Logo Search packages:      
Sourcecode: linux version File versions  Download package

linit.c

/*
 *    Adaptec AAC series RAID controller driver
 *    (c) Copyright 2001 Red Hat Inc.     <alan@redhat.com>
 *
 * based on the old aacraid driver that is..
 * Adaptec aacraid device driver for Linux.
 *
 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Module Name:
 *   linit.c
 *
 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller
 */


#include <linux/compat.h>
#include <linux/blkdev.h>
#include <linux/completion.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/syscalls.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <asm/semaphore.h>

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsicam.h>
#include <scsi/scsi_eh.h>

#include "aacraid.h"

#define AAC_DRIVER_VERSION          "1.1-5"
#ifndef AAC_DRIVER_BRANCH
#define AAC_DRIVER_BRANCH           ""
#endif
#define AAC_DRIVER_BUILD_DATE       __DATE__ " " __TIME__
#define AAC_DRIVERNAME              "aacraid"

#ifdef AAC_DRIVER_BUILD
#define _str(x) #x
#define str(x) _str(x)
#define AAC_DRIVER_FULL_VERSION     AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
#else
#define AAC_DRIVER_FULL_VERSION     AAC_DRIVER_VERSION AAC_DRIVER_BRANCH " " AAC_DRIVER_BUILD_DATE
#endif

MODULE_AUTHOR("Red Hat Inc and Adaptec");
MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
               "Adaptec Advanced Raid Products, "
               "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(AAC_DRIVER_FULL_VERSION);

static LIST_HEAD(aac_devices);
static int aac_cfg_major = -1;
char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;

/*
 * Because of the way Linux names scsi devices, the order in this table has
 * become important.  Check for on-board Raid first, add-in cards second.
 *
 * Note: The last field is used to index into aac_drivers below.
 */
static struct pci_device_id aac_pci_tbl[] = {
      { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
      { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
      { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
      { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
      { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
      { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
      { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
      { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
      { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
      { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
      { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
      { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
      { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
      { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
      { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
      { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */

      { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
      { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
      { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
      { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
      { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
      { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
      { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
      { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
      { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
      { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
      { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
      { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
      { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
      { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
      { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
      { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
      { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
      { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
      { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
      { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
      { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
      { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
      { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
      { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
      { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
      { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
      { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
      { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
      { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
      { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
      { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
      { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
      { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
      { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
      { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
      { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
      { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
      { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */

      { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
      { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
      { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
      { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
      { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */

      { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
      { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
      { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
      { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
      { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
      { 0,}
};
MODULE_DEVICE_TABLE(pci, aac_pci_tbl);

/*
 * dmb - For now we add the number of channels to this structure.  
 * In the future we should add a fib that reports the number of channels
 * for the card.  At that time we can remove the channels from here
 */
static struct aac_driver_ident aac_drivers[] = {
      { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 2/Si (Iguana/PERC2Si) */
      { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Opal/PERC3Di) */
      { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Si (SlimFast/PERC3Si */
      { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
      { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Viper/PERC3DiV) */
      { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Lexus/PERC3DiL) */
      { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
      { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Dagger/PERC3DiD) */
      { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Boxster/PERC3DiB) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "catapult        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* catapult */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "tomcat          ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* tomcat */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2120S   ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan-2m) */
      { aac_rx_init, "aacraid",  "Legend  ", "Legend S220     ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Legend S220 (Legend Crusader) */
      { aac_rx_init, "aacraid",  "Legend  ", "Legend S230     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Legend S230 (Legend Vulcan) */

      { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3230S   ", 2 }, /* Adaptec 3230S (Harrier) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3240S   ", 2 }, /* Adaptec 3240S (Tornado) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020ZCR     ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025ZCR     ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
      { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
      { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
      { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2820SA      ", 1 }, /* AAR-2820SA (Intruder) */
      { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2620SA      ", 1 }, /* AAR-2620SA (Intruder) */
      { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2420SA      ", 1 }, /* AAR-2420SA (Intruder) */
      { aac_rkt_init, "aacraid",  "ICP     ", "ICP9024RO       ", 2 }, /* ICP9024RO (Lancer) */
      { aac_rkt_init, "aacraid",  "ICP     ", "ICP9014RO       ", 1 }, /* ICP9014RO (Lancer) */
      { aac_rkt_init, "aacraid",  "ICP     ", "ICP9047MA       ", 1 }, /* ICP9047MA (Lancer) */
      { aac_rkt_init, "aacraid",  "ICP     ", "ICP9087MA       ", 1 }, /* ICP9087MA (Lancer) */
      { aac_rkt_init, "aacraid",  "ICP     ", "ICP5445AU       ", 1 }, /* ICP5445AU (Hurricane44) */
      { aac_rx_init, "aacraid",  "ICP     ", "ICP9085LI       ", 1 }, /* ICP9085LI (Marauder-X) */
      { aac_rx_init, "aacraid",  "ICP     ", "ICP5085BR       ", 1 }, /* ICP5085BR (Marauder-E) */
      { aac_rkt_init, "aacraid",  "ICP     ", "ICP9067MA       ", 1 }, /* ICP9067MA (Intruder-6) */
      { NULL        , "aacraid",  "ADAPTEC ", "Themisto        ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
      { aac_rkt_init, "aacraid",  "ADAPTEC ", "Callisto        ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020SA       ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025SA       ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
      { aac_rx_init, "aacraid",  "DELL    ", "CERC SR2        ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2026ZCR     ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2610SA      ", 1 }, /* SATA 6Ch (Bearcat) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2240S       ", 1 }, /* ASR-2240S (SabreExpress) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4005        ", 1 }, /* ASR-4005 */
      { aac_rx_init, "ServeRAID","IBM     ", "ServeRAID 8i    ", 1 }, /* IBM 8i (AvonPark) */
      { aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
      { aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4000        ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4800SAS     ", 1 }, /* ASR-4800SAS (Marauder-X) */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4805SAS     ", 1 }, /* ASR-4805SAS (Marauder-E) */
      { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-3800        ", 1 }, /* ASR-3800 (Hurricane44) */

      { aac_rx_init, "percraid", "DELL    ", "PERC 320/DC     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
      { aac_sa_init, "aacraid",  "ADAPTEC ", "Adaptec 5400S   ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
      { aac_sa_init, "aacraid",  "ADAPTEC ", "AAC-364         ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
      { aac_sa_init, "percraid", "DELL    ", "PERCRAID        ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
      { aac_sa_init, "hpnraid",  "HP      ", "NetRAID         ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */

      { aac_rx_init, "aacraid",  "DELL    ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Dell Catchall */
      { aac_rx_init, "aacraid",  "Legend  ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Legend Catchall */
      { aac_rx_init, "aacraid",  "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Catch All */
      { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Rocket Catch All */
      { aac_nark_init, "aacraid", "ADAPTEC ", "RAID            ", 2 } /* Adaptec NEMER/ARK Catch All */
};

/**
 *    aac_queuecommand  -     queue a SCSI command
 *    @cmd:       SCSI command to queue
 *    @done:            Function to call on command completion
 *
 *    Queues a command for execution by the associated Host Adapter.
 *
 *    TODO: unify with aac_scsi_cmd().
 */ 

static int aac_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
      struct Scsi_Host *host = cmd->device->host;
      struct aac_dev *dev = (struct aac_dev *)host->hostdata;
      u32 count = 0;
      cmd->scsi_done = done;
      for (; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
            struct fib * fib = &dev->fibs[count];
            struct scsi_cmnd * command;
            if (fib->hw_fib_va->header.XferState &&
                ((command = fib->callback_data)) &&
                (command == cmd) &&
                (cmd->SCp.phase == AAC_OWNER_FIRMWARE))
                  return 0; /* Already owned by Adapter */
      }
      cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
      return (aac_scsi_cmd(cmd) ? FAILED : 0);
} 

/**
 *    aac_info          -     Returns the host adapter name
 *    @shost:           Scsi host to report on
 *
 *    Returns a static string describing the device in question
 */

static const char *aac_info(struct Scsi_Host *shost)
{
      struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
      return aac_drivers[dev->cardtype].name;
}

/**
 *    aac_get_driver_ident
 *    @devtype: index into lookup table
 *
 *    Returns a pointer to the entry in the driver lookup table.
 */

struct aac_driver_ident* aac_get_driver_ident(int devtype)
{
      return &aac_drivers[devtype];
}

