Logo Search packages:      
Sourcecode: linux version File versions  Download package

lm80.c

/*
 * lm80.c - From lm_sensors, Linux kernel modules for hardware
 * monitoring
 * Copyright (C) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
 * and Philip Edelbrock <phil@netroedge.com>
 *
 * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/mutex.h>

/* Addresses to scan */
static unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c,
                              0x2d, 0x2e, 0x2f, I2C_CLIENT_END };

/* Insmod parameters */
I2C_CLIENT_INSMOD_1(lm80);

/* Many LM80 constants specified below */

/* The LM80 registers */
#define LM80_REG_IN_MAX(nr)         (0x2a + (nr) * 2)
#define LM80_REG_IN_MIN(nr)         (0x2b + (nr) * 2)
#define LM80_REG_IN(nr)             (0x20 + (nr))

#define LM80_REG_FAN1               0x28
#define LM80_REG_FAN2               0x29
#define LM80_REG_FAN_MIN(nr)        (0x3b + (nr))

#define LM80_REG_TEMP               0x27
#define LM80_REG_TEMP_HOT_MAX       0x38
#define LM80_REG_TEMP_HOT_HYST            0x39
#define LM80_REG_TEMP_OS_MAX        0x3a
#define LM80_REG_TEMP_OS_HYST       0x3b

#define LM80_REG_CONFIG             0x00
#define LM80_REG_ALARM1             0x01
#define LM80_REG_ALARM2             0x02
#define LM80_REG_MASK1              0x03
#define LM80_REG_MASK2              0x04
#define LM80_REG_FANDIV             0x05
#define LM80_REG_RES                0x06


/* Conversions. Rounding and limit checking is only done on the TO_REG
   variants. Note that you should be a bit careful with which arguments
   these macros are called: arguments may be evaluated more than once.
   Fixing this is just not worth it. */

#define IN_TO_REG(val)        (SENSORS_LIMIT(((val)+5)/10,0,255))
#define IN_FROM_REG(val)      ((val)*10)

static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
{
      if (rpm == 0)
            return 255;
      rpm = SENSORS_LIMIT(rpm, 1, 1000000);
      return SENSORS_LIMIT((1350000 + rpm*div / 2) / (rpm*div), 1, 254);
}

#define FAN_FROM_REG(val,div) ((val)==0?-1:\
                        (val)==255?0:1350000/((div)*(val)))

static inline long TEMP_FROM_REG(u16 temp)
{
      long res;

      temp >>= 4;
      if (temp < 0x0800)
            res = 625 * (long) temp;
      else
            res = ((long) temp - 0x01000) * 625;

      return res / 10;
}

#define TEMP_LIMIT_FROM_REG(val)    (((val)>0x80?(val)-0x100:(val))*1000)

#define TEMP_LIMIT_TO_REG(val)            SENSORS_LIMIT((val)<0?\
                              ((val)-500)/1000:((val)+500)/1000,0,255)

#define DIV_FROM_REG(val)           (1 << (val))

/*
 * Client data (each client gets its own)
 */

struct lm80_data {
      struct i2c_client client;
      struct device *hwmon_dev;
      struct mutex update_lock;
      char valid;       /* !=0 if following fields are valid */
      unsigned long last_updated;   /* In jiffies */

      u8 in[7];         /* Register value */
      u8 in_max[7];           /* Register value */
      u8 in_min[7];           /* Register value */
      u8 fan[2];        /* Register value */
      u8 fan_min[2];          /* Register value */
      u8 fan_div[2];          /* Register encoding, shifted right */
      u16 temp;         /* Register values, shifted right */
      u8 temp_hot_max;  /* Register value */
      u8 temp_hot_hyst; /* Register value */
      u8 temp_os_max;         /* Register value */
      u8 temp_os_hyst;  /* Register value */
      u16 alarms;       /* Register encoding, combined */
};

