Logo Search packages:      
Sourcecode: linux version File versions  Download package


#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

 * cloning flags:
#define CSIGNAL         0x000000ff  /* signal mask to be sent at exit */
#define CLONE_VM  0x00000100  /* set if VM shared between processes */
#define CLONE_FS  0x00000200  /* set if fs info shared between processes */
#define CLONE_FILES     0x00000400  /* set if open files shared between processes */
#define CLONE_SIGHAND   0x00000800  /* set if signal handlers and blocked signals shared */
#define CLONE_PTRACE    0x00002000  /* set if we want to let tracing continue on the child too */
#define CLONE_VFORK     0x00004000  /* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT    0x00008000  /* set if we want to have the same parent as the cloner */
#define CLONE_THREAD    0x00010000  /* Same thread group? */
#define CLONE_NEWNS     0x00020000  /* New namespace group? */
#define CLONE_SYSVSEM   0x00040000  /* share system V SEM_UNDO semantics */
#define CLONE_SETTLS    0x00080000  /* create a new TLS for the child */
#define CLONE_PARENT_SETTID   0x00100000  /* set the TID in the parent */
#define CLONE_CHILD_CLEARTID  0x00200000  /* clear the TID in the child */
#define CLONE_DETACHED        0x00400000  /* Unused, ignored */
#define CLONE_UNTRACED        0x00800000  /* set if the tracing process can't force CLONE_PTRACE on this clone */
#define CLONE_CHILD_SETTID    0x01000000  /* set the TID in the child */
#define CLONE_STOPPED         0x02000000  /* Start in stopped state */
#define CLONE_NEWUTS          0x04000000  /* New utsname group? */
#define CLONE_NEWIPC          0x08000000  /* New ipcs */
#define CLONE_NEWUSER         0x10000000  /* New user namespace */
#define CLONE_NEWPID          0x20000000  /* New pid namespace */
#define CLONE_NEWNET          0x40000000  /* New network namespace */

 * Scheduling policies
#define SCHED_NORMAL          0
#define SCHED_FIFO            1
#define SCHED_RR        2
#define SCHED_BATCH           3
/* SCHED_ISO: reserved but not implemented yet */
#define SCHED_IDLE            5

#ifdef __KERNEL__

struct sched_param {
      int sched_priority;

#include <asm/param.h>  /* for HZ */

#include <linux/capability.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/rbtree.h>
#include <linux/thread_info.h>
#include <linux/cpumask.h>
#include <linux/errno.h>
#include <linux/nodemask.h>
#include <linux/mm_types.h>

#include <asm/system.h>
#include <asm/semaphore.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/cputime.h>

#include <linux/smp.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/securebits.h>
#include <linux/fs_struct.h>
#include <linux/compiler.h>
#include <linux/completion.h>
#include <linux/pid.h>
#include <linux/percpu.h>
#include <linux/topology.h>
#include <linux/proportions.h>
#include <linux/seccomp.h>
#include <linux/rcupdate.h>
#include <linux/futex.h>
#include <linux/rtmutex.h>

#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#include <linux/timer.h>
#include <linux/hrtimer.h>
#include <linux/task_io_accounting.h>
#include <linux/kobject.h>

#include <asm/processor.h>

struct exec_domain;
struct futex_pi_state;
struct bio;

 * List of flags we want to share for kernel threads,
 * if only because they are not used by them anyway.

 * These are the constant used to fake the fixed-point load-average
 * counting. Some notes:
 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 *    a load-average precision of 10 bits integer + 11 bits fractional
 *  - if you want to count load-averages more often, you need more
 *    precision, or rounding will get you. With 2-second counting freq,
 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 *    11 bit fractions.
extern unsigned long avenrun[];           /* Load averages */

#define FSHIFT          11          /* nr of bits of precision */
#define FIXED_1         (1<<FSHIFT) /* 1.0 as fixed-point */
#define LOAD_FREQ (5*HZ+1)    /* 5 sec intervals */
#define EXP_1           1884        /* 1/exp(5sec/1min) as fixed-point */
#define EXP_5           2014        /* 1/exp(5sec/5min) */
#define EXP_15          2037        /* 1/exp(5sec/15min) */

#define CALC_LOAD(load,exp,n) \
      load *= exp; \
      load += n*(FIXED_1-exp); \
      load >>= FSHIFT;

extern unsigned long total_forks;
extern int nr_threads;
DECLARE_PER_CPU(unsigned long, process_counts);
extern int nr_processes(void);
extern unsigned long nr_running(void);
extern unsigned long nr_uninterruptible(void);
extern unsigned long nr_active(void);
extern unsigned long nr_iowait(void);
extern unsigned long weighted_cpuload(const int cpu);

struct seq_file;
struct cfs_rq;
struct task_group;
extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
extern void proc_sched_set_task(struct task_struct *p);
extern void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
static inline void
proc_sched_show_task(struct task_struct *p, struct seq_file *m)
static inline void proc_sched_set_task(struct task_struct *p)
static inline void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)

 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
#define TASK_RUNNING          0
#define TASK_STOPPED          4
#define TASK_TRACED           8
/* in tsk->exit_state */
#define EXIT_ZOMBIE           16
#define EXIT_DEAD       32
/* in tsk->state again */
#define TASK_DEAD       64

#define __set_task_state(tsk, state_value)            \
      do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value)        \
      set_mb((tsk)->state, (state_value))

 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *    set_current_state(TASK_UNINTERRUPTIBLE);
 *    if (do_i_need_to_sleep())
 *          schedule();
 * If the caller does not need such serialisation then use __set_current_state()
#define __set_current_state(state_value)              \
      do { current->state = (state_value); } while (0)
#define set_current_state(state_value)          \
      set_mb(current->state, (state_value))

/* Task command name length */
#define TASK_COMM_LEN 16

#include <linux/spinlock.h>

 * This serializes "schedule()" and also protects
 * the run-queue from deletions/modifications (but
 * _adding_ to the beginning of the run-queue has
 * a separate lock).
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;

struct task_struct;

extern void sched_init(void);
extern void sched_init_smp(void);
extern void init_idle(struct task_struct *idle, int cpu);
extern void init_idle_bootup_task(struct task_struct *idle);

extern cpumask_t nohz_cpu_mask;
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
extern int select_nohz_load_balancer(int cpu);
static inline int select_nohz_load_balancer(int cpu)
      return 0;

