Logo Search packages:      
Sourcecode: linux version File versions  Download package


#ifndef _LINUX_MM_H
#define _LINUX_MM_H

#include <linux/errno.h>

#ifdef __KERNEL__

#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/prio_tree.h>
#include <linux/debug_locks.h>
#include <linux/mm_types.h>
#include <linux/security.h>

struct mempolicy;
struct anon_vma;
struct file_ra_state;
struct user_struct;
struct writeback_control;

#ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
extern unsigned long max_mapnr;

extern unsigned long num_physpages;
extern void * high_memory;
extern int page_cluster;

extern int sysctl_legacy_va_layout;
#define sysctl_legacy_va_layout 0

#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>

#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))

 * Linux kernel virtual memory manager primitives.
 * The idea being to have a "virtual" mm in the same way
 * we have a virtual fs - giving a cleaner interface to the
 * mm details, and allowing different kinds of memory mappings
 * (from shared memory to executable loading to arbitrary
 * mmap() functions).

extern struct kmem_cache *vm_area_cachep;

 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
 * disabled, then there's a single shared list of VMAs maintained by the
 * system, and mm's subscribe to these individually
struct vm_list_struct {
      struct vm_list_struct   *next;
      struct vm_area_struct   *vma;

#ifndef CONFIG_MMU
extern struct rb_root nommu_vma_tree;
extern struct rw_semaphore nommu_vma_sem;

extern unsigned int kobjsize(const void *objp);

 * vm_flags..
#define VM_READ         0x00000001  /* currently active flags */
#define VM_WRITE  0x00000002
#define VM_EXEC         0x00000004
#define VM_SHARED 0x00000008

/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
#define VM_MAYREAD      0x00000010  /* limits for mprotect() etc */
#define VM_MAYWRITE     0x00000020
#define VM_MAYEXEC      0x00000040
#define VM_MAYSHARE     0x00000080

#define VM_GROWSDOWN    0x00000100  /* general info on the segment */
#define VM_GROWSUP      0x00000200
#define VM_PFNMAP 0x00000400  /* Page-ranges managed without "struct page", just pure PFN */
#define VM_DENYWRITE    0x00000800  /* ETXTBSY on write attempts.. */

#define VM_EXECUTABLE   0x00001000
#define VM_LOCKED 0x00002000
#define VM_IO           0x00004000  /* Memory mapped I/O or similar */

                              /* Used by sys_madvise() */
#define VM_SEQ_READ     0x00008000  /* App will access data sequentially */
#define VM_RAND_READ    0x00010000  /* App will not benefit from clustered reads */

#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
#define VM_DONTEXPAND   0x00040000  /* Cannot expand with mremap() */
#define VM_RESERVED     0x00080000  /* Count as reserved_vm like IO */
#define VM_ACCOUNT      0x00100000  /* Is a VM accounted object */
#define VM_HUGETLB      0x00400000  /* Huge TLB Page VM */
#define VM_NONLINEAR    0x00800000  /* Is non-linear (remap_file_pages) */
#define VM_MAPPED_COPY  0x01000000  /* T if mapped copy of data (nommu mmap) */
#define VM_INSERTPAGE   0x02000000  /* The vma has had "vm_insert_page()" done on it */
#define VM_ALWAYSDUMP   0x04000000  /* Always include in core dumps */

#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */

#ifndef VM_STACK_DEFAULT_FLAGS            /* arch can override this */


#define VM_ClearReadHint(v)         (v)->vm_flags &= ~VM_READHINTMASK
#define VM_NormalReadHint(v)        (!((v)->vm_flags & VM_READHINTMASK))
#define VM_SequentialReadHint(v)    ((v)->vm_flags & VM_SEQ_READ)
#define VM_RandomReadHint(v)        ((v)->vm_flags & VM_RAND_READ)

 * mapping from the currently active vm_flags protection bits (the
 * low four bits) to a page protection mask..
extern pgprot_t protection_map[16];