/* 
 * Functions declaration
 */

static int lm80_attach_adapter(struct i2c_adapter *adapter);
static int lm80_detect(struct i2c_adapter *adapter, int address, int kind);
static void lm80_init_client(struct i2c_client *client);
static int lm80_detach_client(struct i2c_client *client);
static struct lm80_data *lm80_update_device(struct device *dev);
static int lm80_read_value(struct i2c_client *client, u8 reg);
static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value);

/*
 * Driver data (common to all clients)
 */

static struct i2c_driver lm80_driver = {
      .driver = {
            .name = "lm80",
      },
      .id         = I2C_DRIVERID_LM80,
      .attach_adapter   = lm80_attach_adapter,
      .detach_client    = lm80_detach_client,
};

/*
 * Sysfs stuff
 */

#define show_in(suffix, value) \
static ssize_t show_in_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
      struct lm80_data *data = lm80_update_device(dev); \
      return sprintf(buf, "%d\n", IN_FROM_REG(data->value)); \
}
show_in(min0, in_min[0]);
show_in(min1, in_min[1]);
show_in(min2, in_min[2]);
show_in(min3, in_min[3]);
show_in(min4, in_min[4]);
show_in(min5, in_min[5]);
show_in(min6, in_min[6]);
show_in(max0, in_max[0]);
show_in(max1, in_max[1]);
show_in(max2, in_max[2]);
show_in(max3, in_max[3]);
show_in(max4, in_max[4]);
show_in(max5, in_max[5]);
show_in(max6, in_max[6]);
show_in(input0, in[0]);
show_in(input1, in[1]);
show_in(input2, in[2]);
show_in(input3, in[3]);
show_in(input4, in[4]);
show_in(input5, in[5]);
show_in(input6, in[6]);

#define set_in(suffix, value, reg) \
static ssize_t set_in_##suffix(struct device *dev, struct device_attribute *attr, const char *buf, \
      size_t count) \
{ \
      struct i2c_client *client = to_i2c_client(dev); \
      struct lm80_data *data = i2c_get_clientdata(client); \
      long val = simple_strtol(buf, NULL, 10); \
 \
      mutex_lock(&data->update_lock);\
      data->value = IN_TO_REG(val); \
      lm80_write_value(client, reg, data->value); \
      mutex_unlock(&data->update_lock);\
      return count; \
}
set_in(min0, in_min[0], LM80_REG_IN_MIN(0));
set_in(min1, in_min[1], LM80_REG_IN_MIN(1));
set_in(min2, in_min[2], LM80_REG_IN_MIN(2));
set_in(min3, in_min[3], LM80_REG_IN_MIN(3));
set_in(min4, in_min[4], LM80_REG_IN_MIN(4));
set_in(min5, in_min[5], LM80_REG_IN_MIN(5));
set_in(min6, in_min[6], LM80_REG_IN_MIN(6));
set_in(max0, in_max[0], LM80_REG_IN_MAX(0));
set_in(max1, in_max[1], LM80_REG_IN_MAX(1));
set_in(max2, in_max[2], LM80_REG_IN_MAX(2));
set_in(max3, in_max[3], LM80_REG_IN_MAX(3));
set_in(max4, in_max[4], LM80_REG_IN_MAX(4));
set_in(max5, in_max[5], LM80_REG_IN_MAX(5));
set_in(max6, in_max[6], LM80_REG_IN_MAX(6));

#define show_fan(suffix, value, div) \
static ssize_t show_fan_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
      struct lm80_data *data = lm80_update_device(dev); \
      return sprintf(buf, "%d\n", FAN_FROM_REG(data->value, \
                   DIV_FROM_REG(data->div))); \
}
show_fan(min1, fan_min[0], fan_div[0]);
show_fan(min2, fan_min[1], fan_div[1]);
show_fan(input1, fan[0], fan_div[0]);
show_fan(input2, fan[1], fan_div[1]);

#define show_fan_div(suffix, value) \
static ssize_t show_fan_div##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
      struct lm80_data *data = lm80_update_device(dev); \
      return sprintf(buf, "%d\n", DIV_FROM_REG(data->value)); \
}
show_fan_div(1, fan_div[0]);
show_fan_div(2, fan_div[1]);

