Logo Search packages:      
Sourcecode: linux version File versions  Download package

ircomm_tty.c

/*********************************************************************
 *
 * Filename:      ircomm_tty.c
 * Version:       1.0
 * Description:   IrCOMM serial TTY driver
 * Status:        Experimental.
 * Author:        Dag Brattli <dagb@cs.uit.no>
 * Created at:    Sun Jun  6 21:00:56 1999
 * Modified at:   Wed Feb 23 00:09:02 2000
 * Modified by:   Dag Brattli <dagb@cs.uit.no>
 * Sources:       serial.c and previous IrCOMM work by Takahide Higuchi
 *
 *     Copyright (c) 1999-2000 Dag Brattli, All Rights Reserved.
 *     Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
 *
 *     This program is free software; you can redistribute it and/or
 *     modify it under the terms of the GNU General Public License as
 *     published by the Free Software Foundation; either version 2 of
 *     the License, or (at your option) any later version.
 *
 *     This program is distributed in the hope that it will be useful,
 *     but WITHOUT ANY WARRANTY; without even the implied warranty of
 *     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *     GNU General Public License for more details.
 *
 *     You should have received a copy of the GNU General Public License
 *     along with this program; if not, write to the Free Software
 *     Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 *     MA 02111-1307 USA
 *
 ********************************************************************/

#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/termios.h>
#include <linux/tty.h>
#include <linux/interrupt.h>
#include <linux/device.h>           /* for MODULE_ALIAS_CHARDEV_MAJOR */

#include <asm/uaccess.h>

#include <net/irda/irda.h>
#include <net/irda/irmod.h>

#include <net/irda/ircomm_core.h>
#include <net/irda/ircomm_param.h>
#include <net/irda/ircomm_tty_attach.h>
#include <net/irda/ircomm_tty.h>

static int  ircomm_tty_open(struct tty_struct *tty, struct file *filp);
static void ircomm_tty_close(struct tty_struct * tty, struct file *filp);
static int  ircomm_tty_write(struct tty_struct * tty,
                       const unsigned char *buf, int count);
static int  ircomm_tty_write_room(struct tty_struct *tty);
static void ircomm_tty_throttle(struct tty_struct *tty);
static void ircomm_tty_unthrottle(struct tty_struct *tty);
static int  ircomm_tty_chars_in_buffer(struct tty_struct *tty);
static void ircomm_tty_flush_buffer(struct tty_struct *tty);
static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch);
static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout);
static void ircomm_tty_hangup(struct tty_struct *tty);
static void ircomm_tty_do_softint(struct work_struct *work);
static void ircomm_tty_shutdown(struct ircomm_tty_cb *self);
static void ircomm_tty_stop(struct tty_struct *tty);

static int ircomm_tty_data_indication(void *instance, void *sap,
                              struct sk_buff *skb);
static int ircomm_tty_control_indication(void *instance, void *sap,
                               struct sk_buff *skb);
static void ircomm_tty_flow_indication(void *instance, void *sap,
                               LOCAL_FLOW cmd);
#ifdef CONFIG_PROC_FS
static int ircomm_tty_read_proc(char *buf, char **start, off_t offset, int len,
                        int *eof, void *unused);
#endif /* CONFIG_PROC_FS */
static struct tty_driver *driver;

static hashbin_t *ircomm_tty = NULL;

static const struct tty_operations ops = {
      .open            = ircomm_tty_open,
      .close           = ircomm_tty_close,
      .write           = ircomm_tty_write,
      .write_room      = ircomm_tty_write_room,
      .chars_in_buffer = ircomm_tty_chars_in_buffer,
      .flush_buffer    = ircomm_tty_flush_buffer,
      .ioctl           = ircomm_tty_ioctl,      /* ircomm_tty_ioctl.c */
      .tiocmget        = ircomm_tty_tiocmget,   /* ircomm_tty_ioctl.c */
      .tiocmset        = ircomm_tty_tiocmset,   /* ircomm_tty_ioctl.c */
      .throttle        = ircomm_tty_throttle,
      .unthrottle      = ircomm_tty_unthrottle,
      .send_xchar      = ircomm_tty_send_xchar,
      .set_termios     = ircomm_tty_set_termios,
      .stop            = ircomm_tty_stop,
      .start           = ircomm_tty_start,
      .hangup          = ircomm_tty_hangup,
      .wait_until_sent = ircomm_tty_wait_until_sent,
#ifdef CONFIG_PROC_FS
      .read_proc       = ircomm_tty_read_proc,
#endif /* CONFIG_PROC_FS */
};

/*
 * Function ircomm_tty_init()
 *
 *    Init IrCOMM TTY layer/driver
 *
 */
static int __init ircomm_tty_init(void)
{
      driver = alloc_tty_driver(IRCOMM_TTY_PORTS);
      if (!driver)
            return -ENOMEM;
      ircomm_tty = hashbin_new(HB_LOCK);
      if (ircomm_tty == NULL) {
            IRDA_ERROR("%s(), can't allocate hashbin!\n", __FUNCTION__);
            put_tty_driver(driver);
            return -ENOMEM;
      }

      driver->owner           = THIS_MODULE;
      driver->driver_name     = "ircomm";
      driver->name            = "ircomm";
      driver->major           = IRCOMM_TTY_MAJOR;
      driver->minor_start     = IRCOMM_TTY_MINOR;
      driver->type            = TTY_DRIVER_TYPE_SERIAL;
      driver->subtype         = SERIAL_TYPE_NORMAL;
      driver->init_termios    = tty_std_termios;
      driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
      driver->flags           = TTY_DRIVER_REAL_RAW;
      tty_set_operations(driver, &ops);
      if (tty_register_driver(driver)) {
            IRDA_ERROR("%s(): Couldn't register serial driver\n",
                     __FUNCTION__);
            put_tty_driver(driver);
            return -1;
      }
      return 0;
}

static void __exit __ircomm_tty_cleanup(struct ircomm_tty_cb *self)
{
      IRDA_DEBUG(0, "%s()\n", __FUNCTION__ );

