O_INBOUND_MSG_FRAME_SIZE  128   /* in 32-bit words */

#define I2O_POST_WAIT_OK      0
#define I2O_POST_WAIT_TIMEOUT -ETIMEDOUT

#define I2O_CONTEXT_LIST_MIN_LENGTH 15
#define I2O_CONTEXT_LIST_USED       0x01
#define I2O_CONTEXT_LIST_DELETED    0x02

/* timeouts */
#define I2O_TIMEOUT_INIT_OUTBOUND_QUEUE   15
#define I2O_TIMEOUT_MESSAGE_GET           5
#define I2O_TIMEOUT_RESET           30
#define I2O_TIMEOUT_STATUS_GET            5
#define I2O_TIMEOUT_LCT_GET         360
#define I2O_TIMEOUT_SCSI_SCB_ABORT  240

/* retries */
#define I2O_HRT_GET_TRIES           3
#define I2O_LCT_GET_TRIES           3

/* defines for max_sectors and max_phys_segments */
#define I2O_MAX_SECTORS             1024
#define I2O_MAX_SECTORS_LIMITED           128
#define I2O_MAX_PHYS_SEGMENTS       MAX_PHYS_SEGMENTS

/*
 *    Message structures
 */
struct i2o_message {
      union {
            struct {
                  u8 version_offset;
                  u8 flags;
                  u16 size;
                  u32 target_tid:12;
                  u32 init_tid:12;
                  u32 function:8;
                  u32 icntxt; /* initiator context */
                  u32 tcntxt; /* transaction context */
            } s;
            u32 head[4];
      } u;
      /* List follows */
      u32 body[0];
};

/* MFA and I2O message used by mempool */
struct i2o_msg_mfa {
      u32 mfa;          /* MFA returned by the controller */
      struct i2o_message msg; /* I2O message */
};

/*
 *    Each I2O device entity has one of these. There is one per device.
 */
struct i2o_device {
      i2o_lct_entry lct_data; /* Device LCT information */

      struct i2o_controller *iop;   /* Controlling IOP */
      struct list_head list;  /* node in IOP devices list */

      struct device device;

      struct mutex lock;      /* device lock */
};

/*
 *    Event structure provided to the event handling function
 */
struct i2o_event {
      struct work_struct work;
      struct i2o_device *i2o_dev;   /* I2O device pointer from which the
                                 event reply was initiated */
      u16 size;         /* Size of data in 32-bit words */
      u32 tcntxt;       /* Transaction context used at
                           registration */
      u32 event_indicator;    /* Event indicator from reply */
      u32 data[0];            /* Event data from reply */
};

/*
 *    I2O classes which could be handled by the OSM
 */
struct i2o_class_id {
      u16 class_id:12;
};

/*
 *    I2O driver structure for OSMs
 */
struct i2o_driver {
      char *name;       /* OSM name */
      int context;            /* Low 8 bits of the transaction info */
      struct i2o_class_id *classes; /* I2O classes that this OSM handles */

      /* Message reply handler */
      int (*reply) (struct i2o_controller *, u32, struct i2o_message *);

      /* Event handler */
      work_func_t event;

      struct workqueue_struct *event_queue;     /* Event queue */

      struct device_driver driver;

      /* notification of changes */
      void (*notify_controller_add) (struct i2o_controller *);
      void (*notify_controller_remove) (struct i2o_controller *);
      void (*notify_device_add) (struct i2o_device *);
      void (*notify_device_remove) (struct i2o_device *);

      struct semaphore lock;
};

/*
 *    Contains DMA mapped address information
 */
struct i2o_dma {
      void *virt;
      dma_addr_t phys;
      size_t len;
};

/*
 *    Contains slab cache and mempool information
 */
struct i2o_pool {
      char *name;
      struct kmem_cache *slab;
      mempool_t *mempool;
};

/*
 *    Contains IO mapped address information
 */
struct i2o_io {
      void __iomem *virt;
      unsigned long phys;
      unsigned long len;
};

/*
 *    Context queue entry, used for 32-bit context on 64-bit systems
 */
struct i2o_context_list_element {
      struct list_head list;
      u32 context;
      void *ptr;
      unsigned long timestamp;
};