 * Only dump TASK_* tasks. (0 for all tasks)
extern void show_state_filter(unsigned long state_filter);

static inline void show_state(void)

extern void show_regs(struct pt_regs *);

 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 * task), SP is the stack pointer of the first frame that should be shown in the back
 * trace (or NULL if the entire call-chain of the task should be shown).
extern void show_stack(struct task_struct *task, unsigned long *sp);

void io_schedule(void);
long io_schedule_timeout(long timeout);

extern void cpu_init (void);
extern void trap_init(void);
extern void account_process_tick(struct task_struct *task, int user);
extern void update_process_times(int user);
extern void scheduler_tick(void);

extern void softlockup_tick(void);
extern void spawn_softlockup_task(void);
extern void touch_softlockup_watchdog(void);
extern void touch_all_softlockup_watchdogs(void);
extern int softlockup_thresh;
static inline void softlockup_tick(void)
static inline void spawn_softlockup_task(void)
static inline void touch_softlockup_watchdog(void)
static inline void touch_all_softlockup_watchdogs(void)

/* Attach to any functions which should be ignored in wchan output. */
#define __sched         __attribute__((__section__(".sched.text")))

/* Linker adds these: start and end of __sched functions */
extern char __sched_text_start[], __sched_text_end[];

/* Is this address in the __sched functions? */
extern int in_sched_functions(unsigned long addr);

extern signed long FASTCALL(schedule_timeout(signed long timeout));
extern signed long schedule_timeout_interruptible(signed long timeout);
extern signed long schedule_timeout_uninterruptible(signed long timeout);
asmlinkage void schedule(void);

struct nsproxy;
struct user_namespace;

/* Maximum number of active map areas.. This is a random (large) number */

extern int sysctl_max_map_count;

#include <linux/aio.h>

extern unsigned long
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
                   unsigned long, unsigned long);
extern unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
                    unsigned long len, unsigned long pgoff,
                    unsigned long flags);
extern void arch_unmap_area(struct mm_struct *, unsigned long);
extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);

 * The mm counters are not protected by its page_table_lock,
 * so must be incremented atomically.
#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)

 * The mm counters are protected by its page_table_lock,
 * so can be incremented directly.
#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
#define get_mm_counter(mm, member) ((mm)->_##member)
#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
#define inc_mm_counter(mm, member) (mm)->_##member++
#define dec_mm_counter(mm, member) (mm)->_##member--


#define get_mm_rss(mm)                          \
      (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
#define update_hiwater_rss(mm)      do {              \
      unsigned long _rss = get_mm_rss(mm);            \
      if ((mm)->hiwater_rss < _rss)             \
            (mm)->hiwater_rss = _rss;           \
} while (0)
#define update_hiwater_vm(mm) do {              \
      if ((mm)->hiwater_vm < (mm)->total_vm)          \
            (mm)->hiwater_vm = (mm)->total_vm;  \
} while (0)

extern void set_dumpable(struct mm_struct *mm, int value);
extern int get_dumpable(struct mm_struct *mm);

/* mm flags */
/* dumpable bits */
#define MMF_DUMPABLE      0  /* core dump is permitted */
#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */

/* coredump filter bits */
      ((1 << MMF_DUMP_ANON_PRIVATE) |     (1 << MMF_DUMP_ANON_SHARED))

struct sighand_struct {
      atomic_t          count;
      struct k_sigaction      action[_NSIG];
      spinlock_t        siglock;
      wait_queue_head_t signalfd_wqh;

struct pacct_struct {
      int               ac_flag;
      long              ac_exitcode;
      unsigned long           ac_mem;
      cputime_t         ac_utime, ac_stime;
      unsigned long           ac_minflt, ac_majflt;

 * NOTE! "signal_struct" does not have it's own
 * locking, because a shared signal_struct always
 * implies a shared sighand_struct, so locking
 * sighand_struct is always a proper superset of
 * the locking of signal_struct.
struct signal_struct {
      atomic_t          count;
      atomic_t          live;

      wait_queue_head_t wait_chldexit;    /* for wait4() */

      /* current thread group signal load-balancing target: */
      struct task_struct      *curr_target;

      /* shared signal handling: */
      struct sigpending shared_pending;

      /* thread group exit support */
      int               group_exit_code;
      /* overloaded:
       * - notify group_exit_task when ->count is equal to notify_count
       * - everyone except group_exit_task is stopped during signal delivery
       *   of fatal signals, group_exit_task processes the signal.
      struct task_struct      *group_exit_task;
      int               notify_count;

      /* thread group stop support, overloads group_exit_code too */
      int               group_stop_count;
      unsigned int            flags; /* see SIGNAL_* flags below */

      /* POSIX.1b Interval Timers */
      struct list_head posix_timers;

      /* ITIMER_REAL timer for the process */
      struct hrtimer real_timer;
      struct task_struct *tsk;
      ktime_t it_real_incr;

      /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
      cputime_t it_prof_expires, it_virt_expires;
      cputime_t it_prof_incr, it_virt_incr;

      /* job control IDs */

       * pgrp and session fields are deprecated.
       * use the task_session_Xnr and task_pgrp_Xnr routines below

      union {
            pid_t pgrp __deprecated;
            pid_t __pgrp;

      struct pid *tty_old_pgrp;

      union {
            pid_t session __deprecated;
            pid_t __session;

      /* boolean value for session group leader */
      int leader;

      struct tty_struct *tty; /* NULL if no tty */

       * Cumulative resource counters for dead threads in the group,
       * and for reaped dead child processes forked by this group.
       * Live threads maintain their own counters and add to these
       * in __exit_signal, except for the group leader.
      cputime_t utime, stime, cutime, cstime;
      cputime_t gtime;
      cputime_t cgtime;
      unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
      unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
      unsigned long inblock, oublock, cinblock, coublock;

       * Cumulative ns of scheduled CPU time for dead threads in the
       * group, not including a zombie group leader.  (This only differs
       * from jiffies_to_ns(utime + stime) if sched_clock uses something
       * other than jiffies.)
      unsigned long long sum_sched_runtime;