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      ircomm_tty_shutdown(self);

      self->magic = 0;
      kfree(self);
}

/*
 * Function ircomm_tty_cleanup ()
 *
 *    Remove IrCOMM TTY layer/driver
 *
 */
static void __exit ircomm_tty_cleanup(void)
{
      int ret;

      IRDA_DEBUG(4, "%s()\n", __FUNCTION__ );

      ret = tty_unregister_driver(driver);
      if (ret) {
            IRDA_ERROR("%s(), failed to unregister driver\n",
                     __FUNCTION__);
            return;
      }

      hashbin_delete(ircomm_tty, (FREE_FUNC) __ircomm_tty_cleanup);
      put_tty_driver(driver);
}

/*
 * Function ircomm_startup (self)
 *
 *
 *
 */
static int ircomm_tty_startup(struct ircomm_tty_cb *self)
{
      notify_t notify;
      int ret = -ENODEV;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );

      IRDA_ASSERT(self != NULL, return -1;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);

      /* Check if already open */
      if (test_and_set_bit(ASYNC_B_INITIALIZED, &self->flags)) {
            IRDA_DEBUG(2, "%s(), already open so break out!\n", __FUNCTION__ );
            return 0;
      }

      /* Register with IrCOMM */
      irda_notify_init(&notify);
      /* These callbacks we must handle ourselves */
      notify.data_indication       = ircomm_tty_data_indication;
      notify.udata_indication      = ircomm_tty_control_indication;
      notify.flow_indication       = ircomm_tty_flow_indication;

      /* Use the ircomm_tty interface for these ones */
      notify.disconnect_indication = ircomm_tty_disconnect_indication;
      notify.connect_confirm       = ircomm_tty_connect_confirm;
      notify.connect_indication    = ircomm_tty_connect_indication;
      strlcpy(notify.name, "ircomm_tty", sizeof(notify.name));
      notify.instance = self;

      if (!self->ircomm) {
            self->ircomm = ircomm_open(&notify, self->service_type,
                                 self->line);
      }
      if (!self->ircomm)
            goto err;

      self->slsap_sel = self->ircomm->slsap_sel;

      /* Connect IrCOMM link with remote device */
      ret = ircomm_tty_attach_cable(self);
      if (ret < 0) {
            IRDA_ERROR("%s(), error attaching cable!\n", __FUNCTION__);
            goto err;
      }

      return 0;
err:
      clear_bit(ASYNC_B_INITIALIZED, &self->flags);
      return ret;
}

/*
 * Function ircomm_block_til_ready (self, filp)
 *
 *
 *
 */
static int ircomm_tty_block_til_ready(struct ircomm_tty_cb *self,
                              struct file *filp)
{
      DECLARE_WAITQUEUE(wait, current);
      int         retval;
      int         do_clocal = 0, extra_count = 0;
      unsigned long     flags;
      struct tty_struct *tty;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );

      tty = self->tty;

      /*
       * If non-blocking mode is set, or the port is not enabled,
       * then make the check up front and then exit.
       */
      if (filp->f_flags & O_NONBLOCK || tty->flags & (1 << TTY_IO_ERROR)){
            /* nonblock mode is set or port is not enabled */
            self->flags |= ASYNC_NORMAL_ACTIVE;
            IRDA_DEBUG(1, "%s(), O_NONBLOCK requested!\n", __FUNCTION__ );
            return 0;
      }

      if (tty->termios->c_cflag & CLOCAL) {
            IRDA_DEBUG(1, "%s(), doing CLOCAL!\n", __FUNCTION__ );
            do_clocal = 1;
      }

      /* Wait for carrier detect and the line to become
       * free (i.e., not in use by the callout).  While we are in
       * this loop, self->open_count is dropped by one, so that
       * mgsl_close() knows when to free things.  We restore it upon
       * exit, either normal or abnormal.
       */

      retval = 0;
      add_wait_queue(&self->open_wait, &wait);

      IRDA_DEBUG(2, "%s(%d):block_til_ready before block on %s open_count=%d\n",
            __FILE__,__LINE__, tty->driver->name, self->open_count );

      /* As far as I can see, we protect open_count - Jean II */
      spin_lock_irqsave(&self->spinlock, flags);
      if (!tty_hung_up_p(filp)) {
            extra_count = 1;
            self->open_count--;
      }
      spin_unlock_irqrestore(&self->spinlock, flags);
      self->blocked_open++;

      while (1) {
            if (tty->termios->c_cflag & CBAUD) {
                  /* Here, we use to lock those two guys, but
                   * as ircomm_param_request() does it itself,
                   * I don't see the point (and I see the deadlock).
                   * Jean II */
                  self->settings.dte |= IRCOMM_RTS + IRCOMM_DTR;

                  ircomm_param_request(self, IRCOMM_DTE, TRUE);
            }

            current->state = TASK_INTERRUPTIBLE;

            if (tty_hung_up_p(filp) ||
                !test_bit(ASYNC_B_INITIALIZED, &self->flags)) {
                  retval = (self->flags & ASYNC_HUP_NOTIFY) ?
                              -EAGAIN : -ERESTARTSYS;
                  break;
            }

            /*
             * Check if link is ready now. Even if CLOCAL is
             * specified, we cannot return before the IrCOMM link is
             * ready
             */
            if (!test_bit(ASYNC_B_CLOSING, &self->flags) &&
                (do_clocal || (self->settings.dce & IRCOMM_CD)) &&
                self->state == IRCOMM_TTY_READY)
            {
                  break;
            }

            if (signal_pending(current)) {
                  retval = -ERESTARTSYS;
                  break;
            }