/**
 *    aac_biosparm      -     return BIOS parameters for disk
 *    @sdev: The scsi device corresponding to the disk
 *    @bdev: the block device corresponding to the disk
 *    @capacity: the sector capacity of the disk
 *    @geom: geometry block to fill in
 *
 *    Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.  
 *    The default disk geometry is 64 heads, 32 sectors, and the appropriate 
 *    number of cylinders so as not to exceed drive capacity.  In order for 
 *    disks equal to or larger than 1 GB to be addressable by the BIOS
 *    without exceeding the BIOS limitation of 1024 cylinders, Extended 
 *    Translation should be enabled.   With Extended Translation enabled, 
 *    drives between 1 GB inclusive and 2 GB exclusive are given a disk 
 *    geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive 
 *    are given a disk geometry of 255 heads and 63 sectors.  However, if 
 *    the BIOS detects that the Extended Translation setting does not match 
 *    the geometry in the partition table, then the translation inferred 
 *    from the partition table will be used by the BIOS, and a warning may 
 *    be displayed.
 */
 
static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
                  sector_t capacity, int *geom)
{
      struct diskparm *param = (struct diskparm *)geom;
      unsigned char *buf;

      dprintk((KERN_DEBUG "aac_biosparm.\n"));

      /*
       *    Assuming extended translation is enabled - #REVISIT#
       */
      if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
            if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
                  param->heads = 255;
                  param->sectors = 63;
            } else {
                  param->heads = 128;
                  param->sectors = 32;
            }
      } else {
            param->heads = 64;
            param->sectors = 32;
      }

      param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);

      /* 
       *    Read the first 1024 bytes from the disk device, if the boot
       *    sector partition table is valid, search for a partition table
       *    entry whose end_head matches one of the standard geometry 
       *    translations ( 64/32, 128/32, 255/63 ).
       */
      buf = scsi_bios_ptable(bdev);
      if (!buf)
            return 0;
      if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
            struct partition *first = (struct partition * )buf;
            struct partition *entry = first;
            int saved_cylinders = param->cylinders;
            int num;
            unsigned char end_head, end_sec;

            for(num = 0; num < 4; num++) {
                  end_head = entry->end_head;
                  end_sec = entry->end_sector & 0x3f;

                  if(end_head == 63) {
                        param->heads = 64;
                        param->sectors = 32;
                        break;
                  } else if(end_head == 127) {
                        param->heads = 128;
                        param->sectors = 32;
                        break;
                  } else if(end_head == 254) {
                        param->heads = 255;
                        param->sectors = 63;
                        break;
                  }
                  entry++;
            }

            if (num == 4) {
                  end_head = first->end_head;
                  end_sec = first->end_sector & 0x3f;
            }

            param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
            if (num < 4 && end_sec == param->sectors) {
                  if (param->cylinders != saved_cylinders)
                        dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
                              param->heads, param->sectors, num));
            } else if (end_head > 0 || end_sec > 0) {
                  dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
                        end_head + 1, end_sec, num));
                  dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
                              param->heads, param->sectors));
            }
      }
      kfree(buf);
      return 0;
}

/**
 *    aac_slave_configure           -     compute queue depths
 *    @sdev:      SCSI device we are considering
 *
 *    Selects queue depths for each target device based on the host adapter's
 *    total capacity and the queue depth supported by the target device.
 *    A queue depth of one automatically disables tagged queueing.
 */

static int aac_slave_configure(struct scsi_device *sdev)
{
      if ((sdev->type == TYPE_DISK) &&
                  (sdev_channel(sdev) != CONTAINER_CHANNEL)) {
            if (expose_physicals == 0)
                  return -ENXIO;
            if (expose_physicals < 0) {
                  struct aac_dev *aac =
                        (struct aac_dev *)sdev->host->hostdata;
                  if (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
                        sdev->no_uld_attach = 1;
            }
      }
      if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
                  (sdev_channel(sdev) == CONTAINER_CHANNEL)) {
            struct scsi_device * dev;
            struct Scsi_Host *host = sdev->host;
            unsigned num_lsu = 0;
            unsigned num_one = 0;
            unsigned depth;

            __shost_for_each_device(dev, host) {
                  if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
                        (sdev_channel(dev) == CONTAINER_CHANNEL))
                        ++num_lsu;
                  else
                        ++num_one;
            }
            if (num_lsu == 0)
                  ++num_lsu;
            depth = (host->can_queue - num_one) / num_lsu;
            if (depth > 256)
                  depth = 256;
            else if (depth < 2)
                  depth = 2;
            scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth);
            if (!(((struct aac_dev *)host->hostdata)->adapter_info.options &
                        AAC_OPT_NEW_COMM))
                  blk_queue_max_segment_size(sdev->request_queue, 65536);
      } else
            scsi_adjust_queue_depth(sdev, 0, 1);

      return 0;
}

/**
 *    aac_change_queue_depth        -     alter queue depths
 *    @sdev:      SCSI device we are considering
 *    @depth:     desired queue depth
 *
 *    Alters queue depths for target device based on the host adapter's
 *    total capacity and the queue depth supported by the target device.
 */

static int aac_change_queue_depth(struct scsi_device *sdev, int depth)
{
      if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
          (sdev_channel(sdev) == CONTAINER_CHANNEL)) {
            struct scsi_device * dev;
            struct Scsi_Host *host = sdev->host;
            unsigned num = 0;