       * We don't bother to synchronize most readers of this at all,
       * because there is no reader checking a limit that actually needs
       * to get both rlim_cur and rlim_max atomically, and either one
       * alone is a single word that can safely be read normally.
       * getrlimit/setrlimit use task_lock(current->group_leader) to
       * protect this instead of the siglock, because they really
       * have no need to disable irqs.
      struct rlimit rlim[RLIM_NLIMITS];

      struct list_head cpu_timers[3];

      /* keep the process-shared keyrings here so that they do the right
       * thing in threads created with CLONE_THREAD */
      struct key *session_keyring;  /* keyring inherited over fork */
      struct key *process_keyring;  /* keyring private to this process */
      struct pacct_struct pacct;    /* per-process accounting information */
      struct taskstats *stats;
      unsigned audit_tty;
      struct tty_audit_buf *tty_audit_buf;

/* Context switch must be unlocked if interrupts are to be enabled */

 * Bits in flags field of signal_struct.
#define SIGNAL_STOP_STOPPED   0x00000001 /* job control stop in effect */
#define SIGNAL_STOP_DEQUEUED  0x00000002 /* stop signal dequeued */
#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
#define SIGNAL_GROUP_EXIT     0x00000008 /* group exit in progress */

 * Some day this will be a full-fledged user tracking system..
struct user_struct {
      atomic_t __count; /* reference count */
      atomic_t processes;     /* How many processes does this user have? */
      atomic_t files;         /* How many open files does this user have? */
      atomic_t sigpending;    /* How many pending signals does this user have? */
      atomic_t inotify_watches; /* How many inotify watches does this user have? */
      atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
      /* protected by mq_lock */
      unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
      unsigned long locked_shm; /* How many pages of mlocked shm ? */

      struct key *uid_keyring;      /* UID specific keyring */
      struct key *session_keyring;  /* UID's default session keyring */

      /* Hash table maintenance information */
      struct hlist_node uidhash_node;
      uid_t uid;

      struct task_group *tg;
      struct kset kset;
      struct subsys_attribute user_attr;
      struct work_struct work;

extern int uids_kobject_init(void);
static inline int uids_kobject_init(void) { return 0; }

extern struct user_struct *find_user(uid_t);

extern struct user_struct root_user;
#define INIT_USER (&root_user)

struct backing_dev_info;
struct reclaim_state;

struct sched_info {
      /* cumulative counters */
      unsigned long pcount;         /* # of times run on this cpu */
      unsigned long long cpu_time,  /* time spent on the cpu */
                     run_delay; /* time spent waiting on a runqueue */

      /* timestamps */
      unsigned long long last_arrival,/* when we last ran on a cpu */
                     last_queued;   /* when we were last queued to run */
      /* BKL stats */
      unsigned int bkl_count;
#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */

extern const struct file_operations proc_schedstat_operations;

struct task_delay_info {
      spinlock_t  lock;
      unsigned int      flags;      /* Private per-task flags */

      /* For each stat XXX, add following, aligned appropriately
       * struct timespec XXX_start, XXX_end;
       * u64 XXX_delay;
       * u32 XXX_count;
       * Atomicity of updates to XXX_delay, XXX_count protected by
       * single lock above (split into XXX_lock if contention is an issue).

       * XXX_count is incremented on every XXX operation, the delay
       * associated with the operation is added to XXX_delay.
       * XXX_delay contains the accumulated delay time in nanoseconds.
      struct timespec blkio_start, blkio_end;   /* Shared by blkio, swapin */
      u64 blkio_delay;  /* wait for sync block io completion */
      u64 swapin_delay; /* wait for swapin block io completion */
      u32 blkio_count;  /* total count of the number of sync block */
                        /* io operations performed */
      u32 swapin_count; /* total count of the number of swapin block */
                        /* io operations performed */
#endif      /* CONFIG_TASK_DELAY_ACCT */

static inline int sched_info_on(void)
      return 1;
      extern int delayacct_on;
      return delayacct_on;
      return 0;

enum cpu_idle_type {

 * sched-domains (multiprocessor balancing) declarations:

 * Increase resolution of nice-level calculations:
#define SCHED_LOAD_SHIFT      10


#define SD_LOAD_BALANCE       1     /* Do load balancing on this domain. */
#define SD_BALANCE_NEWIDLE    2     /* Balance when about to become idle */
#define SD_BALANCE_EXEC       4     /* Balance on exec */
#define SD_BALANCE_FORK       8     /* Balance on fork, clone */
#define SD_WAKE_IDLE          16    /* Wake to idle CPU on task wakeup */
#define SD_WAKE_AFFINE        32    /* Wake task to waking CPU */
#define SD_WAKE_BALANCE       64    /* Perform balancing at task wakeup */
#define SD_SHARE_CPUPOWER     128   /* Domain members share cpu power */
#define SD_POWERSAVINGS_BALANCE     256   /* Balance for power savings */
#define SD_SHARE_PKG_RESOURCES      512   /* Domain members share cpu pkg resources */
#define SD_SERIALIZE          1024  /* Only a single load balancing instance */

      (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)

      ((sched_mc_power_savings || sched_smt_power_savings) ?      \

#define test_sd_parent(sd, flag)    ((sd->parent &&         \
                               (sd->parent->flags & flag)) ? 1 : 0)

struct sched_group {
      struct sched_group *next;     /* Must be a circular list */
      cpumask_t cpumask;

       * CPU power of this group, SCHED_LOAD_SCALE being max power for a
       * single CPU. This is read only (except for setup, hotplug CPU).
       * Note : Never change cpu_power without recompute its reciprocal
      unsigned int __cpu_power;
       * reciprocal value of cpu_power to avoid expensive divides
       * (see include/linux/reciprocal_div.h)
      u32 reciprocal_cpu_power;

struct sched_domain {
      /* These fields must be setup */
      struct sched_domain *parent;  /* top domain must be null terminated */
      struct sched_domain *child;   /* bottom domain must be null terminated */
      struct sched_group *groups;   /* the balancing groups of the domain */
      cpumask_t span;               /* span of all CPUs in this domain */
      unsigned long min_interval;   /* Minimum balance interval ms */
      unsigned long max_interval;   /* Maximum balance interval ms */
      unsigned int busy_factor;     /* less balancing by factor if busy */
      unsigned int imbalance_pct;   /* No balance until over watermark */
      unsigned int cache_nice_tries;      /* Leave cache hot tasks for # tries */
      unsigned int busy_idx;
      unsigned int idle_idx;
      unsigned int newidle_idx;
      unsigned int wake_idx;
      unsigned int forkexec_idx;
      int flags;              /* See SD_* */

