Logo Search packages:      
Sourcecode: linux version File versions  Download package

iwch_cm.c

/*
 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include <linux/module.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/timer.h>
#include <linux/notifier.h>

#include <net/neighbour.h>
#include <net/netevent.h>
#include <net/route.h>

#include "tcb.h"
#include "cxgb3_offload.h"
#include "iwch.h"
#include "iwch_provider.h"
#include "iwch_cm.h"

static char *states[] = {
      "idle",
      "listen",
      "connecting",
      "mpa_wait_req",
      "mpa_req_sent",
      "mpa_req_rcvd",
      "mpa_rep_sent",
      "fpdu_mode",
      "aborting",
      "closing",
      "moribund",
      "dead",
      NULL,
};

static int ep_timeout_secs = 10;
module_param(ep_timeout_secs, int, 0644);
MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
                           "in seconds (default=10)");

static int mpa_rev = 1;
module_param(mpa_rev, int, 0644);
MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
             "1 is spec compliant. (default=1)");

static int markers_enabled = 0;
module_param(markers_enabled, int, 0644);
MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");

static int crc_enabled = 1;
module_param(crc_enabled, int, 0644);
MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");

static int rcv_win = 256 * 1024;
module_param(rcv_win, int, 0644);
MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");

static int snd_win = 32 * 1024;
module_param(snd_win, int, 0644);
MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");

static unsigned int nocong = 0;
module_param(nocong, uint, 0644);
MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");

static unsigned int cong_flavor = 1;
module_param(cong_flavor, uint, 0644);
MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");

static void process_work(struct work_struct *work);
static struct workqueue_struct *workq;
static DECLARE_WORK(skb_work, process_work);

static struct sk_buff_head rxq;
static cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS];

static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
static void ep_timeout(unsigned long arg);
static void connect_reply_upcall(struct iwch_ep *ep, int status);

static void start_ep_timer(struct iwch_ep *ep)
{
      PDBG("%s ep %p\n", __FUNCTION__, ep);
      if (timer_pending(&ep->timer)) {
            PDBG("%s stopped / restarted timer ep %p\n", __FUNCTION__, ep);
            del_timer_sync(&ep->timer);
      } else
            get_ep(&ep->com);
      ep->timer.expires = jiffies + ep_timeout_secs * HZ;
      ep->timer.data = (unsigned long)ep;
      ep->timer.function = ep_timeout;
      add_timer(&ep->timer);
}

static void stop_ep_timer(struct iwch_ep *ep)
{
      PDBG("%s ep %p\n", __FUNCTION__, ep);
      del_timer_sync(&ep->timer);
      put_ep(&ep->com);
}

static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
{
      struct cpl_tid_release *req;

      skb = get_skb(skb, sizeof *req, GFP_KERNEL);
      if (!skb)
            return;
      req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
      req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
      OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
      skb->priority = CPL_PRIORITY_SETUP;
      cxgb3_ofld_send(tdev, skb);
      return;
}

int iwch_quiesce_tid(struct iwch_ep *ep)
{
      struct cpl_set_tcb_field *req;
      struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);

      if (!skb)
            return -ENOMEM;
      req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
      req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
      req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
      OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
      req->reply = 0;
      req->cpu_idx = 0;
      req->word = htons(W_TCB_RX_QUIESCE);
      req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
      req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);

      skb->priority = CPL_PRIORITY_DATA;
      cxgb3_ofld_send(ep->com.tdev, skb);
      return 0;
}

int iwch_resume_tid(struct iwch_ep *ep)
{
      struct cpl_set_tcb_field *req;
      struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);

      if (!skb)
            return -ENOMEM;
      req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
      req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
      req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
      OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
      req->reply = 0;
      req->cpu_idx = 0;
      req->word = htons(W_TCB_RX_QUIESCE);
      req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
      req->val = 0;

      skb->priority = CPL_PRIORITY_DATA;
      cxgb3_ofld_send(ep->com.tdev, skb);
      return 0;
}

static void set_emss(struct iwch_ep *ep, u16 opt)
{
      PDBG("%s ep %p opt %u\n", __FUNCTION__, ep, opt);
      ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
      if (G_TCPOPT_TSTAMP(opt))
            ep->emss -= 12;
      if (ep->emss < 128)
            ep->emss = 128;
      PDBG("emss=%d\n", ep->emss);
}

static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
{
      unsigned long flags;
      enum iwch_ep_state state;

      spin_lock_irqsave(&epc->lock, flags);
      state = epc->state;
      spin_unlock_irqrestore(&epc->lock, flags);
      return state;
}

static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
{
      epc->state = new;
}

static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
{
      unsigned long flags;

      spin_lock_irqsave(&epc->lock, flags);
      PDBG("%s - %s -> %s\n", __FUNCTION__, states[epc->state], states[new]);
      __state_set(epc, new);
      spin_unlock_irqrestore(&epc->lock, flags);
      return;
}

static void *alloc_ep(int size, gfp_t gfp)
{
      struct iwch_ep_common *epc;

      epc = kzalloc(size, gfp);
      if (epc) {
            kref_init(&epc->kref);
            spin_lock_init(&epc->lock);
            init_waitqueue_head(&epc->waitq);
      }
      PDBG("%s alloc ep %p\n", __FUNCTION__, epc);
      return epc;
}

void __free_ep(struct kref *kref)
{
      struct iwch_ep_common *epc;
      epc = container_of(kref, struct iwch_ep_common, kref);
      PDBG("%s ep %p state %s\n", __FUNCTION__, epc, states[state_read(epc)]);
      kfree(epc);
}

static void release_ep_resources(struct iwch_ep *ep)
{
      PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, ep->hwtid);
      cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
      dst_release(ep->dst);
      l2t_release(L2DATA(ep->com.tdev), ep->l2t);
      put_ep(&ep->com);
}

static void process_work(struct work_struct *work)
{
      struct sk_buff *skb = NULL;
      void *ep;
      struct t3cdev *tdev;
      int ret;

      while ((skb = skb_dequeue(&rxq))) {
            ep = *((void **) (skb->cb));
            tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
            ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
            if (ret & CPL_RET_BUF_DONE)
                  kfree_skb(skb);

            /*
             * ep was referenced in sched(), and is freed here.
             */
            put_ep((struct iwch_ep_common *)ep);
      }
}

static int status2errno(int status)
{
      switch (status) {
      case CPL_ERR_NONE:
            return 0;
      case CPL_ERR_CONN_RESET:
            return -ECONNRESET;
      case CPL_ERR_ARP_MISS:
            return -EHOSTUNREACH;
      case CPL_ERR_CONN_TIMEDOUT:
            return -ETIMEDOUT;
      case CPL_ERR_TCAM_FULL:
            return -ENOMEM;
      case CPL_ERR_CONN_EXIST:
            return -EADDRINUSE;
      default:
            return -EIO;
      }
}

/*
 * Try and reuse skbs already allocated...
 */
static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
{
      if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
            skb_trim(skb, 0);
            skb_get(skb);
      } else {
            skb = alloc_skb(len, gfp);
      }
      return skb;
}

static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
                         __be32 peer_ip, __be16 local_port,
                         __be16 peer_port, u8 tos)
{
      struct rtable *rt;
      struct flowi fl = {
            .oif = 0,
            .nl_u = {
                   .ip4_u = {
                           .daddr = peer_ip,
                           .saddr = local_ip,
                           .tos = tos}
                   },
            .proto = IPPROTO_TCP,
            .uli_u = {
                    .ports = {
                            .sport = local_port,
                            .dport = peer_port}
                    }
      };

      if (ip_route_output_flow(&rt, &fl, NULL, 0))
            return NULL;
      return rt;
}

static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
{
      int i = 0;

      while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
            ++i;
      return i;
}

static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
{
      PDBG("%s t3cdev %p\n", __FUNCTION__, dev);
      kfree_skb(skb);
}