/*
 * Each I2O controller has one of these objects
 */
struct i2o_controller {
      char name[16];
      int unit;
      int type;

      struct pci_dev *pdev;   /* PCI device */

      unsigned int promise:1; /* Promise controller */
      unsigned int adaptec:1; /* DPT / Adaptec controller */
      unsigned int raptor:1;  /* split bar */
      unsigned int no_quiesce:1;    /* dont quiesce before reset */
      unsigned int short_req:1;     /* use small block sizes */
      unsigned int limit_sectors:1; /* limit number of sectors / request */
      unsigned int pae_support:1;   /* controller has 64-bit SGL support */

      struct list_head devices;     /* list of I2O devices */
      struct list_head list;  /* Controller list */

      void __iomem *in_port;  /* Inbout port address */
      void __iomem *out_port; /* Outbound port address */
      void __iomem *irq_status;     /* Interrupt status register address */
      void __iomem *irq_mask; /* Interrupt mask register address */

      struct i2o_dma status;  /* IOP status block */

      struct i2o_dma hrt;     /* HW Resource Table */
      i2o_lct *lct;           /* Logical Config Table */
      struct i2o_dma dlct;    /* Temp LCT */
      struct mutex lct_lock;  /* Lock for LCT updates */
      struct i2o_dma status_block;  /* IOP status block */

      struct i2o_io base;     /* controller messaging unit */
      struct i2o_io in_queue; /* inbound message queue Host->IOP */
      struct i2o_dma out_queue;     /* outbound message queue IOP->Host */

      struct i2o_pool in_msg; /* mempool for inbound messages */

      unsigned int battery:1; /* Has a battery backup */
      unsigned int io_alloc:1;      /* An I/O resource was allocated */
      unsigned int mem_alloc:1;     /* A memory resource was allocated */

      struct resource io_resource;  /* I/O resource allocated to the IOP */
      struct resource mem_resource; /* Mem resource allocated to the IOP */

      struct device device;
      struct i2o_device *exec;      /* Executive */
#if BITS_PER_LONG == 64
      spinlock_t context_list_lock; /* lock for context_list */
      atomic_t context_list_counter;      /* needed for unique contexts */
      struct list_head context_list;      /* list of context id's
                                 and pointers */
#endif
      spinlock_t lock;  /* lock for controller
                           configuration */

      void *driver_data[I2O_MAX_DRIVERS]; /* storage for drivers */
};

/*
 * I2O System table entry
 *
 * The system table contains information about all the IOPs in the
 * system.  It is sent to all IOPs so that they can create peer2peer
 * connections between them.
 */
struct i2o_sys_tbl_entry {
      u16 org_id;
      u16 reserved1;
      u32 iop_id:12;
      u32 reserved2:20;
      u16 seg_num:12;
      u16 i2o_version:4;
      u8 iop_state;
      u8 msg_type;
      u16 frame_size;
      u16 reserved3;
      u32 last_changed;
      u32 iop_capabilities;
      u32 inbound_low;
      u32 inbound_high;
};

struct i2o_sys_tbl {
      u8 num_entries;
      u8 version;
      u16 reserved1;
      u32 change_ind;
      u32 reserved2;
      u32 reserved3;
      struct i2o_sys_tbl_entry iops[0];
};

extern struct list_head i2o_controllers;

/* Message functions */
static inline struct i2o_message *i2o_msg_get(struct i2o_controller *);
extern struct i2o_message *i2o_msg_get_wait(struct i2o_controller *, int);
static inline void i2o_msg_post(struct i2o_controller *, struct i2o_message *);
static inline int i2o_msg_post_wait(struct i2o_controller *,
                            struct i2o_message *, unsigned long);
extern int i2o_msg_post_wait_mem(struct i2o_controller *, struct i2o_message *,
                         unsigned long, struct i2o_dma *);
static inline void i2o_flush_reply(struct i2o_controller *, u32);

/* IOP functions */
extern int i2o_status_get(struct i2o_controller *);

extern int i2o_event_register(struct i2o_device *, struct i2o_driver *, int,
                        u32);
extern struct i2o_device *i2o_iop_find_device(struct i2o_controller *, u16);
extern struct i2o_controller *i2o_find_iop(int);