      /* Runtime fields. */
      unsigned long last_balance;   /* init to jiffies. units in jiffies */
      unsigned int balance_interval;      /* initialise to 1. units in ms. */
      unsigned int nr_balance_failed; /* initialise to 0 */

      /* load_balance() stats */
      unsigned int lb_count[CPU_MAX_IDLE_TYPES];
      unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
      unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
      unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
      unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
      unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
      unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
      unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];

      /* Active load balancing */
      unsigned int alb_count;
      unsigned int alb_failed;
      unsigned int alb_pushed;

      /* SD_BALANCE_EXEC stats */
      unsigned int sbe_count;
      unsigned int sbe_balanced;
      unsigned int sbe_pushed;

      /* SD_BALANCE_FORK stats */
      unsigned int sbf_count;
      unsigned int sbf_balanced;
      unsigned int sbf_pushed;

      /* try_to_wake_up() stats */
      unsigned int ttwu_wake_remote;
      unsigned int ttwu_move_affine;
      unsigned int ttwu_move_balance;

extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);

#endif      /* CONFIG_SMP */

 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
 * task of nice 0 or enough lower priority tasks to bring up the
 * weighted_cpuload
static inline int above_background_load(void)
      unsigned long cpu;

      for_each_online_cpu(cpu) {
            if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
                  return 1;
      return 0;

struct io_context;                  /* See blkdev.h */
#define NGROUPS_SMALL         32
#define NGROUPS_PER_BLOCK     ((int)(PAGE_SIZE / sizeof(gid_t)))
struct group_info {
      int ngroups;
      atomic_t usage;
      gid_t small_block[NGROUPS_SMALL];
      int nblocks;
      gid_t *blocks[0];

 * get_group_info() must be called with the owning task locked (via task_lock())
 * when task != current.  The reason being that the vast majority of callers are
 * looking at current->group_info, which can not be changed except by the
 * current task.  Changing current->group_info requires the task lock, too.
#define get_group_info(group_info) do { \
      atomic_inc(&(group_info)->usage); \
} while (0)

#define put_group_info(group_info) do { \
      if (atomic_dec_and_test(&(group_info)->usage)) \
            groups_free(group_info); \
} while (0)

extern struct group_info *groups_alloc(int gidsetsize);
extern void groups_free(struct group_info *group_info);
extern int set_current_groups(struct group_info *group_info);
extern int groups_search(struct group_info *group_info, gid_t grp);
/* access the groups "array" with this macro */
#define GROUP_AT(gi, i) \

extern void prefetch_stack(struct task_struct *t);
static inline void prefetch_stack(struct task_struct *t) { }

struct audit_context;         /* See audit.c */
struct mempolicy;
struct pipe_inode_info;
struct uts_namespace;

struct rq;
struct sched_domain;

struct sched_class {
      const struct sched_class *next;

      void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
      void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
      void (*yield_task) (struct rq *rq);

      void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);

      struct task_struct * (*pick_next_task) (struct rq *rq);
      void (*put_prev_task) (struct rq *rq, struct task_struct *p);

      unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
                  struct rq *busiest, unsigned long max_load_move,
                  struct sched_domain *sd, enum cpu_idle_type idle,
                  int *all_pinned, int *this_best_prio);

      int (*move_one_task) (struct rq *this_rq, int this_cpu,
                        struct rq *busiest, struct sched_domain *sd,
                        enum cpu_idle_type idle);

      void (*set_curr_task) (struct rq *rq);
      void (*task_tick) (struct rq *rq, struct task_struct *p);
      void (*task_new) (struct rq *rq, struct task_struct *p);

struct load_weight {
      unsigned long weight, inv_weight;

 * CFS stats for a schedulable entity (task, task-group etc)
 * Current field usage histogram:
 *     4 se->block_start
 *     4 se->run_node
 *     4 se->sleep_start
 *     6 se->load.weight
struct sched_entity {
      struct load_weight      load;       /* for load-balancing */
      struct rb_node          run_node;
      unsigned int            on_rq;

      u64               exec_start;
      u64               sum_exec_runtime;
      u64               vruntime;
      u64               prev_sum_exec_runtime;

      u64               wait_start;
      u64               wait_max;

      u64               sleep_start;
      u64               sleep_max;
      s64               sum_sleep_runtime;

      u64               block_start;
      u64               block_max;
      u64               exec_max;
      u64               slice_max;

      u64               nr_migrations;
      u64               nr_migrations_cold;
      u64               nr_failed_migrations_affine;
      u64               nr_failed_migrations_running;
      u64               nr_failed_migrations_hot;
      u64               nr_forced_migrations;
      u64               nr_forced2_migrations;

      u64               nr_wakeups;
      u64               nr_wakeups_sync;
      u64               nr_wakeups_migrate;
      u64               nr_wakeups_local;
      u64               nr_wakeups_remote;
      u64               nr_wakeups_affine;
      u64               nr_wakeups_affine_attempts;
      u64               nr_wakeups_passive;
      u64               nr_wakeups_idle;

      struct sched_entity     *parent;
      /* rq on which this entity is (to be) queued: */
      struct cfs_rq           *cfs_rq;
      /* rq "owned" by this entity/group: */
      struct cfs_rq           *my_q;

struct task_struct {
      volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
      void *stack;
      atomic_t usage;
      unsigned int flags;     /* per process flags, defined below */
      unsigned int ptrace;

      int lock_depth;         /* BKL lock depth */

      int oncpu;

      int prio, static_prio, normal_prio;
      struct list_head run_list;
      const struct sched_class *sched_class;
      struct sched_entity se;