            __shost_for_each_device(dev, host) {
                  if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
                      (sdev_channel(dev) == CONTAINER_CHANNEL))
                        ++num;
                  ++num;
            }
            if (num >= host->can_queue)
                  num = host->can_queue - 1;
            if (depth > (host->can_queue - num))
                  depth = host->can_queue - num;
            if (depth > 256)
                  depth = 256;
            else if (depth < 2)
                  depth = 2;
            scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth);
      } else
            scsi_adjust_queue_depth(sdev, 0, 1);
      return sdev->queue_depth;
}

static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg)
{
      struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
      return aac_do_ioctl(dev, cmd, arg);
}

static int aac_eh_abort(struct scsi_cmnd* cmd)
{
      struct scsi_device * dev = cmd->device;
      struct Scsi_Host * host = dev->host;
      struct aac_dev * aac = (struct aac_dev *)host->hostdata;
      int count;
      int ret = FAILED;

      printk(KERN_ERR "%s: Host adapter abort request (%d,%d,%d,%d)\n",
            AAC_DRIVERNAME,
            host->host_no, sdev_channel(dev), sdev_id(dev), dev->lun);
      switch (cmd->cmnd[0]) {
      case SERVICE_ACTION_IN:
            if (!(aac->raw_io_interface) ||
                !(aac->raw_io_64) ||
                ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
                  break;
      case INQUIRY:
      case READ_CAPACITY:
      case TEST_UNIT_READY:
            /* Mark associated FIB to not complete, eh handler does this */
            for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
                  struct fib * fib = &aac->fibs[count];
                  if (fib->hw_fib_va->header.XferState &&
                    (fib->callback_data == cmd)) {
                        fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
                        cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
                        ret = SUCCESS;
                  }
            }
      }
      return ret;
}

/*
 *    aac_eh_reset      - Reset command handling
 *    @scsi_cmd:  SCSI command block causing the reset
 *
 */
static int aac_eh_reset(struct scsi_cmnd* cmd)
{
      struct scsi_device * dev = cmd->device;
      struct Scsi_Host * host = dev->host;
      struct scsi_cmnd * command;
      int count;
      struct aac_dev * aac = (struct aac_dev *)host->hostdata;
      unsigned long flags;

      /* Mark the associated FIB to not complete, eh handler does this */
      for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
            struct fib * fib = &aac->fibs[count];
            if (fib->hw_fib_va->header.XferState &&
              (fib->callback_data == cmd)) {
                  fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
                  cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
            }
      }
      printk(KERN_ERR "%s: Host adapter reset request. SCSI hang ?\n", 
                              AAC_DRIVERNAME);

      if ((count = aac_check_health(aac)))
            return count;
      /*
       * Wait for all commands to complete to this specific
       * target (block maximum 60 seconds).
       */
      for (count = 60; count; --count) {
            int active = aac->in_reset;

            if (active == 0)
            __shost_for_each_device(dev, host) {
                  spin_lock_irqsave(&dev->list_lock, flags);
                  list_for_each_entry(command, &dev->cmd_list, list) {
                        if ((command != cmd) &&
                            (command->SCp.phase == AAC_OWNER_FIRMWARE)) {
                              active++;
                              break;
                        }
                  }
                  spin_unlock_irqrestore(&dev->list_lock, flags);
                  if (active)
                        break;

            }
            /*
             * We can exit If all the commands are complete
             */
            if (active == 0)
                  return SUCCESS;
            ssleep(1);
      }
      printk(KERN_ERR "%s: SCSI bus appears hung\n", AAC_DRIVERNAME);
      /*
       * This adapter needs a blind reset, only do so for Adapters that
       * support a register, instead of a commanded, reset.
       */
      if ((aac->supplement_adapter_info.SupportedOptions2 &
        le32_to_cpu(AAC_OPTION_MU_RESET|AAC_OPTION_IGNORE_RESET)) ==
        le32_to_cpu(AAC_OPTION_MU_RESET))
            aac_reset_adapter(aac, 2); /* Bypass wait for command quiesce */
      return SUCCESS; /* Cause an immediate retry of the command with a ten second delay after successful tur */
}