            IRDA_DEBUG(1, "%s(%d):block_til_ready blocking on %s open_count=%d\n",
                  __FILE__,__LINE__, tty->driver->name, self->open_count );

            schedule();
      }

      __set_current_state(TASK_RUNNING);
      remove_wait_queue(&self->open_wait, &wait);

      if (extra_count) {
            /* ++ is not atomic, so this should be protected - Jean II */
            spin_lock_irqsave(&self->spinlock, flags);
            self->open_count++;
            spin_unlock_irqrestore(&self->spinlock, flags);
      }
      self->blocked_open--;

      IRDA_DEBUG(1, "%s(%d):block_til_ready after blocking on %s open_count=%d\n",
            __FILE__,__LINE__, tty->driver->name, self->open_count);

      if (!retval)
            self->flags |= ASYNC_NORMAL_ACTIVE;

      return retval;
}

/*
 * Function ircomm_tty_open (tty, filp)
 *
 *    This routine is called when a particular tty device is opened. This
 *    routine is mandatory; if this routine is not filled in, the attempted
 *    open will fail with ENODEV.
 */
static int ircomm_tty_open(struct tty_struct *tty, struct file *filp)
{
      struct ircomm_tty_cb *self;
      unsigned int line;
      unsigned long     flags;
      int ret;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );

      line = tty->index;
      if ((line < 0) || (line >= IRCOMM_TTY_PORTS)) {
            return -ENODEV;
      }

      /* Check if instance already exists */
      self = hashbin_lock_find(ircomm_tty, line, NULL);
      if (!self) {
            /* No, so make new instance */
            self = kzalloc(sizeof(struct ircomm_tty_cb), GFP_KERNEL);
            if (self == NULL) {
                  IRDA_ERROR("%s(), kmalloc failed!\n", __FUNCTION__);
                  return -ENOMEM;
            }

            self->magic = IRCOMM_TTY_MAGIC;
            self->flow = FLOW_STOP;

            self->line = line;
            INIT_WORK(&self->tqueue, ircomm_tty_do_softint);
            self->max_header_size = IRCOMM_TTY_HDR_UNINITIALISED;
            self->max_data_size = IRCOMM_TTY_DATA_UNINITIALISED;
            self->close_delay = 5*HZ/10;
            self->closing_wait = 30*HZ;

            /* Init some important stuff */
            init_timer(&self->watchdog_timer);
            init_waitqueue_head(&self->open_wait);
            init_waitqueue_head(&self->close_wait);
            spin_lock_init(&self->spinlock);

            /*
             * Force TTY into raw mode by default which is usually what
             * we want for IrCOMM and IrLPT. This way applications will
             * not have to twiddle with printcap etc.
             */
            tty->termios->c_iflag = 0;
            tty->termios->c_oflag = 0;

            /* Insert into hash */
            hashbin_insert(ircomm_tty, (irda_queue_t *) self, line, NULL);
      }
      /* ++ is not atomic, so this should be protected - Jean II */
      spin_lock_irqsave(&self->spinlock, flags);
      self->open_count++;

      tty->driver_data = self;
      self->tty = tty;
      spin_unlock_irqrestore(&self->spinlock, flags);

      IRDA_DEBUG(1, "%s(), %s%d, count = %d\n", __FUNCTION__ , tty->driver->name,
               self->line, self->open_count);

      /* Not really used by us, but lets do it anyway */
      self->tty->low_latency = (self->flags & ASYNC_LOW_LATENCY) ? 1 : 0;

      /*
       * If the port is the middle of closing, bail out now
       */
      if (tty_hung_up_p(filp) ||
          test_bit(ASYNC_B_CLOSING, &self->flags)) {

            /* Hm, why are we blocking on ASYNC_CLOSING if we
             * do return -EAGAIN/-ERESTARTSYS below anyway?
             * IMHO it's either not needed in the first place
             * or for some reason we need to make sure the async
             * closing has been finished - if so, wouldn't we
             * probably better sleep uninterruptible?
             */

            if (wait_event_interruptible(self->close_wait, !test_bit(ASYNC_B_CLOSING, &self->flags))) {
                  IRDA_WARNING("%s - got signal while blocking on ASYNC_CLOSING!\n",
                             __FUNCTION__);
                  return -ERESTARTSYS;
            }

#ifdef SERIAL_DO_RESTART
            return ((self->flags & ASYNC_HUP_NOTIFY) ?
                  -EAGAIN : -ERESTARTSYS);
#else
            return -EAGAIN;
#endif
      }

      /* Check if this is a "normal" ircomm device, or an irlpt device */
      if (line < 0x10) {
            self->service_type = IRCOMM_3_WIRE | IRCOMM_9_WIRE;
            self->settings.service_type = IRCOMM_9_WIRE; /* 9 wire as default */
            /* Jan Kiszka -> add DSR/RI -> Conform to IrCOMM spec */
            self->settings.dce = IRCOMM_CTS | IRCOMM_CD | IRCOMM_DSR | IRCOMM_RI; /* Default line settings */
            IRDA_DEBUG(2, "%s(), IrCOMM device\n", __FUNCTION__ );
      } else {
            IRDA_DEBUG(2, "%s(), IrLPT device\n", __FUNCTION__ );
            self->service_type = IRCOMM_3_WIRE_RAW;
            self->settings.service_type = IRCOMM_3_WIRE_RAW; /* Default */
      }

      ret = ircomm_tty_startup(self);
      if (ret)
            return ret;

      ret = ircomm_tty_block_til_ready(self, filp);
      if (ret) {
            IRDA_DEBUG(2,
                  "%s(), returning after block_til_ready with %d\n", __FUNCTION__ ,
                  ret);

            return ret;
      }
      return 0;
}

/*
 * Function ircomm_tty_close (tty, filp)
 *
 *    This routine is called when a particular tty device is closed.
 *
 */
static void ircomm_tty_close(struct tty_struct *tty, struct file *filp)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
      unsigned long flags;