/*
 * Handle an ARP failure for an active open.
 */
static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
{
      printk(KERN_ERR MOD "ARP failure duing connect\n");
      kfree_skb(skb);
}

/*
 * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
 * and send it along.
 */
static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
{
      struct cpl_abort_req *req = cplhdr(skb);

      PDBG("%s t3cdev %p\n", __FUNCTION__, dev);
      req->cmd = CPL_ABORT_NO_RST;
      cxgb3_ofld_send(dev, skb);
}

static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
{
      struct cpl_close_con_req *req;
      struct sk_buff *skb;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      skb = get_skb(NULL, sizeof(*req), gfp);
      if (!skb) {
            printk(KERN_ERR MOD "%s - failed to alloc skb\n", __FUNCTION__);
            return -ENOMEM;
      }
      skb->priority = CPL_PRIORITY_DATA;
      set_arp_failure_handler(skb, arp_failure_discard);
      req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
      req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
      req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
      OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
      l2t_send(ep->com.tdev, skb, ep->l2t);
      return 0;
}

static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
{
      struct cpl_abort_req *req;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      skb = get_skb(skb, sizeof(*req), gfp);
      if (!skb) {
            printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
                   __FUNCTION__);
            return -ENOMEM;
      }
      skb->priority = CPL_PRIORITY_DATA;
      set_arp_failure_handler(skb, abort_arp_failure);
      req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
      req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
      req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
      OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
      req->cmd = CPL_ABORT_SEND_RST;
      l2t_send(ep->com.tdev, skb, ep->l2t);
      return 0;
}

static int send_connect(struct iwch_ep *ep)
{
      struct cpl_act_open_req *req;
      struct sk_buff *skb;
      u32 opt0h, opt0l, opt2;
      unsigned int mtu_idx;
      int wscale;

      PDBG("%s ep %p\n", __FUNCTION__, ep);

      skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
      if (!skb) {
            printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
                   __FUNCTION__);
            return -ENOMEM;
      }
      mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
      wscale = compute_wscale(rcv_win);
      opt0h = V_NAGLE(0) |
          V_NO_CONG(nocong) |
          V_KEEP_ALIVE(1) |
          F_TCAM_BYPASS |
          V_WND_SCALE(wscale) |
          V_MSS_IDX(mtu_idx) |
          V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
      opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
      opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor);
      skb->priority = CPL_PRIORITY_SETUP;
      set_arp_failure_handler(skb, act_open_req_arp_failure);

      req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
      req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
      OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
      req->local_port = ep->com.local_addr.sin_port;
      req->peer_port = ep->com.remote_addr.sin_port;
      req->local_ip = ep->com.local_addr.sin_addr.s_addr;
      req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
      req->opt0h = htonl(opt0h);
      req->opt0l = htonl(opt0l);
      req->params = 0;
      req->opt2 = htonl(opt2);
      l2t_send(ep->com.tdev, skb, ep->l2t);
      return 0;
}

static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
{
      int mpalen;
      struct tx_data_wr *req;
      struct mpa_message *mpa;
      int len;

      PDBG("%s ep %p pd_len %d\n", __FUNCTION__, ep, ep->plen);

      BUG_ON(skb_cloned(skb));

      mpalen = sizeof(*mpa) + ep->plen;
      if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
            kfree_skb(skb);
            skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
            if (!skb) {
                  connect_reply_upcall(ep, -ENOMEM);
                  return;
            }
      }
      skb_trim(skb, 0);
      skb_reserve(skb, sizeof(*req));
      skb_put(skb, mpalen);
      skb->priority = CPL_PRIORITY_DATA;
      mpa = (struct mpa_message *) skb->data;
      memset(mpa, 0, sizeof(*mpa));
      memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
      mpa->flags = (crc_enabled ? MPA_CRC : 0) |
                 (markers_enabled ? MPA_MARKERS : 0);
      mpa->private_data_size = htons(ep->plen);
      mpa->revision = mpa_rev;

      if (ep->plen)
            memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);

      /*
       * Reference the mpa skb.  This ensures the data area
       * will remain in memory until the hw acks the tx.
       * Function tx_ack() will deref it.
       */
      skb_get(skb);
      set_arp_failure_handler(skb, arp_failure_discard);
      skb_reset_transport_header(skb);
      len = skb->len;
      req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
      req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA));
      req->wr_lo = htonl(V_WR_TID(ep->hwtid));
      req->len = htonl(len);
      req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
                     V_TX_SNDBUF(snd_win>>15));
      req->flags = htonl(F_TX_INIT);
      req->sndseq = htonl(ep->snd_seq);
      BUG_ON(ep->mpa_skb);
      ep->mpa_skb = skb;
      l2t_send(ep->com.tdev, skb, ep->l2t);
      start_ep_timer(ep);
      state_set(&ep->com, MPA_REQ_SENT);
      return;
}

static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
{
      int mpalen;
      struct tx_data_wr *req;
      struct mpa_message *mpa;
      struct sk_buff *skb;

      PDBG("%s ep %p plen %d\n", __FUNCTION__, ep, plen);

      mpalen = sizeof(*mpa) + plen;

      skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
      if (!skb) {
            printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __FUNCTION__);
            return -ENOMEM;
      }
      skb_reserve(skb, sizeof(*req));
      mpa = (struct mpa_message *) skb_put(skb, mpalen);
      memset(mpa, 0, sizeof(*mpa));
      memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
      mpa->flags = MPA_REJECT;
      mpa->revision = mpa_rev;
      mpa->private_data_size = htons(plen);
      if (plen)
            memcpy(mpa->private_data, pdata, plen);

      /*
       * Reference the mpa skb again.  This ensures the data area
       * will remain in memory until the hw acks the tx.
       * Function tx_ack() will deref it.
       */
      skb_get(skb);
      skb->priority = CPL_PRIORITY_DATA;
      set_arp_failure_handler(skb, arp_failure_discard);
      skb_reset_transport_header(skb);
      req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
      req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA));
      req->wr_lo = htonl(V_WR_TID(ep->hwtid));
      req->len = htonl(mpalen);
      req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
                     V_TX_SNDBUF(snd_win>>15));
      req->flags = htonl(F_TX_INIT);
      req->sndseq = htonl(ep->snd_seq);
      BUG_ON(ep->mpa_skb);
      ep->mpa_skb = skb;
      l2t_send(ep->com.tdev, skb, ep->l2t);
      return 0;
}

static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
{
      int mpalen;
      struct tx_data_wr *req;
      struct mpa_message *mpa;
      int len;
      struct sk_buff *skb;

      PDBG("%s ep %p plen %d\n", __FUNCTION__, ep, plen);

      mpalen = sizeof(*mpa) + plen;

      skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
      if (!skb) {
            printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __FUNCTION__);
            return -ENOMEM;
      }
      skb->priority = CPL_PRIORITY_DATA;
      skb_reserve(skb, sizeof(*req));
      mpa = (struct mpa_message *) skb_put(skb, mpalen);
      memset(mpa, 0, sizeof(*mpa));
      memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
      mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
                 (markers_enabled ? MPA_MARKERS : 0);
      mpa->revision = mpa_rev;
      mpa->private_data_size = htons(plen);
      if (plen)
            memcpy(mpa->private_data, pdata, plen);