#define FAULT_FLAG_WRITE      0x01  /* Fault was a write access */
#define FAULT_FLAG_NONLINEAR  0x02  /* Fault was via a nonlinear mapping */

 * vm_fault is filled by the the pagefault handler and passed to the vma's
 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 * pgoff should be used in favour of virtual_address, if possible. If pgoff
 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
 * mapping support.
struct vm_fault {
      unsigned int flags;           /* FAULT_FLAG_xxx flags */
      pgoff_t pgoff;                /* Logical page offset based on vma */
      void __user *virtual_address; /* Faulting virtual address */

      struct page *page;            /* ->fault handlers should return a
                               * page here, unless VM_FAULT_NOPAGE
                               * is set (which is also implied by
                               * VM_FAULT_ERROR).

 * These are the virtual MM functions - opening of an area, closing and
 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 * to the functions called when a no-page or a wp-page exception occurs. 
struct vm_operations_struct {
      void (*open)(struct vm_area_struct * area);
      void (*close)(struct vm_area_struct * area);
      int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
      struct page *(*nopage)(struct vm_area_struct *area,
                  unsigned long address, int *type);
      unsigned long (*nopfn)(struct vm_area_struct *area,
                  unsigned long address);

      /* notification that a previously read-only page is about to become
       * writable, if an error is returned it will cause a SIGBUS */
      int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
      int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
      struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
                              unsigned long addr);
      int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
            const nodemask_t *to, unsigned long flags);

struct mmu_gather;
struct inode;

#define page_private(page)          ((page)->private)
#define set_page_private(page, v)   ((page)->private = (v))

 * FIXME: take this include out, include page-flags.h in
 * files which need it (119 of them)
#include <linux/page-flags.h>

#define VM_BUG_ON(cond) BUG_ON(cond)
#define VM_BUG_ON(condition) do { } while(0)

 * Methods to modify the page usage count.
 * What counts for a page usage:
 * - cache mapping   (page->mapping)
 * - private data    (page->private)
 * - page mapped in a task's page tables, each mapping
 *   is counted separately
 * Also, many kernel routines increase the page count before a critical
 * routine so they can be sure the page doesn't go away from under them.

 * Drop a ref, return true if the refcount fell to zero (the page has no users)
static inline int put_page_testzero(struct page *page)
      VM_BUG_ON(atomic_read(&page->_count) == 0);
      return atomic_dec_and_test(&page->_count);

 * Try to grab a ref unless the page has a refcount of zero, return false if
 * that is the case.
static inline int get_page_unless_zero(struct page *page)
      return atomic_inc_not_zero(&page->_count);

static inline struct page *compound_head(struct page *page)
      if (unlikely(PageTail(page)))
            return page->first_page;
      return page;

static inline int page_count(struct page *page)
      return atomic_read(&compound_head(page)->_count);

static inline void get_page(struct page *page)
      page = compound_head(page);
      VM_BUG_ON(atomic_read(&page->_count) == 0);

static inline struct page *virt_to_head_page(const void *x)
      struct page *page = virt_to_page(x);
      return compound_head(page);

 * Setup the page count before being freed into the page allocator for
 * the first time (boot or memory hotplug)
static inline void init_page_count(struct page *page)
      atomic_set(&page->_count, 1);

void put_page(struct page *page);
void put_pages_list(struct list_head *pages);

void split_page(struct page *page, unsigned int order);

 * Compound pages have a destructor function.  Provide a
 * prototype for that function and accessor functions.
 * These are _only_ valid on the head of a PG_compound page.
typedef void compound_page_dtor(struct page *);

static inline void set_compound_page_dtor(struct page *page,
                                    compound_page_dtor *dtor)
      page[1].lru.next = (void *)dtor;

static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
      return (compound_page_dtor *)page[1].lru.next;

static inline int compound_order(struct page *page)
      if (!PageHead(page))
            return 0;
      return (unsigned long)page[1].lru.prev;

static inline void set_compound_order(struct page *page, unsigned long order)
      page[1].lru.prev = (void *)order;

