Logo Search packages:      
Sourcecode: linux version File versions  Download package

ipw2200.c

/******************************************************************************

  Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.

  802.11 status code portion of this file from ethereal-0.10.6:
    Copyright 2000, Axis Communications AB
    Ethereal - Network traffic analyzer
    By Gerald Combs <gerald@ethereal.com>
    Copyright 1998 Gerald Combs

  This program is free software; you can redistribute it and/or modify it
  under the terms of version 2 of the GNU General Public License as
  published by the Free Software Foundation.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.

  The full GNU General Public License is included in this distribution in the
  file called LICENSE.

  Contact Information:
  James P. Ketrenos <ipw2100-admin@linux.intel.com>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

******************************************************************************/

#include "ipw2200.h"
#include <linux/version.h>


#ifndef KBUILD_EXTMOD
#define VK "k"
#else
#define VK
#endif

#ifdef CONFIG_IPW2200_DEBUG
#define VD "d"
#else
#define VD
#endif

#ifdef CONFIG_IPW2200_MONITOR
#define VM "m"
#else
#define VM
#endif

#ifdef CONFIG_IPW2200_PROMISCUOUS
#define VP "p"
#else
#define VP
#endif

#ifdef CONFIG_IPW2200_RADIOTAP
#define VR "r"
#else
#define VR
#endif

#ifdef CONFIG_IPW2200_QOS
#define VQ "q"
#else
#define VQ
#endif

#define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
#define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
#define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
#define DRV_VERSION     IPW2200_VERSION

#define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)

MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR(DRV_COPYRIGHT);
MODULE_LICENSE("GPL");

static int cmdlog = 0;
static int debug = 0;
static int channel = 0;
static int mode = 0;

static u32 ipw_debug_level;
static int associate = 1;
static int auto_create = 1;
static int led = 0;
static int disable = 0;
static int bt_coexist = 0;
static int hwcrypto = 0;
static int roaming = 1;
static const char ipw_modes[] = {
      'a', 'b', 'g', '?'
};
static int antenna = CFG_SYS_ANTENNA_BOTH;

#ifdef CONFIG_IPW2200_PROMISCUOUS
static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
#endif


#ifdef CONFIG_IPW2200_QOS
static int qos_enable = 0;
static int qos_burst_enable = 0;
static int qos_no_ack_mask = 0;
static int burst_duration_CCK = 0;
static int burst_duration_OFDM = 0;

static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
      {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
       QOS_TX3_CW_MIN_OFDM},
      {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
       QOS_TX3_CW_MAX_OFDM},
      {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
      {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
      {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
       QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
};

static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
      {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
       QOS_TX3_CW_MIN_CCK},
      {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
       QOS_TX3_CW_MAX_CCK},
      {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
      {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
      {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
       QOS_TX3_TXOP_LIMIT_CCK}
};

static struct ieee80211_qos_parameters def_parameters_OFDM = {
      {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
       DEF_TX3_CW_MIN_OFDM},
      {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
       DEF_TX3_CW_MAX_OFDM},
      {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
      {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
      {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
       DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
};

static struct ieee80211_qos_parameters def_parameters_CCK = {
      {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
       DEF_TX3_CW_MIN_CCK},
      {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
       DEF_TX3_CW_MAX_CCK},
      {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
      {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
      {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
       DEF_TX3_TXOP_LIMIT_CCK}
};

static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };

static int from_priority_to_tx_queue[] = {
      IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
      IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
};

static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);

static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
                               *qos_param);
static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
                             *qos_param);
#endif                        /* CONFIG_IPW2200_QOS */

static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
static void ipw_remove_current_network(struct ipw_priv *priv);
static void ipw_rx(struct ipw_priv *priv);
static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
                        struct clx2_tx_queue *txq, int qindex);
static int ipw_queue_reset(struct ipw_priv *priv);

static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
                       int len, int sync);

static void ipw_tx_queue_free(struct ipw_priv *);

static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
static void ipw_rx_queue_replenish(void *);
static int ipw_up(struct ipw_priv *);
static void ipw_bg_up(struct work_struct *work);
static void ipw_down(struct ipw_priv *);
static void ipw_bg_down(struct work_struct *work);
static int ipw_config(struct ipw_priv *);
static int init_supported_rates(struct ipw_priv *priv,
                        struct ipw_supported_rates *prates);
static void ipw_set_hwcrypto_keys(struct ipw_priv *);
static void ipw_send_wep_keys(struct ipw_priv *, int);

static int snprint_line(char *buf, size_t count,
                  const u8 * data, u32 len, u32 ofs)
{
      int out, i, j, l;
      char c;

      out = snprintf(buf, count, "%08X", ofs);

      for (l = 0, i = 0; i < 2; i++) {
            out += snprintf(buf + out, count - out, " ");
            for (j = 0; j < 8 && l < len; j++, l++)
                  out += snprintf(buf + out, count - out, "%02X ",
                              data[(i * 8 + j)]);
            for (; j < 8; j++)
                  out += snprintf(buf + out, count - out, "   ");
      }

      out += snprintf(buf + out, count - out, " ");
      for (l = 0, i = 0; i < 2; i++) {
            out += snprintf(buf + out, count - out, " ");
            for (j = 0; j < 8 && l < len; j++, l++) {
                  c = data[(i * 8 + j)];
                  if (!isascii(c) || !isprint(c))
                        c = '.';

                  out += snprintf(buf + out, count - out, "%c", c);
            }

            for (; j < 8; j++)
                  out += snprintf(buf + out, count - out, " ");
      }

      return out;
}

static void printk_buf(int level, const u8 * data, u32 len)
{
      char line[81];
      u32 ofs = 0;
      if (!(ipw_debug_level & level))
            return;

      while (len) {
            snprint_line(line, sizeof(line), &data[ofs],
                       min(len, 16U), ofs);
            printk(KERN_DEBUG "%s\n", line);
            ofs += 16;
            len -= min(len, 16U);
      }
}

static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
{
      size_t out = size;
      u32 ofs = 0;
      int total = 0;

      while (size && len) {
            out = snprint_line(output, size, &data[ofs],
                           min_t(size_t, len, 16U), ofs);

            ofs += 16;
            output += out;
            size -= out;
            len -= min_t(size_t, len, 16U);
            total += out;
      }
      return total;
}

/* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)

/* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)

/* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
{
      IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
                 __LINE__, (u32) (b), (u32) (c));
      _ipw_write_reg8(a, b, c);
}

/* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
{
      IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
                 __LINE__, (u32) (b), (u32) (c));
      _ipw_write_reg16(a, b, c);
}

/* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
{
      IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
                 __LINE__, (u32) (b), (u32) (c));
      _ipw_write_reg32(a, b, c);
}

/* 8-bit direct write (low 4K) */
#define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))

/* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
#define ipw_write8(ipw, ofs, val) \
 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
 _ipw_write8(ipw, ofs, val)

/* 16-bit direct write (low 4K) */
#define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))

/* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
#define ipw_write16(ipw, ofs, val) \
 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
 _ipw_write16(ipw, ofs, val)

/* 32-bit direct write (low 4K) */
#define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))

/* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
#define ipw_write32(ipw, ofs, val) \
 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
 _ipw_write32(ipw, ofs, val)

/* 8-bit direct read (low 4K) */
#define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))

/* 8-bit direct read (low 4K), with debug wrapper */
static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
{
      IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
      return _ipw_read8(ipw, ofs);
}

/* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
#define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)

/* 16-bit direct read (low 4K) */
#define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))

/* 16-bit direct read (low 4K), with debug wrapper */
static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
{
      IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
      return _ipw_read16(ipw, ofs);
}

/* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
#define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)

/* 32-bit direct read (low 4K) */
#define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))

/* 32-bit direct read (low 4K), with debug wrapper */
static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
{
      IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
      return _ipw_read32(ipw, ofs);
}

/* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
#define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)

/* multi-byte read (above 4K), with debug wrapper */
static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
static inline void __ipw_read_indirect(const char *f, int l,
                               struct ipw_priv *a, u32 b, u8 * c, int d)
{
      IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
                 d);
      _ipw_read_indirect(a, b, c, d);
}

/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
#define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)

/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
                        int num);
#define ipw_write_indirect(a, b, c, d) \
      IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
      _ipw_write_indirect(a, b, c, d)

/* 32-bit indirect write (above 4K) */
static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
{
      IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
      _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
      _ipw_write32(priv, IPW_INDIRECT_DATA, value);
}

/* 8-bit indirect write (above 4K) */
static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
{
      u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;      /* dword align */
      u32 dif_len = reg - aligned_addr;

      IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
      _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
      _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
}

/* 16-bit indirect write (above 4K) */
static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
{
      u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;      /* dword align */
      u32 dif_len = (reg - aligned_addr) & (~0x1ul);

      IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
      _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
      _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
}

/* 8-bit indirect read (above 4K) */
static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
{
      u32 word;
      _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
      IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
      word = _ipw_read32(priv, IPW_INDIRECT_DATA);
      return (word >> ((reg & 0x3) * 8)) & 0xff;
}

/* 32-bit indirect read (above 4K) */
static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
{
      u32 value;

      IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);

      _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
      value = _ipw_read32(priv, IPW_INDIRECT_DATA);
      IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
      return value;
}

/* General purpose, no alignment requirement, iterative (multi-byte) read, */
/*    for area above 1st 4K of SRAM/reg space */
static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
                         int num)
{
      u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;     /* dword align */
      u32 dif_len = addr - aligned_addr;
      u32 i;

      IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);

      if (num <= 0) {
            return;
      }

      /* Read the first dword (or portion) byte by byte */
      if (unlikely(dif_len)) {
            _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
            /* Start reading at aligned_addr + dif_len */
            for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
                  *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
            aligned_addr += 4;
      }

      /* Read all of the middle dwords as dwords, with auto-increment */
      _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
      for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
            *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);

      /* Read the last dword (or portion) byte by byte */
      if (unlikely(num)) {
            _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
            for (i = 0; num > 0; i++, num--)
                  *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
      }
}

/* General purpose, no alignment requirement, iterative (multi-byte) write, */
/*    for area above 1st 4K of SRAM/reg space */
static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
                        int num)
{
      u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;     /* dword align */
      u32 dif_len = addr - aligned_addr;
      u32 i;

      IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);

      if (num <= 0) {
            return;
      }

      /* Write the first dword (or portion) byte by byte */
      if (unlikely(dif_len)) {
            _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
            /* Start writing at aligned_addr + dif_len */
            for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
                  _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
            aligned_addr += 4;
      }

      /* Write all of the middle dwords as dwords, with auto-increment */
      _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
      for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
            _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);

      /* Write the last dword (or portion) byte by byte */
      if (unlikely(num)) {
            _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
            for (i = 0; num > 0; i++, num--, buf++)
                  _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
      }
}

/* General purpose, no alignment requirement, iterative (multi-byte) write, */
/*    for 1st 4K of SRAM/regs space */
static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
                       int num)
{
      memcpy_toio((priv->hw_base + addr), buf, num);
}

/* Set bit(s) in low 4K of SRAM/regs */
static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
{
      ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
}

/* Clear bit(s) in low 4K of SRAM/regs */
static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
{
      ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
}

static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
{
      if (priv->status & STATUS_INT_ENABLED)
            return;
      priv->status |= STATUS_INT_ENABLED;
      ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
}

static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
{
      if (!(priv->status & STATUS_INT_ENABLED))
            return;
      priv->status &= ~STATUS_INT_ENABLED;
      ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
}

static inline void ipw_enable_interrupts(struct ipw_priv *priv)
{
      unsigned long flags;

      spin_lock_irqsave(&priv->irq_lock, flags);
      __ipw_enable_interrupts(priv);
      spin_unlock_irqrestore(&priv->irq_lock, flags);
}

static inline void ipw_disable_interrupts(struct ipw_priv *priv)
{
      unsigned long flags;

      spin_lock_irqsave(&priv->irq_lock, flags);
      __ipw_disable_interrupts(priv);
      spin_unlock_irqrestore(&priv->irq_lock, flags);
}

static char *ipw_error_desc(u32 val)
{
      switch (val) {
      case IPW_FW_ERROR_OK:
            return "ERROR_OK";
      case IPW_FW_ERROR_FAIL:
            return "ERROR_FAIL";
      case IPW_FW_ERROR_MEMORY_UNDERFLOW:
            return "MEMORY_UNDERFLOW";
      case IPW_FW_ERROR_MEMORY_OVERFLOW:
            return "MEMORY_OVERFLOW";
      case IPW_FW_ERROR_BAD_PARAM:
            return "BAD_PARAM";
      case IPW_FW_ERROR_BAD_CHECKSUM:
            return "BAD_CHECKSUM";
      case IPW_FW_ERROR_NMI_INTERRUPT:
            return "NMI_INTERRUPT";
      case IPW_FW_ERROR_BAD_DATABASE:
            return "BAD_DATABASE";
      case IPW_FW_ERROR_ALLOC_FAIL:
            return "ALLOC_FAIL";
      case IPW_FW_ERROR_DMA_UNDERRUN:
            return "DMA_UNDERRUN";
      case IPW_FW_ERROR_DMA_STATUS:
            return "DMA_STATUS";
      case IPW_FW_ERROR_DINO_ERROR:
            return "DINO_ERROR";
      case IPW_FW_ERROR_EEPROM_ERROR:
            return "EEPROM_ERROR";
      case IPW_FW_ERROR_SYSASSERT:
            return "SYSASSERT";
      case IPW_FW_ERROR_FATAL_ERROR:
            return "FATAL_ERROR";
      default:
            return "UNKNOWN_ERROR";
      }
}

static void ipw_dump_error_log(struct ipw_priv *priv,
                         struct ipw_fw_error *error)
{
      u32 i;

      if (!error) {
            IPW_ERROR("Error allocating and capturing error log.  "
                    "Nothing to dump.\n");
            return;
      }

      IPW_ERROR("Start IPW Error Log Dump:\n");
      IPW_ERROR("Status: 0x%08X, Config: %08X\n",
              error->status, error->config);

      for (i = 0; i < error->elem_len; i++)
            IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
                    ipw_error_desc(error->elem[i].desc),
                    error->elem[i].time,
                    error->elem[i].blink1,
                    error->elem[i].blink2,
                    error->elem[i].link1,
                    error->elem[i].link2, error->elem[i].data);
      for (i = 0; i < error->log_len; i++)
            IPW_ERROR("%i\t0x%08x\t%i\n",
                    error->log[i].time,
                    error->log[i].data, error->log[i].event);
}

static inline int ipw_is_init(struct ipw_priv *priv)
{
      return (priv->status & STATUS_INIT) ? 1 : 0;
}

static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
{
      u32 addr, field_info, field_len, field_count, total_len;

      IPW_DEBUG_ORD("ordinal = %i\n", ord);

      if (!priv || !val || !len) {
            IPW_DEBUG_ORD("Invalid argument\n");
            return -EINVAL;
      }

      /* verify device ordinal tables have been initialized */
      if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
            IPW_DEBUG_ORD("Access ordinals before initialization\n");
            return -EINVAL;
      }

      switch (IPW_ORD_TABLE_ID_MASK & ord) {
      case IPW_ORD_TABLE_0_MASK:
            /*
             * TABLE 0: Direct access to a table of 32 bit values
             *
             * This is a very simple table with the data directly
             * read from the table
             */

            /* remove the table id from the ordinal */
            ord &= IPW_ORD_TABLE_VALUE_MASK;

            /* boundary check */
            if (ord > priv->table0_len) {
                  IPW_DEBUG_ORD("ordinal value (%i) longer then "
                              "max (%i)\n", ord, priv->table0_len);
                  return -EINVAL;
            }

            /* verify we have enough room to store the value */
            if (*len < sizeof(u32)) {
                  IPW_DEBUG_ORD("ordinal buffer length too small, "
                              "need %zd\n", sizeof(u32));
                  return -EINVAL;
            }

            IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
                        ord, priv->table0_addr + (ord << 2));

            *len = sizeof(u32);
            ord <<= 2;
            *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
            break;

      case IPW_ORD_TABLE_1_MASK:
            /*
             * TABLE 1: Indirect access to a table of 32 bit values
             *
             * This is a fairly large table of u32 values each
             * representing starting addr for the data (which is
             * also a u32)
             */

            /* remove the table id from the ordinal */
            ord &= IPW_ORD_TABLE_VALUE_MASK;

            /* boundary check */
            if (ord > priv->table1_len) {
                  IPW_DEBUG_ORD("ordinal value too long\n");
                  return -EINVAL;
            }

            /* verify we have enough room to store the value */
            if (*len < sizeof(u32)) {
                  IPW_DEBUG_ORD("ordinal buffer length too small, "
                              "need %zd\n", sizeof(u32));
                  return -EINVAL;
            }

            *((u32 *) val) =
                ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
            *len = sizeof(u32);
            break;

      case IPW_ORD_TABLE_2_MASK:
            /*
             * TABLE 2: Indirect access to a table of variable sized values
             *
             * This table consist of six values, each containing
             *     - dword containing the starting offset of the data
             *     - dword containing the lengh in the first 16bits
             *       and the count in the second 16bits
             */

            /* remove the table id from the ordinal */
            ord &= IPW_ORD_TABLE_VALUE_MASK;

            /* boundary check */
            if (ord > priv->table2_len) {
                  IPW_DEBUG_ORD("ordinal value too long\n");
                  return -EINVAL;
            }

            /* get the address of statistic */
            addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));

            /* get the second DW of statistics ;
             * two 16-bit words - first is length, second is count */
            field_info =
                ipw_read_reg32(priv,
                           priv->table2_addr + (ord << 3) +
                           sizeof(u32));

            /* get each entry length */
            field_len = *((u16 *) & field_info);

            /* get number of entries */
            field_count = *(((u16 *) & field_info) + 1);

            /* abort if not enought memory */
            total_len = field_len * field_count;
            if (total_len > *len) {
                  *len = total_len;
                  return -EINVAL;
            }

            *len = total_len;
            if (!total_len)
                  return 0;

            IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
                        "field_info = 0x%08x\n",
                        addr, total_len, field_info);
            ipw_read_indirect(priv, addr, val, total_len);
            break;

      default:
            IPW_DEBUG_ORD("Invalid ordinal!\n");
            return -EINVAL;

      }

      return 0;
}

static void ipw_init_ordinals(struct ipw_priv *priv)
{
      priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
      priv->table0_len = ipw_read32(priv, priv->table0_addr);

      IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
                  priv->table0_addr, priv->table0_len);

      priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
      priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);

      IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
                  priv->table1_addr, priv->table1_len);

      priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
      priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
      priv->table2_len &= 0x0000ffff;     /* use first two bytes */

      IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
                  priv->table2_addr, priv->table2_len);

}

static u32 ipw_register_toggle(u32 reg)
{
      reg &= ~IPW_START_STANDBY;
      if (reg & IPW_GATE_ODMA)
            reg &= ~IPW_GATE_ODMA;
      if (reg & IPW_GATE_IDMA)
            reg &= ~IPW_GATE_IDMA;
      if (reg & IPW_GATE_ADMA)
            reg &= ~IPW_GATE_ADMA;
      return reg;
}

/*
 * LED behavior:
 * - On radio ON, turn on any LEDs that require to be on during start
 * - On initialization, start unassociated blink
 * - On association, disable unassociated blink
 * - On disassociation, start unassociated blink
 * - On radio OFF, turn off any LEDs started during radio on
 *
 */
#define LD_TIME_LINK_ON msecs_to_jiffies(300)
#define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
#define LD_TIME_ACT_ON msecs_to_jiffies(250)

static void ipw_led_link_on(struct ipw_priv *priv)
{
      unsigned long flags;
      u32 led;

      /* If configured to not use LEDs, or nic_type is 1,
       * then we don't toggle a LINK led */
      if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
            return;

      spin_lock_irqsave(&priv->lock, flags);

      if (!(priv->status & STATUS_RF_KILL_MASK) &&
          !(priv->status & STATUS_LED_LINK_ON)) {
            IPW_DEBUG_LED("Link LED On\n");
            led = ipw_read_reg32(priv, IPW_EVENT_REG);
            led |= priv->led_association_on;

            led = ipw_register_toggle(led);

            IPW_DEBUG_LED("Reg: 0x%08X\n", led);
            ipw_write_reg32(priv, IPW_EVENT_REG, led);

            priv->status |= STATUS_LED_LINK_ON;

            /* If we aren't associated, schedule turning the LED off */
            if (!(priv->status & STATUS_ASSOCIATED))
                  queue_delayed_work(priv->workqueue,
                                 &priv->led_link_off,
                                 LD_TIME_LINK_ON);
      }

      spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_bg_led_link_on(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, led_link_on.work);
      mutex_lock(&priv->mutex);
      ipw_led_link_on(priv);
      mutex_unlock(&priv->mutex);
}

static void ipw_led_link_off(struct ipw_priv *priv)
{
      unsigned long flags;
      u32 led;

      /* If configured not to use LEDs, or nic type is 1,
       * then we don't goggle the LINK led. */
      if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
            return;

      spin_lock_irqsave(&priv->lock, flags);

      if (priv->status & STATUS_LED_LINK_ON) {
            led = ipw_read_reg32(priv, IPW_EVENT_REG);
            led &= priv->led_association_off;
            led = ipw_register_toggle(led);

            IPW_DEBUG_LED("Reg: 0x%08X\n", led);
            ipw_write_reg32(priv, IPW_EVENT_REG, led);

            IPW_DEBUG_LED("Link LED Off\n");

            priv->status &= ~STATUS_LED_LINK_ON;

            /* If we aren't associated and the radio is on, schedule
             * turning the LED on (blink while unassociated) */
            if (!(priv->status & STATUS_RF_KILL_MASK) &&
                !(priv->status & STATUS_ASSOCIATED))
                  queue_delayed_work(priv->workqueue, &priv->led_link_on,
                                 LD_TIME_LINK_OFF);

      }

      spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_bg_led_link_off(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, led_link_off.work);
      mutex_lock(&priv->mutex);
      ipw_led_link_off(priv);
      mutex_unlock(&priv->mutex);
}

static void __ipw_led_activity_on(struct ipw_priv *priv)
{
      u32 led;

      if (priv->config & CFG_NO_LED)
            return;

      if (priv->status & STATUS_RF_KILL_MASK)
            return;

      if (!(priv->status & STATUS_LED_ACT_ON)) {
            led = ipw_read_reg32(priv, IPW_EVENT_REG);
            led |= priv->led_activity_on;

            led = ipw_register_toggle(led);

            IPW_DEBUG_LED("Reg: 0x%08X\n", led);
            ipw_write_reg32(priv, IPW_EVENT_REG, led);

            IPW_DEBUG_LED("Activity LED On\n");

            priv->status |= STATUS_LED_ACT_ON;

            cancel_delayed_work(&priv->led_act_off);
            queue_delayed_work(priv->workqueue, &priv->led_act_off,
                           LD_TIME_ACT_ON);
      } else {
            /* Reschedule LED off for full time period */
            cancel_delayed_work(&priv->led_act_off);
            queue_delayed_work(priv->workqueue, &priv->led_act_off,
                           LD_TIME_ACT_ON);
      }
}

#if 0
void ipw_led_activity_on(struct ipw_priv *priv)
{
      unsigned long flags;
      spin_lock_irqsave(&priv->lock, flags);
      __ipw_led_activity_on(priv);
      spin_unlock_irqrestore(&priv->lock, flags);
}
#endif  /*  0  */

static void ipw_led_activity_off(struct ipw_priv *priv)
{
      unsigned long flags;
      u32 led;

      if (priv->config & CFG_NO_LED)
            return;

      spin_lock_irqsave(&priv->lock, flags);

      if (priv->status & STATUS_LED_ACT_ON) {
            led = ipw_read_reg32(priv, IPW_EVENT_REG);
            led &= priv->led_activity_off;

            led = ipw_register_toggle(led);

            IPW_DEBUG_LED("Reg: 0x%08X\n", led);
            ipw_write_reg32(priv, IPW_EVENT_REG, led);

            IPW_DEBUG_LED("Activity LED Off\n");

            priv->status &= ~STATUS_LED_ACT_ON;
      }

      spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_bg_led_activity_off(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, led_act_off.work);
      mutex_lock(&priv->mutex);
      ipw_led_activity_off(priv);
      mutex_unlock(&priv->mutex);
}

static void ipw_led_band_on(struct ipw_priv *priv)
{
      unsigned long flags;
      u32 led;

      /* Only nic type 1 supports mode LEDs */
      if (priv->config & CFG_NO_LED ||
          priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
            return;

      spin_lock_irqsave(&priv->lock, flags);

      led = ipw_read_reg32(priv, IPW_EVENT_REG);
      if (priv->assoc_network->mode == IEEE_A) {
            led |= priv->led_ofdm_on;
            led &= priv->led_association_off;
            IPW_DEBUG_LED("Mode LED On: 802.11a\n");
      } else if (priv->assoc_network->mode == IEEE_G) {
            led |= priv->led_ofdm_on;
            led |= priv->led_association_on;
            IPW_DEBUG_LED("Mode LED On: 802.11g\n");
      } else {
            led &= priv->led_ofdm_off;
            led |= priv->led_association_on;
            IPW_DEBUG_LED("Mode LED On: 802.11b\n");
      }

      led = ipw_register_toggle(led);

      IPW_DEBUG_LED("Reg: 0x%08X\n", led);
      ipw_write_reg32(priv, IPW_EVENT_REG, led);

      spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_led_band_off(struct ipw_priv *priv)
{
      unsigned long flags;
      u32 led;

      /* Only nic type 1 supports mode LEDs */
      if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
            return;

      spin_lock_irqsave(&priv->lock, flags);

      led = ipw_read_reg32(priv, IPW_EVENT_REG);
      led &= priv->led_ofdm_off;
      led &= priv->led_association_off;

      led = ipw_register_toggle(led);

      IPW_DEBUG_LED("Reg: 0x%08X\n", led);
      ipw_write_reg32(priv, IPW_EVENT_REG, led);

      spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_led_radio_on(struct ipw_priv *priv)
{
      ipw_led_link_on(priv);
}

static void ipw_led_radio_off(struct ipw_priv *priv)
{
      ipw_led_activity_off(priv);
      ipw_led_link_off(priv);
}

static void ipw_led_link_up(struct ipw_priv *priv)
{
      /* Set the Link Led on for all nic types */
      ipw_led_link_on(priv);
}

static void ipw_led_link_down(struct ipw_priv *priv)
{
      ipw_led_activity_off(priv);
      ipw_led_link_off(priv);

      if (priv->status & STATUS_RF_KILL_MASK)
            ipw_led_radio_off(priv);
}

static void ipw_led_init(struct ipw_priv *priv)
{
      priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];

      /* Set the default PINs for the link and activity leds */
      priv->led_activity_on = IPW_ACTIVITY_LED;
      priv->led_activity_off = ~(IPW_ACTIVITY_LED);

      priv->led_association_on = IPW_ASSOCIATED_LED;
      priv->led_association_off = ~(IPW_ASSOCIATED_LED);

      /* Set the default PINs for the OFDM leds */
      priv->led_ofdm_on = IPW_OFDM_LED;
      priv->led_ofdm_off = ~(IPW_OFDM_LED);

      switch (priv->nic_type) {
      case EEPROM_NIC_TYPE_1:
            /* In this NIC type, the LEDs are reversed.... */
            priv->led_activity_on = IPW_ASSOCIATED_LED;
            priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
            priv->led_association_on = IPW_ACTIVITY_LED;
            priv->led_association_off = ~(IPW_ACTIVITY_LED);

            if (!(priv->config & CFG_NO_LED))
                  ipw_led_band_on(priv);

            /* And we don't blink link LEDs for this nic, so
             * just return here */
            return;

      case EEPROM_NIC_TYPE_3:
      case EEPROM_NIC_TYPE_2:
      case EEPROM_NIC_TYPE_4:
      case EEPROM_NIC_TYPE_0:
            break;

      default:
            IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
                         priv->nic_type);
            priv->nic_type = EEPROM_NIC_TYPE_0;
            break;
      }

      if (!(priv->config & CFG_NO_LED)) {
            if (priv->status & STATUS_ASSOCIATED)
                  ipw_led_link_on(priv);
            else
                  ipw_led_link_off(priv);
      }
}

static void ipw_led_shutdown(struct ipw_priv *priv)
{
      ipw_led_activity_off(priv);
      ipw_led_link_off(priv);
      ipw_led_band_off(priv);
      cancel_delayed_work(&priv->led_link_on);
      cancel_delayed_work(&priv->led_link_off);
      cancel_delayed_work(&priv->led_act_off);
}

/*
 * The following adds a new attribute to the sysfs representation
 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
 * used for controling the debug level.
 *
 * See the level definitions in ipw for details.
 */
static ssize_t show_debug_level(struct device_driver *d, char *buf)
{
      return sprintf(buf, "0x%08X\n", ipw_debug_level);
}

static ssize_t store_debug_level(struct device_driver *d, const char *buf,
                         size_t count)
{
      char *p = (char *)buf;
      u32 val;

      if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
            p++;
            if (p[0] == 'x' || p[0] == 'X')
                  p++;
            val = simple_strtoul(p, &p, 16);
      } else
            val = simple_strtoul(p, &p, 10);
      if (p == buf)
            printk(KERN_INFO DRV_NAME
                   ": %s is not in hex or decimal form.\n", buf);
      else
            ipw_debug_level = val;

      return strnlen(buf, count);
}

static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
               show_debug_level, store_debug_level);

static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
{
      /* length = 1st dword in log */
      return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
}

static void ipw_capture_event_log(struct ipw_priv *priv,
                          u32 log_len, struct ipw_event *log)
{
      u32 base;

      if (log_len) {
            base = ipw_read32(priv, IPW_EVENT_LOG);
            ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
                          (u8 *) log, sizeof(*log) * log_len);
      }
}

static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
{
      struct ipw_fw_error *error;
      u32 log_len = ipw_get_event_log_len(priv);
      u32 base = ipw_read32(priv, IPW_ERROR_LOG);
      u32 elem_len = ipw_read_reg32(priv, base);

      error = kmalloc(sizeof(*error) +
                  sizeof(*error->elem) * elem_len +
                  sizeof(*error->log) * log_len, GFP_ATOMIC);
      if (!error) {
            IPW_ERROR("Memory allocation for firmware error log "
                    "failed.\n");
            return NULL;
      }
      error->jiffies = jiffies;
      error->status = priv->status;
      error->config = priv->config;
      error->elem_len = elem_len;
      error->log_len = log_len;
      error->elem = (struct ipw_error_elem *)error->payload;
      error->log = (struct ipw_event *)(error->elem + elem_len);

      ipw_capture_event_log(priv, log_len, error->log);

      if (elem_len)
            ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
                          sizeof(*error->elem) * elem_len);

      return error;
}

static ssize_t show_event_log(struct device *d,
                        struct device_attribute *attr, char *buf)
{
      struct ipw_priv *priv = dev_get_drvdata(d);
      u32 log_len = ipw_get_event_log_len(priv);
      u32 log_size;
      struct ipw_event *log;
      u32 len = 0, i;

      /* not using min() because of its strict type checking */
      log_size = PAGE_SIZE / sizeof(*log) > log_len ?
                  sizeof(*log) * log_len : PAGE_SIZE;
      log = kzalloc(log_size, GFP_KERNEL);
      if (!log) {
            IPW_ERROR("Unable to allocate memory for log\n");
            return 0;
      }
      log_len = log_size / sizeof(*log);
      ipw_capture_event_log(priv, log_len, log);

      len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
      for (i = 0; i < log_len; i++)
            len += snprintf(buf + len, PAGE_SIZE - len,
                        "\n%08X%08X%08X",
                        log[i].time, log[i].event, log[i].data);
      len += snprintf(buf + len, PAGE_SIZE - len, "\n");
      kfree(log);
      return len;
}

static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);

static ssize_t show_error(struct device *d,
                    struct device_attribute *attr, char *buf)
{
      struct ipw_priv *priv = dev_get_drvdata(d);
      u32 len = 0, i;
      if (!priv->error)
            return 0;
      len += snprintf(buf + len, PAGE_SIZE - len,
                  "%08lX%08X%08X%08X",
                  priv->error->jiffies,
                  priv->error->status,
                  priv->error->config, priv->error->elem_len);
      for (i = 0; i < priv->error->elem_len; i++)
            len += snprintf(buf + len, PAGE_SIZE - len,
                        "\n%08X%08X%08X%08X%08X%08X%08X",
                        priv->error->elem[i].time,
                        priv->error->elem[i].desc,
                        priv->error->elem[i].blink1,
                        priv->error->elem[i].blink2,
                        priv->error->elem[i].link1,
                        priv->error->elem[i].link2,
                        priv->error->elem[i].data);

      len += snprintf(buf + len, PAGE_SIZE - len,
                  "\n%08X", priv->error->log_len);
      for (i = 0; i < priv->error->log_len; i++)
            len += snprintf(buf + len, PAGE_SIZE - len,
                        "\n%08X%08X%08X",
                        priv->error->log[i].time,
                        priv->error->log[i].event,
                        priv->error->log[i].data);
      len += snprintf(buf + len, PAGE_SIZE - len, "\n");
      return len;
}

static ssize_t clear_error(struct device *d,
                     struct device_attribute *attr,
                     const char *buf, size_t count)
{
      struct ipw_priv *priv = dev_get_drvdata(d);

      kfree(priv->error);
      priv->error = NULL;
      return count;
}

static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);

static ssize_t show_cmd_log(struct device *d,
                      struct device_attribute *attr, char *buf)
{
      struct ipw_priv *priv = dev_get_drvdata(d);
      u32 len = 0, i;
      if (!priv->cmdlog)
            return 0;
      for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
           (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
           i = (i + 1) % priv->cmdlog_len) {
            len +=
                snprintf(buf + len, PAGE_SIZE - len,
                       "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
                       priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
                       priv->cmdlog[i].cmd.len);
            len +=
                snprintk_buf(buf + len, PAGE_SIZE - len,
                         (u8 *) priv->cmdlog[i].cmd.param,
                         priv->cmdlog[i].cmd.len);
            len += snprintf(buf + len, PAGE_SIZE - len, "\n");
      }
      len += snprintf(buf + len, PAGE_SIZE - len, "\n");
      return len;
}

static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);

#ifdef CONFIG_IPW2200_PROMISCUOUS
static void ipw_prom_free(struct ipw_priv *priv);
static int ipw_prom_alloc(struct ipw_priv *priv);
static ssize_t store_rtap_iface(struct device *d,
                   struct device_attribute *attr,
                   const char *buf, size_t count)
{
      struct ipw_priv *priv = dev_get_drvdata(d);
      int rc = 0;

      if (count < 1)
            return -EINVAL;

      switch (buf[0]) {
      case '0':
            if (!rtap_iface)
                  return count;

            if (netif_running(priv->prom_net_dev)) {
                  IPW_WARNING("Interface is up.  Cannot unregister.\n");
                  return count;
            }

            ipw_prom_free(priv);
            rtap_iface = 0;
            break;

      case '1':
            if (rtap_iface)
                  return count;

            rc = ipw_prom_alloc(priv);
            if (!rc)
                  rtap_iface = 1;
            break;

      default:
            return -EINVAL;
      }

      if (rc) {
            IPW_ERROR("Failed to register promiscuous network "
                    "device (error %d).\n", rc);
      }

      return count;
}

static ssize_t show_rtap_iface(struct device *d,
                  struct device_attribute *attr,
                  char *buf)
{
      struct ipw_priv *priv = dev_get_drvdata(d);
      if (rtap_iface)
            return sprintf(buf, "%s", priv->prom_net_dev->name);
      else {
            buf[0] = '-';
            buf[1] = '1';
            buf[2] = '\0';
            return 3;
      }
}

static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
               store_rtap_iface);

static ssize_t store_rtap_filter(struct device *d,
                   struct device_attribute *attr,
                   const char *buf, size_t count)
{
      struct ipw_priv *priv = dev_get_drvdata(d);

      if (!priv->prom_priv) {
            IPW_ERROR("Attempting to set filter without "
                    "rtap_iface enabled.\n");
            return -EPERM;
      }

      priv->prom_priv->filter = simple_strtol(buf, NULL, 0);

      IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
                   BIT_ARG16(priv->prom_priv->filter));

      return count;
}

static ssize_t show_rtap_filter(struct device *d,
                  struct device_attribute *attr,
                  char *buf)
{
      struct ipw_priv *priv = dev_get_drvdata(d);
      return sprintf(buf, "0x%04X",
                   priv->prom_priv ? priv->prom_priv->filter : 0);
}

static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
               store_rtap_filter);
#endif

static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
                       char *buf)
{
      struct ipw_priv *priv = dev_get_drvdata(d);
      return sprintf(buf, "%d\n", priv->ieee->scan_age);
}

static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
                        const char *buf, size_t count)
{
      struct ipw_priv *priv = dev_get_drvdata(d);
      struct net_device *dev = priv->net_dev;
      char buffer[] = "00000000";
      unsigned long len =
          (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
      unsigned long val;
      char *p = buffer;

      IPW_DEBUG_INFO("enter\n");

      strncpy(buffer, buf, len);
      buffer[len] = 0;

      if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
            p++;
            if (p[0] == 'x' || p[0] == 'X')
                  p++;
            val = simple_strtoul(p, &p, 16);
      } else
            val = simple_strtoul(p, &p, 10);
      if (p == buffer) {
            IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
      } else {
            priv->ieee->scan_age = val;
            IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
      }

      IPW_DEBUG_INFO("exit\n");
      return len;
}

static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);

static ssize_t show_led(struct device *d, struct device_attribute *attr,
                  char *buf)
{
      struct ipw_priv *priv = dev_get_drvdata(d);
      return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
}

static ssize_t store_led(struct device *d, struct device_attribute *attr,
                   const char *buf, size_t count)
{
      struct ipw_priv *priv = dev_get_drvdata(d);

      IPW_DEBUG_INFO("enter\n");

      if (count == 0)
            return 0;

      if (*buf == 0) {
            IPW_DEBUG_LED("Disabling LED control.\n");
            priv->config |= CFG_NO_LED;
            ipw_led_shutdown(priv);
      } else {
            IPW_DEBUG_LED("Enabling LED control.\n");
            priv->config &= ~CFG_NO_LED;
            ipw_led_init(priv);
      }

      IPW_DEBUG_INFO("exit\n");
      return count;
}

static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);

static ssize_t show_status(struct device *d,
                     struct device_attribute *attr, char *buf)
{
      struct ipw_priv *p = d->driver_data;
      return sprintf(buf, "0x%08x\n", (int)p->status);
}

static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);

static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
                  char *buf)
{
      struct ipw_priv *p = d->driver_data;
      return sprintf(buf, "0x%08x\n", (int)p->config);
}

static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);

static ssize_t show_nic_type(struct device *d,
                       struct device_attribute *attr, char *buf)
{
      struct ipw_priv *priv = d->driver_data;
      return sprintf(buf, "TYPE: %d\n", priv->nic_type);
}

static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);

static ssize_t show_ucode_version(struct device *d,
                          struct device_attribute *attr, char *buf)
{
      u32 len = sizeof(u32), tmp = 0;
      struct ipw_priv *p = d->driver_data;

      if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
            return 0;

      return sprintf(buf, "0x%08x\n", tmp);
}

static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);

static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
                  char *buf)
{
      u32 len = sizeof(u32), tmp = 0;
      struct ipw_priv *p = d->driver_data;

      if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
            return 0;

      return sprintf(buf, "0x%08x\n", tmp);
}

static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);