/**
 *    aac_cfg_open            -     open a configuration file
 *    @inode: inode being opened
 *    @file: file handle attached
 *
 *    Called when the configuration device is opened. Does the needed
 *    set up on the handle and then returns
 *
 *    Bugs: This needs extending to check a given adapter is present
 *    so we can support hot plugging, and to ref count adapters.
 */

static int aac_cfg_open(struct inode *inode, struct file *file)
{
      struct aac_dev *aac;
      unsigned minor_number = iminor(inode);
      int err = -ENODEV;

      list_for_each_entry(aac, &aac_devices, entry) {
            if (aac->id == minor_number) {
                  file->private_data = aac;
                  err = 0;
                  break;
            }
      }

      return err;
}

/**
 *    aac_cfg_ioctl           -     AAC configuration request
 *    @inode: inode of device
 *    @file: file handle
 *    @cmd: ioctl command code
 *    @arg: argument
 *
 *    Handles a configuration ioctl. Currently this involves wrapping it
 *    up and feeding it into the nasty windowsalike glue layer.
 *
 *    Bugs: Needs locking against parallel ioctls lower down
 *    Bugs: Needs to handle hot plugging
 */
 
static int aac_cfg_ioctl(struct inode *inode,  struct file *file,
            unsigned int cmd, unsigned long arg)
{
      if (!capable(CAP_SYS_RAWIO))
            return -EPERM;
      return aac_do_ioctl(file->private_data, cmd, (void __user *)arg);
}

#ifdef CONFIG_COMPAT
static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
{
      long ret;
      lock_kernel();
      switch (cmd) { 
      case FSACTL_MINIPORT_REV_CHECK:
      case FSACTL_SENDFIB:
      case FSACTL_OPEN_GET_ADAPTER_FIB:
      case FSACTL_CLOSE_GET_ADAPTER_FIB:
      case FSACTL_SEND_RAW_SRB:
      case FSACTL_GET_PCI_INFO:
      case FSACTL_QUERY_DISK:
      case FSACTL_DELETE_DISK:
      case FSACTL_FORCE_DELETE_DISK:
      case FSACTL_GET_CONTAINERS: 
      case FSACTL_SEND_LARGE_FIB:
            ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
            break;

      case FSACTL_GET_NEXT_ADAPTER_FIB: {
            struct fib_ioctl __user *f;
            
            f = compat_alloc_user_space(sizeof(*f));
            ret = 0;
            if (clear_user(f, sizeof(*f)))
                  ret = -EFAULT;
            if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
                  ret = -EFAULT;
            if (!ret)
                  ret = aac_do_ioctl(dev, cmd, f);
            break;
      }

      default:
            ret = -ENOIOCTLCMD; 
            break;
      } 
      unlock_kernel();
      return ret;
}

static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg)
{
      struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
      return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
}

static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
{
      if (!capable(CAP_SYS_RAWIO))
            return -EPERM;
      return aac_compat_do_ioctl((struct aac_dev *)file->private_data, cmd, arg);
}
#endif

static ssize_t aac_show_model(struct class_device *class_dev,
            char *buf)
{
      struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
      int len;

      if (dev->supplement_adapter_info.AdapterTypeText[0]) {
            char * cp = dev->supplement_adapter_info.AdapterTypeText;
            while (*cp && *cp != ' ')
                  ++cp;
            while (*cp == ' ')
                  ++cp;
            len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
      } else
            len = snprintf(buf, PAGE_SIZE, "%s\n",
              aac_drivers[dev->cardtype].model);
      return len;
}

static ssize_t aac_show_vendor(struct class_device *class_dev,
            char *buf)
{
      struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
      int len;

      if (dev->supplement_adapter_info.AdapterTypeText[0]) {
            char * cp = dev->supplement_adapter_info.AdapterTypeText;
            while (*cp && *cp != ' ')
                  ++cp;
            len = snprintf(buf, PAGE_SIZE, "%.*s\n",
              (int)(cp - (char *)dev->supplement_adapter_info.AdapterTypeText),
              dev->supplement_adapter_info.AdapterTypeText);
      } else
            len = snprintf(buf, PAGE_SIZE, "%s\n",
              aac_drivers[dev->cardtype].vname);
      return len;
}

static ssize_t aac_show_kernel_version(struct class_device *class_dev,
            char *buf)
{
      struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
      int len, tmp;