      /*
       * Reference the mpa skb.  This ensures the data area
       * will remain in memory until the hw acks the tx.
       * Function tx_ack() will deref it.
       */
      skb_get(skb);
      set_arp_failure_handler(skb, arp_failure_discard);
      skb_reset_transport_header(skb);
      len = skb->len;
      req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
      req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA));
      req->wr_lo = htonl(V_WR_TID(ep->hwtid));
      req->len = htonl(len);
      req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
                     V_TX_SNDBUF(snd_win>>15));
      req->flags = htonl(F_TX_INIT);
      req->sndseq = htonl(ep->snd_seq);
      ep->mpa_skb = skb;
      state_set(&ep->com, MPA_REP_SENT);
      l2t_send(ep->com.tdev, skb, ep->l2t);
      return 0;
}

static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep *ep = ctx;
      struct cpl_act_establish *req = cplhdr(skb);
      unsigned int tid = GET_TID(req);

      PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, tid);

      dst_confirm(ep->dst);

      /* setup the hwtid for this connection */
      ep->hwtid = tid;
      cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);

      ep->snd_seq = ntohl(req->snd_isn);
      ep->rcv_seq = ntohl(req->rcv_isn);

      set_emss(ep, ntohs(req->tcp_opt));

      /* dealloc the atid */
      cxgb3_free_atid(ep->com.tdev, ep->atid);

      /* start MPA negotiation */
      send_mpa_req(ep, skb);

      return 0;
}

static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
{
      PDBG("%s ep %p\n", __FILE__, ep);
      state_set(&ep->com, ABORTING);
      send_abort(ep, skb, gfp);
}

static void close_complete_upcall(struct iwch_ep *ep)
{
      struct iw_cm_event event;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      memset(&event, 0, sizeof(event));
      event.event = IW_CM_EVENT_CLOSE;
      if (ep->com.cm_id) {
            PDBG("close complete delivered ep %p cm_id %p tid %d\n",
                 ep, ep->com.cm_id, ep->hwtid);
            ep->com.cm_id->event_handler(ep->com.cm_id, &event);
            ep->com.cm_id->rem_ref(ep->com.cm_id);
            ep->com.cm_id = NULL;
            ep->com.qp = NULL;
      }
}

static void peer_close_upcall(struct iwch_ep *ep)
{
      struct iw_cm_event event;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      memset(&event, 0, sizeof(event));
      event.event = IW_CM_EVENT_DISCONNECT;
      if (ep->com.cm_id) {
            PDBG("peer close delivered ep %p cm_id %p tid %d\n",
                 ep, ep->com.cm_id, ep->hwtid);
            ep->com.cm_id->event_handler(ep->com.cm_id, &event);
      }
}

static void peer_abort_upcall(struct iwch_ep *ep)
{
      struct iw_cm_event event;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      memset(&event, 0, sizeof(event));
      event.event = IW_CM_EVENT_CLOSE;
      event.status = -ECONNRESET;
      if (ep->com.cm_id) {
            PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
                 ep->com.cm_id, ep->hwtid);
            ep->com.cm_id->event_handler(ep->com.cm_id, &event);
            ep->com.cm_id->rem_ref(ep->com.cm_id);
            ep->com.cm_id = NULL;
            ep->com.qp = NULL;
      }
}

static void connect_reply_upcall(struct iwch_ep *ep, int status)
{
      struct iw_cm_event event;

      PDBG("%s ep %p status %d\n", __FUNCTION__, ep, status);
      memset(&event, 0, sizeof(event));
      event.event = IW_CM_EVENT_CONNECT_REPLY;
      event.status = status;
      event.local_addr = ep->com.local_addr;
      event.remote_addr = ep->com.remote_addr;

      if ((status == 0) || (status == -ECONNREFUSED)) {
            event.private_data_len = ep->plen;
            event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
      }
      if (ep->com.cm_id) {
            PDBG("%s ep %p tid %d status %d\n", __FUNCTION__, ep,
                 ep->hwtid, status);
            ep->com.cm_id->event_handler(ep->com.cm_id, &event);
      }
      if (status < 0) {
            ep->com.cm_id->rem_ref(ep->com.cm_id);
            ep->com.cm_id = NULL;
            ep->com.qp = NULL;
      }
}

static void connect_request_upcall(struct iwch_ep *ep)
{
      struct iw_cm_event event;

      PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, ep->hwtid);
      memset(&event, 0, sizeof(event));
      event.event = IW_CM_EVENT_CONNECT_REQUEST;
      event.local_addr = ep->com.local_addr;
      event.remote_addr = ep->com.remote_addr;
      event.private_data_len = ep->plen;
      event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
      event.provider_data = ep;
      if (state_read(&ep->parent_ep->com) != DEAD)
            ep->parent_ep->com.cm_id->event_handler(
                                    ep->parent_ep->com.cm_id,
                                    &event);
      put_ep(&ep->parent_ep->com);
      ep->parent_ep = NULL;
}

static void established_upcall(struct iwch_ep *ep)
{
      struct iw_cm_event event;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      memset(&event, 0, sizeof(event));
      event.event = IW_CM_EVENT_ESTABLISHED;
      if (ep->com.cm_id) {
            PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, ep->hwtid);
            ep->com.cm_id->event_handler(ep->com.cm_id, &event);
      }
}

static int update_rx_credits(struct iwch_ep *ep, u32 credits)
{
      struct cpl_rx_data_ack *req;
      struct sk_buff *skb;

      PDBG("%s ep %p credits %u\n", __FUNCTION__, ep, credits);
      skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
      if (!skb) {
            printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
            return 0;
      }

      req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
      req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
      OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
      req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
      skb->priority = CPL_PRIORITY_ACK;
      cxgb3_ofld_send(ep->com.tdev, skb);
      return credits;
}

static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
{
      struct mpa_message *mpa;
      u16 plen;
      struct iwch_qp_attributes attrs;
      enum iwch_qp_attr_mask mask;
      int err;

      PDBG("%s ep %p\n", __FUNCTION__, ep);

      /*
       * Stop mpa timer.  If it expired, then the state has
       * changed and we bail since ep_timeout already aborted
       * the connection.
       */
      stop_ep_timer(ep);
      if (state_read(&ep->com) != MPA_REQ_SENT)
            return;

      /*
       * If we get more than the supported amount of private data
       * then we must fail this connection.
       */
      if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
            err = -EINVAL;
            goto err;
      }

      /*
       * copy the new data into our accumulation buffer.
       */
      skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
                          skb->len);
      ep->mpa_pkt_len += skb->len;

      /*
       * if we don't even have the mpa message, then bail.
       */
      if (ep->mpa_pkt_len < sizeof(*mpa))
            return;
      mpa = (struct mpa_message *) ep->mpa_pkt;

      /* Validate MPA header. */
      if (mpa->revision != mpa_rev) {
            err = -EPROTO;
            goto err;
      }
      if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
            err = -EPROTO;
            goto err;
      }

      plen = ntohs(mpa->private_data_size);