/* Functions needed for handling 64-bit pointers in 32-bit context */
#if BITS_PER_LONG == 64
extern u32 i2o_cntxt_list_add(struct i2o_controller *, void *);
extern void *i2o_cntxt_list_get(struct i2o_controller *, u32);
extern u32 i2o_cntxt_list_remove(struct i2o_controller *, void *);
extern u32 i2o_cntxt_list_get_ptr(struct i2o_controller *, void *);

static inline u32 i2o_ptr_low(void *ptr)
{
      return (u32) (u64) ptr;
};

static inline u32 i2o_ptr_high(void *ptr)
{
      return (u32) ((u64) ptr >> 32);
};

static inline u32 i2o_dma_low(dma_addr_t dma_addr)
{
      return (u32) (u64) dma_addr;
};

static inline u32 i2o_dma_high(dma_addr_t dma_addr)
{
      return (u32) ((u64) dma_addr >> 32);
};
#else
static inline u32 i2o_cntxt_list_add(struct i2o_controller *c, void *ptr)
{
      return (u32) ptr;
};

static inline void *i2o_cntxt_list_get(struct i2o_controller *c, u32 context)
{
      return (void *)context;
};

static inline u32 i2o_cntxt_list_remove(struct i2o_controller *c, void *ptr)
{
      return (u32) ptr;
};

static inline u32 i2o_cntxt_list_get_ptr(struct i2o_controller *c, void *ptr)
{
      return (u32) ptr;
};

static inline u32 i2o_ptr_low(void *ptr)
{
      return (u32) ptr;
};

static inline u32 i2o_ptr_high(void *ptr)
{
      return 0;
};

static inline u32 i2o_dma_low(dma_addr_t dma_addr)
{
      return (u32) dma_addr;
};

static inline u32 i2o_dma_high(dma_addr_t dma_addr)
{
      return 0;
};
#endif

/**
 *    i2o_sg_tablesize - Calculate the maximum number of elements in a SGL
 *    @c: I2O controller for which the calculation should be done
 *    @body_size: maximum body size used for message in 32-bit words.
 *
 *    Return the maximum number of SG elements in a SG list.
 */
static inline u16 i2o_sg_tablesize(struct i2o_controller *c, u16 body_size)
{
      i2o_status_block *sb = c->status_block.virt;
      u16 sg_count =
          (sb->inbound_frame_size - sizeof(struct i2o_message) / 4) -
          body_size;

      if (c->pae_support) {
            /*
             * for 64-bit a SG attribute element must be added and each
             * SG element needs 12 bytes instead of 8.
             */
            sg_count -= 2;
            sg_count /= 3;
      } else
            sg_count /= 2;

      if (c->short_req && (sg_count > 8))
            sg_count = 8;

      return sg_count;
};

/**
 *    i2o_dma_map_single - Map pointer to controller and fill in I2O message.
 *    @c: I2O controller
 *    @ptr: pointer to the data which should be mapped
 *    @size: size of data in bytes
 *    @direction: DMA_TO_DEVICE / DMA_FROM_DEVICE
 *    @sg_ptr: pointer to the SG list inside the I2O message
 *
 *    This function does all necessary DMA handling and also writes the I2O
 *    SGL elements into the I2O message. For details on DMA handling see also
 *    dma_map_single(). The pointer sg_ptr will only be set to the end of the
 *    SG list if the allocation was successful.
 *
 *    Returns DMA address which must be checked for failures using
 *    dma_mapping_error().
 */
static inline dma_addr_t i2o_dma_map_single(struct i2o_controller *c, void *ptr,
                                  size_t size,
                                  enum dma_data_direction direction,
                                  u32 ** sg_ptr)
{
      u32 sg_flags;
      u32 *mptr = *sg_ptr;
      dma_addr_t dma_addr;

      switch (direction) {
      case DMA_TO_DEVICE:
            sg_flags = 0xd4000000;
            break;
      case DMA_FROM_DEVICE:
            sg_flags = 0xd0000000;
            break;
      default:
            return 0;
      }

      dma_addr = dma_map_single(&c->pdev->dev, ptr, size, direction);
      if (!dma_mapping_error(dma_addr)) {
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
            if ((sizeof(dma_addr_t) > 4) && c->pae_support) {
                  *mptr++ = cpu_to_le32(0x7C020002);
                  *mptr++ = cpu_to_le32(PAGE_SIZE);
            }
#endif