      tmp = le32_to_cpu(dev->adapter_info.kernelrev);
      len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 
        tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
        le32_to_cpu(dev->adapter_info.kernelbuild));
      return len;
}

static ssize_t aac_show_monitor_version(struct class_device *class_dev,
            char *buf)
{
      struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
      int len, tmp;

      tmp = le32_to_cpu(dev->adapter_info.monitorrev);
      len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 
        tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
        le32_to_cpu(dev->adapter_info.monitorbuild));
      return len;
}

static ssize_t aac_show_bios_version(struct class_device *class_dev,
            char *buf)
{
      struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
      int len, tmp;

      tmp = le32_to_cpu(dev->adapter_info.biosrev);
      len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 
        tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
        le32_to_cpu(dev->adapter_info.biosbuild));
      return len;
}

ssize_t aac_show_serial_number(struct class_device *class_dev, char *buf)
{
      struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
      int len = 0;

      if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
            len = snprintf(buf, PAGE_SIZE, "%06X\n",
              le32_to_cpu(dev->adapter_info.serial[0]));
      if (len &&
        !memcmp(&dev->supplement_adapter_info.MfgPcbaSerialNo[
          sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo)+2-len],
        buf, len))
            len = snprintf(buf, PAGE_SIZE, "%.*s\n",
              (int)sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo),
              dev->supplement_adapter_info.MfgPcbaSerialNo);
      return len;
}

static ssize_t aac_show_max_channel(struct class_device *class_dev, char *buf)
{
      return snprintf(buf, PAGE_SIZE, "%d\n",
        class_to_shost(class_dev)->max_channel);
}

static ssize_t aac_show_max_id(struct class_device *class_dev, char *buf)
{
      return snprintf(buf, PAGE_SIZE, "%d\n",
        class_to_shost(class_dev)->max_id);
}

static ssize_t aac_store_reset_adapter(struct class_device *class_dev,
            const char *buf, size_t count)
{
      int retval = -EACCES;

      if (!capable(CAP_SYS_ADMIN))
            return retval;
      retval = aac_reset_adapter((struct aac_dev*)class_to_shost(class_dev)->hostdata, buf[0] == '!');
      if (retval >= 0)
            retval = count;
      return retval;
}

static ssize_t aac_show_reset_adapter(struct class_device *class_dev,
            char *buf)
{
      struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
      int len, tmp;

      tmp = aac_adapter_check_health(dev);
      if ((tmp == 0) && dev->in_reset)
            tmp = -EBUSY;
      len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
      return len;
}

static struct class_device_attribute aac_model = {
      .attr = {
            .name = "model",
            .mode = S_IRUGO,
      },
      .show = aac_show_model,
};
static struct class_device_attribute aac_vendor = {
      .attr = {
            .name = "vendor",
            .mode = S_IRUGO,
      },
      .show = aac_show_vendor,
};
static struct class_device_attribute aac_kernel_version = {
      .attr = {
            .name = "hba_kernel_version",
            .mode = S_IRUGO,
      },
      .show = aac_show_kernel_version,
};
static struct class_device_attribute aac_monitor_version = {
      .attr = {
            .name = "hba_monitor_version",
            .mode = S_IRUGO,
      },
      .show = aac_show_monitor_version,
};
static struct class_device_attribute aac_bios_version = {
      .attr = {
            .name = "hba_bios_version",
            .mode = S_IRUGO,
      },
      .show = aac_show_bios_version,
};
static struct class_device_attribute aac_serial_number = {
      .attr = {
            .name = "serial_number",
            .mode = S_IRUGO,
      },
      .show = aac_show_serial_number,
};
static struct class_device_attribute aac_max_channel = {
      .attr = {
            .name = "max_channel",
            .mode = S_IRUGO,
      },
      .show = aac_show_max_channel,
};
static struct class_device_attribute aac_max_id = {
      .attr = {
            .name = "max_id",
            .mode = S_IRUGO,
      },
      .show = aac_show_max_id,
};
static struct class_device_attribute aac_reset = {
      .attr = {
            .name = "reset_host",
            .mode = S_IWUSR|S_IRUGO,
      },
      .store = aac_store_reset_adapter,
      .show = aac_show_reset_adapter,
};

static struct class_device_attribute *aac_attrs[] = {
      &aac_model,
      &aac_vendor,
      &aac_kernel_version,
      &aac_monitor_version,
      &aac_bios_version,
      &aac_serial_number,
      &aac_max_channel,
      &aac_max_id,
      &aac_reset,
      NULL
};