/*
 * Add a device attribute to view/control the delay between eeprom
 * operations.
 */
static ssize_t show_eeprom_delay(struct device *d,
                         struct device_attribute *attr, char *buf)
{
      int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
      return sprintf(buf, "%i\n", n);
}
static ssize_t store_eeprom_delay(struct device *d,
                          struct device_attribute *attr,
                          const char *buf, size_t count)
{
      struct ipw_priv *p = d->driver_data;
      sscanf(buf, "%i", &p->eeprom_delay);
      return strnlen(buf, count);
}

static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
               show_eeprom_delay, store_eeprom_delay);

static ssize_t show_command_event_reg(struct device *d,
                              struct device_attribute *attr, char *buf)
{
      u32 reg = 0;
      struct ipw_priv *p = d->driver_data;

      reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
      return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_command_event_reg(struct device *d,
                               struct device_attribute *attr,
                               const char *buf, size_t count)
{
      u32 reg;
      struct ipw_priv *p = d->driver_data;

      sscanf(buf, "%x", &reg);
      ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
      return strnlen(buf, count);
}

static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
               show_command_event_reg, store_command_event_reg);

static ssize_t show_mem_gpio_reg(struct device *d,
                         struct device_attribute *attr, char *buf)
{
      u32 reg = 0;
      struct ipw_priv *p = d->driver_data;

      reg = ipw_read_reg32(p, 0x301100);
      return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_mem_gpio_reg(struct device *d,
                          struct device_attribute *attr,
                          const char *buf, size_t count)
{
      u32 reg;
      struct ipw_priv *p = d->driver_data;

      sscanf(buf, "%x", &reg);
      ipw_write_reg32(p, 0x301100, reg);
      return strnlen(buf, count);
}

static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
               show_mem_gpio_reg, store_mem_gpio_reg);

static ssize_t show_indirect_dword(struct device *d,
                           struct device_attribute *attr, char *buf)
{
      u32 reg = 0;
      struct ipw_priv *priv = d->driver_data;

      if (priv->status & STATUS_INDIRECT_DWORD)
            reg = ipw_read_reg32(priv, priv->indirect_dword);
      else
            reg = 0;

      return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_indirect_dword(struct device *d,
                            struct device_attribute *attr,
                            const char *buf, size_t count)
{
      struct ipw_priv *priv = d->driver_data;

      sscanf(buf, "%x", &priv->indirect_dword);
      priv->status |= STATUS_INDIRECT_DWORD;
      return strnlen(buf, count);
}

static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
               show_indirect_dword, store_indirect_dword);

static ssize_t show_indirect_byte(struct device *d,
                          struct device_attribute *attr, char *buf)
{
      u8 reg = 0;
      struct ipw_priv *priv = d->driver_data;

      if (priv->status & STATUS_INDIRECT_BYTE)
            reg = ipw_read_reg8(priv, priv->indirect_byte);
      else
            reg = 0;

      return sprintf(buf, "0x%02x\n", reg);
}
static ssize_t store_indirect_byte(struct device *d,
                           struct device_attribute *attr,
                           const char *buf, size_t count)
{
      struct ipw_priv *priv = d->driver_data;

      sscanf(buf, "%x", &priv->indirect_byte);
      priv->status |= STATUS_INDIRECT_BYTE;
      return strnlen(buf, count);
}

static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
               show_indirect_byte, store_indirect_byte);

static ssize_t show_direct_dword(struct device *d,
                         struct device_attribute *attr, char *buf)
{
      u32 reg = 0;
      struct ipw_priv *priv = d->driver_data;

      if (priv->status & STATUS_DIRECT_DWORD)
            reg = ipw_read32(priv, priv->direct_dword);
      else
            reg = 0;

      return sprintf(buf, "0x%08x\n", reg);
}
static ssize_t store_direct_dword(struct device *d,
                          struct device_attribute *attr,
                          const char *buf, size_t count)
{
      struct ipw_priv *priv = d->driver_data;

      sscanf(buf, "%x", &priv->direct_dword);
      priv->status |= STATUS_DIRECT_DWORD;
      return strnlen(buf, count);
}

static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
               show_direct_dword, store_direct_dword);

static int rf_kill_active(struct ipw_priv *priv)
{
      if (0 == (ipw_read32(priv, 0x30) & 0x10000))
            priv->status |= STATUS_RF_KILL_HW;
      else
            priv->status &= ~STATUS_RF_KILL_HW;

      return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
}

static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
                      char *buf)
{
      /* 0 - RF kill not enabled
         1 - SW based RF kill active (sysfs)
         2 - HW based RF kill active
         3 - Both HW and SW baed RF kill active */
      struct ipw_priv *priv = d->driver_data;
      int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
          (rf_kill_active(priv) ? 0x2 : 0x0);
      return sprintf(buf, "%i\n", val);
}

static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
{
      if ((disable_radio ? 1 : 0) ==
          ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
            return 0;

      IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
                    disable_radio ? "OFF" : "ON");

      if (disable_radio) {
            priv->status |= STATUS_RF_KILL_SW;

            if (priv->workqueue) {
                  cancel_delayed_work(&priv->request_scan);
                  cancel_delayed_work(&priv->scan_event);
            }
            queue_work(priv->workqueue, &priv->down);
      } else {
            priv->status &= ~STATUS_RF_KILL_SW;
            if (rf_kill_active(priv)) {
                  IPW_DEBUG_RF_KILL("Can not turn radio back on - "
                                "disabled by HW switch\n");
                  /* Make sure the RF_KILL check timer is running */
                  cancel_delayed_work(&priv->rf_kill);
                  queue_delayed_work(priv->workqueue, &priv->rf_kill,
                                 round_jiffies_relative(2 * HZ));
            } else
                  queue_work(priv->workqueue, &priv->up);
      }

      return 1;
}

static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
                       const char *buf, size_t count)
{
      struct ipw_priv *priv = d->driver_data;

      ipw_radio_kill_sw(priv, buf[0] == '1');

      return count;
}

static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);

static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
                         char *buf)
{
      struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
      int pos = 0, len = 0;
      if (priv->config & CFG_SPEED_SCAN) {
            while (priv->speed_scan[pos] != 0)
                  len += sprintf(&buf[len], "%d ",
                               priv->speed_scan[pos++]);
            return len + sprintf(&buf[len], "\n");
      }

      return sprintf(buf, "0\n");
}

static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
                        const char *buf, size_t count)
{
      struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
      int channel, pos = 0;
      const char *p = buf;

      /* list of space separated channels to scan, optionally ending with 0 */
      while ((channel = simple_strtol(p, NULL, 0))) {
            if (pos == MAX_SPEED_SCAN - 1) {
                  priv->speed_scan[pos] = 0;
                  break;
            }

            if (ieee80211_is_valid_channel(priv->ieee, channel))
                  priv->speed_scan[pos++] = channel;
            else
                  IPW_WARNING("Skipping invalid channel request: %d\n",
                            channel);
            p = strchr(p, ' ');
            if (!p)
                  break;
            while (*p == ' ' || *p == '\t')
                  p++;
      }

      if (pos == 0)
            priv->config &= ~CFG_SPEED_SCAN;
      else {
            priv->speed_scan_pos = 0;
            priv->config |= CFG_SPEED_SCAN;
      }

      return count;
}

static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
               store_speed_scan);

static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
                        char *buf)
{
      struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
      return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
}

static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
                         const char *buf, size_t count)
{
      struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
      if (buf[0] == '1')
            priv->config |= CFG_NET_STATS;
      else
            priv->config &= ~CFG_NET_STATS;

      return count;
}

static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
               show_net_stats, store_net_stats);

static ssize_t show_channels(struct device *d,
                       struct device_attribute *attr,
                       char *buf)
{
      struct ipw_priv *priv = dev_get_drvdata(d);
      const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
      int len = 0, i;

      len = sprintf(&buf[len],
                  "Displaying %d channels in 2.4Ghz band "
                  "(802.11bg):\n", geo->bg_channels);

      for (i = 0; i < geo->bg_channels; i++) {
            len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
                         geo->bg[i].channel,
                         geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
                         " (radar spectrum)" : "",
                         ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
                        (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
                         ? "" : ", IBSS",
                         geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
                         "passive only" : "active/passive",
                         geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
                         "B" : "B/G");
      }

      len += sprintf(&buf[len],
                   "Displaying %d channels in 5.2Ghz band "
                   "(802.11a):\n", geo->a_channels);
      for (i = 0; i < geo->a_channels; i++) {
            len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
                         geo->a[i].channel,
                         geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
                         " (radar spectrum)" : "",
                         ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
                        (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
                         ? "" : ", IBSS",
                         geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
                         "passive only" : "active/passive");
      }

      return len;
}

static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);

static void notify_wx_assoc_event(struct ipw_priv *priv)
{
      union iwreq_data wrqu;
      wrqu.ap_addr.sa_family = ARPHRD_ETHER;
      if (priv->status & STATUS_ASSOCIATED)
            memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
      else
            memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
      wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
}

static void ipw_irq_tasklet(struct ipw_priv *priv)
{
      u32 inta, inta_mask, handled = 0;
      unsigned long flags;
      int rc = 0;

      spin_lock_irqsave(&priv->irq_lock, flags);

      inta = ipw_read32(priv, IPW_INTA_RW);
      inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
      inta &= (IPW_INTA_MASK_ALL & inta_mask);

      /* Add any cached INTA values that need to be handled */
      inta |= priv->isr_inta;

      spin_unlock_irqrestore(&priv->irq_lock, flags);

      spin_lock_irqsave(&priv->lock, flags);

      /* handle all the justifications for the interrupt */
      if (inta & IPW_INTA_BIT_RX_TRANSFER) {
            ipw_rx(priv);
            handled |= IPW_INTA_BIT_RX_TRANSFER;
      }

      if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
            IPW_DEBUG_HC("Command completed.\n");
            rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
            priv->status &= ~STATUS_HCMD_ACTIVE;
            wake_up_interruptible(&priv->wait_command_queue);
            handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
      }

      if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
            IPW_DEBUG_TX("TX_QUEUE_1\n");
            rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
            handled |= IPW_INTA_BIT_TX_QUEUE_1;
      }

      if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
            IPW_DEBUG_TX("TX_QUEUE_2\n");
            rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
            handled |= IPW_INTA_BIT_TX_QUEUE_2;
      }

      if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
            IPW_DEBUG_TX("TX_QUEUE_3\n");
            rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
            handled |= IPW_INTA_BIT_TX_QUEUE_3;
      }

      if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
            IPW_DEBUG_TX("TX_QUEUE_4\n");
            rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
            handled |= IPW_INTA_BIT_TX_QUEUE_4;
      }

      if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
            IPW_WARNING("STATUS_CHANGE\n");
            handled |= IPW_INTA_BIT_STATUS_CHANGE;
      }

      if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
            IPW_WARNING("TX_PERIOD_EXPIRED\n");
            handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
      }

      if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
            IPW_WARNING("HOST_CMD_DONE\n");
            handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
      }

      if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
            IPW_WARNING("FW_INITIALIZATION_DONE\n");
            handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
      }

      if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
            IPW_WARNING("PHY_OFF_DONE\n");
            handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
      }

      if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
            IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
            priv->status |= STATUS_RF_KILL_HW;
            wake_up_interruptible(&priv->wait_command_queue);
            priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
            cancel_delayed_work(&priv->request_scan);
            cancel_delayed_work(&priv->scan_event);
            schedule_work(&priv->link_down);
            queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
            handled |= IPW_INTA_BIT_RF_KILL_DONE;
      }

      if (inta & IPW_INTA_BIT_FATAL_ERROR) {
            IPW_WARNING("Firmware error detected.  Restarting.\n");
            if (priv->error) {
                  IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
                  if (ipw_debug_level & IPW_DL_FW_ERRORS) {
                        struct ipw_fw_error *error =
                            ipw_alloc_error_log(priv);
                        ipw_dump_error_log(priv, error);
                        kfree(error);
                  }
            } else {
                  priv->error = ipw_alloc_error_log(priv);
                  if (priv->error)
                        IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
                  else
                        IPW_DEBUG_FW("Error allocating sysfs 'error' "
                                   "log.\n");
                  if (ipw_debug_level & IPW_DL_FW_ERRORS)
                        ipw_dump_error_log(priv, priv->error);
            }

            /* XXX: If hardware encryption is for WPA/WPA2,
             * we have to notify the supplicant. */
            if (priv->ieee->sec.encrypt) {
                  priv->status &= ~STATUS_ASSOCIATED;
                  notify_wx_assoc_event(priv);
            }

            /* Keep the restart process from trying to send host
             * commands by clearing the INIT status bit */
            priv->status &= ~STATUS_INIT;

            /* Cancel currently queued command. */
            priv->status &= ~STATUS_HCMD_ACTIVE;
            wake_up_interruptible(&priv->wait_command_queue);

            queue_work(priv->workqueue, &priv->adapter_restart);
            handled |= IPW_INTA_BIT_FATAL_ERROR;
      }

      if (inta & IPW_INTA_BIT_PARITY_ERROR) {
            IPW_ERROR("Parity error\n");
            handled |= IPW_INTA_BIT_PARITY_ERROR;
      }

      if (handled != inta) {
            IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
      }

      spin_unlock_irqrestore(&priv->lock, flags);

      /* enable all interrupts */
      ipw_enable_interrupts(priv);
}

#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
static char *get_cmd_string(u8 cmd)
{
      switch (cmd) {
            IPW_CMD(HOST_COMPLETE);
            IPW_CMD(POWER_DOWN);
            IPW_CMD(SYSTEM_CONFIG);
            IPW_CMD(MULTICAST_ADDRESS);
            IPW_CMD(SSID);
            IPW_CMD(ADAPTER_ADDRESS);
            IPW_CMD(PORT_TYPE);
            IPW_CMD(RTS_THRESHOLD);
            IPW_CMD(FRAG_THRESHOLD);
            IPW_CMD(POWER_MODE);
            IPW_CMD(WEP_KEY);
            IPW_CMD(TGI_TX_KEY);
            IPW_CMD(SCAN_REQUEST);
            IPW_CMD(SCAN_REQUEST_EXT);
            IPW_CMD(ASSOCIATE);
            IPW_CMD(SUPPORTED_RATES);
            IPW_CMD(SCAN_ABORT);
            IPW_CMD(TX_FLUSH);
            IPW_CMD(QOS_PARAMETERS);
            IPW_CMD(DINO_CONFIG);
            IPW_CMD(RSN_CAPABILITIES);
            IPW_CMD(RX_KEY);
            IPW_CMD(CARD_DISABLE);
            IPW_CMD(SEED_NUMBER);
            IPW_CMD(TX_POWER);
            IPW_CMD(COUNTRY_INFO);
            IPW_CMD(AIRONET_INFO);
            IPW_CMD(AP_TX_POWER);
            IPW_CMD(CCKM_INFO);
            IPW_CMD(CCX_VER_INFO);
            IPW_CMD(SET_CALIBRATION);
            IPW_CMD(SENSITIVITY_CALIB);
            IPW_CMD(RETRY_LIMIT);
            IPW_CMD(IPW_PRE_POWER_DOWN);
            IPW_CMD(VAP_BEACON_TEMPLATE);
            IPW_CMD(VAP_DTIM_PERIOD);
            IPW_CMD(EXT_SUPPORTED_RATES);
            IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
            IPW_CMD(VAP_QUIET_INTERVALS);
            IPW_CMD(VAP_CHANNEL_SWITCH);
            IPW_CMD(VAP_MANDATORY_CHANNELS);
            IPW_CMD(VAP_CELL_PWR_LIMIT);
            IPW_CMD(VAP_CF_PARAM_SET);
            IPW_CMD(VAP_SET_BEACONING_STATE);
            IPW_CMD(MEASUREMENT);
            IPW_CMD(POWER_CAPABILITY);
            IPW_CMD(SUPPORTED_CHANNELS);
            IPW_CMD(TPC_REPORT);
            IPW_CMD(WME_INFO);
            IPW_CMD(PRODUCTION_COMMAND);
      default:
            return "UNKNOWN";
      }
}

#define HOST_COMPLETE_TIMEOUT HZ

static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
{
      int rc = 0;
      unsigned long flags;

      spin_lock_irqsave(&priv->lock, flags);
      if (priv->status & STATUS_HCMD_ACTIVE) {
            IPW_ERROR("Failed to send %s: Already sending a command.\n",
                    get_cmd_string(cmd->cmd));
            spin_unlock_irqrestore(&priv->lock, flags);
            return -EAGAIN;
      }

      priv->status |= STATUS_HCMD_ACTIVE;

      if (priv->cmdlog) {
            priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
            priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
            priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
            memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
                   cmd->len);
            priv->cmdlog[priv->cmdlog_pos].retcode = -1;
      }

      IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
                 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
                 priv->status);

#ifndef DEBUG_CMD_WEP_KEY
      if (cmd->cmd == IPW_CMD_WEP_KEY)
            IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
      else
#endif
            printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);

      rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
      if (rc) {
            priv->status &= ~STATUS_HCMD_ACTIVE;
            IPW_ERROR("Failed to send %s: Reason %d\n",
                    get_cmd_string(cmd->cmd), rc);
            spin_unlock_irqrestore(&priv->lock, flags);
            goto exit;
      }
      spin_unlock_irqrestore(&priv->lock, flags);

      rc = wait_event_interruptible_timeout(priv->wait_command_queue,
                                    !(priv->
                                    status & STATUS_HCMD_ACTIVE),
                                    HOST_COMPLETE_TIMEOUT);
      if (rc == 0) {
            spin_lock_irqsave(&priv->lock, flags);
            if (priv->status & STATUS_HCMD_ACTIVE) {
                  IPW_ERROR("Failed to send %s: Command timed out.\n",
                          get_cmd_string(cmd->cmd));
                  priv->status &= ~STATUS_HCMD_ACTIVE;
                  spin_unlock_irqrestore(&priv->lock, flags);
                  rc = -EIO;
                  goto exit;
            }
            spin_unlock_irqrestore(&priv->lock, flags);
      } else
            rc = 0;

      if (priv->status & STATUS_RF_KILL_HW) {
            IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
                    get_cmd_string(cmd->cmd));
            rc = -EIO;
            goto exit;
      }

      exit:
      if (priv->cmdlog) {
            priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
            priv->cmdlog_pos %= priv->cmdlog_len;
      }
      return rc;
}

static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
{
      struct host_cmd cmd = {
            .cmd = command,
      };

      return __ipw_send_cmd(priv, &cmd);
}

static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
                      void *data)
{
      struct host_cmd cmd = {
            .cmd = command,
            .len = len,
            .param = data,
      };

      return __ipw_send_cmd(priv, &cmd);
}

static int ipw_send_host_complete(struct ipw_priv *priv)
{
      if (!priv) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
}

static int ipw_send_system_config(struct ipw_priv *priv)
{
      return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
                        sizeof(priv->sys_config),
                        &priv->sys_config);
}

static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
{
      if (!priv || !ssid) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
                        ssid);
}

static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
{
      if (!priv || !mac) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
                   priv->net_dev->name, print_mac(mac, mac));

      return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
}

/*
 * NOTE: This must be executed from our workqueue as it results in udelay
 * being called which may corrupt the keyboard if executed on default
 * workqueue
 */
static void ipw_adapter_restart(void *adapter)
{
      struct ipw_priv *priv = adapter;

      if (priv->status & STATUS_RF_KILL_MASK)
            return;

      ipw_down(priv);

      if (priv->assoc_network &&
          (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
            ipw_remove_current_network(priv);

      if (ipw_up(priv)) {
            IPW_ERROR("Failed to up device\n");
            return;
      }
}

static void ipw_bg_adapter_restart(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, adapter_restart);
      mutex_lock(&priv->mutex);
      ipw_adapter_restart(priv);
      mutex_unlock(&priv->mutex);
}

#define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)

static void ipw_scan_check(void *data)
{
      struct ipw_priv *priv = data;
      if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
            IPW_DEBUG_SCAN("Scan completion watchdog resetting "
                         "adapter after (%dms).\n",
                         jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
            queue_work(priv->workqueue, &priv->adapter_restart);
      }
}

static void ipw_bg_scan_check(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, scan_check.work);
      mutex_lock(&priv->mutex);
      ipw_scan_check(priv);
      mutex_unlock(&priv->mutex);
}

static int ipw_send_scan_request_ext(struct ipw_priv *priv,
                             struct ipw_scan_request_ext *request)
{
      return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
                        sizeof(*request), request);
}

static int ipw_send_scan_abort(struct ipw_priv *priv)
{
      if (!priv) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
}

static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
{
      struct ipw_sensitivity_calib calib = {
            .beacon_rssi_raw = cpu_to_le16(sens),
      };

      return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
                        &calib);
}

static int ipw_send_associate(struct ipw_priv *priv,
                        struct ipw_associate *associate)
{
      struct ipw_associate tmp_associate;

      if (!priv || !associate) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      memcpy(&tmp_associate, associate, sizeof(*associate));
      tmp_associate.policy_support =
          cpu_to_le16(tmp_associate.policy_support);
      tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
      tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
      tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
      tmp_associate.listen_interval =
          cpu_to_le16(tmp_associate.listen_interval);
      tmp_associate.beacon_interval =
          cpu_to_le16(tmp_associate.beacon_interval);
      tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);

      return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
                        &tmp_associate);
}

static int ipw_send_supported_rates(struct ipw_priv *priv,
                            struct ipw_supported_rates *rates)
{
      if (!priv || !rates) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
                        rates);
}

static int ipw_set_random_seed(struct ipw_priv *priv)
{
      u32 val;

      if (!priv) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      get_random_bytes(&val, sizeof(val));

      return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
}

static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
{
      if (!priv) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      phy_off = cpu_to_le32(phy_off);
      return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
                        &phy_off);
}

static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
{
      if (!priv || !power) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
}

static int ipw_set_tx_power(struct ipw_priv *priv)
{
      const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
      struct ipw_tx_power tx_power;
      s8 max_power;
      int i;

      memset(&tx_power, 0, sizeof(tx_power));

      /* configure device for 'G' band */
      tx_power.ieee_mode = IPW_G_MODE;
      tx_power.num_channels = geo->bg_channels;
      for (i = 0; i < geo->bg_channels; i++) {
            max_power = geo->bg[i].max_power;
            tx_power.channels_tx_power[i].channel_number =
                geo->bg[i].channel;
            tx_power.channels_tx_power[i].tx_power = max_power ?
                min(max_power, priv->tx_power) : priv->tx_power;
      }
      if (ipw_send_tx_power(priv, &tx_power))
            return -EIO;

      /* configure device to also handle 'B' band */
      tx_power.ieee_mode = IPW_B_MODE;
      if (ipw_send_tx_power(priv, &tx_power))
            return -EIO;

      /* configure device to also handle 'A' band */
      if (priv->ieee->abg_true) {
            tx_power.ieee_mode = IPW_A_MODE;
            tx_power.num_channels = geo->a_channels;
            for (i = 0; i < tx_power.num_channels; i++) {
                  max_power = geo->a[i].max_power;
                  tx_power.channels_tx_power[i].channel_number =
                      geo->a[i].channel;
                  tx_power.channels_tx_power[i].tx_power = max_power ?
                      min(max_power, priv->tx_power) : priv->tx_power;
            }
            if (ipw_send_tx_power(priv, &tx_power))
                  return -EIO;
      }
      return 0;
}

static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
{
      struct ipw_rts_threshold rts_threshold = {
            .rts_threshold = cpu_to_le16(rts),
      };

      if (!priv) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
                        sizeof(rts_threshold), &rts_threshold);
}

static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
{
      struct ipw_frag_threshold frag_threshold = {
            .frag_threshold = cpu_to_le16(frag),
      };

      if (!priv) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
                        sizeof(frag_threshold), &frag_threshold);
}

static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
{
      u32 param;

      if (!priv) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      /* If on battery, set to 3, if AC set to CAM, else user
       * level */
      switch (mode) {
      case IPW_POWER_BATTERY:
            param = IPW_POWER_INDEX_3;
            break;
      case IPW_POWER_AC:
            param = IPW_POWER_MODE_CAM;
            break;
      default:
            param = mode;
            break;
      }

      param = cpu_to_le32(param);
      return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
                        &param);
}

static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
{
      struct ipw_retry_limit retry_limit = {
            .short_retry_limit = slimit,
            .long_retry_limit = llimit
      };

      if (!priv) {
            IPW_ERROR("Invalid args\n");
            return -1;
      }

      return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
                        &retry_limit);
}

/*
 * The IPW device contains a Microwire compatible EEPROM that stores
 * various data like the MAC address.  Usually the firmware has exclusive
 * access to the eeprom, but during device initialization (before the
 * device driver has sent the HostComplete command to the firmware) the
 * device driver has read access to the EEPROM by way of indirect addressing
 * through a couple of memory mapped registers.
 *
 * The following is a simplified implementation for pulling data out of the
 * the eeprom, along with some helper functions to find information in
 * the per device private data's copy of the eeprom.
 *
 * NOTE: To better understand how these functions work (i.e what is a chip
 *       select and why do have to keep driving the eeprom clock?), read
 *       just about any data sheet for a Microwire compatible EEPROM.
 */

/* write a 32 bit value into the indirect accessor register */
static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
{
      ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);

      /* the eeprom requires some time to complete the operation */
      udelay(p->eeprom_delay);

      return;
}

/* perform a chip select operation */
static void eeprom_cs(struct ipw_priv *priv)
{
      eeprom_write_reg(priv, 0);
      eeprom_write_reg(priv, EEPROM_BIT_CS);
      eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
      eeprom_write_reg(priv, EEPROM_BIT_CS);
}

/* perform a chip select operation */
static void eeprom_disable_cs(struct ipw_priv *priv)
{
      eeprom_write_reg(priv, EEPROM_BIT_CS);
      eeprom_write_reg(priv, 0);
      eeprom_write_reg(priv, EEPROM_BIT_SK);
}

/* push a single bit down to the eeprom */
static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
{
      int d = (bit ? EEPROM_BIT_DI : 0);
      eeprom_write_reg(p, EEPROM_BIT_CS | d);
      eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
}

/* push an opcode followed by an address down to the eeprom */
static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
{
      int i;

      eeprom_cs(priv);
      eeprom_write_bit(priv, 1);
      eeprom_write_bit(priv, op & 2);
      eeprom_write_bit(priv, op & 1);
      for (i = 7; i >= 0; i--) {
            eeprom_write_bit(priv, addr & (1 << i));
      }
}

/* pull 16 bits off the eeprom, one bit at a time */
static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
{
      int i;
      u16 r = 0;

      /* Send READ Opcode */
      eeprom_op(priv, EEPROM_CMD_READ, addr);

      /* Send dummy bit */
      eeprom_write_reg(priv, EEPROM_BIT_CS);

      /* Read the byte off the eeprom one bit at a time */
      for (i = 0; i < 16; i++) {
            u32 data = 0;
            eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
            eeprom_write_reg(priv, EEPROM_BIT_CS);
            data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
            r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
      }

      /* Send another dummy bit */
      eeprom_write_reg(priv, 0);
      eeprom_disable_cs(priv);

      return r;
}

/* helper function for pulling the mac address out of the private */
/* data's copy of the eeprom data                                 */
static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
{
      memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
}

/*
 * Either the device driver (i.e. the host) or the firmware can
 * load eeprom data into the designated region in SRAM.  If neither
 * happens then the FW will shutdown with a fatal error.
 *
 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
 * bit needs region of shared SRAM needs to be non-zero.
 */
static void ipw_eeprom_init_sram(struct ipw_priv *priv)
{
      int i;
      u16 *eeprom = (u16 *) priv->eeprom;

      IPW_DEBUG_TRACE(">>\n");

      /* read entire contents of eeprom into private buffer */
      for (i = 0; i < 128; i++)
            eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));

      /*
         If the data looks correct, then copy it to our private
         copy.  Otherwise let the firmware know to perform the operation
         on its own.
       */
      if (priv->eeprom[EEPROM_VERSION] != 0) {
            IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");

            /* write the eeprom data to sram */
            for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
                  ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);

            /* Do not load eeprom data on fatal error or suspend */
            ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
      } else {
            IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");

            /* Load eeprom data on fatal error or suspend */
            ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
      }

      IPW_DEBUG_TRACE("<<\n");
}

static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
{
      count >>= 2;
      if (!count)
            return;
      _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
      while (count--)
            _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
}

static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
{
      ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
                  CB_NUMBER_OF_ELEMENTS_SMALL *
                  sizeof(struct command_block));
}

static int ipw_fw_dma_enable(struct ipw_priv *priv)
{                       /* start dma engine but no transfers yet */

      IPW_DEBUG_FW(">> : \n");

      /* Start the dma */
      ipw_fw_dma_reset_command_blocks(priv);

      /* Write CB base address */
      ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);

      IPW_DEBUG_FW("<< : \n");
      return 0;
}

static void ipw_fw_dma_abort(struct ipw_priv *priv)
{
      u32 control = 0;

      IPW_DEBUG_FW(">> :\n");

      /* set the Stop and Abort bit */
      control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
      ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
      priv->sram_desc.last_cb_index = 0;

      IPW_DEBUG_FW("<< \n");
}

static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
                                struct command_block *cb)
{
      u32 address =
          IPW_SHARED_SRAM_DMA_CONTROL +
          (sizeof(struct command_block) * index);
      IPW_DEBUG_FW(">> :\n");

      ipw_write_indirect(priv, address, (u8 *) cb,
                     (int)sizeof(struct command_block));

      IPW_DEBUG_FW("<< :\n");
      return 0;

}

static int ipw_fw_dma_kick(struct ipw_priv *priv)
{
      u32 control = 0;
      u32 index = 0;

      IPW_DEBUG_FW(">> :\n");

      for (index = 0; index < priv->sram_desc.last_cb_index; index++)
            ipw_fw_dma_write_command_block(priv, index,
                                     &priv->sram_desc.cb_list[index]);

      /* Enable the DMA in the CSR register */
      ipw_clear_bit(priv, IPW_RESET_REG,
                  IPW_RESET_REG_MASTER_DISABLED |
                  IPW_RESET_REG_STOP_MASTER);

      /* Set the Start bit. */
      control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
      ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);

      IPW_DEBUG_FW("<< :\n");
      return 0;
}

static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
{
      u32 address;
      u32 register_value = 0;
      u32 cb_fields_address = 0;

      IPW_DEBUG_FW(">> :\n");
      address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
      IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);

      /* Read the DMA Controlor register */
      register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
      IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);

      /* Print the CB values */
      cb_fields_address = address;
      register_value = ipw_read_reg32(priv, cb_fields_address);
      IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);

      cb_fields_address += sizeof(u32);
      register_value = ipw_read_reg32(priv, cb_fields_address);
      IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);

      cb_fields_address += sizeof(u32);
      register_value = ipw_read_reg32(priv, cb_fields_address);
      IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
                    register_value);

      cb_fields_address += sizeof(u32);
      register_value = ipw_read_reg32(priv, cb_fields_address);
      IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);

      IPW_DEBUG_FW(">> :\n");
}

static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
{
      u32 current_cb_address = 0;
      u32 current_cb_index = 0;

      IPW_DEBUG_FW("<< :\n");
      current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);

      current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
          sizeof(struct command_block);

      IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
                    current_cb_index, current_cb_address);

      IPW_DEBUG_FW(">> :\n");
      return current_cb_index;

}

static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
                              u32 src_address,
                              u32 dest_address,
                              u32 length,
                              int interrupt_enabled, int is_last)
{

      u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
          CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
          CB_DEST_SIZE_LONG;
      struct command_block *cb;
      u32 last_cb_element = 0;

      IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
                    src_address, dest_address, length);

      if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
            return -1;

      last_cb_element = priv->sram_desc.last_cb_index;
      cb = &priv->sram_desc.cb_list[last_cb_element];
      priv->sram_desc.last_cb_index++;

      /* Calculate the new CB control word */
      if (interrupt_enabled)
            control |= CB_INT_ENABLED;

      if (is_last)
            control |= CB_LAST_VALID;

      control |= length;

      /* Calculate the CB Element's checksum value */
      cb->status = control ^ src_address ^ dest_address;

      /* Copy the Source and Destination addresses */
      cb->dest_addr = dest_address;
      cb->source_addr = src_address;

      /* Copy the Control Word last */
      cb->control = control;

      return 0;
}

static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
                         u32 src_phys, u32 dest_address, u32 length)
{
      u32 bytes_left = length;
      u32 src_offset = 0;
      u32 dest_offset = 0;
      int status = 0;
      IPW_DEBUG_FW(">> \n");
      IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
                    src_phys, dest_address, length);
      while (bytes_left > CB_MAX_LENGTH) {
            status = ipw_fw_dma_add_command_block(priv,
                                          src_phys + src_offset,
                                          dest_address +
                                          dest_offset,
                                          CB_MAX_LENGTH, 0, 0);
            if (status) {
                  IPW_DEBUG_FW_INFO(": Failed\n");
                  return -1;
            } else
                  IPW_DEBUG_FW_INFO(": Added new cb\n");

            src_offset += CB_MAX_LENGTH;
            dest_offset += CB_MAX_LENGTH;
            bytes_left -= CB_MAX_LENGTH;
      }

      /* add the buffer tail */
      if (bytes_left > 0) {
            status =
                ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
                                     dest_address + dest_offset,
                                     bytes_left, 0, 0);
            if (status) {
                  IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
                  return -1;
            } else
                  IPW_DEBUG_FW_INFO
                      (": Adding new cb - the buffer tail\n");
      }

      IPW_DEBUG_FW("<< \n");
      return 0;
}

static int ipw_fw_dma_wait(struct ipw_priv *priv)
{
      u32 current_index = 0, previous_index;
      u32 watchdog = 0;

      IPW_DEBUG_FW(">> : \n");

      current_index = ipw_fw_dma_command_block_index(priv);
      IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
                    (int)priv->sram_desc.last_cb_index);

      while (current_index < priv->sram_desc.last_cb_index) {
            udelay(50);
            previous_index = current_index;
            current_index = ipw_fw_dma_command_block_index(priv);

            if (previous_index < current_index) {
                  watchdog = 0;
                  continue;
            }
            if (++watchdog > 400) {
                  IPW_DEBUG_FW_INFO("Timeout\n");
                  ipw_fw_dma_dump_command_block(priv);
                  ipw_fw_dma_abort(priv);
                  return -1;
            }
      }

      ipw_fw_dma_abort(priv);

      /*Disable the DMA in the CSR register */
      ipw_set_bit(priv, IPW_RESET_REG,
                IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);

      IPW_DEBUG_FW("<< dmaWaitSync \n");
      return 0;
}

static void ipw_remove_current_network(struct ipw_priv *priv)
{
      struct list_head *element, *safe;
      struct ieee80211_network *network = NULL;
      unsigned long flags;

      spin_lock_irqsave(&priv->ieee->lock, flags);
      list_for_each_safe(element, safe, &priv->ieee->network_list) {
            network = list_entry(element, struct ieee80211_network, list);
            if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
                  list_del(element);
                  list_add_tail(&network->list,
                              &priv->ieee->network_free_list);
            }
      }
      spin_unlock_irqrestore(&priv->ieee->lock, flags);
}

/**
 * Check that card is still alive.
 * Reads debug register from domain0.
 * If card is present, pre-defined value should
 * be found there.
 *
 * @param priv
 * @return 1 if card is present, 0 otherwise
 */
static inline int ipw_alive(struct ipw_priv *priv)
{
      return ipw_read32(priv, 0x90) == 0xd55555d5;
}

/* timeout in msec, attempted in 10-msec quanta */
static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
                         int timeout)
{
      int i = 0;

      do {
            if ((ipw_read32(priv, addr) & mask) == mask)
                  return i;
            mdelay(10);
            i += 10;
      } while (i < timeout);

      return -ETIME;
}

/* These functions load the firmware and micro code for the operation of
 * the ipw hardware.  It assumes the buffer has all the bits for the
 * image and the caller is handling the memory allocation and clean up.
 */

static int ipw_stop_master(struct ipw_priv *priv)
{
      int rc;

      IPW_DEBUG_TRACE(">> \n");
      /* stop master. typical delay - 0 */
      ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);

      /* timeout is in msec, polled in 10-msec quanta */
      rc = ipw_poll_bit(priv, IPW_RESET_REG,
                    IPW_RESET_REG_MASTER_DISABLED, 100);
      if (rc < 0) {
            IPW_ERROR("wait for stop master failed after 100ms\n");
            return -1;
      }

      IPW_DEBUG_INFO("stop master %dms\n", rc);

      return rc;
}

static void ipw_arc_release(struct ipw_priv *priv)
{
      IPW_DEBUG_TRACE(">> \n");
      mdelay(5);

      ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);

      /* no one knows timing, for safety add some delay */
      mdelay(5);
}

struct fw_chunk {
      u32 address;
      u32 length;
};

static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
{
      int rc = 0, i, addr;
      u8 cr = 0;
      u16 *image;

      image = (u16 *) data;

      IPW_DEBUG_TRACE(">> \n");

      rc = ipw_stop_master(priv);

      if (rc < 0)
            return rc;

      for (addr = IPW_SHARED_LOWER_BOUND;
           addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
            ipw_write32(priv, addr, 0);
      }

      /* no ucode (yet) */
      memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
      /* destroy DMA queues */
      /* reset sequence */

      ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
      ipw_arc_release(priv);
      ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
      mdelay(1);

      /* reset PHY */
      ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
      mdelay(1);

      ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
      mdelay(1);

      /* enable ucode store */
      ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
      ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
      mdelay(1);

      /* write ucode */
      /**
       * @bug
       * Do NOT set indirect address register once and then
       * store data to indirect data register in the loop.
       * It seems very reasonable, but in this case DINO do not
       * accept ucode. It is essential to set address each time.
       */
      /* load new ipw uCode */
      for (i = 0; i < len / 2; i++)
            ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
                        cpu_to_le16(image[i]));

      /* enable DINO */
      ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
      ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);