      /* list of struct preempt_notifier: */
      struct hlist_head preempt_notifiers;

      unsigned short ioprio;
       * fpu_counter contains the number of consecutive context switches
       * that the FPU is used. If this is over a threshold, the lazy fpu
       * saving becomes unlazy to save the trap. This is an unsigned char
       * so that after 256 times the counter wraps and the behavior turns
       * lazy again; this to deal with bursty apps that only use FPU for
       * a short time
      unsigned char fpu_counter;
      s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
      unsigned int btrace_seq;

      unsigned int policy;
      cpumask_t cpus_allowed;
      unsigned int time_slice;

      struct sched_info sched_info;

      struct list_head tasks;
       * ptrace_list/ptrace_children forms the list of my children
       * that were stolen by a ptracer.
      struct list_head ptrace_children;
      struct list_head ptrace_list;

      struct mm_struct *mm, *active_mm;

/* task state */
      struct linux_binfmt *binfmt;
      int exit_state;
      int exit_code, exit_signal;
      int pdeath_signal;  /*  The signal sent when the parent dies  */
      /* ??? */
      unsigned int personality;
      unsigned did_exec:1;
      pid_t pid;
      pid_t tgid;

      /* Canary value for the -fstack-protector gcc feature */
      unsigned long stack_canary;
       * pointers to (original) parent process, youngest child, younger sibling,
       * older sibling, respectively.  (p->father can be replaced with 
       * p->parent->pid)
      struct task_struct *real_parent; /* real parent process (when being debugged) */
      struct task_struct *parent;   /* parent process */
       * children/sibling forms the list of my children plus the
       * tasks I'm ptracing.
      struct list_head children;    /* list of my children */
      struct list_head sibling;     /* linkage in my parent's children list */
      struct task_struct *group_leader;   /* threadgroup leader */

      /* PID/PID hash table linkage. */
      struct pid_link pids[PIDTYPE_MAX];
      struct list_head thread_group;

      struct completion *vfork_done;            /* for vfork() */
      int __user *set_child_tid;          /* CLONE_CHILD_SETTID */
      int __user *clear_child_tid;        /* CLONE_CHILD_CLEARTID */

      unsigned int rt_priority;
      cputime_t utime, stime, utimescaled, stimescaled;
      cputime_t gtime;
      cputime_t prev_utime, prev_stime;
      unsigned long nvcsw, nivcsw; /* context switch counts */
      struct timespec start_time;         /* monotonic time */
      struct timespec real_start_time;    /* boot based time */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
      unsigned long min_flt, maj_flt;

      cputime_t it_prof_expires, it_virt_expires;
      unsigned long long it_sched_expires;
      struct list_head cpu_timers[3];

/* process credentials */
      uid_t uid,euid,suid,fsuid;
      gid_t gid,egid,sgid,fsgid;
      struct group_info *group_info;
      kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
      unsigned keep_capabilities:1;
      struct user_struct *user;
      struct key *request_key_auth; /* assumed request_key authority */
      struct key *thread_keyring;   /* keyring private to this thread */
      unsigned char jit_keyring;    /* default keyring to attach requested keys to */
      char comm[TASK_COMM_LEN]; /* executable name excluding path
                             - access with [gs]et_task_comm (which lock
                               it with task_lock())
                             - initialized normally by flush_old_exec */
/* file system info */
      int link_count, total_link_count;
/* ipc stuff */
      struct sysv_sem sysvsem;
/* CPU-specific state of this task */
      struct thread_struct thread;
/* filesystem information */
      struct fs_struct *fs;
/* open file information */
      struct files_struct *files;
/* namespaces */
      struct nsproxy *nsproxy;
/* signal handlers */
      struct signal_struct *signal;
      struct sighand_struct *sighand;

      sigset_t blocked, real_blocked;
      sigset_t saved_sigmask;       /* To be restored with TIF_RESTORE_SIGMASK */
      struct sigpending pending;

      unsigned long sas_ss_sp;
      size_t sas_ss_size;
      int (*notifier)(void *priv);
      void *notifier_data;
      sigset_t *notifier_mask;
      void *security;
      struct audit_context *audit_context;
      seccomp_t seccomp;

/* Thread group tracking */
      u32 parent_exec_id;
      u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
      spinlock_t alloc_lock;

      /* Protection of the PI data structures: */
      spinlock_t pi_lock;

      /* PI waiters blocked on a rt_mutex held by this task */
      struct plist_head pi_waiters;
      /* Deadlock detection and priority inheritance handling */
      struct rt_mutex_waiter *pi_blocked_on;

      /* mutex deadlock detection */
      struct mutex_waiter *blocked_on;
      unsigned int irq_events;
      int hardirqs_enabled;
      unsigned long hardirq_enable_ip;
      unsigned int hardirq_enable_event;
      unsigned long hardirq_disable_ip;
      unsigned int hardirq_disable_event;
      int softirqs_enabled;
      unsigned long softirq_disable_ip;
      unsigned int softirq_disable_event;
      unsigned long softirq_enable_ip;
      unsigned int softirq_enable_event;
      int hardirq_context;
      int softirq_context;
# define MAX_LOCK_DEPTH 30UL
      u64 curr_chain_key;
      int lockdep_depth;
      struct held_lock held_locks[MAX_LOCK_DEPTH];
      unsigned int lockdep_recursion;

/* journalling filesystem info */
      void *journal_info;

/* stacked block device info */
      struct bio *bio_list, **bio_tail;

/* VM state */
      struct reclaim_state *reclaim_state;

      struct backing_dev_info *backing_dev_info;

      struct io_context *io_context;

      unsigned long ptrace_message;
      siginfo_t *last_siginfo; /* For ptrace use.  */
/* i/o counters(bytes read/written, #syscalls */
      u64 rchar, wchar, syscr, syscw;
      struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
      u64 acct_rss_mem1;      /* accumulated rss usage */
      u64 acct_vm_mem1; /* accumulated virtual memory usage */
      cputime_t acct_stimexpd;/* stime since last update */
      struct mempolicy *mempolicy;
      short il_next;
      nodemask_t mems_allowed;
      int cpuset_mems_generation;
      int cpuset_mem_spread_rotor;
      /* Control Group info protected by css_set_lock */
      struct css_set *cgroups;
      /* cg_list protected by css_set_lock and tsk->alloc_lock */
      struct list_head cg_list;
      struct robust_list_head __user *robust_list;
      struct compat_robust_list_head __user *compat_robust_list;
      struct list_head pi_state_list;
      struct futex_pi_state *pi_state_cache;
      atomic_t fs_excl; /* holding fs exclusive resources */
      struct rcu_head rcu;

       * cache last used pipe for splice
      struct pipe_inode_info *splice_pipe;
      struct task_delay_info *delays;
      int make_it_fail;
      struct prop_local_single dirties;

 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
 * values are inverted: lower p->prio value means higher priority.
 * The MAX_USER_RT_PRIO value allows the actual maximum
 * RT priority to be separate from the value exported to
 * user-space.  This allows kernel threads to set their
 * priority to a value higher than any user task. Note:
 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.