static const struct file_operations aac_cfg_fops = {
      .owner            = THIS_MODULE,
      .ioctl            = aac_cfg_ioctl,
#ifdef CONFIG_COMPAT
      .compat_ioctl   = aac_compat_cfg_ioctl,
#endif
      .open       = aac_cfg_open,
};

static struct scsi_host_template aac_driver_template = {
      .module                       = THIS_MODULE,
      .name                   = "AAC",
      .proc_name              = AAC_DRIVERNAME,
      .info                   = aac_info,
      .ioctl                  = aac_ioctl,
#ifdef CONFIG_COMPAT
      .compat_ioctl                 = aac_compat_ioctl,
#endif
      .queuecommand           = aac_queuecommand,
      .bios_param             = aac_biosparm,   
      .shost_attrs                  = aac_attrs,
      .slave_configure        = aac_slave_configure,
      .change_queue_depth           = aac_change_queue_depth,
      .eh_abort_handler       = aac_eh_abort,
      .eh_host_reset_handler        = aac_eh_reset,
      .can_queue              = AAC_NUM_IO_FIB, 
      .this_id                = MAXIMUM_NUM_CONTAINERS,
      .sg_tablesize           = 16,
      .max_sectors            = 128,
#if (AAC_NUM_IO_FIB > 256)
      .cmd_per_lun                  = 256,
#else       
      .cmd_per_lun            = AAC_NUM_IO_FIB, 
#endif      
      .use_clustering               = ENABLE_CLUSTERING,
      .use_sg_chaining        = ENABLE_SG_CHAINING,
      .emulated                       = 1,
};

static void __aac_shutdown(struct aac_dev * aac)
{
      if (aac->aif_thread)
            kthread_stop(aac->thread);
      aac_send_shutdown(aac);
      aac_adapter_disable_int(aac);
      free_irq(aac->pdev->irq, aac);
}

static int __devinit aac_probe_one(struct pci_dev *pdev,
            const struct pci_device_id *id)
{
      unsigned index = id->driver_data;
      struct Scsi_Host *shost;
      struct aac_dev *aac;
      struct list_head *insert = &aac_devices;
      int error = -ENODEV;
      int unique_id = 0;

      list_for_each_entry(aac, &aac_devices, entry) {
            if (aac->id > unique_id)
                  break;
            insert = &aac->entry;
            unique_id++;
      }

      error = pci_enable_device(pdev);
      if (error)
            goto out;
      error = -ENODEV;

      if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) || 
                  pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))
            goto out_disable_pdev;
      /*
       * If the quirk31 bit is set, the adapter needs adapter
       * to driver communication memory to be allocated below 2gig
       */
      if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) 
            if (pci_set_dma_mask(pdev, DMA_31BIT_MASK) ||
                        pci_set_consistent_dma_mask(pdev, DMA_31BIT_MASK))
                  goto out_disable_pdev;
      
      pci_set_master(pdev);

      shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
      if (!shost)
            goto out_disable_pdev;

      shost->irq = pdev->irq;
      shost->base = pci_resource_start(pdev, 0);
      shost->unique_id = unique_id;
      shost->max_cmd_len = 16;

      aac = (struct aac_dev *)shost->hostdata;
      aac->scsi_host_ptr = shost;   
      aac->pdev = pdev;
      aac->name = aac_driver_template.name;
      aac->id = shost->unique_id;
      aac->cardtype =  index;
      INIT_LIST_HEAD(&aac->entry);

      aac->fibs = kmalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL);
      if (!aac->fibs)
            goto out_free_host;
      spin_lock_init(&aac->fib_lock);

      /*
       *    Map in the registers from the adapter.
       */
      aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
      if ((*aac_drivers[index].init)(aac))
            goto out_unmap;

      /*
       *    Start any kernel threads needed
       */
      aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
      if (IS_ERR(aac->thread)) {
            printk(KERN_ERR "aacraid: Unable to create command thread.\n");
            error = PTR_ERR(aac->thread);
            goto out_deinit;
      }

      /*
       * If we had set a smaller DMA mask earlier, set it to 4gig
       * now since the adapter can dma data to at least a 4gig
       * address space.
       */
      if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
            if (pci_set_dma_mask(pdev, DMA_32BIT_MASK))
                  goto out_deinit;
 
      aac->maximum_num_channels = aac_drivers[index].channels;
      error = aac_get_adapter_info(aac);
      if (error < 0)
            goto out_deinit;