      IRDA_DEBUG(0, "%s()\n", __FUNCTION__ );

      if (!tty)
            return;

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      spin_lock_irqsave(&self->spinlock, flags);

      if (tty_hung_up_p(filp)) {
            spin_unlock_irqrestore(&self->spinlock, flags);

            IRDA_DEBUG(0, "%s(), returning 1\n", __FUNCTION__ );
            return;
      }

      if ((tty->count == 1) && (self->open_count != 1)) {
            /*
             * Uh, oh.  tty->count is 1, which means that the tty
             * structure will be freed.  state->count should always
             * be one in these conditions.  If it's greater than
             * one, we've got real problems, since it means the
             * serial port won't be shutdown.
             */
            IRDA_DEBUG(0, "%s(), bad serial port count; "
                     "tty->count is 1, state->count is %d\n", __FUNCTION__ ,
                     self->open_count);
            self->open_count = 1;
      }

      if (--self->open_count < 0) {
            IRDA_ERROR("%s(), bad serial port count for ttys%d: %d\n",
                     __FUNCTION__, self->line, self->open_count);
            self->open_count = 0;
      }
      if (self->open_count) {
            spin_unlock_irqrestore(&self->spinlock, flags);

            IRDA_DEBUG(0, "%s(), open count > 0\n", __FUNCTION__ );
            return;
      }

      /* Hum... Should be test_and_set_bit ??? - Jean II */
      set_bit(ASYNC_B_CLOSING, &self->flags);

      /* We need to unlock here (we were unlocking at the end of this
       * function), because tty_wait_until_sent() may schedule.
       * I don't know if the rest should be protected somehow,
       * so someone should check. - Jean II */
      spin_unlock_irqrestore(&self->spinlock, flags);

      /*
       * Now we wait for the transmit buffer to clear; and we notify
       * the line discipline to only process XON/XOFF characters.
       */
      tty->closing = 1;
      if (self->closing_wait != ASYNC_CLOSING_WAIT_NONE)
            tty_wait_until_sent(tty, self->closing_wait);

      ircomm_tty_shutdown(self);

      if (tty->driver->flush_buffer)
            tty->driver->flush_buffer(tty);
      if (tty->ldisc.flush_buffer)
            tty->ldisc.flush_buffer(tty);

      tty->closing = 0;
      self->tty = NULL;

      if (self->blocked_open) {
            if (self->close_delay)
                  schedule_timeout_interruptible(self->close_delay);
            wake_up_interruptible(&self->open_wait);
      }

      self->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
      wake_up_interruptible(&self->close_wait);
}

/*
 * Function ircomm_tty_flush_buffer (tty)
 *
 *
 *
 */
static void ircomm_tty_flush_buffer(struct tty_struct *tty)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      /*
       * Let do_softint() do this to avoid race condition with
       * do_softint() ;-)
       */
      schedule_work(&self->tqueue);
}

/*
 * Function ircomm_tty_do_softint (work)
 *
 *    We use this routine to give the write wakeup to the user at at a
 *    safe time (as fast as possible after write have completed). This
 *    can be compared to the Tx interrupt.
 */
static void ircomm_tty_do_softint(struct work_struct *work)
{
      struct ircomm_tty_cb *self =
            container_of(work, struct ircomm_tty_cb, tqueue);
      struct tty_struct *tty;
      unsigned long flags;
      struct sk_buff *skb, *ctrl_skb;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );

      if (!self || self->magic != IRCOMM_TTY_MAGIC)
            return;

      tty = self->tty;
      if (!tty)
            return;

      /* Unlink control buffer */
      spin_lock_irqsave(&self->spinlock, flags);

      ctrl_skb = self->ctrl_skb;
      self->ctrl_skb = NULL;

      spin_unlock_irqrestore(&self->spinlock, flags);

      /* Flush control buffer if any */
      if(ctrl_skb) {
            if(self->flow == FLOW_START)
                  ircomm_control_request(self->ircomm, ctrl_skb);
            /* Drop reference count - see ircomm_ttp_data_request(). */
            dev_kfree_skb(ctrl_skb);
      }

      if (tty->hw_stopped)
            return;

      /* Unlink transmit buffer */
      spin_lock_irqsave(&self->spinlock, flags);

      skb = self->tx_skb;
      self->tx_skb = NULL;

      spin_unlock_irqrestore(&self->spinlock, flags);

      /* Flush transmit buffer if any */
      if (skb) {
            ircomm_tty_do_event(self, IRCOMM_TTY_DATA_REQUEST, skb, NULL);
            /* Drop reference count - see ircomm_ttp_data_request(). */
            dev_kfree_skb(skb);
      }

      /* Check if user (still) wants to be waken up */
      if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
          tty->ldisc.write_wakeup)
      {
            (tty->ldisc.write_wakeup)(tty);
      }
      wake_up_interruptible(&tty->write_wait);
}

/*
 * Function ircomm_tty_write (tty, buf, count)
 *
 *    This routine is called by the kernel to write a series of characters
 *    to the tty device. The characters may come from user space or kernel
 *    space. This routine will return the number of characters actually
 *    accepted for writing. This routine is mandatory.
 */
static int ircomm_tty_write(struct tty_struct *tty,
                      const unsigned char *buf, int count)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
      unsigned long flags;
      struct sk_buff *skb;
      int tailroom = 0;
      int len = 0;
      int size;