 * Multiple processes may "see" the same page. E.g. for untouched
 * mappings of /dev/null, all processes see the same page full of
 * zeroes, and text pages of executables and shared libraries have
 * only one copy in memory, at most, normally.
 * For the non-reserved pages, page_count(page) denotes a reference count.
 *   page_count() == 0 means the page is free. page->lru is then used for
 *   freelist management in the buddy allocator.
 *   page_count() > 0  means the page has been allocated.
 * Pages are allocated by the slab allocator in order to provide memory
 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 * unless a particular usage is carefully commented. (the responsibility of
 * freeing the kmalloc memory is the caller's, of course).
 * A page may be used by anyone else who does a __get_free_page().
 * In this case, page_count still tracks the references, and should only
 * be used through the normal accessor functions. The top bits of page->flags
 * and page->virtual store page management information, but all other fields
 * are unused and could be used privately, carefully. The management of this
 * page is the responsibility of the one who allocated it, and those who have
 * subsequently been given references to it.
 * The other pages (we may call them "pagecache pages") are completely
 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 * The following discussion applies only to them.
 * A pagecache page contains an opaque `private' member, which belongs to the
 * page's address_space. Usually, this is the address of a circular list of
 * the page's disk buffers. PG_private must be set to tell the VM to call
 * into the filesystem to release these pages.
 * A page may belong to an inode's memory mapping. In this case, page->mapping
 * is the pointer to the inode, and page->index is the file offset of the page,
 * in units of PAGE_CACHE_SIZE.
 * If pagecache pages are not associated with an inode, they are said to be
 * anonymous pages. These may become associated with the swapcache, and in that
 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 * In either case (swapcache or inode backed), the pagecache itself holds one
 * reference to the page. Setting PG_private should also increment the
 * refcount. The each user mapping also has a reference to the page.
 * The pagecache pages are stored in a per-mapping radix tree, which is
 * rooted at mapping->page_tree, and indexed by offset.
 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 * All pagecache pages may be subject to I/O:
 * - inode pages may need to be read from disk,
 * - inode pages which have been modified and are MAP_SHARED may need
 *   to be written back to the inode on disk,
 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 *   modified may need to be swapped out to swap space and (later) to be read
 *   back into memory.

 * The zone field is never updated after free_area_init_core()
 * sets it, so none of the operations on it need to be atomic.

 * page->flags layout:
 * There are three possibilities for how page->flags get
 * laid out.  The first is for the normal case, without
 * sparsemem.  The second is for sparsemem when there is
 * plenty of space for node and section.  The last is when
 * we have run out of space and have to fall back to an
 * alternate (slower) way of determining the node.
 *        No sparsemem: |       NODE     | ZONE | ... | FLAGS |
 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
 *   no space for node: | SECTION |     ZONE    | ... | FLAGS |
#define SECTIONS_WIDTH        0

#define ZONES_WIDTH           ZONES_SHIFT

#define NODES_WIDTH           NODES_SHIFT
#define NODES_WIDTH           0

/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
#define SECTIONS_PGOFF        ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)

 * We are going to use the flags for the page to node mapping if its in
 * there.  This includes the case where there is no node, so it is implicit.
#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)


 * Define the bit shifts to access each section.  For non-existant
 * sections we define the shift as 0; that plus a 0 mask ensures
 * the compiler will optimise away reference to them.
#define NODES_PGSHIFT         (NODES_PGOFF * (NODES_WIDTH != 0))
#define ZONES_PGSHIFT         (ZONES_PGOFF * (ZONES_WIDTH != 0))

/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
                                    SECTIONS_PGOFF : ZONES_PGOFF)
                                    NODES_PGOFF : ZONES_PGOFF)