            *mptr++ = cpu_to_le32(sg_flags | size);
            *mptr++ = cpu_to_le32(i2o_dma_low(dma_addr));
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
            if ((sizeof(dma_addr_t) > 4) && c->pae_support)
                  *mptr++ = cpu_to_le32(i2o_dma_high(dma_addr));
#endif
            *sg_ptr = mptr;
      }
      return dma_addr;
};

/**
 *    i2o_dma_map_sg - Map a SG List to controller and fill in I2O message.
 *    @c: I2O controller
 *    @sg: SG list to be mapped
 *    @sg_count: number of elements in the SG list
 *    @direction: DMA_TO_DEVICE / DMA_FROM_DEVICE
 *    @sg_ptr: pointer to the SG list inside the I2O message
 *
 *    This function does all necessary DMA handling and also writes the I2O
 *    SGL elements into the I2O message. For details on DMA handling see also
 *    dma_map_sg(). The pointer sg_ptr will only be set to the end of the SG
 *    list if the allocation was successful.
 *
 *    Returns 0 on failure or 1 on success.
 */
static inline int i2o_dma_map_sg(struct i2o_controller *c,
                         struct scatterlist *sg, int sg_count,
                         enum dma_data_direction direction,
                         u32 ** sg_ptr)
{
      u32 sg_flags;
      u32 *mptr = *sg_ptr;

      switch (direction) {
      case DMA_TO_DEVICE:
            sg_flags = 0x14000000;
            break;
      case DMA_FROM_DEVICE:
            sg_flags = 0x10000000;
            break;
      default:
            return 0;
      }

      sg_count = dma_map_sg(&c->pdev->dev, sg, sg_count, direction);
      if (!sg_count)
            return 0;

#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
      if ((sizeof(dma_addr_t) > 4) && c->pae_support) {
            *mptr++ = cpu_to_le32(0x7C020002);
            *mptr++ = cpu_to_le32(PAGE_SIZE);
      }
#endif

      while (sg_count-- > 0) {
            if (!sg_count)
                  sg_flags |= 0xC0000000;
            *mptr++ = cpu_to_le32(sg_flags | sg_dma_len(sg));
            *mptr++ = cpu_to_le32(i2o_dma_low(sg_dma_address(sg)));
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
            if ((sizeof(dma_addr_t) > 4) && c->pae_support)
                  *mptr++ = cpu_to_le32(i2o_dma_high(sg_dma_address(sg)));
#endif
            sg = sg_next(sg);
      }
      *sg_ptr = mptr;

      return 1;
};

/**
 *    i2o_dma_alloc - Allocate DMA memory
 *    @dev: struct device pointer to the PCI device of the I2O controller
 *    @addr: i2o_dma struct which should get the DMA buffer
 *    @len: length of the new DMA memory
 *    @gfp_mask: GFP mask
 *
 *    Allocate a coherent DMA memory and write the pointers into addr.
 *
 *    Returns 0 on success or -ENOMEM on failure.
 */
static inline int i2o_dma_alloc(struct device *dev, struct i2o_dma *addr,
                        size_t len, gfp_t gfp_mask)
{
      struct pci_dev *pdev = to_pci_dev(dev);
      int dma_64 = 0;

      if ((sizeof(dma_addr_t) > 4) && (pdev->dma_mask == DMA_64BIT_MASK)) {
            dma_64 = 1;
            if (pci_set_dma_mask(pdev, DMA_32BIT_MASK))
                  return -ENOMEM;
      }

      addr->virt = dma_alloc_coherent(dev, len, &addr->phys, gfp_mask);

      if ((sizeof(dma_addr_t) > 4) && dma_64)
            if (pci_set_dma_mask(pdev, DMA_64BIT_MASK))
                  printk(KERN_WARNING "i2o: unable to set 64-bit DMA");

      if (!addr->virt)
            return -ENOMEM;

      memset(addr->virt, 0, len);
      addr->len = len;

      return 0;
};

/**
 *    i2o_dma_free - Free DMA memory
 *    @dev: struct device pointer to the PCI device of the I2O controller
 *    @addr: i2o_dma struct which contains the DMA buffer
 *
 *    Free a coherent DMA memory and set virtual address of addr to NULL.
 */
static inline void i2o_dma_free(struct device *dev, struct i2o_dma *addr)
{
      if (addr->virt) {
            if (addr->phys)
                  dma_free_coherent(dev, addr->len, addr->virt,
                                addr->phys);
            else
                  kfree(addr->virt);
            addr->virt = NULL;
      }
};