      /*
       * Fail if there's too much private data.
       */
      if (plen > MPA_MAX_PRIVATE_DATA) {
            err = -EPROTO;
            goto err;
      }

      /*
       * If plen does not account for pkt size
       */
      if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
            err = -EPROTO;
            goto err;
      }

      ep->plen = (u8) plen;

      /*
       * If we don't have all the pdata yet, then bail.
       * We'll continue process when more data arrives.
       */
      if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
            return;

      if (mpa->flags & MPA_REJECT) {
            err = -ECONNREFUSED;
            goto err;
      }

      /*
       * If we get here we have accumulated the entire mpa
       * start reply message including private data. And
       * the MPA header is valid.
       */
      state_set(&ep->com, FPDU_MODE);
      ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
      ep->mpa_attr.recv_marker_enabled = markers_enabled;
      ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
      ep->mpa_attr.version = mpa_rev;
      PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
           "xmit_marker_enabled=%d, version=%d\n", __FUNCTION__,
           ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
           ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);

      attrs.mpa_attr = ep->mpa_attr;
      attrs.max_ird = ep->ird;
      attrs.max_ord = ep->ord;
      attrs.llp_stream_handle = ep;
      attrs.next_state = IWCH_QP_STATE_RTS;

      mask = IWCH_QP_ATTR_NEXT_STATE |
          IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
          IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;

      /* bind QP and TID with INIT_WR */
      err = iwch_modify_qp(ep->com.qp->rhp,
                       ep->com.qp, mask, &attrs, 1);
      if (!err)
            goto out;
err:
      abort_connection(ep, skb, GFP_KERNEL);
out:
      connect_reply_upcall(ep, err);
      return;
}

static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
{
      struct mpa_message *mpa;
      u16 plen;

      PDBG("%s ep %p\n", __FUNCTION__, ep);

      /*
       * Stop mpa timer.  If it expired, then the state has
       * changed and we bail since ep_timeout already aborted
       * the connection.
       */
      stop_ep_timer(ep);
      if (state_read(&ep->com) != MPA_REQ_WAIT)
            return;

      /*
       * If we get more than the supported amount of private data
       * then we must fail this connection.
       */
      if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
            abort_connection(ep, skb, GFP_KERNEL);
            return;
      }

      PDBG("%s enter (%s line %u)\n", __FUNCTION__, __FILE__, __LINE__);

      /*
       * Copy the new data into our accumulation buffer.
       */
      skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
                          skb->len);
      ep->mpa_pkt_len += skb->len;

      /*
       * If we don't even have the mpa message, then bail.
       * We'll continue process when more data arrives.
       */
      if (ep->mpa_pkt_len < sizeof(*mpa))
            return;
      PDBG("%s enter (%s line %u)\n", __FUNCTION__, __FILE__, __LINE__);
      mpa = (struct mpa_message *) ep->mpa_pkt;

      /*
       * Validate MPA Header.
       */
      if (mpa->revision != mpa_rev) {
            abort_connection(ep, skb, GFP_KERNEL);
            return;
      }

      if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
            abort_connection(ep, skb, GFP_KERNEL);
            return;
      }

      plen = ntohs(mpa->private_data_size);

      /*
       * Fail if there's too much private data.
       */
      if (plen > MPA_MAX_PRIVATE_DATA) {
            abort_connection(ep, skb, GFP_KERNEL);
            return;
      }

      /*
       * If plen does not account for pkt size
       */
      if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
            abort_connection(ep, skb, GFP_KERNEL);
            return;
      }
      ep->plen = (u8) plen;

      /*
       * If we don't have all the pdata yet, then bail.
       */
      if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
            return;

      /*
       * If we get here we have accumulated the entire mpa
       * start reply message including private data.
       */
      ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
      ep->mpa_attr.recv_marker_enabled = markers_enabled;
      ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
      ep->mpa_attr.version = mpa_rev;
      PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
           "xmit_marker_enabled=%d, version=%d\n", __FUNCTION__,
           ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
           ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);

      state_set(&ep->com, MPA_REQ_RCVD);

      /* drive upcall */
      connect_request_upcall(ep);
      return;
}

static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep *ep = ctx;
      struct cpl_rx_data *hdr = cplhdr(skb);
      unsigned int dlen = ntohs(hdr->len);

      PDBG("%s ep %p dlen %u\n", __FUNCTION__, ep, dlen);

      skb_pull(skb, sizeof(*hdr));
      skb_trim(skb, dlen);

      ep->rcv_seq += dlen;
      BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));

      switch (state_read(&ep->com)) {
      case MPA_REQ_SENT:
            process_mpa_reply(ep, skb);
            break;
      case MPA_REQ_WAIT:
            process_mpa_request(ep, skb);
            break;
      case MPA_REP_SENT:
            break;
      default:
            printk(KERN_ERR MOD "%s Unexpected streaming data."
                   " ep %p state %d tid %d\n",
                   __FUNCTION__, ep, state_read(&ep->com), ep->hwtid);

            /*
             * The ep will timeout and inform the ULP of the failure.
             * See ep_timeout().
             */
            break;
      }

      /* update RX credits */
      update_rx_credits(ep, dlen);

      return CPL_RET_BUF_DONE;
}

/*
 * Upcall from the adapter indicating data has been transmitted.
 * For us its just the single MPA request or reply.  We can now free
 * the skb holding the mpa message.
 */
static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep *ep = ctx;
      struct cpl_wr_ack *hdr = cplhdr(skb);
      unsigned int credits = ntohs(hdr->credits);

      PDBG("%s ep %p credits %u\n", __FUNCTION__, ep, credits);

      if (credits == 0)
            return CPL_RET_BUF_DONE;
      BUG_ON(credits != 1);
      BUG_ON(ep->mpa_skb == NULL);
      kfree_skb(ep->mpa_skb);
      ep->mpa_skb = NULL;
      dst_confirm(ep->dst);
      if (state_read(&ep->com) == MPA_REP_SENT) {
            ep->com.rpl_done = 1;
            PDBG("waking up ep %p\n", ep);
            wake_up(&ep->com.waitq);
      }
      return CPL_RET_BUF_DONE;
}

static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep *ep = ctx;

      PDBG("%s ep %p\n", __FUNCTION__, ep);

      /*
       * We get 2 abort replies from the HW.  The first one must
       * be ignored except for scribbling that we need one more.
       */
      if (!(ep->flags & ABORT_REQ_IN_PROGRESS)) {
            ep->flags |= ABORT_REQ_IN_PROGRESS;
            return CPL_RET_BUF_DONE;
      }

      close_complete_upcall(ep);
      state_set(&ep->com, DEAD);
      release_ep_resources(ep);
      return CPL_RET_BUF_DONE;
}

/*
 * Return whether a failed active open has allocated a TID
 */
static inline int act_open_has_tid(int status)
{
      return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
             status != CPL_ERR_ARP_MISS;
}

static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep *ep = ctx;
      struct cpl_act_open_rpl *rpl = cplhdr(skb);