      /* this is where the igx / win driver deveates from the VAP driver. */

      /* wait for alive response */
      for (i = 0; i < 100; i++) {
            /* poll for incoming data */
            cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
            if (cr & DINO_RXFIFO_DATA)
                  break;
            mdelay(1);
      }

      if (cr & DINO_RXFIFO_DATA) {
            /* alive_command_responce size is NOT multiple of 4 */
            u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];

            for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
                  response_buffer[i] =
                      le32_to_cpu(ipw_read_reg32(priv,
                                           IPW_BASEBAND_RX_FIFO_READ));
            memcpy(&priv->dino_alive, response_buffer,
                   sizeof(priv->dino_alive));
            if (priv->dino_alive.alive_command == 1
                && priv->dino_alive.ucode_valid == 1) {
                  rc = 0;
                  IPW_DEBUG_INFO
                      ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
                       "of %02d/%02d/%02d %02d:%02d\n",
                       priv->dino_alive.software_revision,
                       priv->dino_alive.software_revision,
                       priv->dino_alive.device_identifier,
                       priv->dino_alive.device_identifier,
                       priv->dino_alive.time_stamp[0],
                       priv->dino_alive.time_stamp[1],
                       priv->dino_alive.time_stamp[2],
                       priv->dino_alive.time_stamp[3],
                       priv->dino_alive.time_stamp[4]);
            } else {
                  IPW_DEBUG_INFO("Microcode is not alive\n");
                  rc = -EINVAL;
            }
      } else {
            IPW_DEBUG_INFO("No alive response from DINO\n");
            rc = -ETIME;
      }

      /* disable DINO, otherwise for some reason
         firmware have problem getting alive resp. */
      ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);

      return rc;
}

static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
{
      int rc = -1;
      int offset = 0;
      struct fw_chunk *chunk;
      dma_addr_t shared_phys;
      u8 *shared_virt;

      IPW_DEBUG_TRACE("<< : \n");
      shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);

      if (!shared_virt)
            return -ENOMEM;

      memmove(shared_virt, data, len);

      /* Start the Dma */
      rc = ipw_fw_dma_enable(priv);

      if (priv->sram_desc.last_cb_index > 0) {
            /* the DMA is already ready this would be a bug. */
            BUG();
            goto out;
      }

      do {
            chunk = (struct fw_chunk *)(data + offset);
            offset += sizeof(struct fw_chunk);
            /* build DMA packet and queue up for sending */
            /* dma to chunk->address, the chunk->length bytes from data +
             * offeset*/
            /* Dma loading */
            rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
                                 le32_to_cpu(chunk->address),
                                 le32_to_cpu(chunk->length));
            if (rc) {
                  IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
                  goto out;
            }

            offset += le32_to_cpu(chunk->length);
      } while (offset < len);

      /* Run the DMA and wait for the answer */
      rc = ipw_fw_dma_kick(priv);
      if (rc) {
            IPW_ERROR("dmaKick Failed\n");
            goto out;
      }

      rc = ipw_fw_dma_wait(priv);
      if (rc) {
            IPW_ERROR("dmaWaitSync Failed\n");
            goto out;
      }
      out:
      pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
      return rc;
}

/* stop nic */
static int ipw_stop_nic(struct ipw_priv *priv)
{
      int rc = 0;

      /* stop */
      ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);

      rc = ipw_poll_bit(priv, IPW_RESET_REG,
                    IPW_RESET_REG_MASTER_DISABLED, 500);
      if (rc < 0) {
            IPW_ERROR("wait for reg master disabled failed after 500ms\n");
            return rc;
      }

      ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);

      return rc;
}

static void ipw_start_nic(struct ipw_priv *priv)
{
      IPW_DEBUG_TRACE(">>\n");

      /* prvHwStartNic  release ARC */
      ipw_clear_bit(priv, IPW_RESET_REG,
                  IPW_RESET_REG_MASTER_DISABLED |
                  IPW_RESET_REG_STOP_MASTER |
                  CBD_RESET_REG_PRINCETON_RESET);

      /* enable power management */
      ipw_set_bit(priv, IPW_GP_CNTRL_RW,
                IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);

      IPW_DEBUG_TRACE("<<\n");
}

static int ipw_init_nic(struct ipw_priv *priv)
{
      int rc;

      IPW_DEBUG_TRACE(">>\n");
      /* reset */
      /*prvHwInitNic */
      /* set "initialization complete" bit to move adapter to D0 state */
      ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);

      /* low-level PLL activation */
      ipw_write32(priv, IPW_READ_INT_REGISTER,
                IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);

      /* wait for clock stabilization */
      rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
                    IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
      if (rc < 0)
            IPW_DEBUG_INFO("FAILED wait for clock stablization\n");

      /* assert SW reset */
      ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);

      udelay(10);

      /* set "initialization complete" bit to move adapter to D0 state */
      ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);

      IPW_DEBUG_TRACE(">>\n");
      return 0;
}

/* Call this function from process context, it will sleep in request_firmware.
 * Probe is an ok place to call this from.
 */
static int ipw_reset_nic(struct ipw_priv *priv)
{
      int rc = 0;
      unsigned long flags;

      IPW_DEBUG_TRACE(">>\n");

      rc = ipw_init_nic(priv);

      spin_lock_irqsave(&priv->lock, flags);
      /* Clear the 'host command active' bit... */
      priv->status &= ~STATUS_HCMD_ACTIVE;
      wake_up_interruptible(&priv->wait_command_queue);
      priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
      wake_up_interruptible(&priv->wait_state);
      spin_unlock_irqrestore(&priv->lock, flags);

      IPW_DEBUG_TRACE("<<\n");
      return rc;
}


struct ipw_fw {
      __le32 ver;
      __le32 boot_size;
      __le32 ucode_size;
      __le32 fw_size;
      u8 data[0];
};

static int ipw_get_fw(struct ipw_priv *priv,
                  const struct firmware **raw, const char *name)
{
      struct ipw_fw *fw;
      int rc;

      /* ask firmware_class module to get the boot firmware off disk */
      rc = request_firmware(raw, name, &priv->pci_dev->dev);
      if (rc < 0) {
            IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
            return rc;
      }

      if ((*raw)->size < sizeof(*fw)) {
            IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
            return -EINVAL;
      }

      fw = (void *)(*raw)->data;

      if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
          le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
            IPW_ERROR("%s is too small or corrupt (%zd)\n",
                    name, (*raw)->size);
            return -EINVAL;
      }

      IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
                   name,
                   le32_to_cpu(fw->ver) >> 16,
                   le32_to_cpu(fw->ver) & 0xff,
                   (*raw)->size - sizeof(*fw));
      return 0;
}

#define IPW_RX_BUF_SIZE (3000)

static void ipw_rx_queue_reset(struct ipw_priv *priv,
                              struct ipw_rx_queue *rxq)
{
      unsigned long flags;
      int i;

      spin_lock_irqsave(&rxq->lock, flags);

      INIT_LIST_HEAD(&rxq->rx_free);
      INIT_LIST_HEAD(&rxq->rx_used);

      /* Fill the rx_used queue with _all_ of the Rx buffers */
      for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
            /* In the reset function, these buffers may have been allocated
             * to an SKB, so we need to unmap and free potential storage */
            if (rxq->pool[i].skb != NULL) {
                  pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
                               IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
                  dev_kfree_skb(rxq->pool[i].skb);
                  rxq->pool[i].skb = NULL;
            }
            list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
      }

      /* Set us so that we have processed and used all buffers, but have
       * not restocked the Rx queue with fresh buffers */
      rxq->read = rxq->write = 0;
      rxq->processed = RX_QUEUE_SIZE - 1;
      rxq->free_count = 0;
      spin_unlock_irqrestore(&rxq->lock, flags);
}

#ifdef CONFIG_PM
static int fw_loaded = 0;
static const struct firmware *raw = NULL;

static void free_firmware(void)
{
      if (fw_loaded) {
            release_firmware(raw);
            raw = NULL;
            fw_loaded = 0;
      }
}
#else
#define free_firmware() do {} while (0)
#endif

static int ipw_load(struct ipw_priv *priv)
{
#ifndef CONFIG_PM
      const struct firmware *raw = NULL;
#endif
      struct ipw_fw *fw;
      u8 *boot_img, *ucode_img, *fw_img;
      u8 *name = NULL;
      int rc = 0, retries = 3;

      switch (priv->ieee->iw_mode) {
      case IW_MODE_ADHOC:
            name = "ipw2200-ibss.fw";
            break;
#ifdef CONFIG_IPW2200_MONITOR
      case IW_MODE_MONITOR:
            name = "ipw2200-sniffer.fw";
            break;
#endif
      case IW_MODE_INFRA:
            name = "ipw2200-bss.fw";
            break;
      }

      if (!name) {
            rc = -EINVAL;
            goto error;
      }

#ifdef CONFIG_PM
      if (!fw_loaded) {
#endif
            rc = ipw_get_fw(priv, &raw, name);
            if (rc < 0)
                  goto error;
#ifdef CONFIG_PM
      }
#endif

      fw = (void *)raw->data;
      boot_img = &fw->data[0];
      ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
      fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
                     le32_to_cpu(fw->ucode_size)];

      if (rc < 0)
            goto error;

      if (!priv->rxq)
            priv->rxq = ipw_rx_queue_alloc(priv);
      else
            ipw_rx_queue_reset(priv, priv->rxq);
      if (!priv->rxq) {
            IPW_ERROR("Unable to initialize Rx queue\n");
            goto error;
      }

      retry:
      /* Ensure interrupts are disabled */
      ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
      priv->status &= ~STATUS_INT_ENABLED;

      /* ack pending interrupts */
      ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);

      ipw_stop_nic(priv);

      rc = ipw_reset_nic(priv);
      if (rc < 0) {
            IPW_ERROR("Unable to reset NIC\n");
            goto error;
      }

      ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
                  IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);

      /* DMA the initial boot firmware into the device */
      rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
      if (rc < 0) {
            IPW_ERROR("Unable to load boot firmware: %d\n", rc);
            goto error;
      }

      /* kick start the device */
      ipw_start_nic(priv);

      /* wait for the device to finish its initial startup sequence */
      rc = ipw_poll_bit(priv, IPW_INTA_RW,
                    IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
      if (rc < 0) {
            IPW_ERROR("device failed to boot initial fw image\n");
            goto error;
      }
      IPW_DEBUG_INFO("initial device response after %dms\n", rc);

      /* ack fw init done interrupt */
      ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);

      /* DMA the ucode into the device */
      rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
      if (rc < 0) {
            IPW_ERROR("Unable to load ucode: %d\n", rc);
            goto error;
      }

      /* stop nic */
      ipw_stop_nic(priv);

      /* DMA bss firmware into the device */
      rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
      if (rc < 0) {
            IPW_ERROR("Unable to load firmware: %d\n", rc);
            goto error;
      }
#ifdef CONFIG_PM
      fw_loaded = 1;
#endif

      ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);

      rc = ipw_queue_reset(priv);
      if (rc < 0) {
            IPW_ERROR("Unable to initialize queues\n");
            goto error;
      }

      /* Ensure interrupts are disabled */
      ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
      /* ack pending interrupts */
      ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);

      /* kick start the device */
      ipw_start_nic(priv);

      if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
            if (retries > 0) {
                  IPW_WARNING("Parity error.  Retrying init.\n");
                  retries--;
                  goto retry;
            }

            IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
            rc = -EIO;
            goto error;
      }

      /* wait for the device */
      rc = ipw_poll_bit(priv, IPW_INTA_RW,
                    IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
      if (rc < 0) {
            IPW_ERROR("device failed to start within 500ms\n");
            goto error;
      }
      IPW_DEBUG_INFO("device response after %dms\n", rc);

      /* ack fw init done interrupt */
      ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);

      /* read eeprom data and initialize the eeprom region of sram */
      priv->eeprom_delay = 1;
      ipw_eeprom_init_sram(priv);

      /* enable interrupts */
      ipw_enable_interrupts(priv);

      /* Ensure our queue has valid packets */
      ipw_rx_queue_replenish(priv);

      ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);

      /* ack pending interrupts */
      ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);

#ifndef CONFIG_PM
      release_firmware(raw);
#endif
      return 0;

      error:
      if (priv->rxq) {
            ipw_rx_queue_free(priv, priv->rxq);
            priv->rxq = NULL;
      }
      ipw_tx_queue_free(priv);
      if (raw)
            release_firmware(raw);
#ifdef CONFIG_PM
      fw_loaded = 0;
      raw = NULL;
#endif

      return rc;
}

/**
 * DMA services
 *
 * Theory of operation
 *
 * A queue is a circular buffers with 'Read' and 'Write' pointers.
 * 2 empty entries always kept in the buffer to protect from overflow.
 *
 * For Tx queue, there are low mark and high mark limits. If, after queuing
 * the packet for Tx, free space become < low mark, Tx queue stopped. When
 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
 * Tx queue resumed.
 *
 * The IPW operates with six queues, one receive queue in the device's
 * sram, one transmit queue for sending commands to the device firmware,
 * and four transmit queues for data.
 *
 * The four transmit queues allow for performing quality of service (qos)
 * transmissions as per the 802.11 protocol.  Currently Linux does not
 * provide a mechanism to the user for utilizing prioritized queues, so
 * we only utilize the first data transmit queue (queue1).
 */

/**
 * Driver allocates buffers of this size for Rx
 */

static inline int ipw_queue_space(const struct clx2_queue *q)
{
      int s = q->last_used - q->first_empty;
      if (s <= 0)
            s += q->n_bd;
      s -= 2;                 /* keep some reserve to not confuse empty and full situations */
      if (s < 0)
            s = 0;
      return s;
}

static inline int ipw_queue_inc_wrap(int index, int n_bd)
{
      return (++index == n_bd) ? 0 : index;
}

/**
 * Initialize common DMA queue structure
 *
 * @param q                queue to init
 * @param count            Number of BD's to allocate. Should be power of 2
 * @param read_register    Address for 'read' register
 *                         (not offset within BAR, full address)
 * @param write_register   Address for 'write' register
 *                         (not offset within BAR, full address)
 * @param base_register    Address for 'base' register
 *                         (not offset within BAR, full address)
 * @param size             Address for 'size' register
 *                         (not offset within BAR, full address)
 */
static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
                     int count, u32 read, u32 write, u32 base, u32 size)
{
      q->n_bd = count;

      q->low_mark = q->n_bd / 4;
      if (q->low_mark < 4)
            q->low_mark = 4;

      q->high_mark = q->n_bd / 8;
      if (q->high_mark < 2)
            q->high_mark = 2;

      q->first_empty = q->last_used = 0;
      q->reg_r = read;
      q->reg_w = write;

      ipw_write32(priv, base, q->dma_addr);
      ipw_write32(priv, size, count);
      ipw_write32(priv, read, 0);
      ipw_write32(priv, write, 0);

      _ipw_read32(priv, 0x90);
}

static int ipw_queue_tx_init(struct ipw_priv *priv,
                       struct clx2_tx_queue *q,
                       int count, u32 read, u32 write, u32 base, u32 size)
{
      struct pci_dev *dev = priv->pci_dev;

      q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
      if (!q->txb) {
            IPW_ERROR("vmalloc for auxilary BD structures failed\n");
            return -ENOMEM;
      }

      q->bd =
          pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
      if (!q->bd) {
            IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
                    sizeof(q->bd[0]) * count);
            kfree(q->txb);
            q->txb = NULL;
            return -ENOMEM;
      }

      ipw_queue_init(priv, &q->q, count, read, write, base, size);
      return 0;
}

/**
 * Free one TFD, those at index [txq->q.last_used].
 * Do NOT advance any indexes
 *
 * @param dev
 * @param txq
 */
static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
                          struct clx2_tx_queue *txq)
{
      struct tfd_frame *bd = &txq->bd[txq->q.last_used];
      struct pci_dev *dev = priv->pci_dev;
      int i;

      /* classify bd */
      if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
            /* nothing to cleanup after for host commands */
            return;

      /* sanity check */
      if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
            IPW_ERROR("Too many chunks: %i\n",
                    le32_to_cpu(bd->u.data.num_chunks));
            /** @todo issue fatal error, it is quite serious situation */
            return;
      }

      /* unmap chunks if any */
      for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
            pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
                         le16_to_cpu(bd->u.data.chunk_len[i]),
                         PCI_DMA_TODEVICE);
            if (txq->txb[txq->q.last_used]) {
                  ieee80211_txb_free(txq->txb[txq->q.last_used]);
                  txq->txb[txq->q.last_used] = NULL;
            }
      }
}

/**
 * Deallocate DMA queue.
 *
 * Empty queue by removing and destroying all BD's.
 * Free all buffers.
 *
 * @param dev
 * @param q
 */
static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
{
      struct clx2_queue *q = &txq->q;
      struct pci_dev *dev = priv->pci_dev;

      if (q->n_bd == 0)
            return;

      /* first, empty all BD's */
      for (; q->first_empty != q->last_used;
           q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
            ipw_queue_tx_free_tfd(priv, txq);
      }

      /* free buffers belonging to queue itself */
      pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
                      q->dma_addr);
      kfree(txq->txb);

      /* 0 fill whole structure */
      memset(txq, 0, sizeof(*txq));
}

/**
 * Destroy all DMA queues and structures
 *
 * @param priv
 */
static void ipw_tx_queue_free(struct ipw_priv *priv)
{
      /* Tx CMD queue */
      ipw_queue_tx_free(priv, &priv->txq_cmd);

      /* Tx queues */
      ipw_queue_tx_free(priv, &priv->txq[0]);
      ipw_queue_tx_free(priv, &priv->txq[1]);
      ipw_queue_tx_free(priv, &priv->txq[2]);
      ipw_queue_tx_free(priv, &priv->txq[3]);
}

static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
{
      /* First 3 bytes are manufacturer */
      bssid[0] = priv->mac_addr[0];
      bssid[1] = priv->mac_addr[1];
      bssid[2] = priv->mac_addr[2];

      /* Last bytes are random */
      get_random_bytes(&bssid[3], ETH_ALEN - 3);

      bssid[0] &= 0xfe; /* clear multicast bit */
      bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
}

static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
{
      struct ipw_station_entry entry;
      int i;
      DECLARE_MAC_BUF(mac);

      for (i = 0; i < priv->num_stations; i++) {
            if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
                  /* Another node is active in network */
                  priv->missed_adhoc_beacons = 0;
                  if (!(priv->config & CFG_STATIC_CHANNEL))
                        /* when other nodes drop out, we drop out */
                        priv->config &= ~CFG_ADHOC_PERSIST;

                  return i;
            }
      }

      if (i == MAX_STATIONS)
            return IPW_INVALID_STATION;

      IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));

      entry.reserved = 0;
      entry.support_mode = 0;
      memcpy(entry.mac_addr, bssid, ETH_ALEN);
      memcpy(priv->stations[i], bssid, ETH_ALEN);
      ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
                   &entry, sizeof(entry));
      priv->num_stations++;

      return i;
}

static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
{
      int i;

      for (i = 0; i < priv->num_stations; i++)
            if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
                  return i;

      return IPW_INVALID_STATION;
}

static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
{
      int err;
      DECLARE_MAC_BUF(mac);

      if (priv->status & STATUS_ASSOCIATING) {
            IPW_DEBUG_ASSOC("Disassociating while associating.\n");
            queue_work(priv->workqueue, &priv->disassociate);
            return;
      }

      if (!(priv->status & STATUS_ASSOCIATED)) {
            IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
            return;
      }

      IPW_DEBUG_ASSOC("Disassocation attempt from %s "
                  "on channel %d.\n",
                  print_mac(mac, priv->assoc_request.bssid),
                  priv->assoc_request.channel);

      priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
      priv->status |= STATUS_DISASSOCIATING;

      if (quiet)
            priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
      else
            priv->assoc_request.assoc_type = HC_DISASSOCIATE;

      err = ipw_send_associate(priv, &priv->assoc_request);
      if (err) {
            IPW_DEBUG_HC("Attempt to send [dis]associate command "
                       "failed.\n");
            return;
      }

}

static int ipw_disassociate(void *data)
{
      struct ipw_priv *priv = data;
      if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
            return 0;
      ipw_send_disassociate(data, 0);
      return 1;
}

static void ipw_bg_disassociate(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, disassociate);
      mutex_lock(&priv->mutex);
      ipw_disassociate(priv);
      mutex_unlock(&priv->mutex);
}

static void ipw_system_config(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, system_config);

#ifdef CONFIG_IPW2200_PROMISCUOUS
      if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
            priv->sys_config.accept_all_data_frames = 1;
            priv->sys_config.accept_non_directed_frames = 1;
            priv->sys_config.accept_all_mgmt_bcpr = 1;
            priv->sys_config.accept_all_mgmt_frames = 1;
      }
#endif

      ipw_send_system_config(priv);
}

struct ipw_status_code {
      u16 status;
      const char *reason;
};

static const struct ipw_status_code ipw_status_codes[] = {
      {0x00, "Successful"},
      {0x01, "Unspecified failure"},
      {0x0A, "Cannot support all requested capabilities in the "
       "Capability information field"},
      {0x0B, "Reassociation denied due to inability to confirm that "
       "association exists"},
      {0x0C, "Association denied due to reason outside the scope of this "
       "standard"},
      {0x0D,
       "Responding station does not support the specified authentication "
       "algorithm"},
      {0x0E,
       "Received an Authentication frame with authentication sequence "
       "transaction sequence number out of expected sequence"},
      {0x0F, "Authentication rejected because of challenge failure"},
      {0x10, "Authentication rejected due to timeout waiting for next "
       "frame in sequence"},
      {0x11, "Association denied because AP is unable to handle additional "
       "associated stations"},
      {0x12,
       "Association denied due to requesting station not supporting all "
       "of the datarates in the BSSBasicServiceSet Parameter"},
      {0x13,
       "Association denied due to requesting station not supporting "
       "short preamble operation"},
      {0x14,
       "Association denied due to requesting station not supporting "
       "PBCC encoding"},
      {0x15,
       "Association denied due to requesting station not supporting "
       "channel agility"},
      {0x19,
       "Association denied due to requesting station not supporting "
       "short slot operation"},
      {0x1A,
       "Association denied due to requesting station not supporting "
       "DSSS-OFDM operation"},
      {0x28, "Invalid Information Element"},
      {0x29, "Group Cipher is not valid"},
      {0x2A, "Pairwise Cipher is not valid"},
      {0x2B, "AKMP is not valid"},
      {0x2C, "Unsupported RSN IE version"},
      {0x2D, "Invalid RSN IE Capabilities"},
      {0x2E, "Cipher suite is rejected per security policy"},
};

static const char *ipw_get_status_code(u16 status)
{
      int i;
      for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
            if (ipw_status_codes[i].status == (status & 0xff))
                  return ipw_status_codes[i].reason;
      return "Unknown status value.";
}

static void inline average_init(struct average *avg)
{
      memset(avg, 0, sizeof(*avg));
}

#define DEPTH_RSSI 8
#define DEPTH_NOISE 16
static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
{
      return ((depth-1)*prev_avg +  val)/depth;
}

static void average_add(struct average *avg, s16 val)
{
      avg->sum -= avg->entries[avg->pos];
      avg->sum += val;
      avg->entries[avg->pos++] = val;
      if (unlikely(avg->pos == AVG_ENTRIES)) {
            avg->init = 1;
            avg->pos = 0;
      }
}

static s16 average_value(struct average *avg)
{
      if (!unlikely(avg->init)) {
            if (avg->pos)
                  return avg->sum / avg->pos;
            return 0;
      }

      return avg->sum / AVG_ENTRIES;
}

static void ipw_reset_stats(struct ipw_priv *priv)
{
      u32 len = sizeof(u32);

      priv->quality = 0;

      average_init(&priv->average_missed_beacons);
      priv->exp_avg_rssi = -60;
      priv->exp_avg_noise = -85 + 0x100;

      priv->last_rate = 0;
      priv->last_missed_beacons = 0;
      priv->last_rx_packets = 0;
      priv->last_tx_packets = 0;
      priv->last_tx_failures = 0;

      /* Firmware managed, reset only when NIC is restarted, so we have to
       * normalize on the current value */
      ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
                  &priv->last_rx_err, &len);
      ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
                  &priv->last_tx_failures, &len);

      /* Driver managed, reset with each association */
      priv->missed_adhoc_beacons = 0;
      priv->missed_beacons = 0;
      priv->tx_packets = 0;
      priv->rx_packets = 0;

}

static u32 ipw_get_max_rate(struct ipw_priv *priv)
{
      u32 i = 0x80000000;
      u32 mask = priv->rates_mask;
      /* If currently associated in B mode, restrict the maximum
       * rate match to B rates */
      if (priv->assoc_request.ieee_mode == IPW_B_MODE)
            mask &= IEEE80211_CCK_RATES_MASK;

      /* TODO: Verify that the rate is supported by the current rates
       * list. */

      while (i && !(mask & i))
            i >>= 1;
      switch (i) {
      case IEEE80211_CCK_RATE_1MB_MASK:
            return 1000000;
      case IEEE80211_CCK_RATE_2MB_MASK:
            return 2000000;
      case IEEE80211_CCK_RATE_5MB_MASK:
            return 5500000;
      case IEEE80211_OFDM_RATE_6MB_MASK:
            return 6000000;
      case IEEE80211_OFDM_RATE_9MB_MASK:
            return 9000000;
      case IEEE80211_CCK_RATE_11MB_MASK:
            return 11000000;
      case IEEE80211_OFDM_RATE_12MB_MASK:
            return 12000000;
      case IEEE80211_OFDM_RATE_18MB_MASK:
            return 18000000;
      case IEEE80211_OFDM_RATE_24MB_MASK:
            return 24000000;
      case IEEE80211_OFDM_RATE_36MB_MASK:
            return 36000000;
      case IEEE80211_OFDM_RATE_48MB_MASK:
            return 48000000;
      case IEEE80211_OFDM_RATE_54MB_MASK:
            return 54000000;
      }

      if (priv->ieee->mode == IEEE_B)
            return 11000000;
      else
            return 54000000;
}

static u32 ipw_get_current_rate(struct ipw_priv *priv)
{
      u32 rate, len = sizeof(rate);
      int err;

      if (!(priv->status & STATUS_ASSOCIATED))
            return 0;

      if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
            err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
                              &len);
            if (err) {
                  IPW_DEBUG_INFO("failed querying ordinals.\n");
                  return 0;
            }
      } else
            return ipw_get_max_rate(priv);

      switch (rate) {
      case IPW_TX_RATE_1MB:
            return 1000000;
      case IPW_TX_RATE_2MB:
            return 2000000;
      case IPW_TX_RATE_5MB:
            return 5500000;
      case IPW_TX_RATE_6MB:
            return 6000000;
      case IPW_TX_RATE_9MB:
            return 9000000;
      case IPW_TX_RATE_11MB:
            return 11000000;
      case IPW_TX_RATE_12MB:
            return 12000000;
      case IPW_TX_RATE_18MB:
            return 18000000;
      case IPW_TX_RATE_24MB:
            return 24000000;
      case IPW_TX_RATE_36MB:
            return 36000000;
      case IPW_TX_RATE_48MB:
            return 48000000;
      case IPW_TX_RATE_54MB:
            return 54000000;
      }

      return 0;
}

#define IPW_STATS_INTERVAL (2 * HZ)
static void ipw_gather_stats(struct ipw_priv *priv)
{
      u32 rx_err, rx_err_delta, rx_packets_delta;
      u32 tx_failures, tx_failures_delta, tx_packets_delta;
      u32 missed_beacons_percent, missed_beacons_delta;
      u32 quality = 0;
      u32 len = sizeof(u32);
      s16 rssi;
      u32 beacon_quality, signal_quality, tx_quality, rx_quality,
          rate_quality;
      u32 max_rate;

      if (!(priv->status & STATUS_ASSOCIATED)) {
            priv->quality = 0;
            return;
      }

      /* Update the statistics */
      ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
                  &priv->missed_beacons, &len);
      missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
      priv->last_missed_beacons = priv->missed_beacons;
      if (priv->assoc_request.beacon_interval) {
            missed_beacons_percent = missed_beacons_delta *
                (HZ * priv->assoc_request.beacon_interval) /
                (IPW_STATS_INTERVAL * 10);
      } else {
            missed_beacons_percent = 0;
      }
      average_add(&priv->average_missed_beacons, missed_beacons_percent);

      ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
      rx_err_delta = rx_err - priv->last_rx_err;
      priv->last_rx_err = rx_err;

      ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
      tx_failures_delta = tx_failures - priv->last_tx_failures;
      priv->last_tx_failures = tx_failures;

      rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
      priv->last_rx_packets = priv->rx_packets;

      tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
      priv->last_tx_packets = priv->tx_packets;

      /* Calculate quality based on the following:
       *
       * Missed beacon: 100% = 0, 0% = 70% missed
       * Rate: 60% = 1Mbs, 100% = Max
       * Rx and Tx errors represent a straight % of total Rx/Tx
       * RSSI: 100% = > -50,  0% = < -80
       * Rx errors: 100% = 0, 0% = 50% missed
       *
       * The lowest computed quality is used.
       *
       */
#define BEACON_THRESHOLD 5
      beacon_quality = 100 - missed_beacons_percent;
      if (beacon_quality < BEACON_THRESHOLD)
            beacon_quality = 0;
      else
            beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
                (100 - BEACON_THRESHOLD);
      IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
                  beacon_quality, missed_beacons_percent);

      priv->last_rate = ipw_get_current_rate(priv);
      max_rate = ipw_get_max_rate(priv);
      rate_quality = priv->last_rate * 40 / max_rate + 60;
      IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
                  rate_quality, priv->last_rate / 1000000);

      if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
            rx_quality = 100 - (rx_err_delta * 100) /
                (rx_packets_delta + rx_err_delta);
      else
            rx_quality = 100;
      IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
                  rx_quality, rx_err_delta, rx_packets_delta);

      if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
            tx_quality = 100 - (tx_failures_delta * 100) /
                (tx_packets_delta + tx_failures_delta);
      else
            tx_quality = 100;
      IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
                  tx_quality, tx_failures_delta, tx_packets_delta);

      rssi = priv->exp_avg_rssi;
      signal_quality =
          (100 *
           (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
           (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
           (priv->ieee->perfect_rssi - rssi) *
           (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
            62 * (priv->ieee->perfect_rssi - rssi))) /
          ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
           (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
      if (signal_quality > 100)
            signal_quality = 100;
      else if (signal_quality < 1)
            signal_quality = 0;

      IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
                  signal_quality, rssi);

      quality = min(beacon_quality,
                  min(rate_quality,
                    min(tx_quality, min(rx_quality, signal_quality))));
      if (quality == beacon_quality)
            IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
                        quality);
      if (quality == rate_quality)
            IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
                        quality);
      if (quality == tx_quality)
            IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
                        quality);
      if (quality == rx_quality)
            IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
                        quality);
      if (quality == signal_quality)
            IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
                        quality);

      priv->quality = quality;

      queue_delayed_work(priv->workqueue, &priv->gather_stats,
                     IPW_STATS_INTERVAL);
}

static void ipw_bg_gather_stats(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, gather_stats.work);
      mutex_lock(&priv->mutex);
      ipw_gather_stats(priv);
      mutex_unlock(&priv->mutex);
}

/* Missed beacon behavior:
 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
 * Above disassociate threshold, give up and stop scanning.
 * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
static void ipw_handle_missed_beacon(struct ipw_priv *priv,
                                  int missed_count)
{
      priv->notif_missed_beacons = missed_count;

      if (missed_count > priv->disassociate_threshold &&
          priv->status & STATUS_ASSOCIATED) {
            /* If associated and we've hit the missed
             * beacon threshold, disassociate, turn
             * off roaming, and abort any active scans */
            IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
                    IPW_DL_STATE | IPW_DL_ASSOC,
                    "Missed beacon: %d - disassociate\n", missed_count);
            priv->status &= ~STATUS_ROAMING;
            if (priv->status & STATUS_SCANNING) {
                  IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
                          IPW_DL_STATE,
                          "Aborting scan with missed beacon.\n");
                  queue_work(priv->workqueue, &priv->abort_scan);
            }

            queue_work(priv->workqueue, &priv->disassociate);
            return;
      }

      if (priv->status & STATUS_ROAMING) {
            /* If we are currently roaming, then just
             * print a debug statement... */
            IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
                    "Missed beacon: %d - roam in progress\n",
                    missed_count);
            return;
      }

      if (roaming &&
          (missed_count > priv->roaming_threshold &&
           missed_count <= priv->disassociate_threshold)) {
            /* If we are not already roaming, set the ROAM
             * bit in the status and kick off a scan.
             * This can happen several times before we reach
             * disassociate_threshold. */
            IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
                    "Missed beacon: %d - initiate "
                    "roaming\n", missed_count);
            if (!(priv->status & STATUS_ROAMING)) {
                  priv->status |= STATUS_ROAMING;
                  if (!(priv->status & STATUS_SCANNING))
                        queue_delayed_work(priv->workqueue,
                                       &priv->request_scan, 0);
            }
            return;
      }

      if (priv->status & STATUS_SCANNING) {
            /* Stop scan to keep fw from getting
             * stuck (only if we aren't roaming --
             * otherwise we'll never scan more than 2 or 3
             * channels..) */
            IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
                    "Aborting scan with missed beacon.\n");
            queue_work(priv->workqueue, &priv->abort_scan);
      }

      IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
}

static void ipw_scan_event(struct work_struct *work)
{
      union iwreq_data wrqu;

      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, scan_event.work);

      wrqu.data.length = 0;
      wrqu.data.flags = 0;
      wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
}

static void handle_scan_event(struct ipw_priv *priv)
{
      /* Only userspace-requested scan completion events go out immediately */
      if (!priv->user_requested_scan) {
            if (!delayed_work_pending(&priv->scan_event))
                  queue_delayed_work(priv->workqueue, &priv->scan_event,
                               round_jiffies_relative(msecs_to_jiffies(4000)));
      } else {
            union iwreq_data wrqu;

            priv->user_requested_scan = 0;
            cancel_delayed_work(&priv->scan_event);

            wrqu.data.length = 0;
            wrqu.data.flags = 0;
            wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
      }
}

/**
 * Handle host notification packet.
 * Called from interrupt routine
 */
static void ipw_rx_notification(struct ipw_priv *priv,
                               struct ipw_rx_notification *notif)
{
      DECLARE_MAC_BUF(mac);
      notif->size = le16_to_cpu(notif->size);

      IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);

      switch (notif->subtype) {
      case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
                  struct notif_association *assoc = &notif->u.assoc;

                  switch (assoc->state) {
                  case CMAS_ASSOCIATED:{
                              IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                      IPW_DL_ASSOC,
                                      "associated: '%s' %s"
                                      " \n",
                                      escape_essid(priv->essid,
                                                 priv->essid_len),
                                      print_mac(mac, priv->bssid));

                              switch (priv->ieee->iw_mode) {
                              case IW_MODE_INFRA:
                                    memcpy(priv->ieee->bssid,
                                           priv->bssid, ETH_ALEN);
                                    break;

                              case IW_MODE_ADHOC:
                                    memcpy(priv->ieee->bssid,
                                           priv->bssid, ETH_ALEN);

                                    /* clear out the station table */
                                    priv->num_stations = 0;

                                    IPW_DEBUG_ASSOC
                                        ("queueing adhoc check\n");
                                    queue_delayed_work(priv->
                                                   workqueue,
                                                   &priv->
                                                   adhoc_check,
                                                   priv->
                                                   assoc_request.
                                                   beacon_interval);
                                    break;
                              }

                              priv->status &= ~STATUS_ASSOCIATING;
                              priv->status |= STATUS_ASSOCIATED;
                              queue_work(priv->workqueue,
                                       &priv->system_config);

#ifdef CONFIG_IPW2200_QOS
#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
                   le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
                              if ((priv->status & STATUS_AUTH) &&
                                  (IPW_GET_PACKET_STYPE(&notif->u.raw)
                                   == IEEE80211_STYPE_ASSOC_RESP)) {
                                    if ((sizeof
                                         (struct
                                          ieee80211_assoc_response)
                                         <= notif->size)
                                        && (notif->size <= 2314)) {
                                          struct
                                          ieee80211_rx_stats
                                              stats = {
                                                .len =
                                                    notif->
                                                    size - 1,
                                          };

                                          IPW_DEBUG_QOS
                                              ("QoS Associate "
                                               "size %d\n",
                                               notif->size);
                                          ieee80211_rx_mgt(priv->
                                                       ieee,
                                                       (struct
                                                        ieee80211_hdr_4addr
                                                        *)
                                                       &notif->u.raw, &stats);
                                    }
                              }
#endif

                              schedule_work(&priv->link_up);

                              break;
                        }

                  case CMAS_AUTHENTICATED:{
                              if (priv->
                                  status & (STATUS_ASSOCIATED |
                                          STATUS_AUTH)) {
                                    struct notif_authenticate *auth
                                        = &notif->u.auth;
                                    IPW_DEBUG(IPW_DL_NOTIF |
                                            IPW_DL_STATE |
                                            IPW_DL_ASSOC,
                                            "deauthenticated: '%s' "
                                            "%s"
                                            ": (0x%04X) - %s \n",
                                            escape_essid(priv->
                                                       essid,
                                                       priv->
                                                       essid_len),
                                            print_mac(mac, priv->bssid),
                                            ntohs(auth->status),
                                            ipw_get_status_code
                                            (ntohs
                                             (auth->status)));

                                    priv->status &=
                                        ~(STATUS_ASSOCIATING |
                                          STATUS_AUTH |
                                          STATUS_ASSOCIATED);

                                    schedule_work(&priv->link_down);
                                    break;
                              }

                              IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                      IPW_DL_ASSOC,
                                      "authenticated: '%s' %s"
                                      "\n",
                                      escape_essid(priv->essid,
                                                 priv->essid_len),
                                      print_mac(mac, priv->bssid));
                              break;
                        }

                  case CMAS_INIT:{
                              if (priv->status & STATUS_AUTH) {
                                    struct
                                        ieee80211_assoc_response
                                    *resp;
                                    resp =
                                        (struct
                                         ieee80211_assoc_response
                                         *)&notif->u.raw;
                                    IPW_DEBUG(IPW_DL_NOTIF |
                                            IPW_DL_STATE |
                                            IPW_DL_ASSOC,
                                            "association failed (0x%04X): %s\n",
                                            ntohs(resp->status),
                                            ipw_get_status_code
                                            (ntohs
                                             (resp->status)));
                              }

                              IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                      IPW_DL_ASSOC,
                                      "disassociated: '%s' %s"
                                      " \n",
                                      escape_essid(priv->essid,
                                                 priv->essid_len),
                                      print_mac(mac, priv->bssid));

                              priv->status &=
                                  ~(STATUS_DISASSOCIATING |
                                    STATUS_ASSOCIATING |
                                    STATUS_ASSOCIATED | STATUS_AUTH);
                              if (priv->assoc_network
                                  && (priv->assoc_network->
                                    capability &
                                    WLAN_CAPABILITY_IBSS))
                                    ipw_remove_current_network
                                        (priv);

                              schedule_work(&priv->link_down);