/**
 *    i2o_dma_realloc - Realloc DMA memory
 *    @dev: struct device pointer to the PCI device of the I2O controller
 *    @addr: pointer to a i2o_dma struct DMA buffer
 *    @len: new length of memory
 *    @gfp_mask: GFP mask
 *
 *    If there was something allocated in the addr, free it first. If len > 0
 *    than try to allocate it and write the addresses back to the addr
 *    structure. If len == 0 set the virtual address to NULL.
 *
 *    Returns the 0 on success or negative error code on failure.
 */
static inline int i2o_dma_realloc(struct device *dev, struct i2o_dma *addr,
                          size_t len, gfp_t gfp_mask)
{
      i2o_dma_free(dev, addr);

      if (len)
            return i2o_dma_alloc(dev, addr, len, gfp_mask);

      return 0;
};

/*
 *    i2o_pool_alloc - Allocate an slab cache and mempool
 *    @mempool: pointer to struct i2o_pool to write data into.
 *    @name: name which is used to identify cache
 *    @size: size of each object
 *    @min_nr: minimum number of objects
 *
 *    First allocates a slab cache with name and size. Then allocates a
 *    mempool which uses the slab cache for allocation and freeing.
 *
 *    Returns 0 on success or negative error code on failure.
 */
static inline int i2o_pool_alloc(struct i2o_pool *pool, const char *name,
                         size_t size, int min_nr)
{
      pool->name = kmalloc(strlen(name) + 1, GFP_KERNEL);
      if (!pool->name)
            goto exit;
      strcpy(pool->name, name);

      pool->slab =
          kmem_cache_create(pool->name, size, 0, SLAB_HWCACHE_ALIGN, NULL);
      if (!pool->slab)
            goto free_name;

      pool->mempool = mempool_create_slab_pool(min_nr, pool->slab);
      if (!pool->mempool)
            goto free_slab;

      return 0;

      free_slab:
      kmem_cache_destroy(pool->slab);

      free_name:
      kfree(pool->name);

      exit:
      return -ENOMEM;
};

/*
 *    i2o_pool_free - Free slab cache and mempool again
 *    @mempool: pointer to struct i2o_pool which should be freed
 *
 *    Note that you have to return all objects to the mempool again before
 *    calling i2o_pool_free().
 */
static inline void i2o_pool_free(struct i2o_pool *pool)
{
      mempool_destroy(pool->mempool);
      kmem_cache_destroy(pool->slab);
      kfree(pool->name);
};

/* I2O driver (OSM) functions */
extern int i2o_driver_register(struct i2o_driver *);
extern void i2o_driver_unregister(struct i2o_driver *);

/**
 *    i2o_driver_notify_controller_add - Send notification of added controller
 *    @drv: I2O driver
 *    @c: I2O controller
 *
 *    Send notification of added controller to a single registered driver.
 */
static inline void i2o_driver_notify_controller_add(struct i2o_driver *drv,
                                        struct i2o_controller *c)
{
      if (drv->notify_controller_add)
            drv->notify_controller_add(c);
};

/**
 *    i2o_driver_notify_controller_remove - Send notification of removed controller
 *    @drv: I2O driver
 *    @c: I2O controller
 *
 *    Send notification of removed controller to a single registered driver.
 */
static inline void i2o_driver_notify_controller_remove(struct i2o_driver *drv,
                                           struct i2o_controller *c)
{
      if (drv->notify_controller_remove)
            drv->notify_controller_remove(c);
};

/**
 *    i2o_driver_notify_device_add - Send notification of added device
 *    @drv: I2O driver
 *    @i2o_dev: the added i2o_device
 *
 *    Send notification of added device to a single registered driver.
 */
static inline void i2o_driver_notify_device_add(struct i2o_driver *drv,
                                    struct i2o_device *i2o_dev)
{
      if (drv->notify_device_add)
            drv->notify_device_add(i2o_dev);
};