      PDBG("%s ep %p status %u errno %d\n", __FUNCTION__, ep, rpl->status,
           status2errno(rpl->status));
      connect_reply_upcall(ep, status2errno(rpl->status));
      state_set(&ep->com, DEAD);
      if (ep->com.tdev->type == T3B && act_open_has_tid(rpl->status))
            release_tid(ep->com.tdev, GET_TID(rpl), NULL);
      cxgb3_free_atid(ep->com.tdev, ep->atid);
      dst_release(ep->dst);
      l2t_release(L2DATA(ep->com.tdev), ep->l2t);
      put_ep(&ep->com);
      return CPL_RET_BUF_DONE;
}

static int listen_start(struct iwch_listen_ep *ep)
{
      struct sk_buff *skb;
      struct cpl_pass_open_req *req;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
      if (!skb) {
            printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
            return -ENOMEM;
      }

      req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
      req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
      OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
      req->local_port = ep->com.local_addr.sin_port;
      req->local_ip = ep->com.local_addr.sin_addr.s_addr;
      req->peer_port = 0;
      req->peer_ip = 0;
      req->peer_netmask = 0;
      req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
      req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
      req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));

      skb->priority = 1;
      cxgb3_ofld_send(ep->com.tdev, skb);
      return 0;
}

static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_listen_ep *ep = ctx;
      struct cpl_pass_open_rpl *rpl = cplhdr(skb);

      PDBG("%s ep %p status %d error %d\n", __FUNCTION__, ep,
           rpl->status, status2errno(rpl->status));
      ep->com.rpl_err = status2errno(rpl->status);
      ep->com.rpl_done = 1;
      wake_up(&ep->com.waitq);

      return CPL_RET_BUF_DONE;
}

static int listen_stop(struct iwch_listen_ep *ep)
{
      struct sk_buff *skb;
      struct cpl_close_listserv_req *req;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
      if (!skb) {
            printk(KERN_ERR MOD "%s - failed to alloc skb\n", __FUNCTION__);
            return -ENOMEM;
      }
      req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
      req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
      req->cpu_idx = 0;
      OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
      skb->priority = 1;
      cxgb3_ofld_send(ep->com.tdev, skb);
      return 0;
}

static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
                       void *ctx)
{
      struct iwch_listen_ep *ep = ctx;
      struct cpl_close_listserv_rpl *rpl = cplhdr(skb);

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      ep->com.rpl_err = status2errno(rpl->status);
      ep->com.rpl_done = 1;
      wake_up(&ep->com.waitq);
      return CPL_RET_BUF_DONE;
}

static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
{
      struct cpl_pass_accept_rpl *rpl;
      unsigned int mtu_idx;
      u32 opt0h, opt0l, opt2;
      int wscale;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      BUG_ON(skb_cloned(skb));
      skb_trim(skb, sizeof(*rpl));
      skb_get(skb);
      mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
      wscale = compute_wscale(rcv_win);
      opt0h = V_NAGLE(0) |
          V_NO_CONG(nocong) |
          V_KEEP_ALIVE(1) |
          F_TCAM_BYPASS |
          V_WND_SCALE(wscale) |
          V_MSS_IDX(mtu_idx) |
          V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
      opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
      opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor);

      rpl = cplhdr(skb);
      rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
      OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
      rpl->peer_ip = peer_ip;
      rpl->opt0h = htonl(opt0h);
      rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
      rpl->opt2 = htonl(opt2);
      rpl->rsvd = rpl->opt2;  /* workaround for HW bug */
      skb->priority = CPL_PRIORITY_SETUP;
      l2t_send(ep->com.tdev, skb, ep->l2t);

      return;
}

static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
                  struct sk_buff *skb)
{
      PDBG("%s t3cdev %p tid %u peer_ip %x\n", __FUNCTION__, tdev, hwtid,
           peer_ip);
      BUG_ON(skb_cloned(skb));
      skb_trim(skb, sizeof(struct cpl_tid_release));
      skb_get(skb);

      if (tdev->type == T3B)
            release_tid(tdev, hwtid, skb);
      else {
            struct cpl_pass_accept_rpl *rpl;

            rpl = cplhdr(skb);
            skb->priority = CPL_PRIORITY_SETUP;
            rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
            OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
                                          hwtid));
            rpl->peer_ip = peer_ip;
            rpl->opt0h = htonl(F_TCAM_BYPASS);
            rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
            rpl->opt2 = 0;
            rpl->rsvd = rpl->opt2;
            cxgb3_ofld_send(tdev, skb);
      }
}

static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep *child_ep, *parent_ep = ctx;
      struct cpl_pass_accept_req *req = cplhdr(skb);
      unsigned int hwtid = GET_TID(req);
      struct dst_entry *dst;
      struct l2t_entry *l2t;
      struct rtable *rt;
      struct iff_mac tim;

      PDBG("%s parent ep %p tid %u\n", __FUNCTION__, parent_ep, hwtid);

      if (state_read(&parent_ep->com) != LISTEN) {
            printk(KERN_ERR "%s - listening ep not in LISTEN\n",
                   __FUNCTION__);
            goto reject;
      }

      /*
       * Find the netdev for this connection request.
       */
      tim.mac_addr = req->dst_mac;
      tim.vlan_tag = ntohs(req->vlan_tag);
      if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
            printk(KERN_ERR
                  "%s bad dst mac %02x %02x %02x %02x %02x %02x\n",
                  __FUNCTION__,
                  req->dst_mac[0],
                  req->dst_mac[1],
                  req->dst_mac[2],
                  req->dst_mac[3],
                  req->dst_mac[4],
                  req->dst_mac[5]);
            goto reject;
      }

      /* Find output route */
      rt = find_route(tdev,
                  req->local_ip,
                  req->peer_ip,
                  req->local_port,
                  req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
      if (!rt) {
            printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
                   __FUNCTION__);
            goto reject;
      }
      dst = &rt->u.dst;
      l2t = t3_l2t_get(tdev, dst->neighbour, dst->neighbour->dev);
      if (!l2t) {
            printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
                   __FUNCTION__);
            dst_release(dst);
            goto reject;
      }
      child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
      if (!child_ep) {
            printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
                   __FUNCTION__);
            l2t_release(L2DATA(tdev), l2t);
            dst_release(dst);
            goto reject;
      }
      state_set(&child_ep->com, CONNECTING);
      child_ep->com.tdev = tdev;
      child_ep->com.cm_id = NULL;
      child_ep->com.local_addr.sin_family = PF_INET;
      child_ep->com.local_addr.sin_port = req->local_port;
      child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
      child_ep->com.remote_addr.sin_family = PF_INET;
      child_ep->com.remote_addr.sin_port = req->peer_port;
      child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
      get_ep(&parent_ep->com);
      child_ep->parent_ep = parent_ep;
      child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
      child_ep->l2t = l2t;
      child_ep->dst = dst;
      child_ep->hwtid = hwtid;
      init_timer(&child_ep->timer);
      cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
      accept_cr(child_ep, req->peer_ip, skb);
      goto out;
reject:
      reject_cr(tdev, hwtid, req->peer_ip, skb);
out:
      return CPL_RET_BUF_DONE;
}

static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep *ep = ctx;
      struct cpl_pass_establish *req = cplhdr(skb);

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      ep->snd_seq = ntohl(req->snd_isn);
      ep->rcv_seq = ntohl(req->rcv_isn);

      set_emss(ep, ntohs(req->tcp_opt));

      dst_confirm(ep->dst);
      state_set(&ep->com, MPA_REQ_WAIT);
      start_ep_timer(ep);

      return CPL_RET_BUF_DONE;
}

static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep *ep = ctx;
      struct iwch_qp_attributes attrs;
      unsigned long flags;
      int disconnect = 1;
      int release = 0;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      dst_confirm(ep->dst);

      spin_lock_irqsave(&ep->com.lock, flags);
      switch (ep->com.state) {
      case MPA_REQ_WAIT:
            __state_set(&ep->com, CLOSING);
            break;
      case MPA_REQ_SENT:
            __state_set(&ep->com, CLOSING);
            connect_reply_upcall(ep, -ECONNRESET);
            break;
      case MPA_REQ_RCVD:

            /*
             * We're gonna mark this puppy DEAD, but keep
             * the reference on it until the ULP accepts or
             * rejects the CR.
             */
            __state_set(&ep->com, CLOSING);
            get_ep(&ep->com);
            break;
      case MPA_REP_SENT:
            __state_set(&ep->com, CLOSING);
            ep->com.rpl_done = 1;
            ep->com.rpl_err = -ECONNRESET;
            PDBG("waking up ep %p\n", ep);
            wake_up(&ep->com.waitq);
            break;
      case FPDU_MODE:
            start_ep_timer(ep);
            __state_set(&ep->com, CLOSING);
            attrs.next_state = IWCH_QP_STATE_CLOSING;
            iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
                         IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
            peer_close_upcall(ep);
            break;
      case ABORTING:
            disconnect = 0;
            break;
      case CLOSING:
            __state_set(&ep->com, MORIBUND);
            disconnect = 0;
            break;
      case MORIBUND:
            stop_ep_timer(ep);
            if (ep->com.cm_id && ep->com.qp) {
                  attrs.next_state = IWCH_QP_STATE_IDLE;
                  iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
                               IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
            }
            close_complete_upcall(ep);
            __state_set(&ep->com, DEAD);
            release = 1;
            disconnect = 0;
            break;
      case DEAD:
            disconnect = 0;
            break;
      default:
            BUG_ON(1);
      }
      spin_unlock_irqrestore(&ep->com.lock, flags);
      if (disconnect)
            iwch_ep_disconnect(ep, 0, GFP_KERNEL);
      if (release)
            release_ep_resources(ep);
      return CPL_RET_BUF_DONE;
}

/*
 * Returns whether an ABORT_REQ_RSS message is a negative advice.
 */
static int is_neg_adv_abort(unsigned int status)
{
      return status == CPL_ERR_RTX_NEG_ADVICE ||
             status == CPL_ERR_PERSIST_NEG_ADVICE;
}

static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct cpl_abort_req_rss *req = cplhdr(skb);
      struct iwch_ep *ep = ctx;
      struct cpl_abort_rpl *rpl;
      struct sk_buff *rpl_skb;
      struct iwch_qp_attributes attrs;
      int ret;
      int state;

      if (is_neg_adv_abort(req->status)) {
            PDBG("%s neg_adv_abort ep %p tid %d\n", __FUNCTION__, ep,
                 ep->hwtid);
            t3_l2t_send_event(ep->com.tdev, ep->l2t);
            return CPL_RET_BUF_DONE;
      }

      /*
       * We get 2 peer aborts from the HW.  The first one must
       * be ignored except for scribbling that we need one more.
       */
      if (!(ep->flags & PEER_ABORT_IN_PROGRESS)) {
            ep->flags |= PEER_ABORT_IN_PROGRESS;
            return CPL_RET_BUF_DONE;
      }

      state = state_read(&ep->com);
      PDBG("%s ep %p state %u\n", __FUNCTION__, ep, state);
      switch (state) {
      case CONNECTING:
            break;
      case MPA_REQ_WAIT:
            stop_ep_timer(ep);
            break;
      case MPA_REQ_SENT:
            stop_ep_timer(ep);
            connect_reply_upcall(ep, -ECONNRESET);
            break;
      case MPA_REP_SENT:
            ep->com.rpl_done = 1;
            ep->com.rpl_err = -ECONNRESET;
            PDBG("waking up ep %p\n", ep);
            wake_up(&ep->com.waitq);
            break;
      case MPA_REQ_RCVD:

            /*
             * We're gonna mark this puppy DEAD, but keep
             * the reference on it until the ULP accepts or
             * rejects the CR.
             */
            get_ep(&ep->com);
            break;
      case MORIBUND:
      case CLOSING:
            stop_ep_timer(ep);
            /*FALLTHROUGH*/
      case FPDU_MODE:
            if (ep->com.cm_id && ep->com.qp) {
                  attrs.next_state = IWCH_QP_STATE_ERROR;
                  ret = iwch_modify_qp(ep->com.qp->rhp,
                             ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
                             &attrs, 1);
                  if (ret)
                        printk(KERN_ERR MOD
                               "%s - qp <- error failed!\n",
                               __FUNCTION__);
            }
            peer_abort_upcall(ep);
            break;
      case ABORTING:
            break;
      case DEAD:
            PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __FUNCTION__);
            return CPL_RET_BUF_DONE;
      default:
            BUG_ON(1);
            break;
      }
      dst_confirm(ep->dst);

      rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
      if (!rpl_skb) {
            printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
                   __FUNCTION__);
            dst_release(ep->dst);
            l2t_release(L2DATA(ep->com.tdev), ep->l2t);
            put_ep(&ep->com);
            return CPL_RET_BUF_DONE;
      }
      rpl_skb->priority = CPL_PRIORITY_DATA;
      rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
      rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
      rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
      OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
      rpl->cmd = CPL_ABORT_NO_RST;
      cxgb3_ofld_send(ep->com.tdev, rpl_skb);
      if (state != ABORTING) {
            state_set(&ep->com, DEAD);
            release_ep_resources(ep);
      }
      return CPL_RET_BUF_DONE;
}

static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep *ep = ctx;
      struct iwch_qp_attributes attrs;
      unsigned long flags;
      int release = 0;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      BUG_ON(!ep);

      /* The cm_id may be null if we failed to connect */
      spin_lock_irqsave(&ep->com.lock, flags);
      switch (ep->com.state) {
      case CLOSING:
            __state_set(&ep->com, MORIBUND);
            break;
      case MORIBUND:
            stop_ep_timer(ep);
            if ((ep->com.cm_id) && (ep->com.qp)) {
                  attrs.next_state = IWCH_QP_STATE_IDLE;
                  iwch_modify_qp(ep->com.qp->rhp,
                                   ep->com.qp,
                                   IWCH_QP_ATTR_NEXT_STATE,
                                   &attrs, 1);
            }
            close_complete_upcall(ep);
            __state_set(&ep->com, DEAD);
            release = 1;
            break;
      case ABORTING:
            break;
      case DEAD:
      default:
            BUG_ON(1);
            break;
      }
      spin_unlock_irqrestore(&ep->com.lock, flags);
      if (release)
            release_ep_resources(ep);
      return CPL_RET_BUF_DONE;
}

/*
 * T3A does 3 things when a TERM is received:
 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
 * 2) generate an async event on the QP with the TERMINATE opcode
 * 3) post a TERMINATE opcde cqe into the associated CQ.
 *
 * For (1), we save the message in the qp for later consumer consumption.
 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
 * For (3), we toss the CQE in cxio_poll_cq().
 *
 * terminate() handles case (1)...
 */
static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep *ep = ctx;

      PDBG("%s ep %p\n", __FUNCTION__, ep);
      skb_pull(skb, sizeof(struct cpl_rdma_terminate));
      PDBG("%s saving %d bytes of term msg\n", __FUNCTION__, skb->len);
      skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
                          skb->len);
      ep->com.qp->attr.terminate_msg_len = skb->len;
      ep->com.qp->attr.is_terminate_local = 0;
      return CPL_RET_BUF_DONE;
}

static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct cpl_rdma_ec_status *rep = cplhdr(skb);
      struct iwch_ep *ep = ctx;