      IRDA_DEBUG(2, "%s(), count=%d, hw_stopped=%d\n", __FUNCTION__ , count,
               tty->hw_stopped);

      IRDA_ASSERT(self != NULL, return -1;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);

      /* We may receive packets from the TTY even before we have finished
       * our setup. Not cool.
       * The problem is that we don't know the final header and data size
       * to create the proper skb, so any skb we would create would have
       * bogus header and data size, so need care.
       * We use a bogus header size to safely detect this condition.
       * Another problem is that hw_stopped was set to 0 way before it
       * should be, so we would drop this skb. It should now be fixed.
       * One option is to not accept data until we are properly setup.
       * But, I suspect that when it happens, the ppp line discipline
       * just "drops" the data, which might screw up connect scripts.
       * The second option is to create a "safe skb", with large header
       * and small size (see ircomm_tty_open() for values).
       * We just need to make sure that when the real values get filled,
       * we don't mess up the original "safe skb" (see tx_data_size).
       * Jean II */
      if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED) {
            IRDA_DEBUG(1, "%s() : not initialised\n", __FUNCTION__);
#ifdef IRCOMM_NO_TX_BEFORE_INIT
            /* We didn't consume anything, TTY will retry */
            return 0;
#endif
      }

      if (count < 1)
            return 0;

      /* Protect our manipulation of self->tx_skb and related */
      spin_lock_irqsave(&self->spinlock, flags);

      /* Fetch current transmit buffer */
      skb = self->tx_skb;

      /*
       * Send out all the data we get, possibly as multiple fragmented
       * frames, but this will only happen if the data is larger than the
       * max data size. The normal case however is just the opposite, and
       * this function may be called multiple times, and will then actually
       * defragment the data and send it out as one packet as soon as
       * possible, but at a safer point in time
       */
      while (count) {
            size = count;

            /* Adjust data size to the max data size */
            if (size > self->max_data_size)
                  size = self->max_data_size;

            /*
             * Do we already have a buffer ready for transmit, or do
             * we need to allocate a new frame
             */
            if (skb) {
                  /*
                   * Any room for more data at the end of the current
                   * transmit buffer? Cannot use skb_tailroom, since
                   * dev_alloc_skb gives us a larger skb than we
                   * requested
                   * Note : use tx_data_size, because max_data_size
                   * may have changed and we don't want to overwrite
                   * the skb. - Jean II
                   */
                  if ((tailroom = (self->tx_data_size - skb->len)) > 0) {
                        /* Adjust data to tailroom */
                        if (size > tailroom)
                              size = tailroom;
                  } else {
                        /*
                         * Current transmit frame is full, so break
                         * out, so we can send it as soon as possible
                         */
                        break;
                  }
            } else {
                  /* Prepare a full sized frame */
                  skb = alloc_skb(self->max_data_size+
                              self->max_header_size,
                              GFP_ATOMIC);
                  if (!skb) {
                        spin_unlock_irqrestore(&self->spinlock, flags);
                        return -ENOBUFS;
                  }
                  skb_reserve(skb, self->max_header_size);
                  self->tx_skb = skb;
                  /* Remember skb size because max_data_size may
                   * change later on - Jean II */
                  self->tx_data_size = self->max_data_size;
            }

            /* Copy data */
            memcpy(skb_put(skb,size), buf + len, size);

            count -= size;
            len += size;
      }

      spin_unlock_irqrestore(&self->spinlock, flags);

      /*
       * Schedule a new thread which will transmit the frame as soon
       * as possible, but at a safe point in time. We do this so the
       * "user" can give us data multiple times, as PPP does (because of
       * its 256 byte tx buffer). We will then defragment and send out
       * all this data as one single packet.
       */
      schedule_work(&self->tqueue);

      return len;
}

/*
 * Function ircomm_tty_write_room (tty)
 *
 *    This routine returns the numbers of characters the tty driver will
 *    accept for queuing to be written. This number is subject to change as
 *    output buffers get emptied, or if the output flow control is acted.
 */
static int ircomm_tty_write_room(struct tty_struct *tty)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
      unsigned long flags;
      int ret;

      IRDA_ASSERT(self != NULL, return -1;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);

#ifdef IRCOMM_NO_TX_BEFORE_INIT
      /* max_header_size tells us if the channel is initialised or not. */
      if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED)
            /* Don't bother us yet */
            return 0;
#endif

      /* Check if we are allowed to transmit any data.
       * hw_stopped is the regular flow control.
       * Jean II */
      if (tty->hw_stopped)
            ret = 0;
      else {
            spin_lock_irqsave(&self->spinlock, flags);
            if (self->tx_skb)
                  ret = self->tx_data_size - self->tx_skb->len;
            else
                  ret = self->max_data_size;
            spin_unlock_irqrestore(&self->spinlock, flags);
      }
      IRDA_DEBUG(2, "%s(), ret=%d\n", __FUNCTION__ , ret);

      return ret;
}

/*
 * Function ircomm_tty_wait_until_sent (tty, timeout)
 *
 *    This routine waits until the device has written out all of the
 *    characters in its transmitter FIFO.
 */
static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
      unsigned long orig_jiffies, poll_time;
      unsigned long flags;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      orig_jiffies = jiffies;

      /* Set poll time to 200 ms */
      poll_time = IRDA_MIN(timeout, msecs_to_jiffies(200));

      spin_lock_irqsave(&self->spinlock, flags);
      while (self->tx_skb && self->tx_skb->len) {
            spin_unlock_irqrestore(&self->spinlock, flags);
            schedule_timeout_interruptible(poll_time);
            spin_lock_irqsave(&self->spinlock, flags);
            if (signal_pending(current))
                  break;
            if (timeout && time_after(jiffies, orig_jiffies + timeout))
                  break;
      }
      spin_unlock_irqrestore(&self->spinlock, flags);
      current->state = TASK_RUNNING;
}