#define MAX_USER_RT_PRIO      100
#define MAX_RT_PRIO           MAX_USER_RT_PRIO

#define MAX_PRIO        (MAX_RT_PRIO + 40)
#define DEFAULT_PRIO          (MAX_RT_PRIO + 20)

static inline int rt_prio(int prio)
      if (unlikely(prio < MAX_RT_PRIO))
            return 1;
      return 0;

static inline int rt_task(struct task_struct *p)
      return rt_prio(p->prio);

static inline void set_task_session(struct task_struct *tsk, pid_t session)
      tsk->signal->__session = session;

static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
      tsk->signal->__pgrp = pgrp;

static inline struct pid *task_pid(struct task_struct *task)
      return task->pids[PIDTYPE_PID].pid;

static inline struct pid *task_tgid(struct task_struct *task)
      return task->group_leader->pids[PIDTYPE_PID].pid;

static inline struct pid *task_pgrp(struct task_struct *task)
      return task->group_leader->pids[PIDTYPE_PGID].pid;

static inline struct pid *task_session(struct task_struct *task)
      return task->group_leader->pids[PIDTYPE_SID].pid;

struct pid_namespace;

 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
 * task_xid_vnr()    : virtual id, i.e. the id seen from the namespace the task
 *                     belongs to. this only makes sence when called in the
 *                     context of the task that belongs to the same namespace;
 * task_xid_nr_ns()  : id seen from the ns specified;
 * set_task_vxid()   : assigns a virtual id to a task;
 * see also pid_nr() etc in include/linux/pid.h

static inline pid_t task_pid_nr(struct task_struct *tsk)
      return tsk->pid;

pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);

static inline pid_t task_pid_vnr(struct task_struct *tsk)
      return pid_vnr(task_pid(tsk));

static inline pid_t task_tgid_nr(struct task_struct *tsk)
      return tsk->tgid;

pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
      return pid_vnr(task_tgid(tsk));

static inline pid_t task_pgrp_nr(struct task_struct *tsk)
      return tsk->signal->__pgrp;

pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
      return pid_vnr(task_pgrp(tsk));

static inline pid_t task_session_nr(struct task_struct *tsk)
      return tsk->signal->__session;

pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);

static inline pid_t task_session_vnr(struct task_struct *tsk)
      return pid_vnr(task_session(tsk));

 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
static inline int pid_alive(struct task_struct *p)
      return p->pids[PIDTYPE_PID].pid != NULL;

 * is_global_init - check if a task structure is init
 * @tsk: Task structure to be checked.
 * Check if a task structure is the first user space task the kernel created.
static inline int is_global_init(struct task_struct *tsk)
      return tsk->pid == 1;

 * is_container_init:
 * check whether in the task is init in its own pid namespace.
extern int is_container_init(struct task_struct *tsk);

extern struct pid *cad_pid;

extern void free_task(struct task_struct *tsk);
#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)

extern void __put_task_struct(struct task_struct *t);

static inline void put_task_struct(struct task_struct *t)
      if (atomic_dec_and_test(&t->usage))

 * Per process flags
#define PF_ALIGNWARN    0x00000001  /* Print alignment warning msgs */
                              /* Not implemented yet, only for 486*/
#define PF_STARTING     0x00000002  /* being created */
#define PF_EXITING      0x00000004  /* getting shut down */
#define PF_EXITPIDONE   0x00000008  /* pi exit done on shut down */
#define PF_VCPU         0x00000010  /* I'm a virtual CPU */
#define PF_FORKNOEXEC   0x00000040  /* forked but didn't exec */
#define PF_SUPERPRIV    0x00000100  /* used super-user privileges */
#define PF_DUMPCORE     0x00000200  /* dumped core */
#define PF_SIGNALED     0x00000400  /* killed by a signal */
#define PF_MEMALLOC     0x00000800  /* Allocating memory */
#define PF_FLUSHER      0x00001000  /* responsible for disk writeback */
#define PF_USED_MATH    0x00002000  /* if unset the fpu must be initialized before use */
#define PF_NOFREEZE     0x00008000  /* this thread should not be frozen */
#define PF_FROZEN 0x00010000  /* frozen for system suspend */
#define PF_FSTRANS      0x00020000  /* inside a filesystem transaction */
#define PF_KSWAPD 0x00040000  /* I am kswapd */
#define PF_SWAPOFF      0x00080000  /* I am in swapoff */
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
#define PF_BORROWED_MM  0x00200000  /* I am a kthread doing use_mm */
#define PF_RANDOMIZE    0x00400000  /* randomize virtual address space */
#define PF_SWAPWRITE    0x00800000  /* Allowed to write to swap */
#define PF_SPREAD_PAGE  0x01000000  /* Spread page cache over cpuset */
#define PF_SPREAD_SLAB  0x02000000  /* Spread some slab caches over cpuset */
#define PF_MEMPOLICY    0x10000000  /* Non-default NUMA mempolicy */
#define PF_MUTEX_TESTER 0x20000000  /* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP 0x40000000  /* Freezer should not count it as freezeable */

 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math() clear_stopped_child_used_math(current)
#define set_used_math() set_stopped_child_used_math(current)
#define conditional_stopped_child_used_math(condition, child) \
      do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
#define conditional_used_math(condition) \
      conditional_stopped_child_used_math(condition, current)
#define copy_to_stopped_child_used_math(child) \
      do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)

extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
      if (!cpu_isset(0, new_mask))
            return -EINVAL;
      return 0;

extern unsigned long long sched_clock(void);