#define set_fan(suffix, value, reg, div) \
static ssize_t set_fan_##suffix(struct device *dev, struct device_attribute *attr, const char *buf, \
      size_t count) \
{ \
      struct i2c_client *client = to_i2c_client(dev); \
      struct lm80_data *data = i2c_get_clientdata(client); \
      long val = simple_strtoul(buf, NULL, 10); \
 \
      mutex_lock(&data->update_lock);\
      data->value = FAN_TO_REG(val, DIV_FROM_REG(data->div)); \
      lm80_write_value(client, reg, data->value); \
      mutex_unlock(&data->update_lock);\
      return count; \
}
set_fan(min1, fan_min[0], LM80_REG_FAN_MIN(1), fan_div[0]);
set_fan(min2, fan_min[1], LM80_REG_FAN_MIN(2), fan_div[1]);

/* Note: we save and restore the fan minimum here, because its value is
   determined in part by the fan divisor.  This follows the principle of
   least surprise; the user doesn't expect the fan minimum to change just
   because the divisor changed. */
static ssize_t set_fan_div(struct device *dev, const char *buf,
      size_t count, int nr)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct lm80_data *data = i2c_get_clientdata(client);
      unsigned long min, val = simple_strtoul(buf, NULL, 10);
      u8 reg;

      /* Save fan_min */
      mutex_lock(&data->update_lock);
      min = FAN_FROM_REG(data->fan_min[nr],
                     DIV_FROM_REG(data->fan_div[nr]));

      switch (val) {
      case 1: data->fan_div[nr] = 0; break;
      case 2: data->fan_div[nr] = 1; break;
      case 4: data->fan_div[nr] = 2; break;
      case 8: data->fan_div[nr] = 3; break;
      default:
            dev_err(&client->dev, "fan_div value %ld not "
                  "supported. Choose one of 1, 2, 4 or 8!\n", val);
            mutex_unlock(&data->update_lock);
            return -EINVAL;
      }

      reg = (lm80_read_value(client, LM80_REG_FANDIV) & ~(3 << (2 * (nr + 1))))
          | (data->fan_div[nr] << (2 * (nr + 1)));
      lm80_write_value(client, LM80_REG_FANDIV, reg);

      /* Restore fan_min */
      data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
      lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]);
      mutex_unlock(&data->update_lock);

      return count;
}

#define set_fan_div(number) \
static ssize_t set_fan_div##number(struct device *dev, struct device_attribute *attr, const char *buf, \
      size_t count) \
{ \
      return set_fan_div(dev, buf, count, number - 1); \
}
set_fan_div(1);
set_fan_div(2);

static ssize_t show_temp_input1(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct lm80_data *data = lm80_update_device(dev);
      return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp));
}

#define show_temp(suffix, value) \
static ssize_t show_temp_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
      struct lm80_data *data = lm80_update_device(dev); \
      return sprintf(buf, "%d\n", TEMP_LIMIT_FROM_REG(data->value)); \
}
show_temp(hot_max, temp_hot_max);
show_temp(hot_hyst, temp_hot_hyst);
show_temp(os_max, temp_os_max);
show_temp(os_hyst, temp_os_hyst);

#define set_temp(suffix, value, reg) \
static ssize_t set_temp_##suffix(struct device *dev, struct device_attribute *attr, const char *buf, \
      size_t count) \
{ \
      struct i2c_client *client = to_i2c_client(dev); \
      struct lm80_data *data = i2c_get_clientdata(client); \
      long val = simple_strtoul(buf, NULL, 10); \
 \
      mutex_lock(&data->update_lock); \
      data->value = TEMP_LIMIT_TO_REG(val); \
      lm80_write_value(client, reg, data->value); \
      mutex_unlock(&data->update_lock); \
      return count; \
}
set_temp(hot_max, temp_hot_max, LM80_REG_TEMP_HOT_MAX);
set_temp(hot_hyst, temp_hot_hyst, LM80_REG_TEMP_HOT_HYST);
set_temp(os_max, temp_os_max, LM80_REG_TEMP_OS_MAX);
set_temp(os_hyst, temp_os_hyst, LM80_REG_TEMP_OS_HYST);