#define ZONES_MASK            ((1UL << ZONES_WIDTH) - 1)
#define NODES_MASK            ((1UL << NODES_WIDTH) - 1)
#define SECTIONS_MASK         ((1UL << SECTIONS_WIDTH) - 1)
#define ZONEID_MASK           ((1UL << ZONEID_SHIFT) - 1)

static inline enum zone_type page_zonenum(struct page *page)
      return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;

 * The identification function is only used by the buddy allocator for
 * determining if two pages could be buddies. We are not really
 * identifying a zone since we could be using a the section number
 * id if we have not node id available in page flags.
 * We guarantee only that it will return the same value for two
 * combinable pages in a zone.
static inline int page_zone_id(struct page *page)
      return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;

static inline int zone_to_nid(struct zone *zone)
      return zone->node;
      return 0;

extern int page_to_nid(struct page *page);
static inline int page_to_nid(struct page *page)
      return (page->flags >> NODES_PGSHIFT) & NODES_MASK;

static inline struct zone *page_zone(struct page *page)
      return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];

static inline unsigned long page_to_section(struct page *page)
      return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;

static inline void set_page_zone(struct page *page, enum zone_type zone)
      page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
      page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;

static inline void set_page_node(struct page *page, unsigned long node)
      page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
      page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;

static inline void set_page_section(struct page *page, unsigned long section)
      page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
      page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;

static inline void set_page_links(struct page *page, enum zone_type zone,
      unsigned long node, unsigned long pfn)
      set_page_zone(page, zone);
      set_page_node(page, node);
      set_page_section(page, pfn_to_section_nr(pfn));

 * If a hint addr is less than mmap_min_addr change hint to be as
 * low as possible but still greater than mmap_min_addr
static inline unsigned long round_hint_to_min(unsigned long hint)
      hint &= PAGE_MASK;
      if (((void *)hint != NULL) &&
          (hint < mmap_min_addr))
            return PAGE_ALIGN(mmap_min_addr);
      return hint;

 * Some inline functions in vmstat.h depend on page_zone()
#include <linux/vmstat.h>

static __always_inline void *lowmem_page_address(struct page *page)
      return __va(page_to_pfn(page) << PAGE_SHIFT);

#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)

#if defined(WANT_PAGE_VIRTUAL)
#define page_address(page) ((page)->virtual)
#define set_page_address(page, address)               \
      do {                                \
            (page)->virtual = (address);        \
      } while(0)
#define page_address_init()  do { } while(0)

void *page_address(struct page *page);
void set_page_address(struct page *page, void *virtual);
void page_address_init(void);

#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address)  do { } while(0)
#define page_address_init()  do { } while(0)

 * On an anonymous page mapped into a user virtual memory area,
 * page->mapping points to its anon_vma, not to a struct address_space;
 * with the PAGE_MAPPING_ANON bit set to distinguish it.
 * Please note that, confusingly, "page_mapping" refers to the inode
 * address_space which maps the page from disk; whereas "page_mapped"
 * refers to user virtual address space into which the page is mapped.
#define PAGE_MAPPING_ANON     1

extern struct address_space swapper_space;
static inline struct address_space *page_mapping(struct page *page)
      struct address_space *mapping = page->mapping;

      if (unlikely(PageSwapCache(page)))
            mapping = &swapper_space;
      else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
            mapping = NULL;
      return mapping;

static inline int PageAnon(struct page *page)
      return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;

 * Return the pagecache index of the passed page.  Regular pagecache pages
 * use ->index whereas swapcache pages use ->private
static inline pgoff_t page_index(struct page *page)
      if (unlikely(PageSwapCache(page)))
            return page_private(page);
      return page->index;

 * The atomic page->_mapcount, like _count, starts from -1:
 * so that transitions both from it and to it can be tracked,
 * using atomic_inc_and_test and atomic_add_negative(-1).
static inline void reset_page_mapcount(struct page *page)
      atomic_set(&(page)->_mapcount, -1);

static inline int page_mapcount(struct page *page)
      return atomic_read(&(page)->_mapcount) + 1;