      /*
       * Lets override negotiations and drop the maximum SG limit to 34
       */
      if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && 
                  (aac->scsi_host_ptr->sg_tablesize > 34)) {
            aac->scsi_host_ptr->sg_tablesize = 34;
            aac->scsi_host_ptr->max_sectors
              = (aac->scsi_host_ptr->sg_tablesize * 8) + 112;
      }

      if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
                  (aac->scsi_host_ptr->sg_tablesize > 17)) {
            aac->scsi_host_ptr->sg_tablesize = 17;
            aac->scsi_host_ptr->max_sectors
              = (aac->scsi_host_ptr->sg_tablesize * 8) + 112;
      }

      /*
       * Firware printf works only with older firmware.
       */
      if (aac_drivers[index].quirks & AAC_QUIRK_34SG) 
            aac->printf_enabled = 1;
      else
            aac->printf_enabled = 0;
 
      /*
       * max channel will be the physical channels plus 1 virtual channel
       * all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
       * physical channels are address by their actual physical number+1
       */
      if ((aac->nondasd_support == 1) || expose_physicals)
            shost->max_channel = aac->maximum_num_channels;
      else
            shost->max_channel = 0;

      aac_get_config_status(aac, 0);
      aac_get_containers(aac);
      list_add(&aac->entry, insert);

      shost->max_id = aac->maximum_num_containers;
      if (shost->max_id < aac->maximum_num_physicals)
            shost->max_id = aac->maximum_num_physicals;
      if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
            shost->max_id = MAXIMUM_NUM_CONTAINERS;
      else
            shost->this_id = shost->max_id;

      /*
       * dmb - we may need to move the setting of these parms somewhere else once
       * we get a fib that can report the actual numbers
       */
      shost->max_lun = AAC_MAX_LUN;

      pci_set_drvdata(pdev, shost);

      error = scsi_add_host(shost, &pdev->dev);
      if (error)
            goto out_deinit;
      scsi_scan_host(shost);

      return 0;

 out_deinit:
      __aac_shutdown(aac);
 out_unmap:
      aac_fib_map_free(aac);
      if (aac->comm_addr)
            pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
              aac->comm_phys);
      kfree(aac->queues);
      aac_adapter_ioremap(aac, 0);
      kfree(aac->fibs);
      kfree(aac->fsa_dev);
 out_free_host:
      scsi_host_put(shost);
 out_disable_pdev:
      pci_disable_device(pdev);
 out:
      return error;
}

static void aac_shutdown(struct pci_dev *dev)
{
      struct Scsi_Host *shost = pci_get_drvdata(dev);
      scsi_block_requests(shost);
      __aac_shutdown((struct aac_dev *)shost->hostdata);
}

static void __devexit aac_remove_one(struct pci_dev *pdev)
{
      struct Scsi_Host *shost = pci_get_drvdata(pdev);
      struct aac_dev *aac = (struct aac_dev *)shost->hostdata;

      scsi_remove_host(shost);

      __aac_shutdown(aac);
      aac_fib_map_free(aac);
      pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
                  aac->comm_phys);
      kfree(aac->queues);

      aac_adapter_ioremap(aac, 0);
      
      kfree(aac->fibs);
      kfree(aac->fsa_dev);
      
      list_del(&aac->entry);
      scsi_host_put(shost);
      pci_disable_device(pdev);
      if (list_empty(&aac_devices)) {
            unregister_chrdev(aac_cfg_major, "aac");
            aac_cfg_major = -1;
      }
}

static struct pci_driver aac_pci_driver = {
      .name       = AAC_DRIVERNAME,
      .id_table   = aac_pci_tbl,
      .probe            = aac_probe_one,
      .remove           = __devexit_p(aac_remove_one),
      .shutdown   = aac_shutdown,
};

static int __init aac_init(void)
{
      int error;
      
      printk(KERN_INFO "Adaptec %s driver %s\n",
        AAC_DRIVERNAME, aac_driver_version);

      error = pci_register_driver(&aac_pci_driver);
      if (error < 0)
            return error;

      aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops);
      if (aac_cfg_major < 0) {
            printk(KERN_WARNING
                   "aacraid: unable to register \"aac\" device.\n");
      }

      return 0;
}

static void __exit aac_exit(void)
{
      if (aac_cfg_major > -1)
            unregister_chrdev(aac_cfg_major, "aac");
      pci_unregister_driver(&aac_pci_driver);
}

module_init(aac_init);
module_exit(aac_exit);

Generated by  Doxygen 1.6.0   Back to index