      PDBG("%s ep %p tid %u status %d\n", __FUNCTION__, ep, ep->hwtid,
           rep->status);
      if (rep->status) {
            struct iwch_qp_attributes attrs;

            printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
                   __FUNCTION__, ep->hwtid);
            stop_ep_timer(ep);
            attrs.next_state = IWCH_QP_STATE_ERROR;
            iwch_modify_qp(ep->com.qp->rhp,
                         ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
                         &attrs, 1);
            abort_connection(ep, NULL, GFP_KERNEL);
      }
      return CPL_RET_BUF_DONE;
}

static void ep_timeout(unsigned long arg)
{
      struct iwch_ep *ep = (struct iwch_ep *)arg;
      struct iwch_qp_attributes attrs;
      unsigned long flags;

      spin_lock_irqsave(&ep->com.lock, flags);
      PDBG("%s ep %p tid %u state %d\n", __FUNCTION__, ep, ep->hwtid,
           ep->com.state);
      switch (ep->com.state) {
      case MPA_REQ_SENT:
            connect_reply_upcall(ep, -ETIMEDOUT);
            break;
      case MPA_REQ_WAIT:
            break;
      case CLOSING:
      case MORIBUND:
            if (ep->com.cm_id && ep->com.qp) {
                  attrs.next_state = IWCH_QP_STATE_ERROR;
                  iwch_modify_qp(ep->com.qp->rhp,
                             ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
                             &attrs, 1);
            }
            break;
      default:
            BUG();
      }
      __state_set(&ep->com, CLOSING);
      spin_unlock_irqrestore(&ep->com.lock, flags);
      abort_connection(ep, NULL, GFP_ATOMIC);
      put_ep(&ep->com);
}

int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
{
      int err;
      struct iwch_ep *ep = to_ep(cm_id);
      PDBG("%s ep %p tid %u\n", __FUNCTION__, ep, ep->hwtid);

      if (state_read(&ep->com) == DEAD) {
            put_ep(&ep->com);
            return -ECONNRESET;
      }
      BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
      if (mpa_rev == 0)
            abort_connection(ep, NULL, GFP_KERNEL);
      else {
            err = send_mpa_reject(ep, pdata, pdata_len);
            err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
      }
      return 0;
}

int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
{
      int err;
      struct iwch_qp_attributes attrs;
      enum iwch_qp_attr_mask mask;
      struct iwch_ep *ep = to_ep(cm_id);
      struct iwch_dev *h = to_iwch_dev(cm_id->device);
      struct iwch_qp *qp = get_qhp(h, conn_param->qpn);

      PDBG("%s ep %p tid %u\n", __FUNCTION__, ep, ep->hwtid);
      if (state_read(&ep->com) == DEAD)
            return -ECONNRESET;

      BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
      BUG_ON(!qp);

      if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
          (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
            abort_connection(ep, NULL, GFP_KERNEL);
            return -EINVAL;
      }

      cm_id->add_ref(cm_id);
      ep->com.cm_id = cm_id;
      ep->com.qp = qp;

      ep->com.rpl_done = 0;
      ep->com.rpl_err = 0;
      ep->ird = conn_param->ird;
      ep->ord = conn_param->ord;
      PDBG("%s %d ird %d ord %d\n", __FUNCTION__, __LINE__, ep->ird, ep->ord);

      get_ep(&ep->com);

      /* bind QP to EP and move to RTS */
      attrs.mpa_attr = ep->mpa_attr;
      attrs.max_ird = ep->ord;
      attrs.max_ord = ep->ord;
      attrs.llp_stream_handle = ep;
      attrs.next_state = IWCH_QP_STATE_RTS;

      /* bind QP and TID with INIT_WR */
      mask = IWCH_QP_ATTR_NEXT_STATE |
                       IWCH_QP_ATTR_LLP_STREAM_HANDLE |
                       IWCH_QP_ATTR_MPA_ATTR |
                       IWCH_QP_ATTR_MAX_IRD |
                       IWCH_QP_ATTR_MAX_ORD;

      err = iwch_modify_qp(ep->com.qp->rhp,
                       ep->com.qp, mask, &attrs, 1);
      if (err)
            goto err;

      err = send_mpa_reply(ep, conn_param->private_data,
                       conn_param->private_data_len);
      if (err)
            goto err;

      /* wait for wr_ack */
      wait_event(ep->com.waitq, ep->com.rpl_done);
      err = ep->com.rpl_err;
      if (err)
            goto err;

      state_set(&ep->com, FPDU_MODE);
      established_upcall(ep);
      put_ep(&ep->com);
      return 0;
err:
      ep->com.cm_id = NULL;
      ep->com.qp = NULL;
      cm_id->rem_ref(cm_id);
      put_ep(&ep->com);
      return err;
}

int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
{
      int err = 0;
      struct iwch_dev *h = to_iwch_dev(cm_id->device);
      struct iwch_ep *ep;
      struct rtable *rt;

      ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
      if (!ep) {
            printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __FUNCTION__);
            err = -ENOMEM;
            goto out;
      }
      init_timer(&ep->timer);
      ep->plen = conn_param->private_data_len;
      if (ep->plen)
            memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
                   conn_param->private_data, ep->plen);
      ep->ird = conn_param->ird;
      ep->ord = conn_param->ord;
      ep->com.tdev = h->rdev.t3cdev_p;

      cm_id->add_ref(cm_id);
      ep->com.cm_id = cm_id;
      ep->com.qp = get_qhp(h, conn_param->qpn);
      BUG_ON(!ep->com.qp);
      PDBG("%s qpn 0x%x qp %p cm_id %p\n", __FUNCTION__, conn_param->qpn,
           ep->com.qp, cm_id);

      /*
       * Allocate an active TID to initiate a TCP connection.
       */
      ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
      if (ep->atid == -1) {
            printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __FUNCTION__);
            err = -ENOMEM;
            goto fail2;
      }

      /* find a route */
      rt = find_route(h->rdev.t3cdev_p,
                  cm_id->local_addr.sin_addr.s_addr,
                  cm_id->remote_addr.sin_addr.s_addr,
                  cm_id->local_addr.sin_port,
                  cm_id->remote_addr.sin_port, IPTOS_LOWDELAY);
      if (!rt) {
            printk(KERN_ERR MOD "%s - cannot find route.\n", __FUNCTION__);
            err = -EHOSTUNREACH;
            goto fail3;
      }
      ep->dst = &rt->u.dst;

      /* get a l2t entry */
      ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst->neighbour,
                       ep->dst->neighbour->dev);
      if (!ep->l2t) {
            printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __FUNCTION__);
            err = -ENOMEM;
            goto fail4;
      }

      state_set(&ep->com, CONNECTING);
      ep->tos = IPTOS_LOWDELAY;
      ep->com.local_addr = cm_id->local_addr;
      ep->com.remote_addr = cm_id->remote_addr;

      /* send connect request to rnic */
      err = send_connect(ep);
      if (!err)
            goto out;

      l2t_release(L2DATA(h->rdev.t3cdev_p), ep->l2t);
fail4:
      dst_release(ep->dst);
fail3:
      cxgb3_free_atid(ep->com.tdev, ep->atid);
fail2:
      put_ep(&ep->com);
out:
      return err;
}

int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
{
      int err = 0;
      struct iwch_dev *h = to_iwch_dev(cm_id->device);
      struct iwch_listen_ep *ep;


      might_sleep();

      ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
      if (!ep) {
            printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __FUNCTION__);
            err = -ENOMEM;
            goto fail1;
      }
      PDBG("%s ep %p\n", __FUNCTION__, ep);
      ep->com.tdev = h->rdev.t3cdev_p;
      cm_id->add_ref(cm_id);
      ep->com.cm_id = cm_id;
      ep->backlog = backlog;
      ep->com.local_addr = cm_id->local_addr;

      /*
       * Allocate a server TID.
       */
      ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
      if (ep->stid == -1) {
            printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __FUNCTION__);
            err = -ENOMEM;
            goto fail2;
      }

      state_set(&ep->com, LISTEN);
      err = listen_start(ep);
      if (err)
            goto fail3;

      /* wait for pass_open_rpl */
      wait_event(ep->com.waitq, ep->com.rpl_done);
      err = ep->com.rpl_err;
      if (!err) {
            cm_id->provider_data = ep;
            goto out;
      }
fail3:
      cxgb3_free_stid(ep->com.tdev, ep->stid);
fail2:
      cm_id->rem_ref(cm_id);
      put_ep(&ep->com);
fail1:
out:
      return err;
}

int iwch_destroy_listen(struct iw_cm_id *cm_id)
{
      int err;
      struct iwch_listen_ep *ep = to_listen_ep(cm_id);

      PDBG("%s ep %p\n", __FUNCTION__, ep);

      might_sleep();
      state_set(&ep->com, DEAD);
      ep->com.rpl_done = 0;
      ep->com.rpl_err = 0;
      err = listen_stop(ep);
      wait_event(ep->com.waitq, ep->com.rpl_done);
      cxgb3_free_stid(ep->com.tdev, ep->stid);
      err = ep->com.rpl_err;
      cm_id->rem_ref(cm_id);
      put_ep(&ep->com);
      return err;
}

int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
{
      int ret=0;
      unsigned long flags;
      int close = 0;

      spin_lock_irqsave(&ep->com.lock, flags);

      PDBG("%s ep %p state %s, abrupt %d\n", __FUNCTION__, ep,
           states[ep->com.state], abrupt);

      if (ep->com.state == DEAD) {
            PDBG("%s already dead ep %p\n", __FUNCTION__, ep);
            goto out;
      }

      if (abrupt) {
            if (ep->com.state != ABORTING) {
                  ep->com.state = ABORTING;
                  close = 1;
            }
            goto out;
      }

      switch (ep->com.state) {
      case MPA_REQ_WAIT:
      case MPA_REQ_SENT:
      case MPA_REQ_RCVD:
      case MPA_REP_SENT:
      case FPDU_MODE:
            start_ep_timer(ep);
            ep->com.state = CLOSING;
            close = 1;
            break;
      case CLOSING:
            ep->com.state = MORIBUND;
            close = 1;
            break;
      case MORIBUND:
            break;
      default:
            BUG();
            break;
      }
out:
      spin_unlock_irqrestore(&ep->com.lock, flags);
      if (close) {
            if (abrupt)
                  ret = send_abort(ep, NULL, gfp);
            else
                  ret = send_halfclose(ep, gfp);
      }
      return ret;
}

int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
                 struct l2t_entry *l2t)
{
      struct iwch_ep *ep = ctx;

      if (ep->dst != old)
            return 0;

      PDBG("%s ep %p redirect to dst %p l2t %p\n", __FUNCTION__, ep, new,
           l2t);
      dst_hold(new);
      l2t_release(L2DATA(ep->com.tdev), ep->l2t);
      ep->l2t = l2t;
      dst_release(old);
      ep->dst = new;
      return 1;
}

/*
 * All the CM events are handled on a work queue to have a safe context.
 */
static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct iwch_ep_common *epc = ctx;

      get_ep(epc);

      /*
       * Save ctx and tdev in the skb->cb area.
       */
      *((void **) skb->cb) = ctx;
      *((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;

      /*
       * Queue the skb and schedule the worker thread.
       */
      skb_queue_tail(&rxq, skb);
      queue_work(workq, &skb_work);
      return 0;
}

static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
{
      struct cpl_set_tcb_rpl *rpl = cplhdr(skb);

      if (rpl->status != CPL_ERR_NONE) {
            printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
                   "for tid %u\n", rpl->status, GET_TID(rpl));
      }
      return CPL_RET_BUF_DONE;
}

int __init iwch_cm_init(void)
{
      skb_queue_head_init(&rxq);

      workq = create_singlethread_workqueue("iw_cxgb3");
      if (!workq)
            return -ENOMEM;

      /*
       * All upcalls from the T3 Core go to sched() to
       * schedule the processing on a work queue.
       */
      t3c_handlers[CPL_ACT_ESTABLISH] = sched;
      t3c_handlers[CPL_ACT_OPEN_RPL] = sched;
      t3c_handlers[CPL_RX_DATA] = sched;
      t3c_handlers[CPL_TX_DMA_ACK] = sched;
      t3c_handlers[CPL_ABORT_RPL_RSS] = sched;
      t3c_handlers[CPL_ABORT_RPL] = sched;
      t3c_handlers[CPL_PASS_OPEN_RPL] = sched;
      t3c_handlers[CPL_CLOSE_LISTSRV_RPL] = sched;
      t3c_handlers[CPL_PASS_ACCEPT_REQ] = sched;
      t3c_handlers[CPL_PASS_ESTABLISH] = sched;
      t3c_handlers[CPL_PEER_CLOSE] = sched;
      t3c_handlers[CPL_CLOSE_CON_RPL] = sched;
      t3c_handlers[CPL_ABORT_REQ_RSS] = sched;
      t3c_handlers[CPL_RDMA_TERMINATE] = sched;
      t3c_handlers[CPL_RDMA_EC_STATUS] = sched;
      t3c_handlers[CPL_SET_TCB_RPL] = set_tcb_rpl;

      /*
       * These are the real handlers that are called from a
       * work queue.
       */
      work_handlers[CPL_ACT_ESTABLISH] = act_establish;
      work_handlers[CPL_ACT_OPEN_RPL] = act_open_rpl;
      work_handlers[CPL_RX_DATA] = rx_data;
      work_handlers[CPL_TX_DMA_ACK] = tx_ack;
      work_handlers[CPL_ABORT_RPL_RSS] = abort_rpl;
      work_handlers[CPL_ABORT_RPL] = abort_rpl;
      work_handlers[CPL_PASS_OPEN_RPL] = pass_open_rpl;
      work_handlers[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl;
      work_handlers[CPL_PASS_ACCEPT_REQ] = pass_accept_req;
      work_handlers[CPL_PASS_ESTABLISH] = pass_establish;
      work_handlers[CPL_PEER_CLOSE] = peer_close;
      work_handlers[CPL_ABORT_REQ_RSS] = peer_abort;
      work_handlers[CPL_CLOSE_CON_RPL] = close_con_rpl;
      work_handlers[CPL_RDMA_TERMINATE] = terminate;
      work_handlers[CPL_RDMA_EC_STATUS] = ec_status;
      return 0;
}

void __exit iwch_cm_term(void)
{
      flush_workqueue(workq);
      destroy_workqueue(workq);
}

Generated by  Doxygen 1.6.0   Back to index