 * Return true if this page is mapped into pagetables.
static inline int page_mapped(struct page *page)
      return atomic_read(&(page)->_mapcount) >= 0;

 * Error return values for the *_nopage functions
#define NOPAGE_OOM      ((struct page *) (-1))

 * Error return values for the *_nopfn functions
#define NOPFN_SIGBUS    ((unsigned long) -1)
#define NOPFN_OOM ((unsigned long) -2)
#define NOPFN_REFAULT   ((unsigned long) -3)

 * Different kinds of faults, as returned by handle_mm_fault().
 * Used to decide whether a process gets delivered SIGBUS or
 * just gets major/minor fault counters bumped up.

#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */

#define VM_FAULT_OOM    0x0001
#define VM_FAULT_SIGBUS 0x0002
#define VM_FAULT_MAJOR  0x0004
#define VM_FAULT_WRITE  0x0008      /* Special case for get_user_pages */

#define VM_FAULT_NOPAGE 0x0100      /* ->fault installed the pte, not return page */
#define VM_FAULT_LOCKED 0x0200      /* ->fault locked the returned page */


#define offset_in_page(p)     ((unsigned long)(p) & ~PAGE_MASK)

extern void show_free_areas(void);

int shmem_lock(struct file *file, int lock, struct user_struct *user);
static inline int shmem_lock(struct file *file, int lock,
                       struct user_struct *user)
      return 0;
struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);

int shmem_zero_setup(struct vm_area_struct *);

#ifndef CONFIG_MMU
extern unsigned long shmem_get_unmapped_area(struct file *file,
                                   unsigned long addr,
                                   unsigned long len,
                                   unsigned long pgoff,
                                   unsigned long flags);

extern int can_do_mlock(void);
extern int user_shm_lock(size_t, struct user_struct *);
extern void user_shm_unlock(size_t, struct user_struct *);

 * Parameter block passed down to zap_pte_range in exceptional cases.
struct zap_details {
      struct vm_area_struct *nonlinear_vma;     /* Check page->index if set */
      struct address_space *check_mapping;      /* Check page->mapping if set */
      pgoff_t     first_index;                  /* Lowest page->index to unmap */
      pgoff_t last_index;                 /* Highest page->index to unmap */
      spinlock_t *i_mmap_lock;            /* For unmap_mapping_range: */
      unsigned long truncate_count;       /* Compare vm_truncate_count */

struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
            unsigned long size, struct zap_details *);
unsigned long unmap_vmas(struct mmu_gather **tlb,
            struct vm_area_struct *start_vma, unsigned long start_addr,
            unsigned long end_addr, unsigned long *nr_accounted,
            struct zap_details *);
void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
            unsigned long end, unsigned long floor, unsigned long ceiling);
void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
            unsigned long floor, unsigned long ceiling);
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
                  struct vm_area_struct *vma);
void unmap_mapping_range(struct address_space *mapping,
            loff_t const holebegin, loff_t const holelen, int even_cows);

static inline void unmap_shared_mapping_range(struct address_space *mapping,
            loff_t const holebegin, loff_t const holelen)
      unmap_mapping_range(mapping, holebegin, holelen, 0);

extern int vmtruncate(struct inode * inode, loff_t offset);
extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);

extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
                  unsigned long address, int write_access);
static inline int handle_mm_fault(struct mm_struct *mm,
                  struct vm_area_struct *vma, unsigned long address,
                  int write_access)
      /* should never happen if there's no MMU */
      return VM_FAULT_SIGBUS;

extern int make_pages_present(unsigned long addr, unsigned long end);
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);

int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
            int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);

extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
extern void do_invalidatepage(struct page *page, unsigned long offset);