/**
 *    i2o_driver_notify_device_remove - Send notification of removed device
 *    @drv: I2O driver
 *    @i2o_dev: the added i2o_device
 *
 *    Send notification of removed device to a single registered driver.
 */
static inline void i2o_driver_notify_device_remove(struct i2o_driver *drv,
                                       struct i2o_device *i2o_dev)
{
      if (drv->notify_device_remove)
            drv->notify_device_remove(i2o_dev);
};

extern void i2o_driver_notify_controller_add_all(struct i2o_controller *);
extern void i2o_driver_notify_controller_remove_all(struct i2o_controller *);
extern void i2o_driver_notify_device_add_all(struct i2o_device *);
extern void i2o_driver_notify_device_remove_all(struct i2o_device *);

/* I2O device functions */
extern int i2o_device_claim(struct i2o_device *);
extern int i2o_device_claim_release(struct i2o_device *);

/* Exec OSM functions */
extern int i2o_exec_lct_get(struct i2o_controller *);

/* device / driver / kobject conversion functions */
#define to_i2o_driver(drv) container_of(drv,struct i2o_driver, driver)
#define to_i2o_device(dev) container_of(dev, struct i2o_device, device)
#define to_i2o_controller(dev) container_of(dev, struct i2o_controller, device)
#define kobj_to_i2o_device(kobj) to_i2o_device(container_of(kobj, struct device, kobj))

/**
 *    i2o_out_to_virt - Turn an I2O message to a virtual address
 *    @c: controller
 *    @m: message engine value
 *
 *    Turn a receive message from an I2O controller bus address into
 *    a Linux virtual address. The shared page frame is a linear block
 *    so we simply have to shift the offset. This function does not
 *    work for sender side messages as they are ioremap objects
 *    provided by the I2O controller.
 */
static inline struct i2o_message *i2o_msg_out_to_virt(struct i2o_controller *c,
                                          u32 m)
{
      BUG_ON(m < c->out_queue.phys
             || m >= c->out_queue.phys + c->out_queue.len);

      return c->out_queue.virt + (m - c->out_queue.phys);
};

/**
 *    i2o_msg_in_to_virt - Turn an I2O message to a virtual address
 *    @c: controller
 *    @m: message engine value
 *
 *    Turn a send message from an I2O controller bus address into
 *    a Linux virtual address. The shared page frame is a linear block
 *    so we simply have to shift the offset. This function does not
 *    work for receive side messages as they are kmalloc objects
 *    in a different pool.
 */
static inline struct i2o_message __iomem *i2o_msg_in_to_virt(struct
                                               i2o_controller *c,
                                               u32 m)
{
      return c->in_queue.virt + m;
};

/**
 *    i2o_msg_get - obtain an I2O message from the IOP
 *    @c: I2O controller
 *
 *    This function tries to get a message frame. If no message frame is
 *    available do not wait until one is availabe (see also i2o_msg_get_wait).
 *    The returned pointer to the message frame is not in I/O memory, it is
 *    allocated from a mempool. But because a MFA is allocated from the
 *    controller too it is guaranteed that i2o_msg_post() will never fail.
 *
 *    On a success a pointer to the message frame is returned. If the message
 *    queue is empty -EBUSY is returned and if no memory is available -ENOMEM
 *    is returned.
 */
static inline struct i2o_message *i2o_msg_get(struct i2o_controller *c)
{
      struct i2o_msg_mfa *mmsg = mempool_alloc(c->in_msg.mempool, GFP_ATOMIC);
      if (!mmsg)
            return ERR_PTR(-ENOMEM);

      mmsg->mfa = readl(c->in_port);
      if (unlikely(mmsg->mfa >= c->in_queue.len)) {
            u32 mfa = mmsg->mfa;

            mempool_free(mmsg, c->in_msg.mempool);

            if (mfa == I2O_QUEUE_EMPTY)
                  return ERR_PTR(-EBUSY);
            return ERR_PTR(-EFAULT);
      }

      return &mmsg->msg;
};

/**
 *    i2o_msg_post - Post I2O message to I2O controller
 *    @c: I2O controller to which the message should be send
 *    @msg: message returned by i2o_msg_get()
 *
 *    Post the message to the I2O controller and return immediately.
 */
static inline void i2o_msg_post(struct i2o_controller *c,
                        struct i2o_message *msg)
{
      struct i2o_msg_mfa *mmsg;

      mmsg = container_of(msg, struct i2o_msg_mfa, msg);
      memcpy_toio(i2o_msg_in_to_virt(c, mmsg->mfa), msg,
                (le32_to_cpu(msg->u.head[0]) >> 16) << 2);
      writel(mmsg->mfa, c->in_port);
      mempool_free(mmsg, c->in_msg.mempool);
};