                              break;
                        }

                  case CMAS_RX_ASSOC_RESP:
                        break;

                  default:
                        IPW_ERROR("assoc: unknown (%d)\n",
                                assoc->state);
                        break;
                  }

                  break;
            }

      case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
                  struct notif_authenticate *auth = &notif->u.auth;
                  switch (auth->state) {
                  case CMAS_AUTHENTICATED:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
                                "authenticated: '%s' %s \n",
                                escape_essid(priv->essid,
                                           priv->essid_len),
                                print_mac(mac, priv->bssid));
                        priv->status |= STATUS_AUTH;
                        break;

                  case CMAS_INIT:
                        if (priv->status & STATUS_AUTH) {
                              IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                      IPW_DL_ASSOC,
                                      "authentication failed (0x%04X): %s\n",
                                      ntohs(auth->status),
                                      ipw_get_status_code(ntohs
                                                      (auth->
                                                       status)));
                        }
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC,
                                "deauthenticated: '%s' %s\n",
                                escape_essid(priv->essid,
                                           priv->essid_len),
                                print_mac(mac, priv->bssid));

                        priv->status &= ~(STATUS_ASSOCIATING |
                                      STATUS_AUTH |
                                      STATUS_ASSOCIATED);

                        schedule_work(&priv->link_down);
                        break;

                  case CMAS_TX_AUTH_SEQ_1:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "AUTH_SEQ_1\n");
                        break;
                  case CMAS_RX_AUTH_SEQ_2:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "AUTH_SEQ_2\n");
                        break;
                  case CMAS_AUTH_SEQ_1_PASS:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
                        break;
                  case CMAS_AUTH_SEQ_1_FAIL:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
                        break;
                  case CMAS_TX_AUTH_SEQ_3:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "AUTH_SEQ_3\n");
                        break;
                  case CMAS_RX_AUTH_SEQ_4:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
                        break;
                  case CMAS_AUTH_SEQ_2_PASS:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
                        break;
                  case CMAS_AUTH_SEQ_2_FAIL:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
                        break;
                  case CMAS_TX_ASSOC:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "TX_ASSOC\n");
                        break;
                  case CMAS_RX_ASSOC_RESP:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "RX_ASSOC_RESP\n");

                        break;
                  case CMAS_ASSOCIATED:
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
                                IPW_DL_ASSOC, "ASSOCIATED\n");
                        break;
                  default:
                        IPW_DEBUG_NOTIF("auth: failure - %d\n",
                                    auth->state);
                        break;
                  }
                  break;
            }

      case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
                  struct notif_channel_result *x =
                      &notif->u.channel_result;

                  if (notif->size == sizeof(*x)) {
                        IPW_DEBUG_SCAN("Scan result for channel %d\n",
                                     x->channel_num);
                  } else {
                        IPW_DEBUG_SCAN("Scan result of wrong size %d "
                                     "(should be %zd)\n",
                                     notif->size, sizeof(*x));
                  }
                  break;
            }

      case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
                  struct notif_scan_complete *x = &notif->u.scan_complete;
                  if (notif->size == sizeof(*x)) {
                        IPW_DEBUG_SCAN
                            ("Scan completed: type %d, %d channels, "
                             "%d status\n", x->scan_type,
                             x->num_channels, x->status);
                  } else {
                        IPW_ERROR("Scan completed of wrong size %d "
                                "(should be %zd)\n",
                                notif->size, sizeof(*x));
                  }

                  priv->status &=
                      ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);

                  wake_up_interruptible(&priv->wait_state);
                  cancel_delayed_work(&priv->scan_check);

                  if (priv->status & STATUS_EXIT_PENDING)
                        break;

                  priv->ieee->scans++;

#ifdef CONFIG_IPW2200_MONITOR
                  if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
                        priv->status |= STATUS_SCAN_FORCED;
                        queue_delayed_work(priv->workqueue,
                                       &priv->request_scan, 0);
                        break;
                  }
                  priv->status &= ~STATUS_SCAN_FORCED;
#endif                        /* CONFIG_IPW2200_MONITOR */

                  if (!(priv->status & (STATUS_ASSOCIATED |
                                    STATUS_ASSOCIATING |
                                    STATUS_ROAMING |
                                    STATUS_DISASSOCIATING)))
                        queue_work(priv->workqueue, &priv->associate);
                  else if (priv->status & STATUS_ROAMING) {
                        if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
                              /* If a scan completed and we are in roam mode, then
                               * the scan that completed was the one requested as a
                               * result of entering roam... so, schedule the
                               * roam work */
                              queue_work(priv->workqueue,
                                       &priv->roam);
                        else
                              /* Don't schedule if we aborted the scan */
                              priv->status &= ~STATUS_ROAMING;
                  } else if (priv->status & STATUS_SCAN_PENDING)
                        queue_delayed_work(priv->workqueue,
                                       &priv->request_scan, 0);
                  else if (priv->config & CFG_BACKGROUND_SCAN
                         && priv->status & STATUS_ASSOCIATED)
                        queue_delayed_work(priv->workqueue,
                                       &priv->request_scan,
                                       round_jiffies_relative(HZ));

                  /* Send an empty event to user space.
                   * We don't send the received data on the event because
                   * it would require us to do complex transcoding, and
                   * we want to minimise the work done in the irq handler
                   * Use a request to extract the data.
                   * Also, we generate this even for any scan, regardless
                   * on how the scan was initiated. User space can just
                   * sync on periodic scan to get fresh data...
                   * Jean II */
                  if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
                        handle_scan_event(priv);
                  break;
            }

      case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
                  struct notif_frag_length *x = &notif->u.frag_len;

                  if (notif->size == sizeof(*x))
                        IPW_ERROR("Frag length: %d\n",
                                le16_to_cpu(x->frag_length));
                  else
                        IPW_ERROR("Frag length of wrong size %d "
                                "(should be %zd)\n",
                                notif->size, sizeof(*x));
                  break;
            }

      case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
                  struct notif_link_deterioration *x =
                      &notif->u.link_deterioration;

                  if (notif->size == sizeof(*x)) {
                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
                              "link deterioration: type %d, cnt %d\n",
                              x->silence_notification_type,
                              x->silence_count);
                        memcpy(&priv->last_link_deterioration, x,
                               sizeof(*x));
                  } else {
                        IPW_ERROR("Link Deterioration of wrong size %d "
                                "(should be %zd)\n",
                                notif->size, sizeof(*x));
                  }
                  break;
            }

      case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
                  IPW_ERROR("Dino config\n");
                  if (priv->hcmd
                      && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
                        IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");

                  break;
            }

      case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
                  struct notif_beacon_state *x = &notif->u.beacon_state;
                  if (notif->size != sizeof(*x)) {
                        IPW_ERROR
                            ("Beacon state of wrong size %d (should "
                             "be %zd)\n", notif->size, sizeof(*x));
                        break;
                  }

                  if (le32_to_cpu(x->state) ==
                      HOST_NOTIFICATION_STATUS_BEACON_MISSING)
                        ipw_handle_missed_beacon(priv,
                                           le32_to_cpu(x->
                                                     number));

                  break;
            }

      case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
                  struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
                  if (notif->size == sizeof(*x)) {
                        IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
                                "0x%02x station %d\n",
                                x->key_state, x->security_type,
                                x->station_index);
                        break;
                  }

                  IPW_ERROR
                      ("TGi Tx Key of wrong size %d (should be %zd)\n",
                       notif->size, sizeof(*x));
                  break;
            }

      case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
                  struct notif_calibration *x = &notif->u.calibration;

                  if (notif->size == sizeof(*x)) {
                        memcpy(&priv->calib, x, sizeof(*x));
                        IPW_DEBUG_INFO("TODO: Calibration\n");
                        break;
                  }

                  IPW_ERROR
                      ("Calibration of wrong size %d (should be %zd)\n",
                       notif->size, sizeof(*x));
                  break;
            }

      case HOST_NOTIFICATION_NOISE_STATS:{
                  if (notif->size == sizeof(u32)) {
                        priv->exp_avg_noise =
                            exponential_average(priv->exp_avg_noise,
                            (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
                            DEPTH_NOISE);
                        break;
                  }

                  IPW_ERROR
                      ("Noise stat is wrong size %d (should be %zd)\n",
                       notif->size, sizeof(u32));
                  break;
            }

      default:
            IPW_DEBUG_NOTIF("Unknown notification: "
                        "subtype=%d,flags=0x%2x,size=%d\n",
                        notif->subtype, notif->flags, notif->size);
      }
}

/**
 * Destroys all DMA structures and initialise them again
 *
 * @param priv
 * @return error code
 */
static int ipw_queue_reset(struct ipw_priv *priv)
{
      int rc = 0;
      /** @todo customize queue sizes */
      int nTx = 64, nTxCmd = 8;
      ipw_tx_queue_free(priv);
      /* Tx CMD queue */
      rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
                         IPW_TX_CMD_QUEUE_READ_INDEX,
                         IPW_TX_CMD_QUEUE_WRITE_INDEX,
                         IPW_TX_CMD_QUEUE_BD_BASE,
                         IPW_TX_CMD_QUEUE_BD_SIZE);
      if (rc) {
            IPW_ERROR("Tx Cmd queue init failed\n");
            goto error;
      }
      /* Tx queue(s) */
      rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
                         IPW_TX_QUEUE_0_READ_INDEX,
                         IPW_TX_QUEUE_0_WRITE_INDEX,
                         IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
      if (rc) {
            IPW_ERROR("Tx 0 queue init failed\n");
            goto error;
      }
      rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
                         IPW_TX_QUEUE_1_READ_INDEX,
                         IPW_TX_QUEUE_1_WRITE_INDEX,
                         IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
      if (rc) {
            IPW_ERROR("Tx 1 queue init failed\n");
            goto error;
      }
      rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
                         IPW_TX_QUEUE_2_READ_INDEX,
                         IPW_TX_QUEUE_2_WRITE_INDEX,
                         IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
      if (rc) {
            IPW_ERROR("Tx 2 queue init failed\n");
            goto error;
      }
      rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
                         IPW_TX_QUEUE_3_READ_INDEX,
                         IPW_TX_QUEUE_3_WRITE_INDEX,
                         IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
      if (rc) {
            IPW_ERROR("Tx 3 queue init failed\n");
            goto error;
      }
      /* statistics */
      priv->rx_bufs_min = 0;
      priv->rx_pend_max = 0;
      return rc;

      error:
      ipw_tx_queue_free(priv);
      return rc;
}

/**
 * Reclaim Tx queue entries no more used by NIC.
 *
 * When FW advances 'R' index, all entries between old and
 * new 'R' index need to be reclaimed. As result, some free space
 * forms. If there is enough free space (> low mark), wake Tx queue.
 *
 * @note Need to protect against garbage in 'R' index
 * @param priv
 * @param txq
 * @param qindex
 * @return Number of used entries remains in the queue
 */
static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
                        struct clx2_tx_queue *txq, int qindex)
{
      u32 hw_tail;
      int used;
      struct clx2_queue *q = &txq->q;

      hw_tail = ipw_read32(priv, q->reg_r);
      if (hw_tail >= q->n_bd) {
            IPW_ERROR
                ("Read index for DMA queue (%d) is out of range [0-%d)\n",
                 hw_tail, q->n_bd);
            goto done;
      }
      for (; q->last_used != hw_tail;
           q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
            ipw_queue_tx_free_tfd(priv, txq);
            priv->tx_packets++;
      }
      done:
      if ((ipw_queue_space(q) > q->low_mark) &&
          (qindex >= 0) &&
          (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
            netif_wake_queue(priv->net_dev);
      used = q->first_empty - q->last_used;
      if (used < 0)
            used += q->n_bd;

      return used;
}

static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
                       int len, int sync)
{
      struct clx2_tx_queue *txq = &priv->txq_cmd;
      struct clx2_queue *q = &txq->q;
      struct tfd_frame *tfd;

      if (ipw_queue_space(q) < (sync ? 1 : 2)) {
            IPW_ERROR("No space for Tx\n");
            return -EBUSY;
      }

      tfd = &txq->bd[q->first_empty];
      txq->txb[q->first_empty] = NULL;

      memset(tfd, 0, sizeof(*tfd));
      tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
      tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
      priv->hcmd_seq++;
      tfd->u.cmd.index = hcmd;
      tfd->u.cmd.length = len;
      memcpy(tfd->u.cmd.payload, buf, len);
      q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
      ipw_write32(priv, q->reg_w, q->first_empty);
      _ipw_read32(priv, 0x90);

      return 0;
}

/*
 * Rx theory of operation
 *
 * The host allocates 32 DMA target addresses and passes the host address
 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
 * 0 to 31
 *
 * Rx Queue Indexes
 * The host/firmware share two index registers for managing the Rx buffers.
 *
 * The READ index maps to the first position that the firmware may be writing
 * to -- the driver can read up to (but not including) this position and get
 * good data.
 * The READ index is managed by the firmware once the card is enabled.
 *
 * The WRITE index maps to the last position the driver has read from -- the
 * position preceding WRITE is the last slot the firmware can place a packet.
 *
 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 * WRITE = READ.
 *
 * During initialization the host sets up the READ queue position to the first
 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 *
 * When the firmware places a packet in a buffer it will advance the READ index
 * and fire the RX interrupt.  The driver can then query the READ index and
 * process as many packets as possible, moving the WRITE index forward as it
 * resets the Rx queue buffers with new memory.
 *
 * The management in the driver is as follows:
 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
 *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
 *   to replensish the ipw->rxq->rx_free.
 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
 *   ipw->rxq is replenished and the READ INDEX is updated (updating the
 *   'processed' and 'read' driver indexes as well)
 * + A received packet is processed and handed to the kernel network stack,
 *   detached from the ipw->rxq.  The driver 'processed' index is updated.
 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
 *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
 *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
 *   were enough free buffers and RX_STALLED is set it is cleared.
 *
 *
 * Driver sequence:
 *
 * ipw_rx_queue_alloc()       Allocates rx_free
 * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
 *                            ipw_rx_queue_restock
 * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
 *                            queue, updates firmware pointers, and updates
 *                            the WRITE index.  If insufficient rx_free buffers
 *                            are available, schedules ipw_rx_queue_replenish
 *
 * -- enable interrupts --
 * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
 *                            READ INDEX, detaching the SKB from the pool.
 *                            Moves the packet buffer from queue to rx_used.
 *                            Calls ipw_rx_queue_restock to refill any empty
 *                            slots.
 * ...
 *
 */

/*
 * If there are slots in the RX queue that  need to be restocked,
 * and we have free pre-allocated buffers, fill the ranks as much
 * as we can pulling from rx_free.
 *
 * This moves the 'write' index forward to catch up with 'processed', and
 * also updates the memory address in the firmware to reference the new
 * target buffer.
 */
static void ipw_rx_queue_restock(struct ipw_priv *priv)
{
      struct ipw_rx_queue *rxq = priv->rxq;
      struct list_head *element;
      struct ipw_rx_mem_buffer *rxb;
      unsigned long flags;
      int write;

      spin_lock_irqsave(&rxq->lock, flags);
      write = rxq->write;
      while ((rxq->write != rxq->processed) && (rxq->free_count)) {
            element = rxq->rx_free.next;
            rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
            list_del(element);

            ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
                      rxb->dma_addr);
            rxq->queue[rxq->write] = rxb;
            rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
            rxq->free_count--;
      }
      spin_unlock_irqrestore(&rxq->lock, flags);

      /* If the pre-allocated buffer pool is dropping low, schedule to
       * refill it */
      if (rxq->free_count <= RX_LOW_WATERMARK)
            queue_work(priv->workqueue, &priv->rx_replenish);

      /* If we've added more space for the firmware to place data, tell it */
      if (write != rxq->write)
            ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
}

/*
 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
 * Also restock the Rx queue via ipw_rx_queue_restock.
 *
 * This is called as a scheduled work item (except for during intialization)
 */
static void ipw_rx_queue_replenish(void *data)
{
      struct ipw_priv *priv = data;
      struct ipw_rx_queue *rxq = priv->rxq;
      struct list_head *element;
      struct ipw_rx_mem_buffer *rxb;
      unsigned long flags;

      spin_lock_irqsave(&rxq->lock, flags);
      while (!list_empty(&rxq->rx_used)) {
            element = rxq->rx_used.next;
            rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
            rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
            if (!rxb->skb) {
                  printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
                         priv->net_dev->name);
                  /* We don't reschedule replenish work here -- we will
                   * call the restock method and if it still needs
                   * more buffers it will schedule replenish */
                  break;
            }
            list_del(element);

            rxb->dma_addr =
                pci_map_single(priv->pci_dev, rxb->skb->data,
                           IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);

            list_add_tail(&rxb->list, &rxq->rx_free);
            rxq->free_count++;
      }
      spin_unlock_irqrestore(&rxq->lock, flags);

      ipw_rx_queue_restock(priv);
}

static void ipw_bg_rx_queue_replenish(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, rx_replenish);
      mutex_lock(&priv->mutex);
      ipw_rx_queue_replenish(priv);
      mutex_unlock(&priv->mutex);
}

/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
 * This free routine walks the list of POOL entries and if SKB is set to
 * non NULL it is unmapped and freed
 */
static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
{
      int i;

      if (!rxq)
            return;

      for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
            if (rxq->pool[i].skb != NULL) {
                  pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
                               IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
                  dev_kfree_skb(rxq->pool[i].skb);
            }
      }

      kfree(rxq);
}

static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
{
      struct ipw_rx_queue *rxq;
      int i;

      rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
      if (unlikely(!rxq)) {
            IPW_ERROR("memory allocation failed\n");
            return NULL;
      }
      spin_lock_init(&rxq->lock);
      INIT_LIST_HEAD(&rxq->rx_free);
      INIT_LIST_HEAD(&rxq->rx_used);

      /* Fill the rx_used queue with _all_ of the Rx buffers */
      for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
            list_add_tail(&rxq->pool[i].list, &rxq->rx_used);

      /* Set us so that we have processed and used all buffers, but have
       * not restocked the Rx queue with fresh buffers */
      rxq->read = rxq->write = 0;
      rxq->processed = RX_QUEUE_SIZE - 1;
      rxq->free_count = 0;

      return rxq;
}

static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
{
      rate &= ~IEEE80211_BASIC_RATE_MASK;
      if (ieee_mode == IEEE_A) {
            switch (rate) {
            case IEEE80211_OFDM_RATE_6MB:
                  return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
                      1 : 0;
            case IEEE80211_OFDM_RATE_9MB:
                  return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
                      1 : 0;
            case IEEE80211_OFDM_RATE_12MB:
                  return priv->
                      rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
            case IEEE80211_OFDM_RATE_18MB:
                  return priv->
                      rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
            case IEEE80211_OFDM_RATE_24MB:
                  return priv->
                      rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
            case IEEE80211_OFDM_RATE_36MB:
                  return priv->
                      rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
            case IEEE80211_OFDM_RATE_48MB:
                  return priv->
                      rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
            case IEEE80211_OFDM_RATE_54MB:
                  return priv->
                      rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
            default:
                  return 0;
            }
      }

      /* B and G mixed */
      switch (rate) {
      case IEEE80211_CCK_RATE_1MB:
            return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
      case IEEE80211_CCK_RATE_2MB:
            return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
      case IEEE80211_CCK_RATE_5MB:
            return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
      case IEEE80211_CCK_RATE_11MB:
            return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
      }

      /* If we are limited to B modulations, bail at this point */
      if (ieee_mode == IEEE_B)
            return 0;

      /* G */
      switch (rate) {
      case IEEE80211_OFDM_RATE_6MB:
            return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
      case IEEE80211_OFDM_RATE_9MB:
            return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
      case IEEE80211_OFDM_RATE_12MB:
            return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
      case IEEE80211_OFDM_RATE_18MB:
            return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
      case IEEE80211_OFDM_RATE_24MB:
            return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
      case IEEE80211_OFDM_RATE_36MB:
            return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
      case IEEE80211_OFDM_RATE_48MB:
            return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
      case IEEE80211_OFDM_RATE_54MB:
            return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
      }

      return 0;
}

static int ipw_compatible_rates(struct ipw_priv *priv,
                        const struct ieee80211_network *network,
                        struct ipw_supported_rates *rates)
{
      int num_rates, i;

      memset(rates, 0, sizeof(*rates));
      num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
      rates->num_rates = 0;
      for (i = 0; i < num_rates; i++) {
            if (!ipw_is_rate_in_mask(priv, network->mode,
                               network->rates[i])) {

                  if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
                        IPW_DEBUG_SCAN("Adding masked mandatory "
                                     "rate %02X\n",
                                     network->rates[i]);
                        rates->supported_rates[rates->num_rates++] =
                            network->rates[i];
                        continue;
                  }

                  IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
                               network->rates[i], priv->rates_mask);
                  continue;
            }

            rates->supported_rates[rates->num_rates++] = network->rates[i];
      }

      num_rates = min(network->rates_ex_len,
                  (u8) (IPW_MAX_RATES - num_rates));
      for (i = 0; i < num_rates; i++) {
            if (!ipw_is_rate_in_mask(priv, network->mode,
                               network->rates_ex[i])) {
                  if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
                        IPW_DEBUG_SCAN("Adding masked mandatory "
                                     "rate %02X\n",
                                     network->rates_ex[i]);
                        rates->supported_rates[rates->num_rates++] =
                            network->rates[i];
                        continue;
                  }

                  IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
                               network->rates_ex[i], priv->rates_mask);
                  continue;
            }

            rates->supported_rates[rates->num_rates++] =
                network->rates_ex[i];
      }

      return 1;
}

static void ipw_copy_rates(struct ipw_supported_rates *dest,
                          const struct ipw_supported_rates *src)
{
      u8 i;
      for (i = 0; i < src->num_rates; i++)
            dest->supported_rates[i] = src->supported_rates[i];
      dest->num_rates = src->num_rates;
}

/* TODO: Look at sniffed packets in the air to determine if the basic rate
 * mask should ever be used -- right now all callers to add the scan rates are
 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
                           u8 modulation, u32 rate_mask)
{
      u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
          IEEE80211_BASIC_RATE_MASK : 0;

      if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
            rates->supported_rates[rates->num_rates++] =
                IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;

      if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
            rates->supported_rates[rates->num_rates++] =
                IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;

      if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
            rates->supported_rates[rates->num_rates++] = basic_mask |
                IEEE80211_CCK_RATE_5MB;

      if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
            rates->supported_rates[rates->num_rates++] = basic_mask |
                IEEE80211_CCK_RATE_11MB;
}

static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
                            u8 modulation, u32 rate_mask)
{
      u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
          IEEE80211_BASIC_RATE_MASK : 0;

      if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
            rates->supported_rates[rates->num_rates++] = basic_mask |
                IEEE80211_OFDM_RATE_6MB;

      if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
            rates->supported_rates[rates->num_rates++] =
                IEEE80211_OFDM_RATE_9MB;

      if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
            rates->supported_rates[rates->num_rates++] = basic_mask |
                IEEE80211_OFDM_RATE_12MB;

      if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
            rates->supported_rates[rates->num_rates++] =
                IEEE80211_OFDM_RATE_18MB;

      if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
            rates->supported_rates[rates->num_rates++] = basic_mask |
                IEEE80211_OFDM_RATE_24MB;

      if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
            rates->supported_rates[rates->num_rates++] =
                IEEE80211_OFDM_RATE_36MB;

      if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
            rates->supported_rates[rates->num_rates++] =
                IEEE80211_OFDM_RATE_48MB;

      if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
            rates->supported_rates[rates->num_rates++] =
                IEEE80211_OFDM_RATE_54MB;
}

struct ipw_network_match {
      struct ieee80211_network *network;
      struct ipw_supported_rates rates;
};

static int ipw_find_adhoc_network(struct ipw_priv *priv,
                          struct ipw_network_match *match,
                          struct ieee80211_network *network,
                          int roaming)
{
      struct ipw_supported_rates rates;
      DECLARE_MAC_BUF(mac);
      DECLARE_MAC_BUF(mac2);

      /* Verify that this network's capability is compatible with the
       * current mode (AdHoc or Infrastructure) */
      if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
           !(network->capability & WLAN_CAPABILITY_IBSS))) {
            IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
                        "capability mismatch.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      /* If we do not have an ESSID for this AP, we can not associate with
       * it */
      if (network->flags & NETWORK_EMPTY_ESSID) {
            IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
                        "because of hidden ESSID.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      if (unlikely(roaming)) {
            /* If we are roaming, then ensure check if this is a valid
             * network to try and roam to */
            if ((network->ssid_len != match->network->ssid_len) ||
                memcmp(network->ssid, match->network->ssid,
                     network->ssid_len)) {
                  IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
                              "because of non-network ESSID.\n",
                              escape_essid(network->ssid,
                                         network->ssid_len),
                              print_mac(mac, network->bssid));
                  return 0;
            }
      } else {
            /* If an ESSID has been configured then compare the broadcast
             * ESSID to ours */
            if ((priv->config & CFG_STATIC_ESSID) &&
                ((network->ssid_len != priv->essid_len) ||
                 memcmp(network->ssid, priv->essid,
                      min(network->ssid_len, priv->essid_len)))) {
                  char escaped[IW_ESSID_MAX_SIZE * 2 + 1];

                  strncpy(escaped,
                        escape_essid(network->ssid, network->ssid_len),
                        sizeof(escaped));
                  IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
                              "because of ESSID mismatch: '%s'.\n",
                              escaped, print_mac(mac, network->bssid),
                              escape_essid(priv->essid,
                                         priv->essid_len));
                  return 0;
            }
      }

      /* If the old network rate is better than this one, don't bother
       * testing everything else. */

      if (network->time_stamp[0] < match->network->time_stamp[0]) {
            IPW_DEBUG_MERGE("Network '%s excluded because newer than "
                        "current network.\n",
                        escape_essid(match->network->ssid,
                                   match->network->ssid_len));
            return 0;
      } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
            IPW_DEBUG_MERGE("Network '%s excluded because newer than "
                        "current network.\n",
                        escape_essid(match->network->ssid,
                                   match->network->ssid_len));
            return 0;
      }

      /* Now go through and see if the requested network is valid... */
      if (priv->ieee->scan_age != 0 &&
          time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
            IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
                        "because of age: %ums.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid),
                        jiffies_to_msecs(jiffies -
                                     network->last_scanned));
            return 0;
      }

      if ((priv->config & CFG_STATIC_CHANNEL) &&
          (network->channel != priv->channel)) {
            IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
                        "because of channel mismatch: %d != %d.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid),
                        network->channel, priv->channel);
            return 0;
      }

      /* Verify privacy compatability */
      if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
          ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
            IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
                        "because of privacy mismatch: %s != %s.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid),
                        priv->
                        capability & CAP_PRIVACY_ON ? "on" : "off",
                        network->
                        capability & WLAN_CAPABILITY_PRIVACY ? "on" :
                        "off");
            return 0;
      }

      if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
            IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
                        "because of the same BSSID match: %s"
                        ".\n", escape_essid(network->ssid,
                                        network->ssid_len),
                        print_mac(mac, network->bssid),
                        print_mac(mac2, priv->bssid));
            return 0;
      }

      /* Filter out any incompatible freq / mode combinations */
      if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
            IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
                        "because of invalid frequency/mode "
                        "combination.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      /* Ensure that the rates supported by the driver are compatible with
       * this AP, including verification of basic rates (mandatory) */
      if (!ipw_compatible_rates(priv, network, &rates)) {
            IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
                        "because configured rate mask excludes "
                        "AP mandatory rate.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      if (rates.num_rates == 0) {
            IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
                        "because of no compatible rates.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      /* TODO: Perform any further minimal comparititive tests.  We do not
       * want to put too much policy logic here; intelligent scan selection
       * should occur within a generic IEEE 802.11 user space tool.  */

      /* Set up 'new' AP to this network */
      ipw_copy_rates(&match->rates, &rates);
      match->network = network;
      IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
                  escape_essid(network->ssid, network->ssid_len),
                  print_mac(mac, network->bssid));

      return 1;
}

static void ipw_merge_adhoc_network(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, merge_networks);
      struct ieee80211_network *network = NULL;
      struct ipw_network_match match = {
            .network = priv->assoc_network
      };

      if ((priv->status & STATUS_ASSOCIATED) &&
          (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
            /* First pass through ROAM process -- look for a better
             * network */
            unsigned long flags;

            spin_lock_irqsave(&priv->ieee->lock, flags);
            list_for_each_entry(network, &priv->ieee->network_list, list) {
                  if (network != priv->assoc_network)
                        ipw_find_adhoc_network(priv, &match, network,
                                           1);
            }
            spin_unlock_irqrestore(&priv->ieee->lock, flags);

            if (match.network == priv->assoc_network) {
                  IPW_DEBUG_MERGE("No better ADHOC in this network to "
                              "merge to.\n");
                  return;
            }

            mutex_lock(&priv->mutex);
            if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
                  IPW_DEBUG_MERGE("remove network %s\n",
                              escape_essid(priv->essid,
                                         priv->essid_len));
                  ipw_remove_current_network(priv);
            }

            ipw_disassociate(priv);
            priv->assoc_network = match.network;
            mutex_unlock(&priv->mutex);
            return;
      }
}

static int ipw_best_network(struct ipw_priv *priv,
                      struct ipw_network_match *match,
                      struct ieee80211_network *network, int roaming)
{
      struct ipw_supported_rates rates;
      DECLARE_MAC_BUF(mac);

      /* Verify that this network's capability is compatible with the
       * current mode (AdHoc or Infrastructure) */
      if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
           !(network->capability & WLAN_CAPABILITY_ESS)) ||
          (priv->ieee->iw_mode == IW_MODE_ADHOC &&
           !(network->capability & WLAN_CAPABILITY_IBSS))) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
                        "capability mismatch.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      /* If we do not have an ESSID for this AP, we can not associate with
       * it */
      if (network->flags & NETWORK_EMPTY_ESSID) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                        "because of hidden ESSID.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      if (unlikely(roaming)) {
            /* If we are roaming, then ensure check if this is a valid
             * network to try and roam to */
            if ((network->ssid_len != match->network->ssid_len) ||
                memcmp(network->ssid, match->network->ssid,
                     network->ssid_len)) {
                  IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                              "because of non-network ESSID.\n",
                              escape_essid(network->ssid,
                                         network->ssid_len),
                              print_mac(mac, network->bssid));
                  return 0;
            }
      } else {
            /* If an ESSID has been configured then compare the broadcast
             * ESSID to ours */
            if ((priv->config & CFG_STATIC_ESSID) &&
                ((network->ssid_len != priv->essid_len) ||
                 memcmp(network->ssid, priv->essid,
                      min(network->ssid_len, priv->essid_len)))) {
                  char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
                  strncpy(escaped,
                        escape_essid(network->ssid, network->ssid_len),
                        sizeof(escaped));
                  IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                              "because of ESSID mismatch: '%s'.\n",
                              escaped, print_mac(mac, network->bssid),
                              escape_essid(priv->essid,
                                         priv->essid_len));
                  return 0;
            }
      }

      /* If the old network rate is better than this one, don't bother
       * testing everything else. */
      if (match->network && match->network->stats.rssi > network->stats.rssi) {
            char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
            strncpy(escaped,
                  escape_essid(network->ssid, network->ssid_len),
                  sizeof(escaped));
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
                        "'%s (%s)' has a stronger signal.\n",
                        escaped, print_mac(mac, network->bssid),
                        escape_essid(match->network->ssid,
                                   match->network->ssid_len),
                        print_mac(mac, match->network->bssid));
            return 0;
      }

      /* If this network has already had an association attempt within the
       * last 3 seconds, do not try and associate again... */
      if (network->last_associate &&
          time_after(network->last_associate + (HZ * 3UL), jiffies)) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                        "because of storming (%ums since last "
                        "assoc attempt).\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid),
                        jiffies_to_msecs(jiffies -
                                     network->last_associate));
            return 0;
      }

      /* Now go through and see if the requested network is valid... */
      if (priv->ieee->scan_age != 0 &&
          time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                        "because of age: %ums.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid),
                        jiffies_to_msecs(jiffies -
                                     network->last_scanned));
            return 0;
      }

      if ((priv->config & CFG_STATIC_CHANNEL) &&
          (network->channel != priv->channel)) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                        "because of channel mismatch: %d != %d.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid),
                        network->channel, priv->channel);
            return 0;
      }

      /* Verify privacy compatability */
      if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
          ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                        "because of privacy mismatch: %s != %s.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid),
                        priv->capability & CAP_PRIVACY_ON ? "on" :
                        "off",
                        network->capability &
                        WLAN_CAPABILITY_PRIVACY ? "on" : "off");
            return 0;
      }

      if ((priv->config & CFG_STATIC_BSSID) &&
          memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                        "because of BSSID mismatch: %s.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
            return 0;
      }

      /* Filter out any incompatible freq / mode combinations */
      if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                        "because of invalid frequency/mode "
                        "combination.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      /* Filter out invalid channel in current GEO */
      if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                        "because of invalid channel in current GEO\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      /* Ensure that the rates supported by the driver are compatible with
       * this AP, including verification of basic rates (mandatory) */
      if (!ipw_compatible_rates(priv, network, &rates)) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                        "because configured rate mask excludes "
                        "AP mandatory rate.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      if (rates.num_rates == 0) {
            IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
                        "because of no compatible rates.\n",
                        escape_essid(network->ssid, network->ssid_len),
                        print_mac(mac, network->bssid));
            return 0;
      }

      /* TODO: Perform any further minimal comparititive tests.  We do not
       * want to put too much policy logic here; intelligent scan selection
       * should occur within a generic IEEE 802.11 user space tool.  */

      /* Set up 'new' AP to this network */
      ipw_copy_rates(&match->rates, &rates);
      match->network = network;

      IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
                  escape_essid(network->ssid, network->ssid_len),
                  print_mac(mac, network->bssid));

      return 1;
}

static void ipw_adhoc_create(struct ipw_priv *priv,
                       struct ieee80211_network *network)
{
      const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
      int i;

      /*
       * For the purposes of scanning, we can set our wireless mode
       * to trigger scans across combinations of bands, but when it
       * comes to creating a new ad-hoc network, we have tell the FW
       * exactly which band to use.
       *
       * We also have the possibility of an invalid channel for the
       * chossen band.  Attempting to create a new ad-hoc network
       * with an invalid channel for wireless mode will trigger a
       * FW fatal error.
       *
       */
      switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
      case IEEE80211_52GHZ_BAND:
            network->mode = IEEE_A;
            i = ieee80211_channel_to_index(priv->ieee, priv->channel);
            BUG_ON(i == -1);
            if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
                  IPW_WARNING("Overriding invalid channel\n");
                  priv->channel = geo->a[0].channel;
            }
            break;

      case IEEE80211_24GHZ_BAND:
            if (priv->ieee->mode & IEEE_G)
                  network->mode = IEEE_G;
            else
                  network->mode = IEEE_B;
            i = ieee80211_channel_to_index(priv->ieee, priv->channel);
            BUG_ON(i == -1);
            if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
                  IPW_WARNING("Overriding invalid channel\n");
                  priv->channel = geo->bg[0].channel;
            }
            break;

      default:
            IPW_WARNING("Overriding invalid channel\n");
            if (priv->ieee->mode & IEEE_A) {
                  network->mode = IEEE_A;
                  priv->channel = geo->a[0].channel;
            } else if (priv->ieee->mode & IEEE_G) {
                  network->mode = IEEE_G;
                  priv->channel = geo->bg[0].channel;
            } else {
                  network->mode = IEEE_B;
                  priv->channel = geo->bg[0].channel;
            }
            break;
      }

      network->channel = priv->channel;
      priv->config |= CFG_ADHOC_PERSIST;
      ipw_create_bssid(priv, network->bssid);
      network->ssid_len = priv->essid_len;
      memcpy(network->ssid, priv->essid, priv->essid_len);
      memset(&network->stats, 0, sizeof(network->stats));
      network->capability = WLAN_CAPABILITY_IBSS;
      if (!(priv->config & CFG_PREAMBLE_LONG))
            network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
      if (priv->capability & CAP_PRIVACY_ON)
            network->capability |= WLAN_CAPABILITY_PRIVACY;
      network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
      memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
      network->rates_ex_len = priv->rates.num_rates - network->rates_len;
      memcpy(network->rates_ex,
             &priv->rates.supported_rates[network->rates_len],
             network->rates_ex_len);
      network->last_scanned = 0;
      network->flags = 0;
      network->last_associate = 0;
      network->time_stamp[0] = 0;
      network->time_stamp[1] = 0;
      network->beacon_interval = 100;     /* Default */
      network->listen_interval = 10;      /* Default */
      network->atim_window = 0;     /* Default */
      network->wpa_ie_len = 0;
      network->rsn_ie_len = 0;
}

static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
{
      struct ipw_tgi_tx_key key;

      if (!(priv->ieee->sec.flags & (1 << index)))
            return;

      key.key_id = index;
      memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
      key.security_type = type;
      key.station_index = 0;  /* always 0 for BSS */
      key.flags = 0;
      /* 0 for new key; previous value of counter (after fatal error) */
      key.tx_counter[0] = cpu_to_le32(0);
      key.tx_counter[1] = cpu_to_le32(0);

      ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
}

static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
{
      struct ipw_wep_key key;
      int i;

      key.cmd_id = DINO_CMD_WEP_KEY;
      key.seq_num = 0;

      /* Note: AES keys cannot be set for multiple times.
       * Only set it at the first time. */
      for (i = 0; i < 4; i++) {
            key.key_index = i | type;
            if (!(priv->ieee->sec.flags & (1 << i))) {
                  key.key_size = 0;
                  continue;
            }

            key.key_size = priv->ieee->sec.key_sizes[i];
            memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);

            ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
      }
}

static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
{
      if (priv->ieee->host_encrypt)
            return;

      switch (level) {
      case SEC_LEVEL_3:
            priv->sys_config.disable_unicast_decryption = 0;
            priv->ieee->host_decrypt = 0;
            break;
      case SEC_LEVEL_2:
            priv->sys_config.disable_unicast_decryption = 1;
            priv->ieee->host_decrypt = 1;
            break;
      case SEC_LEVEL_1:
            priv->sys_config.disable_unicast_decryption = 0;
            priv->ieee->host_decrypt = 0;
            break;
      case SEC_LEVEL_0:
            priv->sys_config.disable_unicast_decryption = 1;
            break;
      default:
            break;
      }
}

static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
{
      if (priv->ieee->host_encrypt)
            return;

      switch (level) {
      case SEC_LEVEL_3:
            priv->sys_config.disable_multicast_decryption = 0;
            break;
      case SEC_LEVEL_2:
            priv->sys_config.disable_multicast_decryption = 1;
            break;
      case SEC_LEVEL_1:
            priv->sys_config.disable_multicast_decryption = 0;
            break;
      case SEC_LEVEL_0:
            priv->sys_config.disable_multicast_decryption = 1;
            break;
      default:
            break;
      }
}

static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
{
      switch (priv->ieee->sec.level) {
      case SEC_LEVEL_3:
            if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
                  ipw_send_tgi_tx_key(priv,
                                  DCT_FLAG_EXT_SECURITY_CCM,
                                  priv->ieee->sec.active_key);

            if (!priv->ieee->host_mc_decrypt)
                  ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
            break;
      case SEC_LEVEL_2:
            if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
                  ipw_send_tgi_tx_key(priv,
                                  DCT_FLAG_EXT_SECURITY_TKIP,
                                  priv->ieee->sec.active_key);
            break;
      case SEC_LEVEL_1:
            ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
            ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
            ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
            break;
      case SEC_LEVEL_0:
      default:
            break;
      }
}

static void ipw_adhoc_check(void *data)
{
      struct ipw_priv *priv = data;

      if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
          !(priv->config & CFG_ADHOC_PERSIST)) {
            IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
                    IPW_DL_STATE | IPW_DL_ASSOC,
                    "Missed beacon: %d - disassociate\n",
                    priv->missed_adhoc_beacons);
            ipw_remove_current_network(priv);
            ipw_disassociate(priv);
            return;
      }

      queue_delayed_work(priv->workqueue, &priv->adhoc_check,
                     priv->assoc_request.beacon_interval);
}

static void ipw_bg_adhoc_check(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, adhoc_check.work);
      mutex_lock(&priv->mutex);
      ipw_adhoc_check(priv);
      mutex_unlock(&priv->mutex);
}

static void ipw_debug_config(struct ipw_priv *priv)
{
      DECLARE_MAC_BUF(mac);
      IPW_DEBUG_INFO("Scan completed, no valid APs matched "
                   "[CFG 0x%08X]\n", priv->config);
      if (priv->config & CFG_STATIC_CHANNEL)
            IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
      else
            IPW_DEBUG_INFO("Channel unlocked.\n");
      if (priv->config & CFG_STATIC_ESSID)
            IPW_DEBUG_INFO("ESSID locked to '%s'\n",
                         escape_essid(priv->essid, priv->essid_len));
      else
            IPW_DEBUG_INFO("ESSID unlocked.\n");
      if (priv->config & CFG_STATIC_BSSID)
            IPW_DEBUG_INFO("BSSID locked to %s\n",
                         print_mac(mac, priv->bssid));
      else
            IPW_DEBUG_INFO("BSSID unlocked.\n");
      if (priv->capability & CAP_PRIVACY_ON)
            IPW_DEBUG_INFO("PRIVACY on\n");
      else
            IPW_DEBUG_INFO("PRIVACY off\n");
      IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
}

static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
{
      /* TODO: Verify that this works... */
      struct ipw_fixed_rate fr = {
            .tx_rates = priv->rates_mask
      };
      u32 reg;
      u16 mask = 0;

      /* Identify 'current FW band' and match it with the fixed
       * Tx rates */

      switch (priv->ieee->freq_band) {
      case IEEE80211_52GHZ_BAND:    /* A only */
            /* IEEE_A */
            if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
                  /* Invalid fixed rate mask */
                  IPW_DEBUG_WX
                      ("invalid fixed rate mask in ipw_set_fixed_rate\n");
                  fr.tx_rates = 0;
                  break;
            }

            fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
            break;

      default:          /* 2.4Ghz or Mixed */
            /* IEEE_B */
            if (mode == IEEE_B) {
                  if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
                        /* Invalid fixed rate mask */
                        IPW_DEBUG_WX
                            ("invalid fixed rate mask in ipw_set_fixed_rate\n");
                        fr.tx_rates = 0;
                  }
                  break;
            }

            /* IEEE_G */
            if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
                            IEEE80211_OFDM_RATES_MASK)) {
                  /* Invalid fixed rate mask */
                  IPW_DEBUG_WX
                      ("invalid fixed rate mask in ipw_set_fixed_rate\n");
                  fr.tx_rates = 0;
                  break;
            }

            if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
                  mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
                  fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
            }

            if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
                  mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
                  fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
            }

            if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
                  mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
                  fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
            }

            fr.tx_rates |= mask;
            break;
      }

      reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
      ipw_write_reg32(priv, reg, *(u32 *) & fr);
}

static void ipw_abort_scan(struct ipw_priv *priv)
{
      int err;

      if (priv->status & STATUS_SCAN_ABORTING) {
            IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
            return;
      }
      priv->status |= STATUS_SCAN_ABORTING;

      err = ipw_send_scan_abort(priv);
      if (err)
            IPW_DEBUG_HC("Request to abort scan failed.\n");
}

static void ipw_add_scan_channels(struct ipw_priv *priv,
                          struct ipw_scan_request_ext *scan,
                          int scan_type)
{
      int channel_index = 0;
      const struct ieee80211_geo *geo;
      int i;

      geo = ieee80211_get_geo(priv->ieee);

      if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
            int start = channel_index;
            for (i = 0; i < geo->a_channels; i++) {
                  if ((priv->status & STATUS_ASSOCIATED) &&
                      geo->a[i].channel == priv->channel)
                        continue;
                  channel_index++;
                  scan->channels_list[channel_index] = geo->a[i].channel;
                  ipw_set_scan_type(scan, channel_index,
                                geo->a[i].
                                flags & IEEE80211_CH_PASSIVE_ONLY ?
                                IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
                                scan_type);
            }

            if (start != channel_index) {
                  scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
                      (channel_index - start);
                  channel_index++;
            }
      }

      if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
            int start = channel_index;
            if (priv->config & CFG_SPEED_SCAN) {
                  int index;
                  u8 channels[IEEE80211_24GHZ_CHANNELS] = {
                        /* nop out the list */
                        [0] = 0
                  };

                  u8 channel;
                  while (channel_index < IPW_SCAN_CHANNELS) {
                        channel =
                            priv->speed_scan[priv->speed_scan_pos];
                        if (channel == 0) {
                              priv->speed_scan_pos = 0;
                              channel = priv->speed_scan[0];
                        }
                        if ((priv->status & STATUS_ASSOCIATED) &&
                            channel == priv->channel) {
                              priv->speed_scan_pos++;
                              continue;
                        }

                        /* If this channel has already been
                         * added in scan, break from loop
                         * and this will be the first channel
                         * in the next scan.
                         */
                        if (channels[channel - 1] != 0)
                              break;

                        channels[channel - 1] = 1;
                        priv->speed_scan_pos++;
                        channel_index++;
                        scan->channels_list[channel_index] = channel;
                        index =
                            ieee80211_channel_to_index(priv->ieee, channel);
                        ipw_set_scan_type(scan, channel_index,
                                      geo->bg[index].
                                      flags &
                                      IEEE80211_CH_PASSIVE_ONLY ?
                                      IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
                                      : scan_type);
                  }
            } else {
                  for (i = 0; i < geo->bg_channels; i++) {
                        if ((priv->status & STATUS_ASSOCIATED) &&
                            geo->bg[i].channel == priv->channel)
                              continue;
                        channel_index++;
                        scan->channels_list[channel_index] =
                            geo->bg[i].channel;
                        ipw_set_scan_type(scan, channel_index,
                                      geo->bg[i].
                                      flags &
                                      IEEE80211_CH_PASSIVE_ONLY ?
                                      IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
                                      : scan_type);
                  }
            }

            if (start != channel_index) {
                  scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
                      (channel_index - start);
            }
      }
}

static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
{
      struct ipw_scan_request_ext scan;
      int err = 0, scan_type;

      if (!(priv->status & STATUS_INIT) ||
          (priv->status & STATUS_EXIT_PENDING))
            return 0;

      mutex_lock(&priv->mutex);

      if (priv->status & STATUS_SCANNING) {
            IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
            priv->status |= STATUS_SCAN_PENDING;
            goto done;
      }

      if (!(priv->status & STATUS_SCAN_FORCED) &&
          priv->status & STATUS_SCAN_ABORTING) {
            IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
            priv->status |= STATUS_SCAN_PENDING;
            goto done;
      }

      if (priv->status & STATUS_RF_KILL_MASK) {
            IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
            priv->status |= STATUS_SCAN_PENDING;
            goto done;
      }

      memset(&scan, 0, sizeof(scan));
      scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));

      if (type == IW_SCAN_TYPE_PASSIVE) {
            IPW_DEBUG_WX("use passive scanning\n");
            scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
            scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
                  cpu_to_le16(120);
            ipw_add_scan_channels(priv, &scan, scan_type);
            goto send_request;
      }

      /* Use active scan by default. */
      if (priv->config & CFG_SPEED_SCAN)
            scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
                  cpu_to_le16(30);
      else
            scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
                  cpu_to_le16(20);

      scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
            cpu_to_le16(20);

      scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);

#ifdef CONFIG_IPW2200_MONITOR
      if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
            u8 channel;
            u8 band = 0;

            switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
            case IEEE80211_52GHZ_BAND:
                  band = (u8) (IPW_A_MODE << 6) | 1;
                  channel = priv->channel;
                  break;

            case IEEE80211_24GHZ_BAND:
                  band = (u8) (IPW_B_MODE << 6) | 1;
                  channel = priv->channel;
                  break;

            default:
                  band = (u8) (IPW_B_MODE << 6) | 1;
                  channel = 9;
                  break;
            }

            scan.channels_list[0] = band;
            scan.channels_list[1] = channel;
            ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);

            /* NOTE:  The card will sit on this channel for this time
             * period.  Scan aborts are timing sensitive and frequently
             * result in firmware restarts.  As such, it is best to
             * set a small dwell_time here and just keep re-issuing
             * scans.  Otherwise fast channel hopping will not actually
             * hop channels.
             *
             * TODO: Move SPEED SCAN support to all modes and bands */
            scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
                  cpu_to_le16(2000);
      } else {
#endif                        /* CONFIG_IPW2200_MONITOR */
            /* If we are roaming, then make this a directed scan for the
             * current network.  Otherwise, ensure that every other scan
             * is a fast channel hop scan */
            if ((priv->status & STATUS_ROAMING)
                || (!(priv->status & STATUS_ASSOCIATED)
                  && (priv->config & CFG_STATIC_ESSID)
                  && (le32_to_cpu(scan.full_scan_index) % 2))) {
                  err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
                  if (err) {
                        IPW_DEBUG_HC("Attempt to send SSID command "
                                   "failed.\n");
                        goto done;
                  }

                  scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
            } else
                  scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;

            ipw_add_scan_channels(priv, &scan, scan_type);
#ifdef CONFIG_IPW2200_MONITOR
      }
#endif

send_request:
      err = ipw_send_scan_request_ext(priv, &scan);
      if (err) {
            IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
            goto done;
      }

      priv->status |= STATUS_SCANNING;
      priv->status &= ~STATUS_SCAN_PENDING;
      queue_delayed_work(priv->workqueue, &priv->scan_check,
                     IPW_SCAN_CHECK_WATCHDOG);
done:
      mutex_unlock(&priv->mutex);
      return err;
}

static void ipw_request_passive_scan(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, request_passive_scan);
      ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
}

static void ipw_request_scan(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, request_scan.work);
      ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
}

static void ipw_bg_abort_scan(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, abort_scan);
      mutex_lock(&priv->mutex);
      ipw_abort_scan(priv);
      mutex_unlock(&priv->mutex);
}

static int ipw_wpa_enable(struct ipw_priv *priv, int value)
{
      /* This is called when wpa_supplicant loads and closes the driver
       * interface. */
      priv->ieee->wpa_enabled = value;
      return 0;
}

static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
{
      struct ieee80211_device *ieee = priv->ieee;
      struct ieee80211_security sec = {
            .flags = SEC_AUTH_MODE,
      };
      int ret = 0;

      if (value & IW_AUTH_ALG_SHARED_KEY) {
            sec.auth_mode = WLAN_AUTH_SHARED_KEY;
            ieee->open_wep = 0;
      } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
            sec.auth_mode = WLAN_AUTH_OPEN;
            ieee->open_wep = 1;
      } else if (value & IW_AUTH_ALG_LEAP) {
            sec.auth_mode = WLAN_AUTH_LEAP;
            ieee->open_wep = 1;
      } else
            return -EINVAL;

      if (ieee->set_security)
            ieee->set_security(ieee->dev, &sec);
      else
            ret = -EOPNOTSUPP;

      return ret;
}

static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
                        int wpa_ie_len)
{
      /* make sure WPA is enabled */
      ipw_wpa_enable(priv, 1);
}

static int ipw_set_rsn_capa(struct ipw_priv *priv,
                      char *capabilities, int length)
{
      IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");

      return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
                        capabilities);
}

/*
 * WE-18 support
 */

/* SIOCSIWGENIE */
static int ipw_wx_set_genie(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct ieee80211_device *ieee = priv->ieee;
      u8 *buf;
      int err = 0;

      if (wrqu->data.length > MAX_WPA_IE_LEN ||
          (wrqu->data.length && extra == NULL))
            return -EINVAL;

      if (wrqu->data.length) {
            buf = kmalloc(wrqu->data.length, GFP_KERNEL);
            if (buf == NULL) {
                  err = -ENOMEM;
                  goto out;
            }

            memcpy(buf, extra, wrqu->data.length);
            kfree(ieee->wpa_ie);
            ieee->wpa_ie = buf;
            ieee->wpa_ie_len = wrqu->data.length;
      } else {
            kfree(ieee->wpa_ie);
            ieee->wpa_ie = NULL;
            ieee->wpa_ie_len = 0;
      }

      ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
      out:
      return err;
}

/* SIOCGIWGENIE */
static int ipw_wx_get_genie(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct ieee80211_device *ieee = priv->ieee;
      int err = 0;

      if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
            wrqu->data.length = 0;
            goto out;
      }

      if (wrqu->data.length < ieee->wpa_ie_len) {
            err = -E2BIG;
            goto out;
      }

      wrqu->data.length = ieee->wpa_ie_len;
      memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);

      out:
      return err;
}

static int wext_cipher2level(int cipher)
{
      switch (cipher) {
      case IW_AUTH_CIPHER_NONE:
            return SEC_LEVEL_0;
      case IW_AUTH_CIPHER_WEP40:
      case IW_AUTH_CIPHER_WEP104:
            return SEC_LEVEL_1;
      case IW_AUTH_CIPHER_TKIP:
            return SEC_LEVEL_2;
      case IW_AUTH_CIPHER_CCMP:
            return SEC_LEVEL_3;
      default:
            return -1;
      }
}

/* SIOCSIWAUTH */
static int ipw_wx_set_auth(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct ieee80211_device *ieee = priv->ieee;
      struct iw_param *param = &wrqu->param;
      struct ieee80211_crypt_data *crypt;
      unsigned long flags;
      int ret = 0;

      switch (param->flags & IW_AUTH_INDEX) {
      case IW_AUTH_WPA_VERSION:
            break;
      case IW_AUTH_CIPHER_PAIRWISE:
            ipw_set_hw_decrypt_unicast(priv,
                                 wext_cipher2level(param->value));
            break;
      case IW_AUTH_CIPHER_GROUP:
            ipw_set_hw_decrypt_multicast(priv,
                                   wext_cipher2level(param->value));
            break;
      case IW_AUTH_KEY_MGMT:
            /*
             * ipw2200 does not use these parameters
             */
            break;

      case IW_AUTH_TKIP_COUNTERMEASURES:
            crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
            if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
                  break;

            flags = crypt->ops->get_flags(crypt->priv);

            if (param->value)
                  flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
            else
                  flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;

            crypt->ops->set_flags(flags, crypt->priv);

            break;

      case IW_AUTH_DROP_UNENCRYPTED:{
                  /* HACK:
                   *
                   * wpa_supplicant calls set_wpa_enabled when the driver
                   * is loaded and unloaded, regardless of if WPA is being
                   * used.  No other calls are made which can be used to
                   * determine if encryption will be used or not prior to
                   * association being expected.  If encryption is not being
                   * used, drop_unencrypted is set to false, else true -- we
                   * can use this to determine if the CAP_PRIVACY_ON bit should
                   * be set.
                   */
                  struct ieee80211_security sec = {
                        .flags = SEC_ENABLED,
                        .enabled = param->value,
                  };
                  priv->ieee->drop_unencrypted = param->value;
                  /* We only change SEC_LEVEL for open mode. Others
                   * are set by ipw_wpa_set_encryption.
                   */
                  if (!param->value) {
                        sec.flags |= SEC_LEVEL;
                        sec.level = SEC_LEVEL_0;
                  } else {
                        sec.flags |= SEC_LEVEL;
                        sec.level = SEC_LEVEL_1;
                  }
                  if (priv->ieee->set_security)
                        priv->ieee->set_security(priv->ieee->dev, &sec);
                  break;
            }

      case IW_AUTH_80211_AUTH_ALG:
            ret = ipw_wpa_set_auth_algs(priv, param->value);
            break;

      case IW_AUTH_WPA_ENABLED:
            ret = ipw_wpa_enable(priv, param->value);
            ipw_disassociate(priv);
            break;

      case IW_AUTH_RX_UNENCRYPTED_EAPOL:
            ieee->ieee802_1x = param->value;
            break;

      case IW_AUTH_PRIVACY_INVOKED:
            ieee->privacy_invoked = param->value;
            break;

      default:
            return -EOPNOTSUPP;
      }
      return ret;
}

/* SIOCGIWAUTH */
static int ipw_wx_get_auth(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct ieee80211_device *ieee = priv->ieee;
      struct ieee80211_crypt_data *crypt;
      struct iw_param *param = &wrqu->param;
      int ret = 0;

      switch (param->flags & IW_AUTH_INDEX) {
      case IW_AUTH_WPA_VERSION:
      case IW_AUTH_CIPHER_PAIRWISE:
      case IW_AUTH_CIPHER_GROUP:
      case IW_AUTH_KEY_MGMT:
            /*
             * wpa_supplicant will control these internally
             */
            ret = -EOPNOTSUPP;
            break;

      case IW_AUTH_TKIP_COUNTERMEASURES:
            crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
            if (!crypt || !crypt->ops->get_flags)
                  break;

            param->value = (crypt->ops->get_flags(crypt->priv) &
                        IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;

            break;

      case IW_AUTH_DROP_UNENCRYPTED:
            param->value = ieee->drop_unencrypted;
            break;

      case IW_AUTH_80211_AUTH_ALG:
            param->value = ieee->sec.auth_mode;
            break;

      case IW_AUTH_WPA_ENABLED:
            param->value = ieee->wpa_enabled;
            break;

      case IW_AUTH_RX_UNENCRYPTED_EAPOL:
            param->value = ieee->ieee802_1x;
            break;

      case IW_AUTH_ROAMING_CONTROL:
      case IW_AUTH_PRIVACY_INVOKED:
            param->value = ieee->privacy_invoked;
            break;

      default:
            return -EOPNOTSUPP;
      }
      return 0;
}

/* SIOCSIWENCODEEXT */
static int ipw_wx_set_encodeext(struct net_device *dev,
                        struct iw_request_info *info,
                        union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;

      if (hwcrypto) {
            if (ext->alg == IW_ENCODE_ALG_TKIP) {
                  /* IPW HW can't build TKIP MIC,
                     host decryption still needed */
                  if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
                        priv->ieee->host_mc_decrypt = 1;
                  else {
                        priv->ieee->host_encrypt = 0;
                        priv->ieee->host_encrypt_msdu = 1;
                        priv->ieee->host_decrypt = 1;
                  }
            } else {
                  priv->ieee->host_encrypt = 0;
                  priv->ieee->host_encrypt_msdu = 0;
                  priv->ieee->host_decrypt = 0;
                  priv->ieee->host_mc_decrypt = 0;
            }
      }

      return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
}

/* SIOCGIWENCODEEXT */
static int ipw_wx_get_encodeext(struct net_device *dev,
                        struct iw_request_info *info,
                        union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
}

/* SIOCSIWMLME */
static int ipw_wx_set_mlme(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct iw_mlme *mlme = (struct iw_mlme *)extra;
      u16 reason;

      reason = cpu_to_le16(mlme->reason_code);

      switch (mlme->cmd) {
      case IW_MLME_DEAUTH:
            /* silently ignore */
            break;

      case IW_MLME_DISASSOC:
            ipw_disassociate(priv);
            break;

      default:
            return -EOPNOTSUPP;
      }
      return 0;
}

#ifdef CONFIG_IPW2200_QOS

/* QoS */
/*
* get the modulation type of the current network or
* the card current mode
*/
static u8 ipw_qos_current_mode(struct ipw_priv * priv)
{
      u8 mode = 0;

      if (priv->status & STATUS_ASSOCIATED) {
            unsigned long flags;

            spin_lock_irqsave(&priv->ieee->lock, flags);
            mode = priv->assoc_network->mode;
            spin_unlock_irqrestore(&priv->ieee->lock, flags);
      } else {
            mode = priv->ieee->mode;
      }
      IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
      return mode;
}

/*
* Handle management frame beacon and probe response
*/
static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
                               int active_network,
                               struct ieee80211_network *network)
{
      u32 size = sizeof(struct ieee80211_qos_parameters);

      if (network->capability & WLAN_CAPABILITY_IBSS)
            network->qos_data.active = network->qos_data.supported;

      if (network->flags & NETWORK_HAS_QOS_MASK) {
            if (active_network &&
                (network->flags & NETWORK_HAS_QOS_PARAMETERS))
                  network->qos_data.active = network->qos_data.supported;

            if ((network->qos_data.active == 1) && (active_network == 1) &&
                (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
                (network->qos_data.old_param_count !=
                 network->qos_data.param_count)) {
                  network->qos_data.old_param_count =
                      network->qos_data.param_count;
                  schedule_work(&priv->qos_activate);
                  IPW_DEBUG_QOS("QoS parameters change call "
                              "qos_activate\n");
            }
      } else {
            if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
                  memcpy(&network->qos_data.parameters,
                         &def_parameters_CCK, size);
            else
                  memcpy(&network->qos_data.parameters,
                         &def_parameters_OFDM, size);

            if ((network->qos_data.active == 1) && (active_network == 1)) {
                  IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
                  schedule_work(&priv->qos_activate);
            }

            network->qos_data.active = 0;
            network->qos_data.supported = 0;
      }
      if ((priv->status & STATUS_ASSOCIATED) &&
          (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
            if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
                  if ((network->capability & WLAN_CAPABILITY_IBSS) &&
                      !(network->flags & NETWORK_EMPTY_ESSID))
                        if ((network->ssid_len ==
                             priv->assoc_network->ssid_len) &&
                            !memcmp(network->ssid,
                                  priv->assoc_network->ssid,
                                  network->ssid_len)) {
                              queue_work(priv->workqueue,
                                       &priv->merge_networks);
                        }
      }

      return 0;
}

/*
* This function set up the firmware to support QoS. It sends
* IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
*/
static int ipw_qos_activate(struct ipw_priv *priv,
                      struct ieee80211_qos_data *qos_network_data)
{
      int err;
      struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
      struct ieee80211_qos_parameters *active_one = NULL;
      u32 size = sizeof(struct ieee80211_qos_parameters);
      u32 burst_duration;
      int i;
      u8 type;

      type = ipw_qos_current_mode(priv);

      active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
      memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
      active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
      memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);

      if (qos_network_data == NULL) {
            if (type == IEEE_B) {
                  IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
                  active_one = &def_parameters_CCK;
            } else
                  active_one = &def_parameters_OFDM;

            memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
            burst_duration = ipw_qos_get_burst_duration(priv);
            for (i = 0; i < QOS_QUEUE_NUM; i++)
                  qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
                      (u16)burst_duration;
      } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
            if (type == IEEE_B) {
                  IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
                              type);
                  if (priv->qos_data.qos_enable == 0)
                        active_one = &def_parameters_CCK;
                  else
                        active_one = priv->qos_data.def_qos_parm_CCK;
            } else {
                  if (priv->qos_data.qos_enable == 0)
                        active_one = &def_parameters_OFDM;
                  else
                        active_one = priv->qos_data.def_qos_parm_OFDM;
            }
            memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
      } else {
            unsigned long flags;
            int active;

            spin_lock_irqsave(&priv->ieee->lock, flags);
            active_one = &(qos_network_data->parameters);
            qos_network_data->old_param_count =
                qos_network_data->param_count;
            memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
            active = qos_network_data->supported;
            spin_unlock_irqrestore(&priv->ieee->lock, flags);

            if (active == 0) {
                  burst_duration = ipw_qos_get_burst_duration(priv);
                  for (i = 0; i < QOS_QUEUE_NUM; i++)
                        qos_parameters[QOS_PARAM_SET_ACTIVE].
                            tx_op_limit[i] = (u16)burst_duration;
            }
      }

      IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
      for (i = 0; i < 3; i++) {
            int j;
            for (j = 0; j < QOS_QUEUE_NUM; j++) {
                  qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
                  qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
                  qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
            }
      }

      err = ipw_send_qos_params_command(priv,
                                (struct ieee80211_qos_parameters *)
                                &(qos_parameters[0]));
      if (err)
            IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");

      return err;
}

/*
* send IPW_CMD_WME_INFO to the firmware
*/
static int ipw_qos_set_info_element(struct ipw_priv *priv)
{
      int ret = 0;
      struct ieee80211_qos_information_element qos_info;

      if (priv == NULL)
            return -1;

      qos_info.elementID = QOS_ELEMENT_ID;
      qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;

      qos_info.version = QOS_VERSION_1;
      qos_info.ac_info = 0;

      memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
      qos_info.qui_type = QOS_OUI_TYPE;
      qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;

      ret = ipw_send_qos_info_command(priv, &qos_info);
      if (ret != 0) {
            IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
      }
      return ret;
}

/*
* Set the QoS parameter with the association request structure
*/
static int ipw_qos_association(struct ipw_priv *priv,
                         struct ieee80211_network *network)
{
      int err = 0;
      struct ieee80211_qos_data *qos_data = NULL;
      struct ieee80211_qos_data ibss_data = {
            .supported = 1,
            .active = 1,
      };

      switch (priv->ieee->iw_mode) {
      case IW_MODE_ADHOC:
            BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));

            qos_data = &ibss_data;
            break;

      case IW_MODE_INFRA:
            qos_data = &network->qos_data;
            break;

      default:
            BUG();
            break;
      }

      err = ipw_qos_activate(priv, qos_data);
      if (err) {
            priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
            return err;
      }

      if (priv->qos_data.qos_enable && qos_data->supported) {
            IPW_DEBUG_QOS("QoS will be enabled for this association\n");
            priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
            return ipw_qos_set_info_element(priv);
      }

      return 0;
}

/*
* handling the beaconing responses. if we get different QoS setting
* off the network from the associated setting, adjust the QoS
* setting
*/
static int ipw_qos_association_resp(struct ipw_priv *priv,
                            struct ieee80211_network *network)
{
      int ret = 0;
      unsigned long flags;
      u32 size = sizeof(struct ieee80211_qos_parameters);
      int set_qos_param = 0;

      if ((priv == NULL) || (network == NULL) ||
          (priv->assoc_network == NULL))
            return ret;

      if (!(priv->status & STATUS_ASSOCIATED))
            return ret;

      if ((priv->ieee->iw_mode != IW_MODE_INFRA))
            return ret;

      spin_lock_irqsave(&priv->ieee->lock, flags);
      if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
            memcpy(&priv->assoc_network->qos_data, &network->qos_data,
                   sizeof(struct ieee80211_qos_data));
            priv->assoc_network->qos_data.active = 1;
            if ((network->qos_data.old_param_count !=
                 network->qos_data.param_count)) {
                  set_qos_param = 1;
                  network->qos_data.old_param_count =
                      network->qos_data.param_count;
            }

      } else {
            if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
                  memcpy(&priv->assoc_network->qos_data.parameters,
                         &def_parameters_CCK, size);
            else
                  memcpy(&priv->assoc_network->qos_data.parameters,
                         &def_parameters_OFDM, size);
            priv->assoc_network->qos_data.active = 0;
            priv->assoc_network->qos_data.supported = 0;
            set_qos_param = 1;
      }

      spin_unlock_irqrestore(&priv->ieee->lock, flags);

      if (set_qos_param == 1)
            schedule_work(&priv->qos_activate);

      return ret;
}

static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
{
      u32 ret = 0;

      if ((priv == NULL))
            return 0;

      if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
            ret = priv->qos_data.burst_duration_CCK;
      else
            ret = priv->qos_data.burst_duration_OFDM;

      return ret;
}

/*
* Initialize the setting of QoS global
*/
static void ipw_qos_init(struct ipw_priv *priv, int enable,
                   int burst_enable, u32 burst_duration_CCK,
                   u32 burst_duration_OFDM)
{
      priv->qos_data.qos_enable = enable;

      if (priv->qos_data.qos_enable) {
            priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
            priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
            IPW_DEBUG_QOS("QoS is enabled\n");
      } else {
            priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
            priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
            IPW_DEBUG_QOS("QoS is not enabled\n");
      }

      priv->qos_data.burst_enable = burst_enable;

      if (burst_enable) {
            priv->qos_data.burst_duration_CCK = burst_duration_CCK;
            priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
      } else {
            priv->qos_data.burst_duration_CCK = 0;
            priv->qos_data.burst_duration_OFDM = 0;
      }
}

/*
* map the packet priority to the right TX Queue
*/
static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
{
      if (priority > 7 || !priv->qos_data.qos_enable)
            priority = 0;

      return from_priority_to_tx_queue[priority] - 1;
}

static int ipw_is_qos_active(struct net_device *dev,
                       struct sk_buff *skb)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct ieee80211_qos_data *qos_data = NULL;
      int active, supported;
      u8 *daddr = skb->data + ETH_ALEN;
      int unicast = !is_multicast_ether_addr(daddr);

      if (!(priv->status & STATUS_ASSOCIATED))
            return 0;

      qos_data = &priv->assoc_network->qos_data;

      if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
            if (unicast == 0)
                  qos_data->active = 0;
            else
                  qos_data->active = qos_data->supported;
      }
      active = qos_data->active;
      supported = qos_data->supported;
      IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
                  "unicast %d\n",
                  priv->qos_data.qos_enable, active, supported, unicast);
      if (active && priv->qos_data.qos_enable)
            return 1;

      return 0;

}
/*
* add QoS parameter to the TX command
*/
static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
                              u16 priority,
                              struct tfd_data *tfd)
{
      int tx_queue_id = 0;


      tx_queue_id = from_priority_to_tx_queue[priority] - 1;
      tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;

      if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
            tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
            tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
      }
      return 0;
}

/*
* background support to run QoS activate functionality
*/
static void ipw_bg_qos_activate(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, qos_activate);

      if (priv == NULL)
            return;

      mutex_lock(&priv->mutex);

      if (priv->status & STATUS_ASSOCIATED)
            ipw_qos_activate(priv, &(priv->assoc_network->qos_data));

      mutex_unlock(&priv->mutex);
}

static int ipw_handle_probe_response(struct net_device *dev,
                             struct ieee80211_probe_response *resp,
                             struct ieee80211_network *network)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int active_network = ((priv->status & STATUS_ASSOCIATED) &&
                        (network == priv->assoc_network));

      ipw_qos_handle_probe_response(priv, active_network, network);

      return 0;
}

static int ipw_handle_beacon(struct net_device *dev,
                       struct ieee80211_beacon *resp,
                       struct ieee80211_network *network)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int active_network = ((priv->status & STATUS_ASSOCIATED) &&
                        (network == priv->assoc_network));

      ipw_qos_handle_probe_response(priv, active_network, network);

      return 0;
}

static int ipw_handle_assoc_response(struct net_device *dev,
                             struct ieee80211_assoc_response *resp,
                             struct ieee80211_network *network)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      ipw_qos_association_resp(priv, network);
      return 0;
}

static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
                               *qos_param)
{
      return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
                        sizeof(*qos_param) * 3, qos_param);
}

static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
                             *qos_param)
{
      return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
                        qos_param);
}

#endif                        /* CONFIG_IPW2200_QOS */

static int ipw_associate_network(struct ipw_priv *priv,
                         struct ieee80211_network *network,
                         struct ipw_supported_rates *rates, int roaming)
{
      int err;
      DECLARE_MAC_BUF(mac);

      if (priv->config & CFG_FIXED_RATE)
            ipw_set_fixed_rate(priv, network->mode);

      if (!(priv->config & CFG_STATIC_ESSID)) {
            priv->essid_len = min(network->ssid_len,
                              (u8) IW_ESSID_MAX_SIZE);
            memcpy(priv->essid, network->ssid, priv->essid_len);
      }

      network->last_associate = jiffies;

      memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
      priv->assoc_request.channel = network->channel;
      priv->assoc_request.auth_key = 0;

      if ((priv->capability & CAP_PRIVACY_ON) &&
          (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
            priv->assoc_request.auth_type = AUTH_SHARED_KEY;
            priv->assoc_request.auth_key = priv->ieee->sec.active_key;

            if (priv->ieee->sec.level == SEC_LEVEL_1)
                  ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);

      } else if ((priv->capability & CAP_PRIVACY_ON) &&
               (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
            priv->assoc_request.auth_type = AUTH_LEAP;
      else
            priv->assoc_request.auth_type = AUTH_OPEN;

      if (priv->ieee->wpa_ie_len) {
            priv->assoc_request.policy_support = 0x02;      /* RSN active */
            ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
                         priv->ieee->wpa_ie_len);
      }

      /*
       * It is valid for our ieee device to support multiple modes, but
       * when it comes to associating to a given network we have to choose
       * just one mode.
       */
      if (network->mode & priv->ieee->mode & IEEE_A)
            priv->assoc_request.ieee_mode = IPW_A_MODE;
      else if (network->mode & priv->ieee->mode & IEEE_G)
            priv->assoc_request.ieee_mode = IPW_G_MODE;
      else if (network->mode & priv->ieee->mode & IEEE_B)
            priv->assoc_request.ieee_mode = IPW_B_MODE;

      priv->assoc_request.capability = network->capability;
      if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
          && !(priv->config & CFG_PREAMBLE_LONG)) {
            priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
      } else {
            priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;

            /* Clear the short preamble if we won't be supporting it */
            priv->assoc_request.capability &=
                ~WLAN_CAPABILITY_SHORT_PREAMBLE;
      }

      /* Clear capability bits that aren't used in Ad Hoc */
      if (priv->ieee->iw_mode == IW_MODE_ADHOC)
            priv->assoc_request.capability &=
                ~WLAN_CAPABILITY_SHORT_SLOT_TIME;

      IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
                  "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
                  roaming ? "Rea" : "A",
                  escape_essid(priv->essid, priv->essid_len),
                  network->channel,
                  ipw_modes[priv->assoc_request.ieee_mode],
                  rates->num_rates,
                  (priv->assoc_request.preamble_length ==
                   DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
                  network->capability &
                  WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
                  priv->capability & CAP_PRIVACY_ON ? "on " : "off",
                  priv->capability & CAP_PRIVACY_ON ?
                  (priv->capability & CAP_SHARED_KEY ? "(shared)" :
                   "(open)") : "",
                  priv->capability & CAP_PRIVACY_ON ? " key=" : "",
                  priv->capability & CAP_PRIVACY_ON ?
                  '1' + priv->ieee->sec.active_key : '.',
                  priv->capability & CAP_PRIVACY_ON ? '.' : ' ');

      priv->assoc_request.beacon_interval = network->beacon_interval;
      if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
          (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
            priv->assoc_request.assoc_type = HC_IBSS_START;
            priv->assoc_request.assoc_tsf_msw = 0;
            priv->assoc_request.assoc_tsf_lsw = 0;
      } else {
            if (unlikely(roaming))
                  priv->assoc_request.assoc_type = HC_REASSOCIATE;
            else
                  priv->assoc_request.assoc_type = HC_ASSOCIATE;
            priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
            priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
      }

      memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);

      if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
            memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
            priv->assoc_request.atim_window = network->atim_window;
      } else {
            memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
            priv->assoc_request.atim_window = 0;
      }

      priv->assoc_request.listen_interval = network->listen_interval;

      err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
      if (err) {
            IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
            return err;
      }

      rates->ieee_mode = priv->assoc_request.ieee_mode;
      rates->purpose = IPW_RATE_CONNECT;
      ipw_send_supported_rates(priv, rates);

      if (priv->assoc_request.ieee_mode == IPW_G_MODE)
            priv->sys_config.dot11g_auto_detection = 1;
      else
            priv->sys_config.dot11g_auto_detection = 0;

      if (priv->ieee->iw_mode == IW_MODE_ADHOC)
            priv->sys_config.answer_broadcast_ssid_probe = 1;
      else
            priv->sys_config.answer_broadcast_ssid_probe = 0;

      err = ipw_send_system_config(priv);
      if (err) {
            IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
            return err;
      }

      IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
      err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
      if (err) {
            IPW_DEBUG_HC("Attempt to send associate command failed.\n");
            return err;
      }

      /*
       * If preemption is enabled, it is possible for the association
       * to complete before we return from ipw_send_associate.  Therefore
       * we have to be sure and update our priviate data first.
       */
      priv->channel = network->channel;
      memcpy(priv->bssid, network->bssid, ETH_ALEN);
      priv->status |= STATUS_ASSOCIATING;
      priv->status &= ~STATUS_SECURITY_UPDATED;

      priv->assoc_network = network;

#ifdef CONFIG_IPW2200_QOS
      ipw_qos_association(priv, network);
#endif

      err = ipw_send_associate(priv, &priv->assoc_request);
      if (err) {
            IPW_DEBUG_HC("Attempt to send associate command failed.\n");
            return err;
      }

      IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
              escape_essid(priv->essid, priv->essid_len),
              print_mac(mac, priv->bssid));

      return 0;
}

static void ipw_roam(void *data)
{
      struct ipw_priv *priv = data;
      struct ieee80211_network *network = NULL;
      struct ipw_network_match match = {
            .network = priv->assoc_network
      };

      /* The roaming process is as follows:
       *
       * 1.  Missed beacon threshold triggers the roaming process by
       *     setting the status ROAM bit and requesting a scan.
       * 2.  When the scan completes, it schedules the ROAM work
       * 3.  The ROAM work looks at all of the known networks for one that
       *     is a better network than the currently associated.  If none
       *     found, the ROAM process is over (ROAM bit cleared)
       * 4.  If a better network is found, a disassociation request is
       *     sent.
       * 5.  When the disassociation completes, the roam work is again
       *     scheduled.  The second time through, the driver is no longer
       *     associated, and the newly selected network is sent an
       *     association request.
       * 6.  At this point ,the roaming process is complete and the ROAM
       *     status bit is cleared.
       */