int __set_page_dirty_nobuffers(struct page *page);
int __set_page_dirty_no_writeback(struct page *page);
int redirty_page_for_writepage(struct writeback_control *wbc,
                        struct page *page);
int FASTCALL(set_page_dirty(struct page *page));
int set_page_dirty_lock(struct page *page);
int clear_page_dirty_for_io(struct page *page);

extern unsigned long move_page_tables(struct vm_area_struct *vma,
            unsigned long old_addr, struct vm_area_struct *new_vma,
            unsigned long new_addr, unsigned long len);
extern unsigned long do_mremap(unsigned long addr,
                         unsigned long old_len, unsigned long new_len,
                         unsigned long flags, unsigned long new_addr);
extern int mprotect_fixup(struct vm_area_struct *vma,
                    struct vm_area_struct **pprev, unsigned long start,
                    unsigned long end, unsigned long newflags);

 * A callback you can register to apply pressure to ageable caches.
 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
 * look through the least-recently-used 'nr_to_scan' entries and
 * attempt to free them up.  It should return the number of objects
 * which remain in the cache.  If it returns -1, it means it cannot do
 * any scanning at this time (eg. there is a risk of deadlock).
 * The 'gfpmask' refers to the allocation we are currently trying to
 * fulfil.
 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
 * querying the cache size, so a fastpath for that case is appropriate.
struct shrinker {
      int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
      int seeks;  /* seeks to recreate an obj */

      /* These are for internal use */
      struct list_head list;
      long nr;    /* objs pending delete */
#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
extern void register_shrinker(struct shrinker *);
extern void unregister_shrinker(struct shrinker *);

int vma_wants_writenotify(struct vm_area_struct *vma);

extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));

static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
                                    unsigned long address)
      return 0;
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);

static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
                                    unsigned long address)
      return 0;
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);

int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);

 * The following ifdef needed to get the 4level-fixup.h header to work.
 * Remove it when 4level-fixup.h has been removed.
#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
      return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
            NULL: pud_offset(pgd, address);

static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
      return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
            NULL: pmd_offset(pud, address);
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */

 * We tuck a spinlock to guard each pagetable page into its struct page,
 * at page->private, with BUILD_BUG_ON to make sure that this will not
 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
 * When freeing, reset page->mapping so free_pages_check won't complain.
#define __pte_lockptr(page)   &((page)->ptl)
#define pte_lock_init(_page)  do {                          \
      spin_lock_init(__pte_lockptr(_page));                       \
} while (0)
#define pte_lock_deinit(page) ((page)->mapping = NULL)
#define pte_lockptr(mm, pmd)  ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
 * We use mm->page_table_lock to guard all pagetable pages of the mm.
#define pte_lock_init(page)   do {} while (0)
#define pte_lock_deinit(page) do {} while (0)
#define pte_lockptr(mm, pmd)  ({(void)(pmd); &(mm)->page_table_lock;})

#define pte_offset_map_lock(mm, pmd, address, ptlp)   \
({                                        \
      spinlock_t *__ptl = pte_lockptr(mm, pmd); \
      pte_t *__pte = pte_offset_map(pmd, address);    \
      *(ptlp) = __ptl;                    \
      spin_lock(__ptl);                   \
      __pte;                                    \

#define pte_unmap_unlock(pte, ptl)  do {        \
      spin_unlock(ptl);                   \
      pte_unmap(pte);                           \
} while (0)

#define pte_alloc_map(mm, pmd, address)               \
      ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
            NULL: pte_offset_map(pmd, address))

#define pte_alloc_map_lock(mm, pmd, address, ptlp)    \
      ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
            NULL: pte_offset_map_lock(mm, pmd, address, ptlp))