/*
 * Function ircomm_tty_throttle (tty)
 *
 *    This routine notifies the tty driver that input buffers for the line
 *    discipline are close to full, and it should somehow signal that no
 *    more characters should be sent to the tty.
 */
static void ircomm_tty_throttle(struct tty_struct *tty)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      /* Software flow control? */
      if (I_IXOFF(tty))
            ircomm_tty_send_xchar(tty, STOP_CHAR(tty));

      /* Hardware flow control? */
      if (tty->termios->c_cflag & CRTSCTS) {
            self->settings.dte &= ~IRCOMM_RTS;
            self->settings.dte |= IRCOMM_DELTA_RTS;

            ircomm_param_request(self, IRCOMM_DTE, TRUE);
      }

      ircomm_flow_request(self->ircomm, FLOW_STOP);
}

/*
 * Function ircomm_tty_unthrottle (tty)
 *
 *    This routine notifies the tty drivers that it should signals that
 *    characters can now be sent to the tty without fear of overrunning the
 *    input buffers of the line disciplines.
 */
static void ircomm_tty_unthrottle(struct tty_struct *tty)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      /* Using software flow control? */
      if (I_IXOFF(tty)) {
            ircomm_tty_send_xchar(tty, START_CHAR(tty));
      }

      /* Using hardware flow control? */
      if (tty->termios->c_cflag & CRTSCTS) {
            self->settings.dte |= (IRCOMM_RTS|IRCOMM_DELTA_RTS);

            ircomm_param_request(self, IRCOMM_DTE, TRUE);
            IRDA_DEBUG(1, "%s(), FLOW_START\n", __FUNCTION__ );
      }
      ircomm_flow_request(self->ircomm, FLOW_START);
}

/*
 * Function ircomm_tty_chars_in_buffer (tty)
 *
 *    Indicates if there are any data in the buffer
 *
 */
static int ircomm_tty_chars_in_buffer(struct tty_struct *tty)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
      unsigned long flags;
      int len = 0;

      IRDA_ASSERT(self != NULL, return -1;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);

      spin_lock_irqsave(&self->spinlock, flags);

      if (self->tx_skb)
            len = self->tx_skb->len;

      spin_unlock_irqrestore(&self->spinlock, flags);

      return len;
}

static void ircomm_tty_shutdown(struct ircomm_tty_cb *self)
{
      unsigned long flags;

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      IRDA_DEBUG(0, "%s()\n", __FUNCTION__ );

      if (!test_and_clear_bit(ASYNC_B_INITIALIZED, &self->flags))
            return;

      ircomm_tty_detach_cable(self);

      spin_lock_irqsave(&self->spinlock, flags);

      del_timer(&self->watchdog_timer);

      /* Free parameter buffer */
      if (self->ctrl_skb) {
            dev_kfree_skb(self->ctrl_skb);
            self->ctrl_skb = NULL;
      }

      /* Free transmit buffer */
      if (self->tx_skb) {
            dev_kfree_skb(self->tx_skb);
            self->tx_skb = NULL;
      }

      if (self->ircomm) {
            ircomm_close(self->ircomm);
            self->ircomm = NULL;
      }

      spin_unlock_irqrestore(&self->spinlock, flags);
}

/*
 * Function ircomm_tty_hangup (tty)
 *
 *    This routine notifies the tty driver that it should hangup the tty
 *    device.
 *
 */
static void ircomm_tty_hangup(struct tty_struct *tty)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
      unsigned long     flags;

      IRDA_DEBUG(0, "%s()\n", __FUNCTION__ );

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      if (!tty)
            return;

      /* ircomm_tty_flush_buffer(tty); */
      ircomm_tty_shutdown(self);

      /* I guess we need to lock here - Jean II */
      spin_lock_irqsave(&self->spinlock, flags);
      self->flags &= ~ASYNC_NORMAL_ACTIVE;
      self->tty = NULL;
      self->open_count = 0;
      spin_unlock_irqrestore(&self->spinlock, flags);

      wake_up_interruptible(&self->open_wait);
}

/*
 * Function ircomm_tty_send_xchar (tty, ch)
 *
 *    This routine is used to send a high-priority XON/XOFF character to
 *    the device.
 */
static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch)
{
      IRDA_DEBUG(0, "%s(), not impl\n", __FUNCTION__ );
}

/*
 * Function ircomm_tty_start (tty)
 *
 *    This routine notifies the tty driver that it resume sending
 *    characters to the tty device.
 */
void ircomm_tty_start(struct tty_struct *tty)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;

      ircomm_flow_request(self->ircomm, FLOW_START);
}

/*
 * Function ircomm_tty_stop (tty)
 *
 *     This routine notifies the tty driver that it should stop outputting
 *     characters to the tty device.
 */
static void ircomm_tty_stop(struct tty_struct *tty)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      ircomm_flow_request(self->ircomm, FLOW_STOP);
}

/*
 * Function ircomm_check_modem_status (self)
 *
 *    Check for any changes in the DCE's line settings. This function should
 *    be called whenever the dce parameter settings changes, to update the
 *    flow control settings and other things
 */
void ircomm_tty_check_modem_status(struct ircomm_tty_cb *self)
{
      struct tty_struct *tty;
      int status;

      IRDA_DEBUG(0, "%s()\n", __FUNCTION__ );