      /* If we are no longer associated, and the roaming bit is no longer
       * set, then we are not actively roaming, so just return */
      if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
            return;

      if (priv->status & STATUS_ASSOCIATED) {
            /* First pass through ROAM process -- look for a better
             * network */
            unsigned long flags;
            u8 rssi = priv->assoc_network->stats.rssi;
            priv->assoc_network->stats.rssi = -128;
            spin_lock_irqsave(&priv->ieee->lock, flags);
            list_for_each_entry(network, &priv->ieee->network_list, list) {
                  if (network != priv->assoc_network)
                        ipw_best_network(priv, &match, network, 1);
            }
            spin_unlock_irqrestore(&priv->ieee->lock, flags);
            priv->assoc_network->stats.rssi = rssi;

            if (match.network == priv->assoc_network) {
                  IPW_DEBUG_ASSOC("No better APs in this network to "
                              "roam to.\n");
                  priv->status &= ~STATUS_ROAMING;
                  ipw_debug_config(priv);
                  return;
            }

            ipw_send_disassociate(priv, 1);
            priv->assoc_network = match.network;

            return;
      }

      /* Second pass through ROAM process -- request association */
      ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
      ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
      priv->status &= ~STATUS_ROAMING;
}

static void ipw_bg_roam(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, roam);
      mutex_lock(&priv->mutex);
      ipw_roam(priv);
      mutex_unlock(&priv->mutex);
}

static int ipw_associate(void *data)
{
      struct ipw_priv *priv = data;

      struct ieee80211_network *network = NULL;
      struct ipw_network_match match = {
            .network = NULL
      };
      struct ipw_supported_rates *rates;
      struct list_head *element;
      unsigned long flags;

      if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
            IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
            return 0;
      }

      if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
            IPW_DEBUG_ASSOC("Not attempting association (already in "
                        "progress)\n");
            return 0;
      }

      if (priv->status & STATUS_DISASSOCIATING) {
            IPW_DEBUG_ASSOC("Not attempting association (in "
                        "disassociating)\n ");
            queue_work(priv->workqueue, &priv->associate);
            return 0;
      }

      if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
            IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
                        "initialized)\n");
            return 0;
      }

      if (!(priv->config & CFG_ASSOCIATE) &&
          !(priv->config & (CFG_STATIC_ESSID |
                        CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
            IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
            return 0;
      }

      /* Protect our use of the network_list */
      spin_lock_irqsave(&priv->ieee->lock, flags);
      list_for_each_entry(network, &priv->ieee->network_list, list)
          ipw_best_network(priv, &match, network, 0);

      network = match.network;
      rates = &match.rates;

      if (network == NULL &&
          priv->ieee->iw_mode == IW_MODE_ADHOC &&
          priv->config & CFG_ADHOC_CREATE &&
          priv->config & CFG_STATIC_ESSID &&
          priv->config & CFG_STATIC_CHANNEL &&
          !list_empty(&priv->ieee->network_free_list)) {
            element = priv->ieee->network_free_list.next;
            network = list_entry(element, struct ieee80211_network, list);
            ipw_adhoc_create(priv, network);
            rates = &priv->rates;
            list_del(element);
            list_add_tail(&network->list, &priv->ieee->network_list);
      }
      spin_unlock_irqrestore(&priv->ieee->lock, flags);

      /* If we reached the end of the list, then we don't have any valid
       * matching APs */
      if (!network) {
            ipw_debug_config(priv);

            if (!(priv->status & STATUS_SCANNING)) {
                  if (!(priv->config & CFG_SPEED_SCAN))
                        queue_delayed_work(priv->workqueue,
                                       &priv->request_scan,
                                       SCAN_INTERVAL);
                  else
                        queue_delayed_work(priv->workqueue,
                                       &priv->request_scan, 0);
            }

            return 0;
      }

      ipw_associate_network(priv, network, rates, 0);

      return 1;
}

static void ipw_bg_associate(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, associate);
      mutex_lock(&priv->mutex);
      ipw_associate(priv);
      mutex_unlock(&priv->mutex);
}

static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
                              struct sk_buff *skb)
{
      struct ieee80211_hdr *hdr;
      u16 fc;

      hdr = (struct ieee80211_hdr *)skb->data;
      fc = le16_to_cpu(hdr->frame_ctl);
      if (!(fc & IEEE80211_FCTL_PROTECTED))
            return;

      fc &= ~IEEE80211_FCTL_PROTECTED;
      hdr->frame_ctl = cpu_to_le16(fc);
      switch (priv->ieee->sec.level) {
      case SEC_LEVEL_3:
            /* Remove CCMP HDR */
            memmove(skb->data + IEEE80211_3ADDR_LEN,
                  skb->data + IEEE80211_3ADDR_LEN + 8,
                  skb->len - IEEE80211_3ADDR_LEN - 8);
            skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
            break;
      case SEC_LEVEL_2:
            break;
      case SEC_LEVEL_1:
            /* Remove IV */
            memmove(skb->data + IEEE80211_3ADDR_LEN,
                  skb->data + IEEE80211_3ADDR_LEN + 4,
                  skb->len - IEEE80211_3ADDR_LEN - 4);
            skb_trim(skb, skb->len - 8);  /* IV + ICV */
            break;
      case SEC_LEVEL_0:
            break;
      default:
            printk(KERN_ERR "Unknow security level %d\n",
                   priv->ieee->sec.level);
            break;
      }
}

static void ipw_handle_data_packet(struct ipw_priv *priv,
                           struct ipw_rx_mem_buffer *rxb,
                           struct ieee80211_rx_stats *stats)
{
      struct ieee80211_hdr_4addr *hdr;
      struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;

      /* We received data from the HW, so stop the watchdog */
      priv->net_dev->trans_start = jiffies;

      /* We only process data packets if the
       * interface is open */
      if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
                 skb_tailroom(rxb->skb))) {
            priv->ieee->stats.rx_errors++;
            priv->wstats.discard.misc++;
            IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
            return;
      } else if (unlikely(!netif_running(priv->net_dev))) {
            priv->ieee->stats.rx_dropped++;
            priv->wstats.discard.misc++;
            IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
            return;
      }

      /* Advance skb->data to the start of the actual payload */
      skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));

      /* Set the size of the skb to the size of the frame */
      skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));

      IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);

      /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
      hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
      if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
          (is_multicast_ether_addr(hdr->addr1) ?
           !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
            ipw_rebuild_decrypted_skb(priv, rxb->skb);

      if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
            priv->ieee->stats.rx_errors++;
      else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
            rxb->skb = NULL;
            __ipw_led_activity_on(priv);
      }
}

#ifdef CONFIG_IPW2200_RADIOTAP
static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
                                 struct ipw_rx_mem_buffer *rxb,
                                 struct ieee80211_rx_stats *stats)
{
      struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
      struct ipw_rx_frame *frame = &pkt->u.frame;

      /* initial pull of some data */
      u16 received_channel = frame->received_channel;
      u8 antennaAndPhy = frame->antennaAndPhy;
      s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;     /* call it signed anyhow */
      u16 pktrate = frame->rate;

      /* Magic struct that slots into the radiotap header -- no reason
       * to build this manually element by element, we can write it much
       * more efficiently than we can parse it. ORDER MATTERS HERE */
      struct ipw_rt_hdr *ipw_rt;

      short len = le16_to_cpu(pkt->u.frame.length);

      /* We received data from the HW, so stop the watchdog */
      priv->net_dev->trans_start = jiffies;

      /* We only process data packets if the
       * interface is open */
      if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
                 skb_tailroom(rxb->skb))) {
            priv->ieee->stats.rx_errors++;
            priv->wstats.discard.misc++;
            IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
            return;
      } else if (unlikely(!netif_running(priv->net_dev))) {
            priv->ieee->stats.rx_dropped++;
            priv->wstats.discard.misc++;
            IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
            return;
      }

      /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
       * that now */
      if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
            /* FIXME: Should alloc bigger skb instead */
            priv->ieee->stats.rx_dropped++;
            priv->wstats.discard.misc++;
            IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
            return;
      }

      /* copy the frame itself */
      memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
            rxb->skb->data + IPW_RX_FRAME_SIZE, len);

      /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
       * part of our real header, saves a little time.
       *
       * No longer necessary since we fill in all our data.  Purge before merging
       * patch officially.
       * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
       *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
       */

      ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;

      ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
      ipw_rt->rt_hdr.it_pad = 0;    /* always good to zero */
      ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);    /* total header+data */

      /* Big bitfield of all the fields we provide in radiotap */
      ipw_rt->rt_hdr.it_present =
          ((1 << IEEE80211_RADIOTAP_TSFT) |
           (1 << IEEE80211_RADIOTAP_FLAGS) |
           (1 << IEEE80211_RADIOTAP_RATE) |
           (1 << IEEE80211_RADIOTAP_CHANNEL) |
           (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
           (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
           (1 << IEEE80211_RADIOTAP_ANTENNA));

      /* Zero the flags, we'll add to them as we go */
      ipw_rt->rt_flags = 0;
      ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
                         frame->parent_tsf[2] << 16 |
                         frame->parent_tsf[1] << 8  |
                         frame->parent_tsf[0]);

      /* Convert signal to DBM */
      ipw_rt->rt_dbmsignal = antsignal;
      ipw_rt->rt_dbmnoise = frame->noise;

      /* Convert the channel data and set the flags */
      ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
      if (received_channel > 14) {  /* 802.11a */
            ipw_rt->rt_chbitmask =
                cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
      } else if (antennaAndPhy & 32) {    /* 802.11b */
            ipw_rt->rt_chbitmask =
                cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
      } else {          /* 802.11g */
            ipw_rt->rt_chbitmask =
                (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
      }

      /* set the rate in multiples of 500k/s */
      switch (pktrate) {
      case IPW_TX_RATE_1MB:
            ipw_rt->rt_rate = 2;
            break;
      case IPW_TX_RATE_2MB:
            ipw_rt->rt_rate = 4;
            break;
      case IPW_TX_RATE_5MB:
            ipw_rt->rt_rate = 10;
            break;
      case IPW_TX_RATE_6MB:
            ipw_rt->rt_rate = 12;
            break;
      case IPW_TX_RATE_9MB:
            ipw_rt->rt_rate = 18;
            break;
      case IPW_TX_RATE_11MB:
            ipw_rt->rt_rate = 22;
            break;
      case IPW_TX_RATE_12MB:
            ipw_rt->rt_rate = 24;
            break;
      case IPW_TX_RATE_18MB:
            ipw_rt->rt_rate = 36;
            break;
      case IPW_TX_RATE_24MB:
            ipw_rt->rt_rate = 48;
            break;
      case IPW_TX_RATE_36MB:
            ipw_rt->rt_rate = 72;
            break;
      case IPW_TX_RATE_48MB:
            ipw_rt->rt_rate = 96;
            break;
      case IPW_TX_RATE_54MB:
            ipw_rt->rt_rate = 108;
            break;
      default:
            ipw_rt->rt_rate = 0;
            break;
      }

      /* antenna number */
      ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */

      /* set the preamble flag if we have it */
      if ((antennaAndPhy & 64))
            ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;

      /* Set the size of the skb to the size of the frame */
      skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));

      IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);

      if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
            priv->ieee->stats.rx_errors++;
      else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
            rxb->skb = NULL;
            /* no LED during capture */
      }
}
#endif

#ifdef CONFIG_IPW2200_PROMISCUOUS
#define ieee80211_is_probe_response(fc) \
   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
    (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )

#define ieee80211_is_management(fc) \
   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)

#define ieee80211_is_control(fc) \
   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)

#define ieee80211_is_data(fc) \
   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)

#define ieee80211_is_assoc_request(fc) \
   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)

#define ieee80211_is_reassoc_request(fc) \
   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)

static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
                              struct ipw_rx_mem_buffer *rxb,
                              struct ieee80211_rx_stats *stats)
{
      struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
      struct ipw_rx_frame *frame = &pkt->u.frame;
      struct ipw_rt_hdr *ipw_rt;

      /* First cache any information we need before we overwrite
       * the information provided in the skb from the hardware */
      struct ieee80211_hdr *hdr;
      u16 channel = frame->received_channel;
      u8 phy_flags = frame->antennaAndPhy;
      s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
      s8 noise = frame->noise;
      u8 rate = frame->rate;
      short len = le16_to_cpu(pkt->u.frame.length);
      struct sk_buff *skb;
      int hdr_only = 0;
      u16 filter = priv->prom_priv->filter;

      /* If the filter is set to not include Rx frames then return */
      if (filter & IPW_PROM_NO_RX)
            return;

      /* We received data from the HW, so stop the watchdog */
      priv->prom_net_dev->trans_start = jiffies;

      if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
            priv->prom_priv->ieee->stats.rx_errors++;
            IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
            return;
      }

      /* We only process data packets if the interface is open */
      if (unlikely(!netif_running(priv->prom_net_dev))) {
            priv->prom_priv->ieee->stats.rx_dropped++;
            IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
            return;
      }

      /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
       * that now */
      if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
            /* FIXME: Should alloc bigger skb instead */
            priv->prom_priv->ieee->stats.rx_dropped++;
            IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
            return;
      }

      hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
      if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
            if (filter & IPW_PROM_NO_MGMT)
                  return;
            if (filter & IPW_PROM_MGMT_HEADER_ONLY)
                  hdr_only = 1;
      } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
            if (filter & IPW_PROM_NO_CTL)
                  return;
            if (filter & IPW_PROM_CTL_HEADER_ONLY)
                  hdr_only = 1;
      } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
            if (filter & IPW_PROM_NO_DATA)
                  return;
            if (filter & IPW_PROM_DATA_HEADER_ONLY)
                  hdr_only = 1;
      }

      /* Copy the SKB since this is for the promiscuous side */
      skb = skb_copy(rxb->skb, GFP_ATOMIC);
      if (skb == NULL) {
            IPW_ERROR("skb_clone failed for promiscuous copy.\n");
            return;
      }

      /* copy the frame data to write after where the radiotap header goes */
      ipw_rt = (void *)skb->data;

      if (hdr_only)
            len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));

      memcpy(ipw_rt->payload, hdr, len);

      /* Zero the radiotap static buffer  ...  We only need to zero the bytes
       * NOT part of our real header, saves a little time.
       *
       * No longer necessary since we fill in all our data.  Purge before
       * merging patch officially.
       * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
       *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
       */

      ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
      ipw_rt->rt_hdr.it_pad = 0;    /* always good to zero */
      ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);  /* total header+data */

      /* Set the size of the skb to the size of the frame */
      skb_put(skb, ipw_rt->rt_hdr.it_len + len);

      /* Big bitfield of all the fields we provide in radiotap */
      ipw_rt->rt_hdr.it_present =
          ((1 << IEEE80211_RADIOTAP_TSFT) |
           (1 << IEEE80211_RADIOTAP_FLAGS) |
           (1 << IEEE80211_RADIOTAP_RATE) |
           (1 << IEEE80211_RADIOTAP_CHANNEL) |
           (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
           (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
           (1 << IEEE80211_RADIOTAP_ANTENNA));

      /* Zero the flags, we'll add to them as we go */
      ipw_rt->rt_flags = 0;
      ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
                         frame->parent_tsf[2] << 16 |
                         frame->parent_tsf[1] << 8  |
                         frame->parent_tsf[0]);

      /* Convert to DBM */
      ipw_rt->rt_dbmsignal = signal;
      ipw_rt->rt_dbmnoise = noise;

      /* Convert the channel data and set the flags */
      ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
      if (channel > 14) {     /* 802.11a */
            ipw_rt->rt_chbitmask =
                cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
      } else if (phy_flags & (1 << 5)) {  /* 802.11b */
            ipw_rt->rt_chbitmask =
                cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
      } else {          /* 802.11g */
            ipw_rt->rt_chbitmask =
                (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
      }

      /* set the rate in multiples of 500k/s */
      switch (rate) {
      case IPW_TX_RATE_1MB:
            ipw_rt->rt_rate = 2;
            break;
      case IPW_TX_RATE_2MB:
            ipw_rt->rt_rate = 4;
            break;
      case IPW_TX_RATE_5MB:
            ipw_rt->rt_rate = 10;
            break;
      case IPW_TX_RATE_6MB:
            ipw_rt->rt_rate = 12;
            break;
      case IPW_TX_RATE_9MB:
            ipw_rt->rt_rate = 18;
            break;
      case IPW_TX_RATE_11MB:
            ipw_rt->rt_rate = 22;
            break;
      case IPW_TX_RATE_12MB:
            ipw_rt->rt_rate = 24;
            break;
      case IPW_TX_RATE_18MB:
            ipw_rt->rt_rate = 36;
            break;
      case IPW_TX_RATE_24MB:
            ipw_rt->rt_rate = 48;
            break;
      case IPW_TX_RATE_36MB:
            ipw_rt->rt_rate = 72;
            break;
      case IPW_TX_RATE_48MB:
            ipw_rt->rt_rate = 96;
            break;
      case IPW_TX_RATE_54MB:
            ipw_rt->rt_rate = 108;
            break;
      default:
            ipw_rt->rt_rate = 0;
            break;
      }

      /* antenna number */
      ipw_rt->rt_antenna = (phy_flags & 3);

      /* set the preamble flag if we have it */
      if (phy_flags & (1 << 6))
            ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;

      IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);

      if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
            priv->prom_priv->ieee->stats.rx_errors++;
            dev_kfree_skb_any(skb);
      }
}
#endif

static int is_network_packet(struct ipw_priv *priv,
                            struct ieee80211_hdr_4addr *header)
{
      /* Filter incoming packets to determine if they are targetted toward
       * this network, discarding packets coming from ourselves */
      switch (priv->ieee->iw_mode) {
      case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
            /* packets from our adapter are dropped (echo) */
            if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
                  return 0;

            /* {broad,multi}cast packets to our BSSID go through */
            if (is_multicast_ether_addr(header->addr1))
                  return !memcmp(header->addr3, priv->bssid, ETH_ALEN);

            /* packets to our adapter go through */
            return !memcmp(header->addr1, priv->net_dev->dev_addr,
                         ETH_ALEN);

      case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
            /* packets from our adapter are dropped (echo) */
            if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
                  return 0;

            /* {broad,multi}cast packets to our BSS go through */
            if (is_multicast_ether_addr(header->addr1))
                  return !memcmp(header->addr2, priv->bssid, ETH_ALEN);

            /* packets to our adapter go through */
            return !memcmp(header->addr1, priv->net_dev->dev_addr,
                         ETH_ALEN);
      }

      return 1;
}

#define IPW_PACKET_RETRY_TIME HZ

static  int is_duplicate_packet(struct ipw_priv *priv,
                              struct ieee80211_hdr_4addr *header)
{
      u16 sc = le16_to_cpu(header->seq_ctl);
      u16 seq = WLAN_GET_SEQ_SEQ(sc);
      u16 frag = WLAN_GET_SEQ_FRAG(sc);
      u16 *last_seq, *last_frag;
      unsigned long *last_time;

      switch (priv->ieee->iw_mode) {
      case IW_MODE_ADHOC:
            {
                  struct list_head *p;
                  struct ipw_ibss_seq *entry = NULL;
                  u8 *mac = header->addr2;
                  int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;

                  __list_for_each(p, &priv->ibss_mac_hash[index]) {
                        entry =
                            list_entry(p, struct ipw_ibss_seq, list);
                        if (!memcmp(entry->mac, mac, ETH_ALEN))
                              break;
                  }
                  if (p == &priv->ibss_mac_hash[index]) {
                        entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
                        if (!entry) {
                              IPW_ERROR
                                  ("Cannot malloc new mac entry\n");
                              return 0;
                        }
                        memcpy(entry->mac, mac, ETH_ALEN);
                        entry->seq_num = seq;
                        entry->frag_num = frag;
                        entry->packet_time = jiffies;
                        list_add(&entry->list,
                               &priv->ibss_mac_hash[index]);
                        return 0;
                  }
                  last_seq = &entry->seq_num;
                  last_frag = &entry->frag_num;
                  last_time = &entry->packet_time;
                  break;
            }
      case IW_MODE_INFRA:
            last_seq = &priv->last_seq_num;
            last_frag = &priv->last_frag_num;
            last_time = &priv->last_packet_time;
            break;
      default:
            return 0;
      }
      if ((*last_seq == seq) &&
          time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
            if (*last_frag == frag)
                  goto drop;
            if (*last_frag + 1 != frag)
                  /* out-of-order fragment */
                  goto drop;
      } else
            *last_seq = seq;

      *last_frag = frag;
      *last_time = jiffies;
      return 0;

      drop:
      /* Comment this line now since we observed the card receives
       * duplicate packets but the FCTL_RETRY bit is not set in the
       * IBSS mode with fragmentation enabled.
       BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
      return 1;
}

static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
                           struct ipw_rx_mem_buffer *rxb,
                           struct ieee80211_rx_stats *stats)
{
      struct sk_buff *skb = rxb->skb;
      struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
      struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
          (skb->data + IPW_RX_FRAME_SIZE);

      ieee80211_rx_mgt(priv->ieee, header, stats);

      if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
          ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
            IEEE80211_STYPE_PROBE_RESP) ||
           (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
            IEEE80211_STYPE_BEACON))) {
            if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
                  ipw_add_station(priv, header->addr2);
      }

      if (priv->config & CFG_NET_STATS) {
            IPW_DEBUG_HC("sending stat packet\n");

            /* Set the size of the skb to the size of the full
             * ipw header and 802.11 frame */
            skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
                  IPW_RX_FRAME_SIZE);

            /* Advance past the ipw packet header to the 802.11 frame */
            skb_pull(skb, IPW_RX_FRAME_SIZE);

            /* Push the ieee80211_rx_stats before the 802.11 frame */
            memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));

            skb->dev = priv->ieee->dev;

            /* Point raw at the ieee80211_stats */
            skb_reset_mac_header(skb);

            skb->pkt_type = PACKET_OTHERHOST;
            skb->protocol = __constant_htons(ETH_P_80211_STATS);
            memset(skb->cb, 0, sizeof(rxb->skb->cb));
            netif_rx(skb);
            rxb->skb = NULL;
      }
}

/*
 * Main entry function for recieving a packet with 80211 headers.  This
 * should be called when ever the FW has notified us that there is a new
 * skb in the recieve queue.
 */
static void ipw_rx(struct ipw_priv *priv)
{
      struct ipw_rx_mem_buffer *rxb;
      struct ipw_rx_packet *pkt;
      struct ieee80211_hdr_4addr *header;
      u32 r, w, i;
      u8 network_packet;
      DECLARE_MAC_BUF(mac);
      DECLARE_MAC_BUF(mac2);
      DECLARE_MAC_BUF(mac3);

      r = ipw_read32(priv, IPW_RX_READ_INDEX);
      w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
      i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;

      while (i != r) {
            rxb = priv->rxq->queue[i];
            if (unlikely(rxb == NULL)) {
                  printk(KERN_CRIT "Queue not allocated!\n");
                  break;
            }
            priv->rxq->queue[i] = NULL;

            pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
                                  IPW_RX_BUF_SIZE,
                                  PCI_DMA_FROMDEVICE);

            pkt = (struct ipw_rx_packet *)rxb->skb->data;
            IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
                       pkt->header.message_type,
                       pkt->header.rx_seq_num, pkt->header.control_bits);

            switch (pkt->header.message_type) {
            case RX_FRAME_TYPE:     /* 802.11 frame */  {
                        struct ieee80211_rx_stats stats = {
                              .rssi = pkt->u.frame.rssi_dbm -
                                  IPW_RSSI_TO_DBM,
                              .signal =
                                  le16_to_cpu(pkt->u.frame.rssi_dbm) -
                                  IPW_RSSI_TO_DBM + 0x100,
                              .noise =
                                  le16_to_cpu(pkt->u.frame.noise),
                              .rate = pkt->u.frame.rate,
                              .mac_time = jiffies,
                              .received_channel =
                                  pkt->u.frame.received_channel,
                              .freq =
                                  (pkt->u.frame.
                                   control & (1 << 0)) ?
                                  IEEE80211_24GHZ_BAND :
                                  IEEE80211_52GHZ_BAND,
                              .len = le16_to_cpu(pkt->u.frame.length),
                        };

                        if (stats.rssi != 0)
                              stats.mask |= IEEE80211_STATMASK_RSSI;
                        if (stats.signal != 0)
                              stats.mask |= IEEE80211_STATMASK_SIGNAL;
                        if (stats.noise != 0)
                              stats.mask |= IEEE80211_STATMASK_NOISE;
                        if (stats.rate != 0)
                              stats.mask |= IEEE80211_STATMASK_RATE;

                        priv->rx_packets++;

#ifdef CONFIG_IPW2200_PROMISCUOUS
      if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
            ipw_handle_promiscuous_rx(priv, rxb, &stats);
#endif

#ifdef CONFIG_IPW2200_MONITOR
                        if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
#ifdef CONFIG_IPW2200_RADIOTAP

                ipw_handle_data_packet_monitor(priv,
                                     rxb,
                                     &stats);
#else
            ipw_handle_data_packet(priv, rxb,
                               &stats);
#endif
                              break;
                        }
#endif

                        header =
                            (struct ieee80211_hdr_4addr *)(rxb->skb->
                                                   data +
                                                   IPW_RX_FRAME_SIZE);
                        /* TODO: Check Ad-Hoc dest/source and make sure
                         * that we are actually parsing these packets
                         * correctly -- we should probably use the
                         * frame control of the packet and disregard
                         * the current iw_mode */

                        network_packet =
                            is_network_packet(priv, header);
                        if (network_packet && priv->assoc_network) {
                              priv->assoc_network->stats.rssi =
                                  stats.rssi;
                              priv->exp_avg_rssi =
                                  exponential_average(priv->exp_avg_rssi,
                                  stats.rssi, DEPTH_RSSI);
                        }

                        IPW_DEBUG_RX("Frame: len=%u\n",
                                   le16_to_cpu(pkt->u.frame.length));

                        if (le16_to_cpu(pkt->u.frame.length) <
                            ieee80211_get_hdrlen(le16_to_cpu(
                                        header->frame_ctl))) {
                              IPW_DEBUG_DROP
                                  ("Received packet is too small. "
                                   "Dropping.\n");
                              priv->ieee->stats.rx_errors++;
                              priv->wstats.discard.misc++;
                              break;
                        }

                        switch (WLAN_FC_GET_TYPE
                              (le16_to_cpu(header->frame_ctl))) {

                        case IEEE80211_FTYPE_MGMT:
                              ipw_handle_mgmt_packet(priv, rxb,
                                                 &stats);
                              break;

                        case IEEE80211_FTYPE_CTL:
                              break;

                        case IEEE80211_FTYPE_DATA:
                              if (unlikely(!network_packet ||
                                         is_duplicate_packet(priv,
                                                       header)))
                              {
                                    IPW_DEBUG_DROP("Dropping: "
                                                 "%s, "
                                                 "%s, "
                                                 "%s\n",
                                                 print_mac(mac,
                                                       header->
                                                       addr1),
                                                 print_mac(mac2,
                                                       header->
                                                       addr2),
                                                 print_mac(mac3,
                                                       header->
                                                       addr3));
                                    break;
                              }

                              ipw_handle_data_packet(priv, rxb,
                                                 &stats);

                              break;
                        }
                        break;
                  }

            case RX_HOST_NOTIFICATION_TYPE:{
                        IPW_DEBUG_RX
                            ("Notification: subtype=%02X flags=%02X size=%d\n",
                             pkt->u.notification.subtype,
                             pkt->u.notification.flags,
                             le16_to_cpu(pkt->u.notification.size));
                        ipw_rx_notification(priv, &pkt->u.notification);
                        break;
                  }

            default:
                  IPW_DEBUG_RX("Bad Rx packet of type %d\n",
                             pkt->header.message_type);
                  break;
            }

            /* For now we just don't re-use anything.  We can tweak this
             * later to try and re-use notification packets and SKBs that
             * fail to Rx correctly */
            if (rxb->skb != NULL) {
                  dev_kfree_skb_any(rxb->skb);
                  rxb->skb = NULL;
            }

            pci_unmap_single(priv->pci_dev, rxb->dma_addr,
                         IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
            list_add_tail(&rxb->list, &priv->rxq->rx_used);

            i = (i + 1) % RX_QUEUE_SIZE;
      }

      /* Backtrack one entry */
      priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;

      ipw_rx_queue_restock(priv);
}

#define DEFAULT_RTS_THRESHOLD     2304U
#define MIN_RTS_THRESHOLD         1U
#define MAX_RTS_THRESHOLD         2304U
#define DEFAULT_BEACON_INTERVAL   100U
#define     DEFAULT_SHORT_RETRY_LIMIT 7U
#define     DEFAULT_LONG_RETRY_LIMIT  4U

/**
 * ipw_sw_reset
 * @option: options to control different reset behaviour
 *        0 = reset everything except the 'disable' module_param
 *        1 = reset everything and print out driver info (for probe only)
 *        2 = reset everything
 */
static int ipw_sw_reset(struct ipw_priv *priv, int option)
{
      int band, modulation;
      int old_mode = priv->ieee->iw_mode;

      /* Initialize module parameter values here */
      priv->config = 0;

      /* We default to disabling the LED code as right now it causes
       * too many systems to lock up... */
      if (!led)
            priv->config |= CFG_NO_LED;

      if (associate)
            priv->config |= CFG_ASSOCIATE;
      else
            IPW_DEBUG_INFO("Auto associate disabled.\n");

      if (auto_create)
            priv->config |= CFG_ADHOC_CREATE;
      else
            IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");

      priv->config &= ~CFG_STATIC_ESSID;
      priv->essid_len = 0;
      memset(priv->essid, 0, IW_ESSID_MAX_SIZE);

      if (disable && option) {
            priv->status |= STATUS_RF_KILL_SW;
            IPW_DEBUG_INFO("Radio disabled.\n");
      }

      if (channel != 0) {
            priv->config |= CFG_STATIC_CHANNEL;
            priv->channel = channel;
            IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
            /* TODO: Validate that provided channel is in range */
      }
#ifdef CONFIG_IPW2200_QOS
      ipw_qos_init(priv, qos_enable, qos_burst_enable,
                 burst_duration_CCK, burst_duration_OFDM);
#endif                        /* CONFIG_IPW2200_QOS */

      switch (mode) {
      case 1:
            priv->ieee->iw_mode = IW_MODE_ADHOC;
            priv->net_dev->type = ARPHRD_ETHER;

            break;
#ifdef CONFIG_IPW2200_MONITOR
      case 2:
            priv->ieee->iw_mode = IW_MODE_MONITOR;
#ifdef CONFIG_IPW2200_RADIOTAP
            priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
#else
            priv->net_dev->type = ARPHRD_IEEE80211;
#endif
            break;
#endif
      default:
      case 0:
            priv->net_dev->type = ARPHRD_ETHER;
            priv->ieee->iw_mode = IW_MODE_INFRA;
            break;
      }

      if (hwcrypto) {
            priv->ieee->host_encrypt = 0;
            priv->ieee->host_encrypt_msdu = 0;
            priv->ieee->host_decrypt = 0;
            priv->ieee->host_mc_decrypt = 0;
      }
      IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");

      /* IPW2200/2915 is abled to do hardware fragmentation. */
      priv->ieee->host_open_frag = 0;

      if ((priv->pci_dev->device == 0x4223) ||
          (priv->pci_dev->device == 0x4224)) {
            if (option == 1)
                  printk(KERN_INFO DRV_NAME
                         ": Detected Intel PRO/Wireless 2915ABG Network "
                         "Connection\n");
            priv->ieee->abg_true = 1;
            band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
            modulation = IEEE80211_OFDM_MODULATION |
                IEEE80211_CCK_MODULATION;
            priv->adapter = IPW_2915ABG;
            priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
      } else {
            if (option == 1)
                  printk(KERN_INFO DRV_NAME
                         ": Detected Intel PRO/Wireless 2200BG Network "
                         "Connection\n");

            priv->ieee->abg_true = 0;
            band = IEEE80211_24GHZ_BAND;
            modulation = IEEE80211_OFDM_MODULATION |
                IEEE80211_CCK_MODULATION;
            priv->adapter = IPW_2200BG;
            priv->ieee->mode = IEEE_G | IEEE_B;
      }

      priv->ieee->freq_band = band;
      priv->ieee->modulation = modulation;

      priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;

      priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
      priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;

      priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
      priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
      priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;

      /* If power management is turned on, default to AC mode */
      priv->power_mode = IPW_POWER_AC;
      priv->tx_power = IPW_TX_POWER_DEFAULT;

      return old_mode == priv->ieee->iw_mode;
}

/*
 * This file defines the Wireless Extension handlers.  It does not
 * define any methods of hardware manipulation and relies on the
 * functions defined in ipw_main to provide the HW interaction.
 *
 * The exception to this is the use of the ipw_get_ordinal()
 * function used to poll the hardware vs. making unecessary calls.
 *
 */

static int ipw_wx_get_name(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      if (priv->status & STATUS_RF_KILL_MASK)
            strcpy(wrqu->name, "radio off");
      else if (!(priv->status & STATUS_ASSOCIATED))
            strcpy(wrqu->name, "unassociated");
      else
            snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
                   ipw_modes[priv->assoc_request.ieee_mode]);
      IPW_DEBUG_WX("Name: %s\n", wrqu->name);
      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
{
      if (channel == 0) {
            IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
            priv->config &= ~CFG_STATIC_CHANNEL;
            IPW_DEBUG_ASSOC("Attempting to associate with new "
                        "parameters.\n");
            ipw_associate(priv);
            return 0;
      }

      priv->config |= CFG_STATIC_CHANNEL;

      if (priv->channel == channel) {
            IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
                         channel);
            return 0;
      }

      IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
      priv->channel = channel;

#ifdef CONFIG_IPW2200_MONITOR
      if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
            int i;
            if (priv->status & STATUS_SCANNING) {
                  IPW_DEBUG_SCAN("Scan abort triggered due to "
                               "channel change.\n");
                  ipw_abort_scan(priv);
            }

            for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
                  udelay(10);

            if (priv->status & STATUS_SCANNING)
                  IPW_DEBUG_SCAN("Still scanning...\n");
            else
                  IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
                               1000 - i);

            return 0;
      }
#endif                        /* CONFIG_IPW2200_MONITOR */

      /* Network configuration changed -- force [re]association */
      IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
      if (!ipw_disassociate(priv))
            ipw_associate(priv);

      return 0;
}

static int ipw_wx_set_freq(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
      struct iw_freq *fwrq = &wrqu->freq;
      int ret = 0, i;
      u8 channel, flags;
      int band;

      if (fwrq->m == 0) {
            IPW_DEBUG_WX("SET Freq/Channel -> any\n");
            mutex_lock(&priv->mutex);
            ret = ipw_set_channel(priv, 0);
            mutex_unlock(&priv->mutex);
            return ret;
      }
      /* if setting by freq convert to channel */
      if (fwrq->e == 1) {
            channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
            if (channel == 0)
                  return -EINVAL;
      } else
            channel = fwrq->m;

      if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
            return -EINVAL;

      if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
            i = ieee80211_channel_to_index(priv->ieee, channel);
            if (i == -1)
                  return -EINVAL;

            flags = (band == IEEE80211_24GHZ_BAND) ?
                geo->bg[i].flags : geo->a[i].flags;
            if (flags & IEEE80211_CH_PASSIVE_ONLY) {
                  IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
                  return -EINVAL;
            }
      }

      IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
      mutex_lock(&priv->mutex);
      ret = ipw_set_channel(priv, channel);
      mutex_unlock(&priv->mutex);
      return ret;
}

static int ipw_wx_get_freq(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);

      wrqu->freq.e = 0;

      /* If we are associated, trying to associate, or have a statically
       * configured CHANNEL then return that; otherwise return ANY */
      mutex_lock(&priv->mutex);
      if (priv->config & CFG_STATIC_CHANNEL ||
          priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
            int i;

            i = ieee80211_channel_to_index(priv->ieee, priv->channel);
            BUG_ON(i == -1);
            wrqu->freq.e = 1;

            switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
            case IEEE80211_52GHZ_BAND:
                  wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
                  break;

            case IEEE80211_24GHZ_BAND:
                  wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
                  break;

            default:
                  BUG();
            }
      } else
            wrqu->freq.m = 0;

      mutex_unlock(&priv->mutex);
      IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
      return 0;
}

static int ipw_wx_set_mode(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int err = 0;

      IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);

      switch (wrqu->mode) {
#ifdef CONFIG_IPW2200_MONITOR
      case IW_MODE_MONITOR:
#endif
      case IW_MODE_ADHOC:
      case IW_MODE_INFRA:
            break;
      case IW_MODE_AUTO:
            wrqu->mode = IW_MODE_INFRA;
            break;
      default:
            return -EINVAL;
      }
      if (wrqu->mode == priv->ieee->iw_mode)
            return 0;

      mutex_lock(&priv->mutex);

      ipw_sw_reset(priv, 0);

#ifdef CONFIG_IPW2200_MONITOR
      if (priv->ieee->iw_mode == IW_MODE_MONITOR)
            priv->net_dev->type = ARPHRD_ETHER;

      if (wrqu->mode == IW_MODE_MONITOR)
#ifdef CONFIG_IPW2200_RADIOTAP
            priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
#else
            priv->net_dev->type = ARPHRD_IEEE80211;
#endif
#endif                        /* CONFIG_IPW2200_MONITOR */

      /* Free the existing firmware and reset the fw_loaded
       * flag so ipw_load() will bring in the new firmawre */
      free_firmware();

      priv->ieee->iw_mode = wrqu->mode;

      queue_work(priv->workqueue, &priv->adapter_restart);
      mutex_unlock(&priv->mutex);
      return err;
}

static int ipw_wx_get_mode(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      wrqu->mode = priv->ieee->iw_mode;
      IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
      mutex_unlock(&priv->mutex);
      return 0;
}

/* Values are in microsecond */
static const s32 timeout_duration[] = {
      350000,
      250000,
      75000,
      37000,
      25000,
};

static const s32 period_duration[] = {
      400000,
      700000,
      1000000,
      1000000,
      1000000
};

static int ipw_wx_get_range(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct iw_range *range = (struct iw_range *)extra;
      const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
      int i = 0, j;

      wrqu->data.length = sizeof(*range);
      memset(range, 0, sizeof(*range));

      /* 54Mbs == ~27 Mb/s real (802.11g) */
      range->throughput = 27 * 1000 * 1000;

      range->max_qual.qual = 100;
      /* TODO: Find real max RSSI and stick here */
      range->max_qual.level = 0;
      range->max_qual.noise = 0;
      range->max_qual.updated = 7;  /* Updated all three */

      range->avg_qual.qual = 70;
      /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
      range->avg_qual.level = 0;    /* FIXME to real average level */
      range->avg_qual.noise = 0;
      range->avg_qual.updated = 7;  /* Updated all three */
      mutex_lock(&priv->mutex);
      range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);

      for (i = 0; i < range->num_bitrates; i++)
            range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
                500000;

      range->max_rts = DEFAULT_RTS_THRESHOLD;
      range->min_frag = MIN_FRAG_THRESHOLD;
      range->max_frag = MAX_FRAG_THRESHOLD;

      range->encoding_size[0] = 5;
      range->encoding_size[1] = 13;
      range->num_encoding_sizes = 2;
      range->max_encoding_tokens = WEP_KEYS;

      /* Set the Wireless Extension versions */
      range->we_version_compiled = WIRELESS_EXT;
      range->we_version_source = 18;

      i = 0;
      if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
            for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
                  if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
                      (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
                        continue;

                  range->freq[i].i = geo->bg[j].channel;
                  range->freq[i].m = geo->bg[j].freq * 100000;
                  range->freq[i].e = 1;
                  i++;
            }
      }

      if (priv->ieee->mode & IEEE_A) {
            for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
                  if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
                      (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
                        continue;

                  range->freq[i].i = geo->a[j].channel;
                  range->freq[i].m = geo->a[j].freq * 100000;
                  range->freq[i].e = 1;
                  i++;
            }
      }

      range->num_channels = i;
      range->num_frequency = i;

      mutex_unlock(&priv->mutex);