#define pte_alloc_kernel(pmd, address)                \
      ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
            NULL: pte_offset_kernel(pmd, address))

extern void free_area_init(unsigned long * zones_size);
extern void free_area_init_node(int nid, pg_data_t *pgdat,
      unsigned long * zones_size, unsigned long zone_start_pfn, 
      unsigned long *zholes_size);
 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
 * zones, allocate the backing mem_map and account for memory holes in a more
 * architecture independent manner. This is a substitute for creating the
 * zone_sizes[] and zholes_size[] arrays and passing them to
 * free_area_init_node()
 * An architecture is expected to register range of page frames backed by
 * physical memory with add_active_range() before calling
 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
 * usage, an architecture is expected to do something like
 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
 *                                         max_highmem_pfn};
 * for_each_valid_physical_page_range()
 *    add_active_range(node_id, start_pfn, end_pfn)
 * free_area_init_nodes(max_zone_pfns);
 * If the architecture guarantees that there are no holes in the ranges
 * registered with add_active_range(), free_bootmem_active_regions()
 * will call free_bootmem_node() for each registered physical page range.
 * Similarly sparse_memory_present_with_active_regions() calls
 * memory_present() for each range when SPARSEMEM is enabled.
 * See mm/page_alloc.c for more information on each function exposed by
extern void free_area_init_nodes(unsigned long *max_zone_pfn);
extern void add_active_range(unsigned int nid, unsigned long start_pfn,
                              unsigned long end_pfn);
extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
                                    unsigned long new_end_pfn);
extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
                              unsigned long end_pfn);
extern void remove_all_active_ranges(void);
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
                                    unsigned long end_pfn);
extern void get_pfn_range_for_nid(unsigned int nid,
                  unsigned long *start_pfn, unsigned long *end_pfn);
extern unsigned long find_min_pfn_with_active_regions(void);
extern unsigned long find_max_pfn_with_active_regions(void);
extern void free_bootmem_with_active_regions(int nid,
                                    unsigned long max_low_pfn);
extern void sparse_memory_present_with_active_regions(int nid);
extern int early_pfn_to_nid(unsigned long pfn);
extern void set_dma_reserve(unsigned long new_dma_reserve);
extern void memmap_init_zone(unsigned long, int, unsigned long,
                        unsigned long, enum memmap_context);
extern void setup_per_zone_pages_min(void);
extern void mem_init(void);
extern void show_mem(void);
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);

extern void setup_per_cpu_pageset(void);
static inline void setup_per_cpu_pageset(void) {}

/* prio_tree.c */
void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
      struct prio_tree_iter *iter);

#define vma_prio_tree_foreach(vma, iter, root, begin, end)  \
      for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;     \
            (vma = vma_prio_tree_next(vma, iter)); )

static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
                              struct list_head *list)
      vma->shared.vm_set.parent = NULL;
      list_add_tail(&vma->shared.vm_set.list, list);

/* mmap.c */
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
      unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
extern struct vm_area_struct *vma_merge(struct mm_struct *,
      struct vm_area_struct *prev, unsigned long addr, unsigned long end,
      unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
      struct mempolicy *);
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
extern int split_vma(struct mm_struct *,
      struct vm_area_struct *, unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
      struct rb_node **, struct rb_node *);
extern void unlink_file_vma(struct vm_area_struct *);
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
      unsigned long addr, unsigned long len, pgoff_t pgoff);
extern void exit_mmap(struct mm_struct *);
extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
extern int install_special_mapping(struct mm_struct *mm,
                           unsigned long addr, unsigned long len,
                           unsigned long flags, struct page **pages);

extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);

extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
      unsigned long len, unsigned long prot,
      unsigned long flag, unsigned long pgoff);
extern unsigned long mmap_region(struct file *file, unsigned long addr,
      unsigned long len, unsigned long flags,
      unsigned int vm_flags, unsigned long pgoff,
      int accountable);

static inline unsigned long do_mmap(struct file *file, unsigned long addr,
      unsigned long len, unsigned long prot,
      unsigned long flag, unsigned long offset)
      unsigned long ret = -EINVAL;
      if ((offset + PAGE_ALIGN(len)) < offset)
            goto out;
      if (!(offset & ~PAGE_MASK))
            ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
      return ret;

extern int do_munmap(struct mm_struct *, unsigned long, size_t);

extern unsigned long do_brk(unsigned long, unsigned long);