 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
extern unsigned long long cpu_clock(int cpu);

extern unsigned long long
task_sched_runtime(struct task_struct *task);

/* sched_exec is called by processes performing an exec */
extern void sched_exec(void);
#define sched_exec()   {}

extern void sched_clock_idle_sleep_event(void);
extern void sched_clock_idle_wakeup_event(u64 delta_ns);

extern void idle_task_exit(void);
static inline void idle_task_exit(void) {}

extern void sched_idle_next(void);

extern unsigned int sysctl_sched_latency;
extern unsigned int sysctl_sched_min_granularity;
extern unsigned int sysctl_sched_wakeup_granularity;
extern unsigned int sysctl_sched_batch_wakeup_granularity;
extern unsigned int sysctl_sched_child_runs_first;
extern unsigned int sysctl_sched_features;
extern unsigned int sysctl_sched_migration_cost;
extern unsigned int sysctl_sched_nr_migrate;

int sched_nr_latency_handler(struct ctl_table *table, int write,
            struct file *file, void __user *buffer, size_t *length,
            loff_t *ppos);

extern unsigned int sysctl_sched_compat_yield;

extern int rt_mutex_getprio(struct task_struct *p);
extern void rt_mutex_setprio(struct task_struct *p, int prio);
extern void rt_mutex_adjust_pi(struct task_struct *p);
static inline int rt_mutex_getprio(struct task_struct *p)
      return p->normal_prio;
# define rt_mutex_adjust_pi(p)            do { } while (0)

extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
extern int task_nice(const struct task_struct *p);
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
extern int idle_cpu(int cpu);
extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
extern struct task_struct *idle_task(int cpu);
extern struct task_struct *curr_task(int cpu);
extern void set_curr_task(int cpu, struct task_struct *p);

void yield(void);

 * The default (Linux) execution domain.
extern struct exec_domain     default_exec_domain;

union thread_union {
      struct thread_info thread_info;
      unsigned long stack[THREAD_SIZE/sizeof(long)];

static inline int kstack_end(void *addr)
      /* Reliable end of stack detection:
       * Some APM bios versions misalign the stack
      return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));

extern union thread_union init_thread_union;
extern struct task_struct init_task;

extern struct   mm_struct init_mm;

extern struct pid_namespace init_pid_ns;

 * find a task by one of its numerical ids
 * find_task_by_pid_type_ns():
 *      it is the most generic call - it finds a task by all id,
 *      type and namespace specified
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
 * find_task_by_vpid():
 *      finds a task by its virtual pid
 * find_task_by_pid():
 *      finds a task by its global pid
 * see also find_pid() etc in include/linux/pid.h

extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
            struct pid_namespace *ns);

extern struct task_struct *find_task_by_pid(pid_t nr);
extern struct task_struct *find_task_by_vpid(pid_t nr);
extern struct task_struct *find_task_by_pid_ns(pid_t nr,
            struct pid_namespace *ns);

extern void __set_special_pids(pid_t session, pid_t pgrp);

/* per-UID process charging. */
extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
static inline struct user_struct *get_uid(struct user_struct *u)
      return u;
extern void free_uid(struct user_struct *);
extern void switch_uid(struct user_struct *);
extern void release_uids(struct user_namespace *ns);

#include <asm/current.h>

extern void do_timer(unsigned long ticks);

extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
extern int FASTCALL(wake_up_process(struct task_struct * tsk));
extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
                                    unsigned long clone_flags));
 extern void kick_process(struct task_struct *tsk);
 static inline void kick_process(struct task_struct *tsk) { }
extern void sched_fork(struct task_struct *p, int clone_flags);
extern void sched_dead(struct task_struct *p);

extern int in_group_p(gid_t);
extern int in_egroup_p(gid_t);

extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void ignore_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);

static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
      unsigned long flags;
      int ret;

      spin_lock_irqsave(&tsk->sighand->siglock, flags);
      ret = dequeue_signal(tsk, mask, info);
      spin_unlock_irqrestore(&tsk->sighand->siglock, flags);

      return ret;

extern void block_all_signals(int (*notifier)(void *priv), void *priv,
                        sigset_t *mask);
extern void unblock_all_signals(void);
extern void release_task(struct task_struct * p);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sigsegv(int, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
extern int kill_pgrp(struct pid *pid, int sig, int priv);
extern int kill_pid(struct pid *pid, int sig, int priv);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern void do_notify_parent(struct task_struct *, int);
extern void force_sig(int, struct task_struct *);
extern void force_sig_specific(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern void zap_other_threads(struct task_struct *p);
extern int kill_proc(pid_t, int, int);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);

static inline int kill_cad_pid(int sig, int priv)
      return kill_pid(cad_pid, sig, priv);

/* These can be the second arg to send_sig_info/send_group_sig_info.  */
#define SEND_SIG_NOINFO ((struct siginfo *) 0)
#define SEND_SIG_PRIV   ((struct siginfo *) 1)
#define SEND_SIG_FORCED ((struct siginfo *) 2)

static inline int is_si_special(const struct siginfo *info)
      return info <= SEND_SIG_FORCED;

/* True if we are on the alternate signal stack.  */

static inline int on_sig_stack(unsigned long sp)
      return (sp - current->sas_ss_sp < current->sas_ss_size);

static inline int sas_ss_flags(unsigned long sp)
      return (current->sas_ss_size == 0 ? SS_DISABLE
            : on_sig_stack(sp) ? SS_ONSTACK : 0);

 * Routines for handling mm_structs
extern struct mm_struct * mm_alloc(void);

/* mmdrop drops the mm and the page tables */
extern void FASTCALL(__mmdrop(struct mm_struct *));
static inline void mmdrop(struct mm_struct * mm)
      if (unlikely(atomic_dec_and_test(&mm->mm_count)))