/**
 *    i2o_msg_post_wait - Post and wait a message and wait until return
 *    @c: controller
 *    @msg: message to post
 *    @timeout: time in seconds to wait
 *
 *    This API allows an OSM to post a message and then be told whether or
 *    not the system received a successful reply. If the message times out
 *    then the value '-ETIMEDOUT' is returned.
 *
 *    Returns 0 on success or negative error code on failure.
 */
static inline int i2o_msg_post_wait(struct i2o_controller *c,
                            struct i2o_message *msg,
                            unsigned long timeout)
{
      return i2o_msg_post_wait_mem(c, msg, timeout, NULL);
};

/**
 *    i2o_msg_nop_mfa - Returns a fetched MFA back to the controller
 *    @c: I2O controller from which the MFA was fetched
 *    @mfa: MFA which should be returned
 *
 *    This function must be used for preserved messages, because i2o_msg_nop()
 *    also returns the allocated memory back to the msg_pool mempool.
 */
static inline void i2o_msg_nop_mfa(struct i2o_controller *c, u32 mfa)
{
      struct i2o_message __iomem *msg;
      u32 nop[3] = {
            THREE_WORD_MSG_SIZE | SGL_OFFSET_0,
            I2O_CMD_UTIL_NOP << 24 | HOST_TID << 12 | ADAPTER_TID,
            0x00000000
      };

      msg = i2o_msg_in_to_virt(c, mfa);
      memcpy_toio(msg, nop, sizeof(nop));
      writel(mfa, c->in_port);
};

/**
 *    i2o_msg_nop - Returns a message which is not used
 *    @c: I2O controller from which the message was created
 *    @msg: message which should be returned
 *
 *    If you fetch a message via i2o_msg_get, and can't use it, you must
 *    return the message with this function. Otherwise the MFA is lost as well
 *    as the allocated memory from the mempool.
 */
static inline void i2o_msg_nop(struct i2o_controller *c,
                         struct i2o_message *msg)
{
      struct i2o_msg_mfa *mmsg;
      mmsg = container_of(msg, struct i2o_msg_mfa, msg);

      i2o_msg_nop_mfa(c, mmsg->mfa);
      mempool_free(mmsg, c->in_msg.mempool);
};

/**
 *    i2o_flush_reply - Flush reply from I2O controller
 *    @c: I2O controller
 *    @m: the message identifier
 *
 *    The I2O controller must be informed that the reply message is not needed
 *    anymore. If you forget to flush the reply, the message frame can't be
 *    used by the controller anymore and is therefore lost.
 */
static inline void i2o_flush_reply(struct i2o_controller *c, u32 m)
{
      writel(m, c->out_port);
};

/*
 *    Endian handling wrapped into the macro - keeps the core code
 *    cleaner.
 */

#define i2o_raw_writel(val, mem)    __raw_writel(cpu_to_le32(val), mem)

extern int i2o_parm_field_get(struct i2o_device *, int, int, void *, int);
extern int i2o_parm_table_get(struct i2o_device *, int, int, int, void *, int,
                        void *, int);

/* debugging and troubleshooting/diagnostic helpers. */
#define osm_printk(level, format, arg...)  \
      printk(level "%s: " format, OSM_NAME , ## arg)

#ifdef DEBUG
#define osm_debug(format, arg...) \
      osm_printk(KERN_DEBUG, format , ## arg)
#else
#define osm_debug(format, arg...) \
        do { } while (0)
#endif

#define osm_err(format, arg...)           \
      osm_printk(KERN_ERR, format , ## arg)
#define osm_info(format, arg...)          \
      osm_printk(KERN_INFO, format , ## arg)
#define osm_warn(format, arg...)          \
      osm_printk(KERN_WARNING, format , ## arg)

/* debugging functions */
extern void i2o_report_status(const char *, const char *, struct i2o_message *);
extern void i2o_dump_message(struct i2o_message *);
extern void i2o_dump_hrt(struct i2o_controller *c);
extern void i2o_debug_state(struct i2o_controller *c);

#endif                        /* __KERNEL__ */
#endif                        /* _I2O_H */

Generated by  Doxygen 1.6.0   Back to index