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      tty = self->tty;

      status = self->settings.dce;

      if (status & IRCOMM_DCE_DELTA_ANY) {
            /*wake_up_interruptible(&self->delta_msr_wait);*/
      }
      if ((self->flags & ASYNC_CHECK_CD) && (status & IRCOMM_DELTA_CD)) {
            IRDA_DEBUG(2,
                     "%s(), ircomm%d CD now %s...\n", __FUNCTION__ , self->line,
                     (status & IRCOMM_CD) ? "on" : "off");

            if (status & IRCOMM_CD) {
                  wake_up_interruptible(&self->open_wait);
            } else {
                  IRDA_DEBUG(2,
                           "%s(), Doing serial hangup..\n", __FUNCTION__ );
                  if (tty)
                        tty_hangup(tty);

                  /* Hangup will remote the tty, so better break out */
                  return;
            }
      }
      if (self->flags & ASYNC_CTS_FLOW) {
            if (tty->hw_stopped) {
                  if (status & IRCOMM_CTS) {
                        IRDA_DEBUG(2,
                                 "%s(), CTS tx start...\n", __FUNCTION__ );
                        tty->hw_stopped = 0;

                        /* Wake up processes blocked on open */
                        wake_up_interruptible(&self->open_wait);

                        schedule_work(&self->tqueue);
                        return;
                  }
            } else {
                  if (!(status & IRCOMM_CTS)) {
                        IRDA_DEBUG(2,
                                 "%s(), CTS tx stop...\n", __FUNCTION__ );
                        tty->hw_stopped = 1;
                  }
            }
      }
}

/*
 * Function ircomm_tty_data_indication (instance, sap, skb)
 *
 *    Handle incoming data, and deliver it to the line discipline
 *
 */
static int ircomm_tty_data_indication(void *instance, void *sap,
                              struct sk_buff *skb)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;

      IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );

      IRDA_ASSERT(self != NULL, return -1;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
      IRDA_ASSERT(skb != NULL, return -1;);

      if (!self->tty) {
            IRDA_DEBUG(0, "%s(), no tty!\n", __FUNCTION__ );
            return 0;
      }

      /*
       * If we receive data when hardware is stopped then something is wrong.
       * We try to poll the peers line settings to check if we are up todate.
       * Devices like WinCE can do this, and since they don't send any
       * params, we can just as well declare the hardware for running.
       */
      if (self->tty->hw_stopped && (self->flow == FLOW_START)) {
            IRDA_DEBUG(0, "%s(), polling for line settings!\n", __FUNCTION__ );
            ircomm_param_request(self, IRCOMM_POLL, TRUE);

            /* We can just as well declare the hardware for running */
            ircomm_tty_send_initial_parameters(self);
            ircomm_tty_link_established(self);
      }

      /*
       * Just give it over to the line discipline. There is no need to
       * involve the flip buffers, since we are not running in an interrupt
       * handler
       */
      self->tty->ldisc.receive_buf(self->tty, skb->data, NULL, skb->len);

      /* No need to kfree_skb - see ircomm_ttp_data_indication() */

      return 0;
}

/*
 * Function ircomm_tty_control_indication (instance, sap, skb)
 *
 *    Parse all incoming parameters (easy!)
 *
 */
static int ircomm_tty_control_indication(void *instance, void *sap,
                               struct sk_buff *skb)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
      int clen;

      IRDA_DEBUG(4, "%s()\n", __FUNCTION__ );

      IRDA_ASSERT(self != NULL, return -1;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
      IRDA_ASSERT(skb != NULL, return -1;);

      clen = skb->data[0];

      irda_param_extract_all(self, skb->data+1, IRDA_MIN(skb->len-1, clen),
                         &ircomm_param_info);

      /* No need to kfree_skb - see ircomm_control_indication() */

      return 0;
}

/*
 * Function ircomm_tty_flow_indication (instance, sap, cmd)
 *
 *    This function is called by IrTTP when it wants us to slow down the
 *    transmission of data. We just mark the hardware as stopped, and wait
 *    for IrTTP to notify us that things are OK again.
 */
static void ircomm_tty_flow_indication(void *instance, void *sap,
                               LOCAL_FLOW cmd)
{
      struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
      struct tty_struct *tty;

      IRDA_ASSERT(self != NULL, return;);
      IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);

      tty = self->tty;

      switch (cmd) {
      case FLOW_START:
            IRDA_DEBUG(2, "%s(), hw start!\n", __FUNCTION__ );
            tty->hw_stopped = 0;

            /* ircomm_tty_do_softint will take care of the rest */
            schedule_work(&self->tqueue);
            break;
      default:  /* If we get here, something is very wrong, better stop */
      case FLOW_STOP:
            IRDA_DEBUG(2, "%s(), hw stopped!\n", __FUNCTION__ );
            tty->hw_stopped = 1;
            break;
      }
      self->flow = cmd;
}

#ifdef CONFIG_PROC_FS
static int ircomm_tty_line_info(struct ircomm_tty_cb *self, char *buf)
{
      int  ret=0;

      ret += sprintf(buf+ret, "State: %s\n", ircomm_tty_state[self->state]);

      ret += sprintf(buf+ret, "Service type: ");
      if (self->service_type & IRCOMM_9_WIRE)
            ret += sprintf(buf+ret, "9_WIRE");
      else if (self->service_type & IRCOMM_3_WIRE)
            ret += sprintf(buf+ret, "3_WIRE");
      else if (self->service_type & IRCOMM_3_WIRE_RAW)
            ret += sprintf(buf+ret, "3_WIRE_RAW");
      else
            ret += sprintf(buf+ret, "No common service type!\n");
      ret += sprintf(buf+ret, "\n");

      ret += sprintf(buf+ret, "Port name: %s\n", self->settings.port_name);

      ret += sprintf(buf+ret, "DTE status: ");
      if (self->settings.dte & IRCOMM_RTS)
            ret += sprintf(buf+ret, "RTS|");
      if (self->settings.dte & IRCOMM_DTR)
            ret += sprintf(buf+ret, "DTR|");
      if (self->settings.dte)
            ret--; /* remove the last | */
      ret += sprintf(buf+ret, "\n");