/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Grab a reference to a task's mm, if it is not already going away */
extern struct mm_struct *get_task_mm(struct task_struct *task);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(struct task_struct *, struct mm_struct *);

extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);

extern void exit_files(struct task_struct *);
extern void __cleanup_signal(struct signal_struct *);
extern void __cleanup_sighand(struct sighand_struct *);
extern void exit_itimers(struct signal_struct *);

extern NORET_TYPE void do_group_exit(int);

extern void daemonize(const char *, ...);
extern int allow_signal(int);
extern int disallow_signal(int);

extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
struct task_struct *fork_idle(int);

extern void set_task_comm(struct task_struct *tsk, char *from);
extern void get_task_comm(char *to, struct task_struct *tsk);

extern void wait_task_inactive(struct task_struct * p);
#define wait_task_inactive(p) do { } while (0)

#define remove_parent(p)      list_del_init(&(p)->sibling)
#define add_parent(p)         list_add_tail(&(p)->sibling,&(p)->parent->children)

#define next_task(p)    list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)

#define for_each_process(p) \
      for (p = &init_task ; (p = next_task(p)) != &init_task ; )

 * Careful: do_each_thread/while_each_thread is a double loop so
 *          'break' will not work as expected - use goto instead.
#define do_each_thread(g, t) \
      for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do

#define while_each_thread(g, t) \
      while ((t = next_thread(t)) != g)

/* de_thread depends on thread_group_leader not being a pid based check */
#define thread_group_leader(p)      (p == p->group_leader)

/* Do to the insanities of de_thread it is possible for a process
 * to have the pid of the thread group leader without actually being
 * the thread group leader.  For iteration through the pids in proc
 * all we care about is that we have a task with the appropriate
 * pid, we don't actually care if we have the right task.
static inline int has_group_leader_pid(struct task_struct *p)
      return p->pid == p->tgid;

static inline
int same_thread_group(struct task_struct *p1, struct task_struct *p2)
      return p1->tgid == p2->tgid;

static inline struct task_struct *next_thread(const struct task_struct *p)
      return list_entry(rcu_dereference(p->thread_group.next),
                    struct task_struct, thread_group);

static inline int thread_group_empty(struct task_struct *p)
      return list_empty(&p->thread_group);

#define delay_group_leader(p) \
            (thread_group_leader(p) && !thread_group_empty(p))

 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
 * pins the final release of task.io_context.  Also protects ->cpuset and
 * ->cgroup.subsys[].
 * Nests both inside and outside of read_lock(&tasklist_lock).
 * It must not be nested with write_lock_irq(&tasklist_lock),
 * neither inside nor outside.
static inline void task_lock(struct task_struct *p)

static inline void task_unlock(struct task_struct *p)

extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
                                          unsigned long *flags);

static inline void unlock_task_sighand(struct task_struct *tsk,
                                    unsigned long *flags)
      spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);


#define task_thread_info(task)      ((struct thread_info *)(task)->stack)
#define task_stack_page(task) ((task)->stack)

static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
      *task_thread_info(p) = *task_thread_info(org);
      task_thread_info(p)->task = p;

static inline unsigned long *end_of_stack(struct task_struct *p)
      return (unsigned long *)(task_thread_info(p) + 1);


/* set thread flags in other task's structures
 * - see asm/thread_info.h for TIF_xxxx flags available
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
      set_ti_thread_flag(task_thread_info(tsk), flag);

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
      clear_ti_thread_flag(task_thread_info(tsk), flag);

static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
      return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
      return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
      return test_ti_thread_flag(task_thread_info(tsk), flag);

static inline void set_tsk_need_resched(struct task_struct *tsk)

static inline void clear_tsk_need_resched(struct task_struct *tsk)

static inline int signal_pending(struct task_struct *p)
      return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
static inline int need_resched(void)
      return unlikely(test_thread_flag(TIF_NEED_RESCHED));

 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 * cond_resched_softirq() will enable bhs before scheduling.
extern int cond_resched(void);
extern int cond_resched_lock(spinlock_t * lock);
extern int cond_resched_softirq(void);

 * Does a critical section need to be broken due to another
 * task waiting?:
#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
# define need_lockbreak(lock) ((lock)->break_lock)
# define need_lockbreak(lock) 0

 * Does a critical section need to be broken due to another
 * task waiting or preemption being signalled:
static inline int lock_need_resched(spinlock_t *lock)
      if (need_lockbreak(lock) || need_resched())
            return 1;
      return 0;

 * Reevaluate whether the task has signals pending delivery.
 * Wake the task if so.
 * This is required every time the blocked sigset_t changes.
 * callers must hold sighand->siglock.
extern void recalc_sigpending_and_wake(struct task_struct *t);
extern void recalc_sigpending(void);

extern void signal_wake_up(struct task_struct *t, int resume_stopped);

 * Wrappers for p->thread_info->cpu access. No-op on UP.

static inline unsigned int task_cpu(const struct task_struct *p)
      return task_thread_info(p)->cpu;

extern void set_task_cpu(struct task_struct *p, unsigned int cpu);


static inline unsigned int task_cpu(const struct task_struct *p)
      return 0;

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)

#endif /* CONFIG_SMP */

extern void arch_pick_mmap_layout(struct mm_struct *mm);
static inline void arch_pick_mmap_layout(struct mm_struct *mm)
      mm->mmap_base = TASK_UNMAPPED_BASE;
      mm->get_unmapped_area = arch_get_unmapped_area;
      mm->unmap_area = arch_unmap_area;

extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
extern long sched_getaffinity(pid_t pid, cpumask_t *mask);

extern int sched_mc_power_savings, sched_smt_power_savings;

extern void normalize_rt_tasks(void);


extern struct task_group init_task_group;

extern struct task_group *sched_create_group(void);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_move_task(struct task_struct *tsk);
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
extern unsigned long sched_group_shares(struct task_group *tg);


static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
      tsk->rchar += amt;

static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
      tsk->wchar += amt;

static inline void inc_syscr(struct task_struct *tsk)

static inline void inc_syscw(struct task_struct *tsk)
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)

static inline void add_wchar(struct task_struct *tsk, ssize_t amt)

static inline void inc_syscr(struct task_struct *tsk)

static inline void inc_syscw(struct task_struct *tsk)

void migration_init(void);
static inline void migration_init(void)

#endif /* __KERNEL__ */


Generated by  Doxygen 1.6.0   Back to index