/* filemap.c */
extern unsigned long page_unuse(struct page *);
extern void truncate_inode_pages(struct address_space *, loff_t);
extern void truncate_inode_pages_range(struct address_space *,
                               loff_t lstart, loff_t lend);

/* generic vm_area_ops exported for stackable file systems */
extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);

/* mm/page-writeback.c */
int write_one_page(struct page *page, int wait);

/* readahead.c */
#define VM_MAX_READAHEAD      128   /* kbytes */
#define VM_MIN_READAHEAD      16    /* kbytes (includes current page) */

int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
                  pgoff_t offset, unsigned long nr_to_read);
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
                  pgoff_t offset, unsigned long nr_to_read);

void page_cache_sync_readahead(struct address_space *mapping,
                         struct file_ra_state *ra,
                         struct file *filp,
                         pgoff_t offset,
                         unsigned long size);

void page_cache_async_readahead(struct address_space *mapping,
                        struct file_ra_state *ra,
                        struct file *filp,
                        struct page *pg,
                        pgoff_t offset,
                        unsigned long size);

unsigned long max_sane_readahead(unsigned long nr);

/* Do stack extension */
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
#ifdef CONFIG_IA64
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
extern int expand_stack_downwards(struct vm_area_struct *vma,
                          unsigned long address);

/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
                                   struct vm_area_struct **pprev);

/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
   NULL if none.  Assume start_addr < end_addr. */
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
      struct vm_area_struct * vma = find_vma(mm,start_addr);

      if (vma && end_addr <= vma->vm_start)
            vma = NULL;
      return vma;

static inline unsigned long vma_pages(struct vm_area_struct *vma)
      return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;

pgprot_t vm_get_page_prot(unsigned long vm_flags);
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
struct page *vmalloc_to_page(void *addr);
unsigned long vmalloc_to_pfn(void *addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
                  unsigned long pfn, unsigned long size, pgprot_t);
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
                  unsigned long pfn);

struct page *follow_page(struct vm_area_struct *, unsigned long address,
                  unsigned int foll_flags);
#define FOLL_WRITE      0x01  /* check pte is writable */
#define FOLL_TOUCH      0x02  /* mark page accessed */
#define FOLL_GET  0x04  /* do get_page on page */
#define FOLL_ANON 0x08  /* give ZERO_PAGE if no pgtable */

typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
                  void *data);
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
                         unsigned long size, pte_fn_t fn, void *data);

void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
static inline void vm_stat_account(struct mm_struct *mm,
                  unsigned long flags, struct file *file, long pages)
#endif /* CONFIG_PROC_FS */

static inline void
kernel_map_pages(struct page *page, int numpages, int enable) {}

extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
#ifdef      __HAVE_ARCH_GATE_AREA
int in_gate_area_no_task(unsigned long addr);
int in_gate_area(struct task_struct *task, unsigned long addr);
int in_gate_area_no_task(unsigned long addr);
#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
#endif      /* __HAVE_ARCH_GATE_AREA */

int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
                              void __user *, size_t *, loff_t *);
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
                  unsigned long lru_pages);
void drop_pagecache(void);
void drop_slab(void);

#ifndef CONFIG_MMU
#define randomize_va_space 0
extern int randomize_va_space;

const char * arch_vma_name(struct vm_area_struct *vma);

struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
void *vmemmap_alloc_block(unsigned long size, int node);
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
int vmemmap_populate_basepages(struct page *start_page,
                                    unsigned long pages, int node);
int vmemmap_populate(struct page *start_page, unsigned long pages, int node);

#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */

Generated by  Doxygen 1.6.0   Back to index