      ret += sprintf(buf+ret, "DCE status: ");
      if (self->settings.dce & IRCOMM_CTS)
            ret += sprintf(buf+ret, "CTS|");
      if (self->settings.dce & IRCOMM_DSR)
            ret += sprintf(buf+ret, "DSR|");
      if (self->settings.dce & IRCOMM_CD)
            ret += sprintf(buf+ret, "CD|");
      if (self->settings.dce & IRCOMM_RI)
            ret += sprintf(buf+ret, "RI|");
      if (self->settings.dce)
            ret--; /* remove the last | */
      ret += sprintf(buf+ret, "\n");

      ret += sprintf(buf+ret, "Configuration: ");
      if (!self->settings.null_modem)
            ret += sprintf(buf+ret, "DTE <-> DCE\n");
      else
            ret += sprintf(buf+ret,
                         "DTE <-> DTE (null modem emulation)\n");

      ret += sprintf(buf+ret, "Data rate: %d\n", self->settings.data_rate);

      ret += sprintf(buf+ret, "Flow control: ");
      if (self->settings.flow_control & IRCOMM_XON_XOFF_IN)
            ret += sprintf(buf+ret, "XON_XOFF_IN|");
      if (self->settings.flow_control & IRCOMM_XON_XOFF_OUT)
            ret += sprintf(buf+ret, "XON_XOFF_OUT|");
      if (self->settings.flow_control & IRCOMM_RTS_CTS_IN)
            ret += sprintf(buf+ret, "RTS_CTS_IN|");
      if (self->settings.flow_control & IRCOMM_RTS_CTS_OUT)
            ret += sprintf(buf+ret, "RTS_CTS_OUT|");
      if (self->settings.flow_control & IRCOMM_DSR_DTR_IN)
            ret += sprintf(buf+ret, "DSR_DTR_IN|");
      if (self->settings.flow_control & IRCOMM_DSR_DTR_OUT)
            ret += sprintf(buf+ret, "DSR_DTR_OUT|");
      if (self->settings.flow_control & IRCOMM_ENQ_ACK_IN)
            ret += sprintf(buf+ret, "ENQ_ACK_IN|");
      if (self->settings.flow_control & IRCOMM_ENQ_ACK_OUT)
            ret += sprintf(buf+ret, "ENQ_ACK_OUT|");
      if (self->settings.flow_control)
            ret--; /* remove the last | */
      ret += sprintf(buf+ret, "\n");

      ret += sprintf(buf+ret, "Flags: ");
      if (self->flags & ASYNC_CTS_FLOW)
            ret += sprintf(buf+ret, "ASYNC_CTS_FLOW|");
      if (self->flags & ASYNC_CHECK_CD)
            ret += sprintf(buf+ret, "ASYNC_CHECK_CD|");
      if (self->flags & ASYNC_INITIALIZED)
            ret += sprintf(buf+ret, "ASYNC_INITIALIZED|");
      if (self->flags & ASYNC_LOW_LATENCY)
            ret += sprintf(buf+ret, "ASYNC_LOW_LATENCY|");
      if (self->flags & ASYNC_CLOSING)
            ret += sprintf(buf+ret, "ASYNC_CLOSING|");
      if (self->flags & ASYNC_NORMAL_ACTIVE)
            ret += sprintf(buf+ret, "ASYNC_NORMAL_ACTIVE|");
      if (self->flags)
            ret--; /* remove the last | */
      ret += sprintf(buf+ret, "\n");

      ret += sprintf(buf+ret, "Role: %s\n", self->client ?
                   "client" : "server");
      ret += sprintf(buf+ret, "Open count: %d\n", self->open_count);
      ret += sprintf(buf+ret, "Max data size: %d\n", self->max_data_size);
      ret += sprintf(buf+ret, "Max header size: %d\n", self->max_header_size);

      if (self->tty)
            ret += sprintf(buf+ret, "Hardware: %s\n",
                         self->tty->hw_stopped ? "Stopped" : "Running");

      ret += sprintf(buf+ret, "\n");
      return ret;
}


/*
 * Function ircomm_tty_read_proc (buf, start, offset, len, eof, unused)
 *
 *
 *
 */
static int ircomm_tty_read_proc(char *buf, char **start, off_t offset, int len,
                        int *eof, void *unused)
{
      struct ircomm_tty_cb *self;
      int count = 0, l;
      off_t begin = 0;
      unsigned long flags;

      spin_lock_irqsave(&ircomm_tty->hb_spinlock, flags);

      self = (struct ircomm_tty_cb *) hashbin_get_first(ircomm_tty);
      while ((self != NULL) && (count < 4000)) {
            if (self->magic != IRCOMM_TTY_MAGIC)
                  break;

            l = ircomm_tty_line_info(self, buf + count);
            count += l;
            if (count+begin > offset+len)
                  goto done;
            if (count+begin < offset) {
                  begin += count;
                  count = 0;
            }

            self = (struct ircomm_tty_cb *) hashbin_get_next(ircomm_tty);
      }
      *eof = 1;
done:
      spin_unlock_irqrestore(&ircomm_tty->hb_spinlock, flags);

      if (offset >= count+begin)
            return 0;
      *start = buf + (offset-begin);
      return ((len < begin+count-offset) ? len : begin+count-offset);
}
#endif /* CONFIG_PROC_FS */

MODULE_AUTHOR("Dag Brattli <dagb@cs.uit.no>");
MODULE_DESCRIPTION("IrCOMM serial TTY driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CHARDEV_MAJOR(IRCOMM_TTY_MAJOR);

module_init(ircomm_tty_init);
module_exit(ircomm_tty_cleanup);

Generated by  Doxygen 1.6.0   Back to index