      /* Event capability (kernel + driver) */
      range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
                        IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
                        IW_EVENT_CAPA_MASK(SIOCGIWAP) |
                        IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
      range->event_capa[1] = IW_EVENT_CAPA_K_1;

      range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
            IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;

      IPW_DEBUG_WX("GET Range\n");
      return 0;
}

static int ipw_wx_set_wap(struct net_device *dev,
                    struct iw_request_info *info,
                    union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      DECLARE_MAC_BUF(mac);

      static const unsigned char any[] = {
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff
      };
      static const unsigned char off[] = {
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00
      };

      if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
            return -EINVAL;
      mutex_lock(&priv->mutex);
      if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
          !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
            /* we disable mandatory BSSID association */
            IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
            priv->config &= ~CFG_STATIC_BSSID;
            IPW_DEBUG_ASSOC("Attempting to associate with new "
                        "parameters.\n");
            ipw_associate(priv);
            mutex_unlock(&priv->mutex);
            return 0;
      }

      priv->config |= CFG_STATIC_BSSID;
      if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
            IPW_DEBUG_WX("BSSID set to current BSSID.\n");
            mutex_unlock(&priv->mutex);
            return 0;
      }

      IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
                 print_mac(mac, wrqu->ap_addr.sa_data));

      memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);

      /* Network configuration changed -- force [re]association */
      IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
      if (!ipw_disassociate(priv))
            ipw_associate(priv);

      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_wx_get_wap(struct net_device *dev,
                    struct iw_request_info *info,
                    union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      DECLARE_MAC_BUF(mac);

      /* If we are associated, trying to associate, or have a statically
       * configured BSSID then return that; otherwise return ANY */
      mutex_lock(&priv->mutex);
      if (priv->config & CFG_STATIC_BSSID ||
          priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
            wrqu->ap_addr.sa_family = ARPHRD_ETHER;
            memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
      } else
            memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);

      IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
                 print_mac(mac, wrqu->ap_addr.sa_data));
      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_wx_set_essid(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
        int length;

        mutex_lock(&priv->mutex);

        if (!wrqu->essid.flags)
        {
                IPW_DEBUG_WX("Setting ESSID to ANY\n");
                ipw_disassociate(priv);
                priv->config &= ~CFG_STATIC_ESSID;
                ipw_associate(priv);
                mutex_unlock(&priv->mutex);
                return 0;
        }

      length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);

      priv->config |= CFG_STATIC_ESSID;

      if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
          && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
            IPW_DEBUG_WX("ESSID set to current ESSID.\n");
            mutex_unlock(&priv->mutex);
            return 0;
      }

      IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
                 length);

      priv->essid_len = length;
      memcpy(priv->essid, extra, priv->essid_len);

      /* Network configuration changed -- force [re]association */
      IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
      if (!ipw_disassociate(priv))
            ipw_associate(priv);

      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_wx_get_essid(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);

      /* If we are associated, trying to associate, or have a statically
       * configured ESSID then return that; otherwise return ANY */
      mutex_lock(&priv->mutex);
      if (priv->config & CFG_STATIC_ESSID ||
          priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
            IPW_DEBUG_WX("Getting essid: '%s'\n",
                       escape_essid(priv->essid, priv->essid_len));
            memcpy(extra, priv->essid, priv->essid_len);
            wrqu->essid.length = priv->essid_len;
            wrqu->essid.flags = 1;  /* active */
      } else {
            IPW_DEBUG_WX("Getting essid: ANY\n");
            wrqu->essid.length = 0;
            wrqu->essid.flags = 0;  /* active */
      }
      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_wx_set_nick(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);

      IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
      if (wrqu->data.length > IW_ESSID_MAX_SIZE)
            return -E2BIG;
      mutex_lock(&priv->mutex);
      wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
      memset(priv->nick, 0, sizeof(priv->nick));
      memcpy(priv->nick, extra, wrqu->data.length);
      IPW_DEBUG_TRACE("<<\n");
      mutex_unlock(&priv->mutex);
      return 0;

}

static int ipw_wx_get_nick(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      IPW_DEBUG_WX("Getting nick\n");
      mutex_lock(&priv->mutex);
      wrqu->data.length = strlen(priv->nick);
      memcpy(extra, priv->nick, wrqu->data.length);
      wrqu->data.flags = 1;   /* active */
      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_wx_set_sens(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int err = 0;

      IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
      IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
      mutex_lock(&priv->mutex);

      if (wrqu->sens.fixed == 0)
      {
            priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
            priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
            goto out;
      }
      if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
          (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
            err = -EINVAL;
            goto out;
      }

      priv->roaming_threshold = wrqu->sens.value;
      priv->disassociate_threshold = 3*wrqu->sens.value;
      out:
      mutex_unlock(&priv->mutex);
      return err;
}

static int ipw_wx_get_sens(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      wrqu->sens.fixed = 1;
      wrqu->sens.value = priv->roaming_threshold;
      mutex_unlock(&priv->mutex);

      IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
                 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);

      return 0;
}

static int ipw_wx_set_rate(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      /* TODO: We should use semaphores or locks for access to priv */
      struct ipw_priv *priv = ieee80211_priv(dev);
      u32 target_rate = wrqu->bitrate.value;
      u32 fixed, mask;

      /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
      /* value = X, fixed = 1 means only rate X */
      /* value = X, fixed = 0 means all rates lower equal X */

      if (target_rate == -1) {
            fixed = 0;
            mask = IEEE80211_DEFAULT_RATES_MASK;
            /* Now we should reassociate */
            goto apply;
      }

      mask = 0;
      fixed = wrqu->bitrate.fixed;

      if (target_rate == 1000000 || !fixed)
            mask |= IEEE80211_CCK_RATE_1MB_MASK;
      if (target_rate == 1000000)
            goto apply;

      if (target_rate == 2000000 || !fixed)
            mask |= IEEE80211_CCK_RATE_2MB_MASK;
      if (target_rate == 2000000)
            goto apply;

      if (target_rate == 5500000 || !fixed)
            mask |= IEEE80211_CCK_RATE_5MB_MASK;
      if (target_rate == 5500000)
            goto apply;

      if (target_rate == 6000000 || !fixed)
            mask |= IEEE80211_OFDM_RATE_6MB_MASK;
      if (target_rate == 6000000)
            goto apply;

      if (target_rate == 9000000 || !fixed)
            mask |= IEEE80211_OFDM_RATE_9MB_MASK;
      if (target_rate == 9000000)
            goto apply;

      if (target_rate == 11000000 || !fixed)
            mask |= IEEE80211_CCK_RATE_11MB_MASK;
      if (target_rate == 11000000)
            goto apply;

      if (target_rate == 12000000 || !fixed)
            mask |= IEEE80211_OFDM_RATE_12MB_MASK;
      if (target_rate == 12000000)
            goto apply;

      if (target_rate == 18000000 || !fixed)
            mask |= IEEE80211_OFDM_RATE_18MB_MASK;
      if (target_rate == 18000000)
            goto apply;

      if (target_rate == 24000000 || !fixed)
            mask |= IEEE80211_OFDM_RATE_24MB_MASK;
      if (target_rate == 24000000)
            goto apply;

      if (target_rate == 36000000 || !fixed)
            mask |= IEEE80211_OFDM_RATE_36MB_MASK;
      if (target_rate == 36000000)
            goto apply;

      if (target_rate == 48000000 || !fixed)
            mask |= IEEE80211_OFDM_RATE_48MB_MASK;
      if (target_rate == 48000000)
            goto apply;

      if (target_rate == 54000000 || !fixed)
            mask |= IEEE80211_OFDM_RATE_54MB_MASK;
      if (target_rate == 54000000)
            goto apply;

      IPW_DEBUG_WX("invalid rate specified, returning error\n");
      return -EINVAL;

      apply:
      IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
                 mask, fixed ? "fixed" : "sub-rates");
      mutex_lock(&priv->mutex);
      if (mask == IEEE80211_DEFAULT_RATES_MASK) {
            priv->config &= ~CFG_FIXED_RATE;
            ipw_set_fixed_rate(priv, priv->ieee->mode);
      } else
            priv->config |= CFG_FIXED_RATE;

      if (priv->rates_mask == mask) {
            IPW_DEBUG_WX("Mask set to current mask.\n");
            mutex_unlock(&priv->mutex);
            return 0;
      }

      priv->rates_mask = mask;

      /* Network configuration changed -- force [re]association */
      IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
      if (!ipw_disassociate(priv))
            ipw_associate(priv);

      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_wx_get_rate(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      wrqu->bitrate.value = priv->last_rate;
      wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
      mutex_unlock(&priv->mutex);
      IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
      return 0;
}

static int ipw_wx_set_rts(struct net_device *dev,
                    struct iw_request_info *info,
                    union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      if (wrqu->rts.disabled || !wrqu->rts.fixed)
            priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
      else {
            if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
                wrqu->rts.value > MAX_RTS_THRESHOLD) {
                  mutex_unlock(&priv->mutex);
                  return -EINVAL;
            }
            priv->rts_threshold = wrqu->rts.value;
      }

      ipw_send_rts_threshold(priv, priv->rts_threshold);
      mutex_unlock(&priv->mutex);
      IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
      return 0;
}

static int ipw_wx_get_rts(struct net_device *dev,
                    struct iw_request_info *info,
                    union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      wrqu->rts.value = priv->rts_threshold;
      wrqu->rts.fixed = 0;    /* no auto select */
      wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
      mutex_unlock(&priv->mutex);
      IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
      return 0;
}

static int ipw_wx_set_txpow(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int err = 0;

      mutex_lock(&priv->mutex);
      if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
            err = -EINPROGRESS;
            goto out;
      }

      if (!wrqu->power.fixed)
            wrqu->power.value = IPW_TX_POWER_DEFAULT;

      if (wrqu->power.flags != IW_TXPOW_DBM) {
            err = -EINVAL;
            goto out;
      }

      if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
          (wrqu->power.value < IPW_TX_POWER_MIN)) {
            err = -EINVAL;
            goto out;
      }

      priv->tx_power = wrqu->power.value;
      err = ipw_set_tx_power(priv);
      out:
      mutex_unlock(&priv->mutex);
      return err;
}

static int ipw_wx_get_txpow(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      wrqu->power.value = priv->tx_power;
      wrqu->power.fixed = 1;
      wrqu->power.flags = IW_TXPOW_DBM;
      wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
      mutex_unlock(&priv->mutex);

      IPW_DEBUG_WX("GET TX Power -> %s %d \n",
                 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);

      return 0;
}

static int ipw_wx_set_frag(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      if (wrqu->frag.disabled || !wrqu->frag.fixed)
            priv->ieee->fts = DEFAULT_FTS;
      else {
            if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
                wrqu->frag.value > MAX_FRAG_THRESHOLD) {
                  mutex_unlock(&priv->mutex);
                  return -EINVAL;
            }

            priv->ieee->fts = wrqu->frag.value & ~0x1;
      }

      ipw_send_frag_threshold(priv, wrqu->frag.value);
      mutex_unlock(&priv->mutex);
      IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
      return 0;
}

static int ipw_wx_get_frag(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      wrqu->frag.value = priv->ieee->fts;
      wrqu->frag.fixed = 0;   /* no auto select */
      wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
      mutex_unlock(&priv->mutex);
      IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);

      return 0;
}

static int ipw_wx_set_retry(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);

      if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
            return -EINVAL;

      if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
            return 0;

      if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
            return -EINVAL;

      mutex_lock(&priv->mutex);
      if (wrqu->retry.flags & IW_RETRY_SHORT)
            priv->short_retry_limit = (u8) wrqu->retry.value;
      else if (wrqu->retry.flags & IW_RETRY_LONG)
            priv->long_retry_limit = (u8) wrqu->retry.value;
      else {
            priv->short_retry_limit = (u8) wrqu->retry.value;
            priv->long_retry_limit = (u8) wrqu->retry.value;
      }

      ipw_send_retry_limit(priv, priv->short_retry_limit,
                       priv->long_retry_limit);
      mutex_unlock(&priv->mutex);
      IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
                 priv->short_retry_limit, priv->long_retry_limit);
      return 0;
}

static int ipw_wx_get_retry(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);

      mutex_lock(&priv->mutex);
      wrqu->retry.disabled = 0;

      if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
            mutex_unlock(&priv->mutex);
            return -EINVAL;
      }

      if (wrqu->retry.flags & IW_RETRY_LONG) {
            wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
            wrqu->retry.value = priv->long_retry_limit;
      } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
            wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
            wrqu->retry.value = priv->short_retry_limit;
      } else {
            wrqu->retry.flags = IW_RETRY_LIMIT;
            wrqu->retry.value = priv->short_retry_limit;
      }
      mutex_unlock(&priv->mutex);

      IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);

      return 0;
}

static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
                           int essid_len)
{
      struct ipw_scan_request_ext scan;
      int err = 0, scan_type;

      if (!(priv->status & STATUS_INIT) ||
          (priv->status & STATUS_EXIT_PENDING))
            return 0;

      mutex_lock(&priv->mutex);

      if (priv->status & STATUS_RF_KILL_MASK) {
            IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
            priv->status |= STATUS_SCAN_PENDING;
            goto done;
      }

      IPW_DEBUG_HC("starting request direct scan!\n");

      if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
            /* We should not sleep here; otherwise we will block most
             * of the system (for instance, we hold rtnl_lock when we
             * get here).
             */
            err = -EAGAIN;
            goto done;
      }
      memset(&scan, 0, sizeof(scan));

      if (priv->config & CFG_SPEED_SCAN)
            scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
                cpu_to_le16(30);
      else
            scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
                cpu_to_le16(20);

      scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
          cpu_to_le16(20);
      scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
      scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);

      scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));

      err = ipw_send_ssid(priv, essid, essid_len);
      if (err) {
            IPW_DEBUG_HC("Attempt to send SSID command failed\n");
            goto done;
      }
      scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;

      ipw_add_scan_channels(priv, &scan, scan_type);

      err = ipw_send_scan_request_ext(priv, &scan);
      if (err) {
            IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
            goto done;
      }

      priv->status |= STATUS_SCANNING;

      done:
      mutex_unlock(&priv->mutex);
      return err;
}

static int ipw_wx_set_scan(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct iw_scan_req *req = (struct iw_scan_req *)extra;

      mutex_lock(&priv->mutex);
      priv->user_requested_scan = 1;
      mutex_unlock(&priv->mutex);

      if (wrqu->data.length == sizeof(struct iw_scan_req)) {
            if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
                  ipw_request_direct_scan(priv, req->essid,
                                    req->essid_len);
                  return 0;
            }
            if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
                  queue_work(priv->workqueue,
                           &priv->request_passive_scan);
                  return 0;
            }
      }

      IPW_DEBUG_WX("Start scan\n");

      queue_delayed_work(priv->workqueue, &priv->request_scan, 0);

      return 0;
}

static int ipw_wx_get_scan(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
}

static int ipw_wx_set_encode(struct net_device *dev,
                       struct iw_request_info *info,
                       union iwreq_data *wrqu, char *key)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int ret;
      u32 cap = priv->capability;

      mutex_lock(&priv->mutex);
      ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);

      /* In IBSS mode, we need to notify the firmware to update
       * the beacon info after we changed the capability. */
      if (cap != priv->capability &&
          priv->ieee->iw_mode == IW_MODE_ADHOC &&
          priv->status & STATUS_ASSOCIATED)
            ipw_disassociate(priv);

      mutex_unlock(&priv->mutex);
      return ret;
}

static int ipw_wx_get_encode(struct net_device *dev,
                       struct iw_request_info *info,
                       union iwreq_data *wrqu, char *key)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
}

static int ipw_wx_set_power(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int err;
      mutex_lock(&priv->mutex);
      if (wrqu->power.disabled) {
            priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
            err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
            if (err) {
                  IPW_DEBUG_WX("failed setting power mode.\n");
                  mutex_unlock(&priv->mutex);
                  return err;
            }
            IPW_DEBUG_WX("SET Power Management Mode -> off\n");
            mutex_unlock(&priv->mutex);
            return 0;
      }

      switch (wrqu->power.flags & IW_POWER_MODE) {
      case IW_POWER_ON: /* If not specified */
      case IW_POWER_MODE:     /* If set all mask */
      case IW_POWER_ALL_R:    /* If explicitly state all */
            break;
      default:          /* Otherwise we don't support it */
            IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
                       wrqu->power.flags);
            mutex_unlock(&priv->mutex);
            return -EOPNOTSUPP;
      }

      /* If the user hasn't specified a power management mode yet, default
       * to BATTERY */
      if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
            priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
      else
            priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;

      err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
      if (err) {
            IPW_DEBUG_WX("failed setting power mode.\n");
            mutex_unlock(&priv->mutex);
            return err;
      }

      IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_wx_get_power(struct net_device *dev,
                      struct iw_request_info *info,
                      union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      if (!(priv->power_mode & IPW_POWER_ENABLED))
            wrqu->power.disabled = 1;
      else
            wrqu->power.disabled = 0;

      mutex_unlock(&priv->mutex);
      IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);

      return 0;
}

static int ipw_wx_set_powermode(struct net_device *dev,
                        struct iw_request_info *info,
                        union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int mode = *(int *)extra;
      int err;

      mutex_lock(&priv->mutex);
      if ((mode < 1) || (mode > IPW_POWER_LIMIT))
            mode = IPW_POWER_AC;

      if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
            err = ipw_send_power_mode(priv, mode);
            if (err) {
                  IPW_DEBUG_WX("failed setting power mode.\n");
                  mutex_unlock(&priv->mutex);
                  return err;
            }
            priv->power_mode = IPW_POWER_ENABLED | mode;
      }
      mutex_unlock(&priv->mutex);
      return 0;
}

#define MAX_WX_STRING 80
static int ipw_wx_get_powermode(struct net_device *dev,
                        struct iw_request_info *info,
                        union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int level = IPW_POWER_LEVEL(priv->power_mode);
      char *p = extra;

      p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);

      switch (level) {
      case IPW_POWER_AC:
            p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
            break;
      case IPW_POWER_BATTERY:
            p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
            break;
      default:
            p += snprintf(p, MAX_WX_STRING - (p - extra),
                        "(Timeout %dms, Period %dms)",
                        timeout_duration[level - 1] / 1000,
                        period_duration[level - 1] / 1000);
      }

      if (!(priv->power_mode & IPW_POWER_ENABLED))
            p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");

      wrqu->data.length = p - extra + 1;

      return 0;
}

static int ipw_wx_set_wireless_mode(struct net_device *dev,
                            struct iw_request_info *info,
                            union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int mode = *(int *)extra;
      u8 band = 0, modulation = 0;

      if (mode == 0 || mode & ~IEEE_MODE_MASK) {
            IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
            return -EINVAL;
      }
      mutex_lock(&priv->mutex);
      if (priv->adapter == IPW_2915ABG) {
            priv->ieee->abg_true = 1;
            if (mode & IEEE_A) {
                  band |= IEEE80211_52GHZ_BAND;
                  modulation |= IEEE80211_OFDM_MODULATION;
            } else
                  priv->ieee->abg_true = 0;
      } else {
            if (mode & IEEE_A) {
                  IPW_WARNING("Attempt to set 2200BG into "
                            "802.11a mode\n");
                  mutex_unlock(&priv->mutex);
                  return -EINVAL;
            }

            priv->ieee->abg_true = 0;
      }

      if (mode & IEEE_B) {
            band |= IEEE80211_24GHZ_BAND;
            modulation |= IEEE80211_CCK_MODULATION;
      } else
            priv->ieee->abg_true = 0;

      if (mode & IEEE_G) {
            band |= IEEE80211_24GHZ_BAND;
            modulation |= IEEE80211_OFDM_MODULATION;
      } else
            priv->ieee->abg_true = 0;

      priv->ieee->mode = mode;
      priv->ieee->freq_band = band;
      priv->ieee->modulation = modulation;
      init_supported_rates(priv, &priv->rates);

      /* Network configuration changed -- force [re]association */
      IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
      if (!ipw_disassociate(priv)) {
            ipw_send_supported_rates(priv, &priv->rates);
            ipw_associate(priv);
      }

      /* Update the band LEDs */
      ipw_led_band_on(priv);

      IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
                 mode & IEEE_A ? 'a' : '.',
                 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_wx_get_wireless_mode(struct net_device *dev,
                            struct iw_request_info *info,
                            union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      switch (priv->ieee->mode) {
      case IEEE_A:
            strncpy(extra, "802.11a (1)", MAX_WX_STRING);
            break;
      case IEEE_B:
            strncpy(extra, "802.11b (2)", MAX_WX_STRING);
            break;
      case IEEE_A | IEEE_B:
            strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
            break;
      case IEEE_G:
            strncpy(extra, "802.11g (4)", MAX_WX_STRING);
            break;
      case IEEE_A | IEEE_G:
            strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
            break;
      case IEEE_B | IEEE_G:
            strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
            break;
      case IEEE_A | IEEE_B | IEEE_G:
            strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
            break;
      default:
            strncpy(extra, "unknown", MAX_WX_STRING);
            break;
      }

      IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);

      wrqu->data.length = strlen(extra) + 1;
      mutex_unlock(&priv->mutex);

      return 0;
}

static int ipw_wx_set_preamble(struct net_device *dev,
                         struct iw_request_info *info,
                         union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int mode = *(int *)extra;
      mutex_lock(&priv->mutex);
      /* Switching from SHORT -> LONG requires a disassociation */
      if (mode == 1) {
            if (!(priv->config & CFG_PREAMBLE_LONG)) {
                  priv->config |= CFG_PREAMBLE_LONG;

                  /* Network configuration changed -- force [re]association */
                  IPW_DEBUG_ASSOC
                      ("[re]association triggered due to preamble change.\n");
                  if (!ipw_disassociate(priv))
                        ipw_associate(priv);
            }
            goto done;
      }

      if (mode == 0) {
            priv->config &= ~CFG_PREAMBLE_LONG;
            goto done;
      }
      mutex_unlock(&priv->mutex);
      return -EINVAL;

      done:
      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_wx_get_preamble(struct net_device *dev,
                         struct iw_request_info *info,
                         union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);
      if (priv->config & CFG_PREAMBLE_LONG)
            snprintf(wrqu->name, IFNAMSIZ, "long (1)");
      else
            snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
      mutex_unlock(&priv->mutex);
      return 0;
}

#ifdef CONFIG_IPW2200_MONITOR
static int ipw_wx_set_monitor(struct net_device *dev,
                        struct iw_request_info *info,
                        union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int *parms = (int *)extra;
      int enable = (parms[0] > 0);
      mutex_lock(&priv->mutex);
      IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
      if (enable) {
            if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
#ifdef CONFIG_IPW2200_RADIOTAP
                  priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
#else
                  priv->net_dev->type = ARPHRD_IEEE80211;
#endif
                  queue_work(priv->workqueue, &priv->adapter_restart);
            }

            ipw_set_channel(priv, parms[1]);
      } else {
            if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
                  mutex_unlock(&priv->mutex);
                  return 0;
            }
            priv->net_dev->type = ARPHRD_ETHER;
            queue_work(priv->workqueue, &priv->adapter_restart);
      }
      mutex_unlock(&priv->mutex);
      return 0;
}

#endif                        /* CONFIG_IPW2200_MONITOR */

static int ipw_wx_reset(struct net_device *dev,
                  struct iw_request_info *info,
                  union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      IPW_DEBUG_WX("RESET\n");
      queue_work(priv->workqueue, &priv->adapter_restart);
      return 0;
}

static int ipw_wx_sw_reset(struct net_device *dev,
                     struct iw_request_info *info,
                     union iwreq_data *wrqu, char *extra)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      union iwreq_data wrqu_sec = {
            .encoding = {
                       .flags = IW_ENCODE_DISABLED,
                       },
      };
      int ret;

      IPW_DEBUG_WX("SW_RESET\n");

      mutex_lock(&priv->mutex);

      ret = ipw_sw_reset(priv, 2);
      if (!ret) {
            free_firmware();
            ipw_adapter_restart(priv);
      }

      /* The SW reset bit might have been toggled on by the 'disable'
       * module parameter, so take appropriate action */
      ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);

      mutex_unlock(&priv->mutex);
      ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
      mutex_lock(&priv->mutex);

      if (!(priv->status & STATUS_RF_KILL_MASK)) {
            /* Configuration likely changed -- force [re]association */
            IPW_DEBUG_ASSOC("[re]association triggered due to sw "
                        "reset.\n");
            if (!ipw_disassociate(priv))
                  ipw_associate(priv);
      }

      mutex_unlock(&priv->mutex);

      return 0;
}

/* Rebase the WE IOCTLs to zero for the handler array */
#define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
static iw_handler ipw_wx_handlers[] = {
      IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
      IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
      IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
      IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
      IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
      IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
      IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
      IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
      IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
      IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
      IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
      IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
      IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
      IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
      IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
      IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
      IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
      IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
      IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
      IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
      IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
      IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
      IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
      IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
      IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
      IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
      IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
      IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
      IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
      IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
      IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
      IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
      IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
      IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
      IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
      IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
      IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
      IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
      IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
      IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
      IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
};

enum {
      IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
      IPW_PRIV_GET_POWER,
      IPW_PRIV_SET_MODE,
      IPW_PRIV_GET_MODE,
      IPW_PRIV_SET_PREAMBLE,
      IPW_PRIV_GET_PREAMBLE,
      IPW_PRIV_RESET,
      IPW_PRIV_SW_RESET,
#ifdef CONFIG_IPW2200_MONITOR
      IPW_PRIV_SET_MONITOR,
#endif
};

static struct iw_priv_args ipw_priv_args[] = {
      {
       .cmd = IPW_PRIV_SET_POWER,
       .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
       .name = "set_power"},
      {
       .cmd = IPW_PRIV_GET_POWER,
       .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
       .name = "get_power"},
      {
       .cmd = IPW_PRIV_SET_MODE,
       .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
       .name = "set_mode"},
      {
       .cmd = IPW_PRIV_GET_MODE,
       .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
       .name = "get_mode"},
      {
       .cmd = IPW_PRIV_SET_PREAMBLE,
       .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
       .name = "set_preamble"},
      {
       .cmd = IPW_PRIV_GET_PREAMBLE,
       .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
       .name = "get_preamble"},
      {
       IPW_PRIV_RESET,
       IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
      {
       IPW_PRIV_SW_RESET,
       IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
#ifdef CONFIG_IPW2200_MONITOR
      {
       IPW_PRIV_SET_MONITOR,
       IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
#endif                        /* CONFIG_IPW2200_MONITOR */
};

static iw_handler ipw_priv_handler[] = {
      ipw_wx_set_powermode,
      ipw_wx_get_powermode,
      ipw_wx_set_wireless_mode,
      ipw_wx_get_wireless_mode,
      ipw_wx_set_preamble,
      ipw_wx_get_preamble,
      ipw_wx_reset,
      ipw_wx_sw_reset,
#ifdef CONFIG_IPW2200_MONITOR
      ipw_wx_set_monitor,
#endif
};

static struct iw_handler_def ipw_wx_handler_def = {
      .standard = ipw_wx_handlers,
      .num_standard = ARRAY_SIZE(ipw_wx_handlers),
      .num_private = ARRAY_SIZE(ipw_priv_handler),
      .num_private_args = ARRAY_SIZE(ipw_priv_args),
      .private = ipw_priv_handler,
      .private_args = ipw_priv_args,
      .get_wireless_stats = ipw_get_wireless_stats,
};

/*
 * Get wireless statistics.
 * Called by /proc/net/wireless
 * Also called by SIOCGIWSTATS
 */
static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct iw_statistics *wstats;

      wstats = &priv->wstats;

      /* if hw is disabled, then ipw_get_ordinal() can't be called.
       * netdev->get_wireless_stats seems to be called before fw is
       * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
       * and associated; if not associcated, the values are all meaningless
       * anyway, so set them all to NULL and INVALID */
      if (!(priv->status & STATUS_ASSOCIATED)) {
            wstats->miss.beacon = 0;
            wstats->discard.retries = 0;
            wstats->qual.qual = 0;
            wstats->qual.level = 0;
            wstats->qual.noise = 0;
            wstats->qual.updated = 7;
            wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
                IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
            return wstats;
      }

      wstats->qual.qual = priv->quality;
      wstats->qual.level = priv->exp_avg_rssi;
      wstats->qual.noise = priv->exp_avg_noise;
      wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
          IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;

      wstats->miss.beacon = average_value(&priv->average_missed_beacons);
      wstats->discard.retries = priv->last_tx_failures;
      wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;

/*    if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
      goto fail_get_ordinal;
      wstats->discard.retries += tx_retry; */

      return wstats;
}

/* net device stuff */

static  void init_sys_config(struct ipw_sys_config *sys_config)
{
      memset(sys_config, 0, sizeof(struct ipw_sys_config));
      sys_config->bt_coexistence = 0;
      sys_config->answer_broadcast_ssid_probe = 0;
      sys_config->accept_all_data_frames = 0;
      sys_config->accept_non_directed_frames = 1;
      sys_config->exclude_unicast_unencrypted = 0;
      sys_config->disable_unicast_decryption = 1;
      sys_config->exclude_multicast_unencrypted = 0;
      sys_config->disable_multicast_decryption = 1;
      if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
            antenna = CFG_SYS_ANTENNA_BOTH;
      sys_config->antenna_diversity = antenna;
      sys_config->pass_crc_to_host = 0;   /* TODO: See if 1 gives us FCS */
      sys_config->dot11g_auto_detection = 0;
      sys_config->enable_cts_to_self = 0;
      sys_config->bt_coexist_collision_thr = 0;
      sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
      sys_config->silence_threshold = 0x1e;
}

static int ipw_net_open(struct net_device *dev)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      IPW_DEBUG_INFO("dev->open\n");
      /* we should be verifying the device is ready to be opened */
      mutex_lock(&priv->mutex);
      if (!(priv->status & STATUS_RF_KILL_MASK) &&
          (priv->status & STATUS_ASSOCIATED))
            netif_start_queue(dev);
      mutex_unlock(&priv->mutex);
      return 0;
}

static int ipw_net_stop(struct net_device *dev)
{
      IPW_DEBUG_INFO("dev->close\n");
      netif_stop_queue(dev);
      return 0;
}

/*
todo:

modify to send one tfd per fragment instead of using chunking.  otherwise
we need to heavily modify the ieee80211_skb_to_txb.
*/

static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
                       int pri)
{
      struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
          txb->fragments[0]->data;
      int i = 0;
      struct tfd_frame *tfd;
#ifdef CONFIG_IPW2200_QOS
      int tx_id = ipw_get_tx_queue_number(priv, pri);
      struct clx2_tx_queue *txq = &priv->txq[tx_id];
#else
      struct clx2_tx_queue *txq = &priv->txq[0];
#endif
      struct clx2_queue *q = &txq->q;
      u8 id, hdr_len, unicast;
      u16 remaining_bytes;
      int fc;
      DECLARE_MAC_BUF(mac);

      hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
      switch (priv->ieee->iw_mode) {
      case IW_MODE_ADHOC:
            unicast = !is_multicast_ether_addr(hdr->addr1);
            id = ipw_find_station(priv, hdr->addr1);
            if (id == IPW_INVALID_STATION) {
                  id = ipw_add_station(priv, hdr->addr1);
                  if (id == IPW_INVALID_STATION) {
                        IPW_WARNING("Attempt to send data to "
                                  "invalid cell: %s\n",
                                  print_mac(mac, hdr->addr1));
                        goto drop;
                  }
            }
            break;

      case IW_MODE_INFRA:
      default:
            unicast = !is_multicast_ether_addr(hdr->addr3);
            id = 0;
            break;
      }

      tfd = &txq->bd[q->first_empty];
      txq->txb[q->first_empty] = txb;
      memset(tfd, 0, sizeof(*tfd));
      tfd->u.data.station_number = id;

      tfd->control_flags.message_type = TX_FRAME_TYPE;
      tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;

      tfd->u.data.cmd_id = DINO_CMD_TX;
      tfd->u.data.len = cpu_to_le16(txb->payload_size);
      remaining_bytes = txb->payload_size;

      if (priv->assoc_request.ieee_mode == IPW_B_MODE)
            tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
      else
            tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;

      if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
            tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;

      fc = le16_to_cpu(hdr->frame_ctl);
      hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);

      memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);

      if (likely(unicast))
            tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;

      if (txb->encrypted && !priv->ieee->host_encrypt) {
            switch (priv->ieee->sec.level) {
            case SEC_LEVEL_3:
                  tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
                      cpu_to_le16(IEEE80211_FCTL_PROTECTED);
                  /* XXX: ACK flag must be set for CCMP even if it
                   * is a multicast/broadcast packet, because CCMP
                   * group communication encrypted by GTK is
                   * actually done by the AP. */
                  if (!unicast)
                        tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;

                  tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
                  tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
                  tfd->u.data.key_index = 0;
                  tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
                  break;
            case SEC_LEVEL_2:
                  tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
                      cpu_to_le16(IEEE80211_FCTL_PROTECTED);
                  tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
                  tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
                  tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
                  break;
            case SEC_LEVEL_1:
                  tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
                      cpu_to_le16(IEEE80211_FCTL_PROTECTED);
                  tfd->u.data.key_index = priv->ieee->tx_keyidx;
                  if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
                      40)
                        tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
                  else
                        tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
                  break;
            case SEC_LEVEL_0:
                  break;
            default:
                  printk(KERN_ERR "Unknow security level %d\n",
                         priv->ieee->sec.level);
                  break;
            }
      } else
            /* No hardware encryption */
            tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;

#ifdef CONFIG_IPW2200_QOS
      if (fc & IEEE80211_STYPE_QOS_DATA)
            ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
#endif                        /* CONFIG_IPW2200_QOS */

      /* payload */
      tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
                                     txb->nr_frags));
      IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
                   txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
      for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
            IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
                         i, le32_to_cpu(tfd->u.data.num_chunks),
                         txb->fragments[i]->len - hdr_len);
            IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
                       i, tfd->u.data.num_chunks,
                       txb->fragments[i]->len - hdr_len);
            printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
                     txb->fragments[i]->len - hdr_len);

            tfd->u.data.chunk_ptr[i] =
                cpu_to_le32(pci_map_single
                        (priv->pci_dev,
                         txb->fragments[i]->data + hdr_len,
                         txb->fragments[i]->len - hdr_len,
                         PCI_DMA_TODEVICE));
            tfd->u.data.chunk_len[i] =
                cpu_to_le16(txb->fragments[i]->len - hdr_len);
      }

      if (i != txb->nr_frags) {
            struct sk_buff *skb;
            u16 remaining_bytes = 0;
            int j;

            for (j = i; j < txb->nr_frags; j++)
                  remaining_bytes += txb->fragments[j]->len - hdr_len;

            printk(KERN_INFO "Trying to reallocate for %d bytes\n",
                   remaining_bytes);
            skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
            if (skb != NULL) {
                  tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
                  for (j = i; j < txb->nr_frags; j++) {
                        int size = txb->fragments[j]->len - hdr_len;

                        printk(KERN_INFO "Adding frag %d %d...\n",
                               j, size);
                        memcpy(skb_put(skb, size),
                               txb->fragments[j]->data + hdr_len, size);
                  }
                  dev_kfree_skb_any(txb->fragments[i]);
                  txb->fragments[i] = skb;
                  tfd->u.data.chunk_ptr[i] =
                      cpu_to_le32(pci_map_single
                              (priv->pci_dev, skb->data,
                               tfd->u.data.chunk_len[i],
                               PCI_DMA_TODEVICE));

                  tfd->u.data.num_chunks =
                      cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
                              1);
            }
      }

      /* kick DMA */
      q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
      ipw_write32(priv, q->reg_w, q->first_empty);

      if (ipw_queue_space(q) < q->high_mark)
            netif_stop_queue(priv->net_dev);

      return NETDEV_TX_OK;

      drop:
      IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
      ieee80211_txb_free(txb);
      return NETDEV_TX_OK;
}

static int ipw_net_is_queue_full(struct net_device *dev, int pri)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
#ifdef CONFIG_IPW2200_QOS
      int tx_id = ipw_get_tx_queue_number(priv, pri);
      struct clx2_tx_queue *txq = &priv->txq[tx_id];
#else
      struct clx2_tx_queue *txq = &priv->txq[0];
#endif                        /* CONFIG_IPW2200_QOS */

      if (ipw_queue_space(&txq->q) < txq->q.high_mark)
            return 1;

      return 0;
}

#ifdef CONFIG_IPW2200_PROMISCUOUS
static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
                              struct ieee80211_txb *txb)
{
      struct ieee80211_rx_stats dummystats;
      struct ieee80211_hdr *hdr;
      u8 n;
      u16 filter = priv->prom_priv->filter;
      int hdr_only = 0;

      if (filter & IPW_PROM_NO_TX)
            return;

      memset(&dummystats, 0, sizeof(dummystats));

      /* Filtering of fragment chains is done agains the first fragment */
      hdr = (void *)txb->fragments[0]->data;
      if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
            if (filter & IPW_PROM_NO_MGMT)
                  return;
            if (filter & IPW_PROM_MGMT_HEADER_ONLY)
                  hdr_only = 1;
      } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
            if (filter & IPW_PROM_NO_CTL)
                  return;
            if (filter & IPW_PROM_CTL_HEADER_ONLY)
                  hdr_only = 1;
      } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
            if (filter & IPW_PROM_NO_DATA)
                  return;
            if (filter & IPW_PROM_DATA_HEADER_ONLY)
                  hdr_only = 1;
      }

      for(n=0; n<txb->nr_frags; ++n) {
            struct sk_buff *src = txb->fragments[n];
            struct sk_buff *dst;
            struct ieee80211_radiotap_header *rt_hdr;
            int len;

            if (hdr_only) {
                  hdr = (void *)src->data;
                  len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
            } else
                  len = src->len;

            dst = alloc_skb(
                  len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
            if (!dst) continue;

            rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));

            rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
            rt_hdr->it_pad = 0;
            rt_hdr->it_present = 0; /* after all, it's just an idea */
            rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);

            *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
                  ieee80211chan2mhz(priv->channel));
            if (priv->channel > 14)       /* 802.11a */
                  *(u16*)skb_put(dst, sizeof(u16)) =
                        cpu_to_le16(IEEE80211_CHAN_OFDM |
                                   IEEE80211_CHAN_5GHZ);
            else if (priv->ieee->mode == IEEE_B) /* 802.11b */
                  *(u16*)skb_put(dst, sizeof(u16)) =
                        cpu_to_le16(IEEE80211_CHAN_CCK |
                                   IEEE80211_CHAN_2GHZ);
            else        /* 802.11g */
                  *(u16*)skb_put(dst, sizeof(u16)) =
                        cpu_to_le16(IEEE80211_CHAN_OFDM |
                         IEEE80211_CHAN_2GHZ);

            rt_hdr->it_len = dst->len;

            skb_copy_from_linear_data(src, skb_put(dst, len), len);

            if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
                  dev_kfree_skb_any(dst);
      }
}
#endif

static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
                           struct net_device *dev, int pri)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      unsigned long flags;
      int ret;

      IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
      spin_lock_irqsave(&priv->lock, flags);

      if (!(priv->status & STATUS_ASSOCIATED)) {
            IPW_DEBUG_INFO("Tx attempt while not associated.\n");
            priv->ieee->stats.tx_carrier_errors++;
            netif_stop_queue(dev);
            goto fail_unlock;
      }

#ifdef CONFIG_IPW2200_PROMISCUOUS
      if (rtap_iface && netif_running(priv->prom_net_dev))
            ipw_handle_promiscuous_tx(priv, txb);
#endif

      ret = ipw_tx_skb(priv, txb, pri);
      if (ret == NETDEV_TX_OK)
            __ipw_led_activity_on(priv);
      spin_unlock_irqrestore(&priv->lock, flags);

      return ret;

      fail_unlock:
      spin_unlock_irqrestore(&priv->lock, flags);
      return 1;
}

static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
{
      struct ipw_priv *priv = ieee80211_priv(dev);

      priv->ieee->stats.tx_packets = priv->tx_packets;
      priv->ieee->stats.rx_packets = priv->rx_packets;
      return &priv->ieee->stats;
}

static void ipw_net_set_multicast_list(struct net_device *dev)
{

}

static int ipw_net_set_mac_address(struct net_device *dev, void *p)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      struct sockaddr *addr = p;
      DECLARE_MAC_BUF(mac);

      if (!is_valid_ether_addr(addr->sa_data))
            return -EADDRNOTAVAIL;
      mutex_lock(&priv->mutex);
      priv->config |= CFG_CUSTOM_MAC;
      memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
      printk(KERN_INFO "%s: Setting MAC to %s\n",
             priv->net_dev->name, print_mac(mac, priv->mac_addr));
      queue_work(priv->workqueue, &priv->adapter_restart);
      mutex_unlock(&priv->mutex);
      return 0;
}

static void ipw_ethtool_get_drvinfo(struct net_device *dev,
                            struct ethtool_drvinfo *info)
{
      struct ipw_priv *p = ieee80211_priv(dev);
      char vers[64];
      char date[32];
      u32 len;

      strcpy(info->driver, DRV_NAME);
      strcpy(info->version, DRV_VERSION);

      len = sizeof(vers);
      ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
      len = sizeof(date);
      ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);

      snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
             vers, date);
      strcpy(info->bus_info, pci_name(p->pci_dev));
      info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
}

static u32 ipw_ethtool_get_link(struct net_device *dev)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      return (priv->status & STATUS_ASSOCIATED) != 0;
}

static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
{
      return IPW_EEPROM_IMAGE_SIZE;
}

static int ipw_ethtool_get_eeprom(struct net_device *dev,
                          struct ethtool_eeprom *eeprom, u8 * bytes)
{
      struct ipw_priv *p = ieee80211_priv(dev);

      if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
            return -EINVAL;
      mutex_lock(&p->mutex);
      memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
      mutex_unlock(&p->mutex);
      return 0;
}

static int ipw_ethtool_set_eeprom(struct net_device *dev,
                          struct ethtool_eeprom *eeprom, u8 * bytes)
{
      struct ipw_priv *p = ieee80211_priv(dev);
      int i;

      if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
            return -EINVAL;
      mutex_lock(&p->mutex);
      memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
      for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
            ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
      mutex_unlock(&p->mutex);
      return 0;
}

static const struct ethtool_ops ipw_ethtool_ops = {
      .get_link = ipw_ethtool_get_link,
      .get_drvinfo = ipw_ethtool_get_drvinfo,
      .get_eeprom_len = ipw_ethtool_get_eeprom_len,
      .get_eeprom = ipw_ethtool_get_eeprom,
      .set_eeprom = ipw_ethtool_set_eeprom,
};

static irqreturn_t ipw_isr(int irq, void *data)
{
      struct ipw_priv *priv = data;
      u32 inta, inta_mask;

      if (!priv)
            return IRQ_NONE;

      spin_lock(&priv->irq_lock);

      if (!(priv->status & STATUS_INT_ENABLED)) {
            /* IRQ is disabled */
            goto none;
      }

      inta = ipw_read32(priv, IPW_INTA_RW);
      inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);

      if (inta == 0xFFFFFFFF) {
            /* Hardware disappeared */
            IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
            goto none;
      }

      if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
            /* Shared interrupt */
            goto none;
      }

      /* tell the device to stop sending interrupts */
      __ipw_disable_interrupts(priv);

      /* ack current interrupts */
      inta &= (IPW_INTA_MASK_ALL & inta_mask);
      ipw_write32(priv, IPW_INTA_RW, inta);

      /* Cache INTA value for our tasklet */
      priv->isr_inta = inta;

      tasklet_schedule(&priv->irq_tasklet);

      spin_unlock(&priv->irq_lock);

      return IRQ_HANDLED;
      none:
      spin_unlock(&priv->irq_lock);
      return IRQ_NONE;
}

static void ipw_rf_kill(void *adapter)
{
      struct ipw_priv *priv = adapter;
      unsigned long flags;

      spin_lock_irqsave(&priv->lock, flags);

      if (rf_kill_active(priv)) {
            IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
            if (priv->workqueue)
                  queue_delayed_work(priv->workqueue,
                                 &priv->rf_kill, 2 * HZ);
            goto exit_unlock;
      }

      /* RF Kill is now disabled, so bring the device back up */

      if (!(priv->status & STATUS_RF_KILL_MASK)) {
            IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
                          "device\n");

            /* we can not do an adapter restart while inside an irq lock */
            queue_work(priv->workqueue, &priv->adapter_restart);
      } else
            IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
                          "enabled\n");

      exit_unlock:
      spin_unlock_irqrestore(&priv->lock, flags);
}

static void ipw_bg_rf_kill(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, rf_kill.work);
      mutex_lock(&priv->mutex);
      ipw_rf_kill(priv);
      mutex_unlock(&priv->mutex);
}

static void ipw_link_up(struct ipw_priv *priv)
{
      priv->last_seq_num = -1;
      priv->last_frag_num = -1;
      priv->last_packet_time = 0;

      netif_carrier_on(priv->net_dev);
      if (netif_queue_stopped(priv->net_dev)) {
            IPW_DEBUG_NOTIF("waking queue\n");
            netif_wake_queue(priv->net_dev);
      } else {
            IPW_DEBUG_NOTIF("starting queue\n");
            netif_start_queue(priv->net_dev);
      }

      cancel_delayed_work(&priv->request_scan);
      cancel_delayed_work(&priv->scan_event);
      ipw_reset_stats(priv);
      /* Ensure the rate is updated immediately */
      priv->last_rate = ipw_get_current_rate(priv);
      ipw_gather_stats(priv);
      ipw_led_link_up(priv);
      notify_wx_assoc_event(priv);

      if (priv->config & CFG_BACKGROUND_SCAN)
            queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
}

static void ipw_bg_link_up(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, link_up);
      mutex_lock(&priv->mutex);
      ipw_link_up(priv);
      mutex_unlock(&priv->mutex);
}

static void ipw_link_down(struct ipw_priv *priv)
{
      ipw_led_link_down(priv);
      netif_carrier_off(priv->net_dev);
      netif_stop_queue(priv->net_dev);
      notify_wx_assoc_event(priv);

      /* Cancel any queued work ... */
      cancel_delayed_work(&priv->request_scan);
      cancel_delayed_work(&priv->adhoc_check);
      cancel_delayed_work(&priv->gather_stats);

      ipw_reset_stats(priv);

      if (!(priv->status & STATUS_EXIT_PENDING)) {
            /* Queue up another scan... */
            queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
      } else
            cancel_delayed_work(&priv->scan_event);
}

static void ipw_bg_link_down(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, link_down);
      mutex_lock(&priv->mutex);
      ipw_link_down(priv);
      mutex_unlock(&priv->mutex);
}

static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
{
      int ret = 0;

      priv->workqueue = create_workqueue(DRV_NAME);
      init_waitqueue_head(&priv->wait_command_queue);
      init_waitqueue_head(&priv->wait_state);

      INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
      INIT_WORK(&priv->associate, ipw_bg_associate);
      INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
      INIT_WORK(&priv->system_config, ipw_system_config);
      INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
      INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
      INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
      INIT_WORK(&priv->up, ipw_bg_up);
      INIT_WORK(&priv->down, ipw_bg_down);
      INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
      INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
      INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
      INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
      INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
      INIT_WORK(&priv->roam, ipw_bg_roam);
      INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
      INIT_WORK(&priv->link_up, ipw_bg_link_up);
      INIT_WORK(&priv->link_down, ipw_bg_link_down);
      INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
      INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
      INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
      INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);

#ifdef CONFIG_IPW2200_QOS
      INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
#endif                        /* CONFIG_IPW2200_QOS */

      tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
                 ipw_irq_tasklet, (unsigned long)priv);

      return ret;
}

static void shim__set_security(struct net_device *dev,
                         struct ieee80211_security *sec)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      int i;
      for (i = 0; i < 4; i++) {
            if (sec->flags & (1 << i)) {
                  priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
                  priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
                  if (sec->key_sizes[i] == 0)
                        priv->ieee->sec.flags &= ~(1 << i);
                  else {
                        memcpy(priv->ieee->sec.keys[i], sec->keys[i],
                               sec->key_sizes[i]);
                        priv->ieee->sec.flags |= (1 << i);
                  }
                  priv->status |= STATUS_SECURITY_UPDATED;
            } else if (sec->level != SEC_LEVEL_1)
                  priv->ieee->sec.flags &= ~(1 << i);
      }

      if (sec->flags & SEC_ACTIVE_KEY) {
            if (sec->active_key <= 3) {
                  priv->ieee->sec.active_key = sec->active_key;
                  priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
            } else
                  priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
            priv->status |= STATUS_SECURITY_UPDATED;
      } else
            priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;

      if ((sec->flags & SEC_AUTH_MODE) &&
          (priv->ieee->sec.auth_mode != sec->auth_mode)) {
            priv->ieee->sec.auth_mode = sec->auth_mode;
            priv->ieee->sec.flags |= SEC_AUTH_MODE;
            if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
                  priv->capability |= CAP_SHARED_KEY;
            else
                  priv->capability &= ~CAP_SHARED_KEY;
            priv->status |= STATUS_SECURITY_UPDATED;
      }

      if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
            priv->ieee->sec.flags |= SEC_ENABLED;
            priv->ieee->sec.enabled = sec->enabled;
            priv->status |= STATUS_SECURITY_UPDATED;
            if (sec->enabled)
                  priv->capability |= CAP_PRIVACY_ON;
            else
                  priv->capability &= ~CAP_PRIVACY_ON;
      }

      if (sec->flags & SEC_ENCRYPT)
            priv->ieee->sec.encrypt = sec->encrypt;

      if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
            priv->ieee->sec.level = sec->level;
            priv->ieee->sec.flags |= SEC_LEVEL;
            priv->status |= STATUS_SECURITY_UPDATED;
      }

      if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
            ipw_set_hwcrypto_keys(priv);

      /* To match current functionality of ipw2100 (which works well w/
       * various supplicants, we don't force a disassociate if the
       * privacy capability changes ... */
#if 0
      if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
          (((priv->assoc_request.capability &
             WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
           (!(priv->assoc_request.capability &
            WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
            IPW_DEBUG_ASSOC("Disassociating due to capability "
                        "change.\n");
            ipw_disassociate(priv);
      }
#endif
}

static int init_supported_rates(struct ipw_priv *priv,
                        struct ipw_supported_rates *rates)
{
      /* TODO: Mask out rates based on priv->rates_mask */

      memset(rates, 0, sizeof(*rates));
      /* configure supported rates */
      switch (priv->ieee->freq_band) {
      case IEEE80211_52GHZ_BAND:
            rates->ieee_mode = IPW_A_MODE;
            rates->purpose = IPW_RATE_CAPABILITIES;
            ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
                              IEEE80211_OFDM_DEFAULT_RATES_MASK);
            break;

      default:          /* Mixed or 2.4Ghz */
            rates->ieee_mode = IPW_G_MODE;
            rates->purpose = IPW_RATE_CAPABILITIES;
            ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
                               IEEE80211_CCK_DEFAULT_RATES_MASK);
            if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
                  ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
                                    IEEE80211_OFDM_DEFAULT_RATES_MASK);
            }
            break;
      }

      return 0;
}

static int ipw_config(struct ipw_priv *priv)
{
      /* This is only called from ipw_up, which resets/reloads the firmware
         so, we don't need to first disable the card before we configure
         it */
      if (ipw_set_tx_power(priv))
            goto error;

      /* initialize adapter address */
      if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
            goto error;

      /* set basic system config settings */
      init_sys_config(&priv->sys_config);

      /* Support Bluetooth if we have BT h/w on board, and user wants to.
       * Does not support BT priority yet (don't abort or defer our Tx) */
      if (bt_coexist) {
            unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];

            if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
                  priv->sys_config.bt_coexistence
                      |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
            if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
                  priv->sys_config.bt_coexistence
                      |= CFG_BT_COEXISTENCE_OOB;
      }

#ifdef CONFIG_IPW2200_PROMISCUOUS
      if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
            priv->sys_config.accept_all_data_frames = 1;
            priv->sys_config.accept_non_directed_frames = 1;
            priv->sys_config.accept_all_mgmt_bcpr = 1;
            priv->sys_config.accept_all_mgmt_frames = 1;
      }
#endif

      if (priv->ieee->iw_mode == IW_MODE_ADHOC)
            priv->sys_config.answer_broadcast_ssid_probe = 1;
      else
            priv->sys_config.answer_broadcast_ssid_probe = 0;

      if (ipw_send_system_config(priv))
            goto error;

      init_supported_rates(priv, &priv->rates);
      if (ipw_send_supported_rates(priv, &priv->rates))
            goto error;

      /* Set request-to-send threshold */
      if (priv->rts_threshold) {
            if (ipw_send_rts_threshold(priv, priv->rts_threshold))
                  goto error;
      }
#ifdef CONFIG_IPW2200_QOS
      IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
      ipw_qos_activate(priv, NULL);
#endif                        /* CONFIG_IPW2200_QOS */

      if (ipw_set_random_seed(priv))
            goto error;

      /* final state transition to the RUN state */
      if (ipw_send_host_complete(priv))
            goto error;

      priv->status |= STATUS_INIT;

      ipw_led_init(priv);
      ipw_led_radio_on(priv);
      priv->notif_missed_beacons = 0;

      /* Set hardware WEP key if it is configured. */
      if ((priv->capability & CAP_PRIVACY_ON) &&
          (priv->ieee->sec.level == SEC_LEVEL_1) &&
          !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
            ipw_set_hwcrypto_keys(priv);

      return 0;

      error:
      return -EIO;
}

/*
 * NOTE:
 *
 * These tables have been tested in conjunction with the
 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
 *
 * Altering this values, using it on other hardware, or in geographies
 * not intended for resale of the above mentioned Intel adapters has
 * not been tested.
 *
 * Remember to update the table in README.ipw2200 when changing this
 * table.
 *
 */
static const struct ieee80211_geo ipw_geos[] = {
      {                 /* Restricted */
       "---",
       .bg_channels = 11,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}},
       },

      {                 /* Custom US/Canada */
       "ZZF",
       .bg_channels = 11,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}},
       .a_channels = 8,
       .a = {{5180, 36},
             {5200, 40},
             {5220, 44},
             {5240, 48},
             {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
             {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
             {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
             {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
       },

      {                 /* Rest of World */
       "ZZD",
       .bg_channels = 13,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}, {2467, 12},
            {2472, 13}},
       },

      {                 /* Custom USA & Europe & High */
       "ZZA",
       .bg_channels = 11,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}},
       .a_channels = 13,
       .a = {{5180, 36},
             {5200, 40},
             {5220, 44},
             {5240, 48},
             {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
             {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
             {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
             {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
             {5745, 149},
             {5765, 153},
             {5785, 157},
             {5805, 161},
             {5825, 165}},
       },

      {                 /* Custom NA & Europe */
       "ZZB",
       .bg_channels = 11,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}},
       .a_channels = 13,
       .a = {{5180, 36},
             {5200, 40},
             {5220, 44},
             {5240, 48},
             {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
             {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
             {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
             {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
             {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
             {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
             {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
             {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
             {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
       },

      {                 /* Custom Japan */
       "ZZC",
       .bg_channels = 11,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}},
       .a_channels = 4,
       .a = {{5170, 34}, {5190, 38},
             {5210, 42}, {5230, 46}},
       },

      {                 /* Custom */
       "ZZM",
       .bg_channels = 11,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}},
       },

      {                 /* Europe */
       "ZZE",
       .bg_channels = 13,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}, {2467, 12},
            {2472, 13}},
       .a_channels = 19,
       .a = {{5180, 36},
             {5200, 40},
             {5220, 44},
             {5240, 48},
             {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
             {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
             {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
             {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
             {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
             {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
             {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
             {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
             {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
             {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
             {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
             {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
             {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
             {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
             {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
       },

      {                 /* Custom Japan */
       "ZZJ",
       .bg_channels = 14,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}, {2467, 12},
            {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
       .a_channels = 4,
       .a = {{5170, 34}, {5190, 38},
             {5210, 42}, {5230, 46}},
       },

      {                 /* Rest of World */
       "ZZR",
       .bg_channels = 14,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}, {2467, 12},
            {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
                       IEEE80211_CH_PASSIVE_ONLY}},
       },

      {                 /* High Band */
       "ZZH",
       .bg_channels = 13,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11},
            {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
            {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
       .a_channels = 4,
       .a = {{5745, 149}, {5765, 153},
             {5785, 157}, {5805, 161}},
       },

      {                 /* Custom Europe */
       "ZZG",
       .bg_channels = 13,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11},
            {2467, 12}, {2472, 13}},
       .a_channels = 4,
       .a = {{5180, 36}, {5200, 40},
             {5220, 44}, {5240, 48}},
       },

      {                 /* Europe */
       "ZZK",
       .bg_channels = 13,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11},
            {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
            {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
       .a_channels = 24,
       .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
             {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
             {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
             {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
             {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
             {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
             {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
             {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
             {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
             {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
             {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
             {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
             {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
             {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
             {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
             {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
             {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
             {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
             {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
             {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
             {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
             {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
             {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
             {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
       },

      {                 /* Europe */
       "ZZL",
       .bg_channels = 11,
       .bg = {{2412, 1}, {2417, 2}, {2422, 3},
            {2427, 4}, {2432, 5}, {2437, 6},
            {2442, 7}, {2447, 8}, {2452, 9},
            {2457, 10}, {2462, 11}},
       .a_channels = 13,
       .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
             {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
             {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
             {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
             {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
             {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
             {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
             {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
             {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
             {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
             {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
             {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
             {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
       }
};

#define MAX_HW_RESTARTS 5
static int ipw_up(struct ipw_priv *priv)
{
      int rc, i, j;

      if (priv->status & STATUS_EXIT_PENDING)
            return -EIO;

      if (cmdlog && !priv->cmdlog) {
            priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
                               GFP_KERNEL);
            if (priv->cmdlog == NULL) {
                  IPW_ERROR("Error allocating %d command log entries.\n",
                          cmdlog);
                  return -ENOMEM;
            } else {
                  priv->cmdlog_len = cmdlog;
            }
      }

      for (i = 0; i < MAX_HW_RESTARTS; i++) {
            /* Load the microcode, firmware, and eeprom.
             * Also start the clocks. */
            rc = ipw_load(priv);
            if (rc) {
                  IPW_ERROR("Unable to load firmware: %d\n", rc);
                  return rc;
            }

            ipw_init_ordinals(priv);
            if (!(priv->config & CFG_CUSTOM_MAC))
                  eeprom_parse_mac(priv, priv->mac_addr);
            memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);

            for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
                  if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
                            ipw_geos[j].name, 3))
                        break;
            }
            if (j == ARRAY_SIZE(ipw_geos)) {
                  IPW_WARNING("SKU [%c%c%c] not recognized.\n",
                            priv->eeprom[EEPROM_COUNTRY_CODE + 0],
                            priv->eeprom[EEPROM_COUNTRY_CODE + 1],
                            priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
                  j = 0;
            }
            if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
                  IPW_WARNING("Could not set geography.");
                  return 0;
            }

            if (priv->status & STATUS_RF_KILL_SW) {
                  IPW_WARNING("Radio disabled by module parameter.\n");
                  return 0;
            } else if (rf_kill_active(priv)) {
                  IPW_WARNING("Radio Frequency Kill Switch is On:\n"
                            "Kill switch must be turned off for "
                            "wireless networking to work.\n");
                  queue_delayed_work(priv->workqueue, &priv->rf_kill,
                                 2 * HZ);
                  return 0;
            }

            rc = ipw_config(priv);
            if (!rc) {
                  IPW_DEBUG_INFO("Configured device on count %i\n", i);

                  /* If configure to try and auto-associate, kick
                   * off a scan. */
                  queue_delayed_work(priv->workqueue,
                                 &priv->request_scan, 0);

                  return 0;
            }

            IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
            IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
                         i, MAX_HW_RESTARTS);

            /* We had an error bringing up the hardware, so take it
             * all the way back down so we can try again */
            ipw_down(priv);
      }

      /* tried to restart and config the device for as long as our
       * patience could withstand */
      IPW_ERROR("Unable to initialize device after %d attempts.\n", i);

      return -EIO;
}

static void ipw_bg_up(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, up);
      mutex_lock(&priv->mutex);
      ipw_up(priv);
      mutex_unlock(&priv->mutex);
}

static void ipw_deinit(struct ipw_priv *priv)
{
      int i;

      if (priv->status & STATUS_SCANNING) {
            IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
            ipw_abort_scan(priv);
      }

      if (priv->status & STATUS_ASSOCIATED) {
            IPW_DEBUG_INFO("Disassociating during shutdown.\n");
            ipw_disassociate(priv);
      }

      ipw_led_shutdown(priv);

      /* Wait up to 1s for status to change to not scanning and not
       * associated (disassociation can take a while for a ful 802.11
       * exchange */
      for (i = 1000; i && (priv->status &
                       (STATUS_DISASSOCIATING |
                        STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
            udelay(10);

      if (priv->status & (STATUS_DISASSOCIATING |
                      STATUS_ASSOCIATED | STATUS_SCANNING))
            IPW_DEBUG_INFO("Still associated or scanning...\n");
      else
            IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);

      /* Attempt to disable the card */
      ipw_send_card_disable(priv, 0);

      priv->status &= ~STATUS_INIT;
}

static void ipw_down(struct ipw_priv *priv)
{
      int exit_pending = priv->status & STATUS_EXIT_PENDING;

      priv->status |= STATUS_EXIT_PENDING;

      if (ipw_is_init(priv))
            ipw_deinit(priv);

      /* Wipe out the EXIT_PENDING status bit if we are not actually
       * exiting the module */
      if (!exit_pending)
            priv->status &= ~STATUS_EXIT_PENDING;

      /* tell the device to stop sending interrupts */
      ipw_disable_interrupts(priv);

      /* Clear all bits but the RF Kill */
      priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
      netif_carrier_off(priv->net_dev);
      netif_stop_queue(priv->net_dev);

      ipw_stop_nic(priv);

      ipw_led_radio_off(priv);
}

static void ipw_bg_down(struct work_struct *work)
{
      struct ipw_priv *priv =
            container_of(work, struct ipw_priv, down);
      mutex_lock(&priv->mutex);
      ipw_down(priv);
      mutex_unlock(&priv->mutex);
}

/* Called by register_netdev() */
static int ipw_net_init(struct net_device *dev)
{
      struct ipw_priv *priv = ieee80211_priv(dev);
      mutex_lock(&priv->mutex);

      if (ipw_up(priv)) {
            mutex_unlock(&priv->mutex);
            return -EIO;
      }

      mutex_unlock(&priv->mutex);
      return 0;
}

/* PCI driver stuff */
static struct pci_device_id card_ids[] = {
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
      {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},   /* BG */
      {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},   /* BG */
      {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},   /* ABG */
      {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},   /* ABG */

      /* required last entry */
      {0,}
};

MODULE_DEVICE_TABLE(pci, card_ids);

static struct attribute *ipw_sysfs_entries[] = {
      &dev_attr_rf_kill.attr,
      &dev_attr_direct_dword.attr,
      &dev_attr_indirect_byte.attr,
      &dev_attr_indirect_dword.attr,
      &dev_attr_mem_gpio_reg.attr,
      &dev_attr_command_event_reg.attr,
      &dev_attr_nic_type.attr,
      &dev_attr_status.attr,
      &dev_attr_cfg.attr,
      &dev_attr_error.attr,
      &dev_attr_event_log.attr,
      &dev_attr_cmd_log.attr,
      &dev_attr_eeprom_delay.attr,
      &dev_attr_ucode_version.attr,
      &dev_attr_rtc.attr,
      &dev_attr_scan_age.attr,
      &dev_attr_led.attr,
      &dev_attr_speed_scan.attr,
      &dev_attr_net_stats.attr,
      &dev_attr_channels.attr,
#ifdef CONFIG_IPW2200_PROMISCUOUS
      &dev_attr_rtap_iface.attr,
      &dev_attr_rtap_filter.attr,
#endif
      NULL
};

static struct attribute_group ipw_attribute_group = {
      .name = NULL,           /* put in device directory */
      .attrs = ipw_sysfs_entries,
};

#ifdef CONFIG_IPW2200_PROMISCUOUS
static int ipw_prom_open(struct net_device *dev)
{
      struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
      struct ipw_priv *priv = prom_priv->priv;

      IPW_DEBUG_INFO("prom dev->open\n");
      netif_carrier_off(dev);
      netif_stop_queue(dev);

      if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
            priv->sys_config.accept_all_data_frames = 1;
            priv->sys_config.accept_non_directed_frames = 1;
            priv->sys_config.accept_all_mgmt_bcpr = 1;
            priv->sys_config.accept_all_mgmt_frames = 1;

            ipw_send_system_config(priv);
      }

      return 0;
}

static int ipw_prom_stop(struct net_device *dev)
{
      struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
      struct ipw_priv *priv = prom_priv->priv;

      IPW_DEBUG_INFO("prom dev->stop\n");

      if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
            priv->sys_config.accept_all_data_frames = 0;
            priv->sys_config.accept_non_directed_frames = 0;
            priv->sys_config.accept_all_mgmt_bcpr = 0;
            priv->sys_config.accept_all_mgmt_frames = 0;

            ipw_send_system_config(priv);
      }

      return 0;
}

static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
      IPW_DEBUG_INFO("prom dev->xmit\n");
      netif_stop_queue(dev);
      return -EOPNOTSUPP;
}

static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
{
      struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
      return &prom_priv->ieee->stats;
}

static int ipw_prom_alloc(struct ipw_priv *priv)
{
      int rc = 0;

      if (priv->prom_net_dev)
            return -EPERM;

      priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
      if (priv->prom_net_dev == NULL)
            return -ENOMEM;

      priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
      priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
      priv->prom_priv->priv = priv;

      strcpy(priv->prom_net_dev->name, "rtap%d");

      priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
      priv->prom_net_dev->open = ipw_prom_open;
      priv->prom_net_dev->stop = ipw_prom_stop;
      priv->prom_net_dev->get_stats = ipw_prom_get_stats;
      priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;

      priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;

      rc = register_netdev(priv->prom_net_dev);
      if (rc) {
            free_ieee80211(priv->prom_net_dev);
            priv->prom_net_dev = NULL;
            return rc;
      }

      return 0;
}

static void ipw_prom_free(struct ipw_priv *priv)
{
      if (!priv->prom_net_dev)
            return;

      unregister_netdev(priv->prom_net_dev);
      free_ieee80211(priv->prom_net_dev);

      priv->prom_net_dev = NULL;
}

#endif


static int __devinit ipw_pci_probe(struct pci_dev *pdev,
                           const struct pci_device_id *ent)
{
      int err = 0;
      struct net_device *net_dev;
      void __iomem *base;
      u32 length, val;
      struct ipw_priv *priv;
      int i;

      net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
      if (net_dev == NULL) {
            err = -ENOMEM;
            goto out;
      }

      priv = ieee80211_priv(net_dev);
      priv->ieee = netdev_priv(net_dev);

      priv->net_dev = net_dev;
      priv->pci_dev = pdev;
      ipw_debug_level = debug;
      spin_lock_init(&priv->irq_lock);
      spin_lock_init(&priv->lock);
      for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
            INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);

      mutex_init(&priv->mutex);
      if (pci_enable_device(pdev)) {
            err = -ENODEV;
            goto out_free_ieee80211;
      }

      pci_set_master(pdev);

      err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
      if (!err)
            err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
      if (err) {
            printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
            goto out_pci_disable_device;
      }

      pci_set_drvdata(pdev, priv);

      err = pci_request_regions(pdev, DRV_NAME);
      if (err)
            goto out_pci_disable_device;

      /* We disable the RETRY_TIMEOUT register (0x41) to keep
       * PCI Tx retries from interfering with C3 CPU state */
      pci_read_config_dword(pdev, 0x40, &val);
      if ((val & 0x0000ff00) != 0)
            pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);

      length = pci_resource_len(pdev, 0);
      priv->hw_len = length;

      base = ioremap_nocache(pci_resource_start(pdev, 0), length);
      if (!base) {
            err = -ENODEV;
            goto out_pci_release_regions;
      }

      priv->hw_base = base;
      IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
      IPW_DEBUG_INFO("pci_resource_base = %p\n", base);

      err = ipw_setup_deferred_work(priv);
      if (err) {
            IPW_ERROR("Unable to setup deferred work\n");
            goto out_iounmap;
      }

      ipw_sw_reset(priv, 1);

      err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
      if (err) {
            IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
            goto out_destroy_workqueue;
      }

      SET_NETDEV_DEV(net_dev, &pdev->dev);

      mutex_lock(&priv->mutex);

      priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
      priv->ieee->set_security = shim__set_security;
      priv->ieee->is_queue_full = ipw_net_is_queue_full;

#ifdef CONFIG_IPW2200_QOS
      priv->ieee->is_qos_active = ipw_is_qos_active;
      priv->ieee->handle_probe_response = ipw_handle_beacon;
      priv->ieee->handle_beacon = ipw_handle_probe_response;
      priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
#endif                        /* CONFIG_IPW2200_QOS */

      priv->ieee->perfect_rssi = -20;
      priv->ieee->worst_rssi = -85;

      net_dev->open = ipw_net_open;
      net_dev->stop = ipw_net_stop;
      net_dev->init = ipw_net_init;
      net_dev->get_stats = ipw_net_get_stats;
      net_dev->set_multicast_list = ipw_net_set_multicast_list;
      net_dev->set_mac_address = ipw_net_set_mac_address;
      priv->wireless_data.spy_data = &priv->ieee->spy_data;
      net_dev->wireless_data = &priv->wireless_data;
      net_dev->wireless_handlers = &ipw_wx_handler_def;
      net_dev->ethtool_ops = &ipw_ethtool_ops;
      net_dev->irq = pdev->irq;
      net_dev->base_addr = (unsigned long)priv->hw_base;
      net_dev->mem_start = pci_resource_start(pdev, 0);
      net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;

      err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
      if (err) {
            IPW_ERROR("failed to create sysfs device attributes\n");
            mutex_unlock(&priv->mutex);
            goto out_release_irq;
      }

      mutex_unlock(&priv->mutex);
      err = register_netdev(net_dev);
      if (err) {
            IPW_ERROR("failed to register network device\n");
            goto out_remove_sysfs;
      }

#ifdef CONFIG_IPW2200_PROMISCUOUS
      if (rtap_iface) {
              err = ipw_prom_alloc(priv);
            if (err) {
                  IPW_ERROR("Failed to register promiscuous network "
                          "device (error %d).\n", err);
                  unregister_netdev(priv->net_dev);
                  goto out_remove_sysfs;
            }
      }
#endif

      printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
             "channels, %d 802.11a channels)\n",
             priv->ieee->geo.name, priv->ieee->geo.bg_channels,
             priv->ieee->geo.a_channels);

      return 0;

      out_remove_sysfs:
      sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
      out_release_irq:
      free_irq(pdev->irq, priv);
      out_destroy_workqueue:
      destroy_workqueue(priv->workqueue);
      priv->workqueue = NULL;
      out_iounmap:
      iounmap(priv->hw_base);
      out_pci_release_regions:
      pci_release_regions(pdev);
      out_pci_disable_device:
      pci_disable_device(pdev);
      pci_set_drvdata(pdev, NULL);
      out_free_ieee80211:
      free_ieee80211(priv->net_dev);
      out:
      return err;
}

static void __devexit ipw_pci_remove(struct pci_dev *pdev)
{
      struct ipw_priv *priv = pci_get_drvdata(pdev);
      struct list_head *p, *q;
      int i;

      if (!priv)
            return;

      mutex_lock(&priv->mutex);

      priv->status |= STATUS_EXIT_PENDING;
      ipw_down(priv);
      sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);

      mutex_unlock(&priv->mutex);

      unregister_netdev(priv->net_dev);

      if (priv->rxq) {
            ipw_rx_queue_free(priv, priv->rxq);
            priv->rxq = NULL;
      }
      ipw_tx_queue_free(priv);

      if (priv->cmdlog) {
            kfree(priv->cmdlog);
            priv->cmdlog = NULL;
      }
      /* ipw_down will ensure that there is no more pending work
       * in the workqueue's, so we can safely remove them now. */
      cancel_delayed_work(&priv->adhoc_check);
      cancel_delayed_work(&priv->gather_stats);
      cancel_delayed_work(&priv->request_scan);
      cancel_delayed_work(&priv->scan_event);
      cancel_delayed_work(&priv->rf_kill);
      cancel_delayed_work(&priv->scan_check);
      destroy_workqueue(priv->workqueue);
      priv->workqueue = NULL;

      /* Free MAC hash list for ADHOC */
      for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
            list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
                  list_del(p);
                  kfree(list_entry(p, struct ipw_ibss_seq, list));
            }
      }

      kfree(priv->error);
      priv->error = NULL;

#ifdef CONFIG_IPW2200_PROMISCUOUS
      ipw_prom_free(priv);
#endif

      free_irq(pdev->irq, priv);
      iounmap(priv->hw_base);
      pci_release_regions(pdev);
      pci_disable_device(pdev);
      pci_set_drvdata(pdev, NULL);
      free_ieee80211(priv->net_dev);
      free_firmware();
}

#ifdef CONFIG_PM
static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
      struct ipw_priv *priv = pci_get_drvdata(pdev);
      struct net_device *dev = priv->net_dev;

      printk(KERN_INFO "%s: Going into suspend...\n", dev->name);

      /* Take down the device; powers it off, etc. */
      ipw_down(priv);

      /* Remove the PRESENT state of the device */
      netif_device_detach(dev);

      pci_save_state(pdev);
      pci_disable_device(pdev);
      pci_set_power_state(pdev, pci_choose_state(pdev, state));

      return 0;
}

static int ipw_pci_resume(struct pci_dev *pdev)
{
      struct ipw_priv *priv = pci_get_drvdata(pdev);
      struct net_device *dev = priv->net_dev;
      int err;
      u32 val;

      printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);

      pci_set_power_state(pdev, PCI_D0);
      err = pci_enable_device(pdev);
      if (err) {
            printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
                   dev->name);
            return err;
      }
      pci_restore_state(pdev);

      /*
       * Suspend/Resume resets the PCI configuration space, so we have to
       * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
       * from interfering with C3 CPU state. pci_restore_state won't help
       * here since it only restores the first 64 bytes pci config header.
       */
      pci_read_config_dword(pdev, 0x40, &val);
      if ((val & 0x0000ff00) != 0)
            pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);

      /* Set the device back into the PRESENT state; this will also wake
       * the queue of needed */
      netif_device_attach(dev);

      /* Bring the device back up */
      queue_work(priv->workqueue, &priv->up);

      return 0;
}
#endif

static void ipw_pci_shutdown(struct pci_dev *pdev)
{
      struct ipw_priv *priv = pci_get_drvdata(pdev);

      /* Take down the device; powers it off, etc. */
      ipw_down(priv);

      pci_disable_device(pdev);
}

/* driver initialization stuff */
static struct pci_driver ipw_driver = {
      .name = DRV_NAME,
      .id_table = card_ids,
      .probe = ipw_pci_probe,
      .remove = __devexit_p(ipw_pci_remove),
#ifdef CONFIG_PM
      .suspend = ipw_pci_suspend,
      .resume = ipw_pci_resume,
#endif
      .shutdown = ipw_pci_shutdown,
};

static int __init ipw_init(void)
{
      int ret;

      printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
      printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");

      ret = pci_register_driver(&ipw_driver);
      if (ret) {
            IPW_ERROR("Unable to initialize PCI module\n");
            return ret;
      }

      ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
      if (ret) {
            IPW_ERROR("Unable to create driver sysfs file\n");
            pci_unregister_driver(&ipw_driver);
            return ret;
      }

      return ret;
}

static void __exit ipw_exit(void)
{
      driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
      pci_unregister_driver(&ipw_driver);
}

module_param(disable, int, 0444);
MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");

module_param(associate, int, 0444);
MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");

module_param(auto_create, int, 0444);
MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");

module_param(led, int, 0444);
MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");

module_param(debug, int, 0444);
MODULE_PARM_DESC(debug, "debug output mask");

module_param(channel, int, 0444);
MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");

#ifdef CONFIG_IPW2200_PROMISCUOUS
module_param(rtap_iface, int, 0444);
MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
#endif

#ifdef CONFIG_IPW2200_QOS
module_param(qos_enable, int, 0444);
MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");

module_param(qos_burst_enable, int, 0444);
MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");

module_param(qos_no_ack_mask, int, 0444);
MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");

module_param(burst_duration_CCK, int, 0444);
MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");

module_param(burst_duration_OFDM, int, 0444);
MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
#endif                        /* CONFIG_IPW2200_QOS */

#ifdef CONFIG_IPW2200_MONITOR
module_param(mode, int, 0444);
MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
#else
module_param(mode, int, 0444);
MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
#endif

module_param(bt_coexist, int, 0444);
MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");

module_param(hwcrypto, int, 0444);
MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");

module_param(cmdlog, int, 0444);
MODULE_PARM_DESC(cmdlog,
             "allocate a ring buffer for logging firmware commands");

module_param(roaming, int, 0444);
MODULE_PARM_DESC(roaming, "enable roaming support (default on)");

module_param(antenna, int, 0444);
MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");

module_exit(ipw_exit);
module_init(ipw_init);

Generated by  Doxygen 1.6.0   Back to index