static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct lm80_data *data = lm80_update_device(dev);
      return sprintf(buf, "%u\n", data->alarms);
}

static DEVICE_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min0, set_in_min0);
static DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min1, set_in_min1);
static DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min2, set_in_min2);
static DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min3, set_in_min3);
static DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min4, set_in_min4);
static DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min5, set_in_min5);
static DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min6, set_in_min6);
static DEVICE_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max0, set_in_max0);
static DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max1, set_in_max1);
static DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max2, set_in_max2);
static DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max3, set_in_max3);
static DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max4, set_in_max4);
static DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max5, set_in_max5);
static DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max6, set_in_max6);
static DEVICE_ATTR(in0_input, S_IRUGO, show_in_input0, NULL);
static DEVICE_ATTR(in1_input, S_IRUGO, show_in_input1, NULL);
static DEVICE_ATTR(in2_input, S_IRUGO, show_in_input2, NULL);
static DEVICE_ATTR(in3_input, S_IRUGO, show_in_input3, NULL);
static DEVICE_ATTR(in4_input, S_IRUGO, show_in_input4, NULL);
static DEVICE_ATTR(in5_input, S_IRUGO, show_in_input5, NULL);
static DEVICE_ATTR(in6_input, S_IRUGO, show_in_input6, NULL);
static DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min1,
    set_fan_min1);
static DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min2,
    set_fan_min2);
static DEVICE_ATTR(fan1_input, S_IRUGO, show_fan_input1, NULL);
static DEVICE_ATTR(fan2_input, S_IRUGO, show_fan_input2, NULL);
static DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO, show_fan_div1, set_fan_div1);
static DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO, show_fan_div2, set_fan_div2);
static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp_input1, NULL);
static DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_hot_max,
    set_temp_hot_max);
static DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp_hot_hyst,
    set_temp_hot_hyst);
static DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp_os_max,
    set_temp_os_max);
static DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp_os_hyst,
    set_temp_os_hyst);
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);

/*
 * Real code
 */

static int lm80_attach_adapter(struct i2c_adapter *adapter)
{
      if (!(adapter->class & I2C_CLASS_HWMON))
            return 0;
      return i2c_probe(adapter, &addr_data, lm80_detect);
}

static struct attribute *lm80_attributes[] = {
      &dev_attr_in0_min.attr,
      &dev_attr_in1_min.attr,
      &dev_attr_in2_min.attr,
      &dev_attr_in3_min.attr,
      &dev_attr_in4_min.attr,
      &dev_attr_in5_min.attr,
      &dev_attr_in6_min.attr,
      &dev_attr_in0_max.attr,
      &dev_attr_in1_max.attr,
      &dev_attr_in2_max.attr,
      &dev_attr_in3_max.attr,
      &dev_attr_in4_max.attr,
      &dev_attr_in5_max.attr,
      &dev_attr_in6_max.attr,
      &dev_attr_in0_input.attr,
      &dev_attr_in1_input.attr,
      &dev_attr_in2_input.attr,
      &dev_attr_in3_input.attr,
      &dev_attr_in4_input.attr,
      &dev_attr_in5_input.attr,
      &dev_attr_in6_input.attr,
      &dev_attr_fan1_min.attr,
      &dev_attr_fan2_min.attr,
      &dev_attr_fan1_input.attr,
      &dev_attr_fan2_input.attr,
      &dev_attr_fan1_div.attr,
      &dev_attr_fan2_div.attr,
      &dev_attr_temp1_input.attr,
      &dev_attr_temp1_max.attr,
      &dev_attr_temp1_max_hyst.attr,
      &dev_attr_temp1_crit.attr,
      &dev_attr_temp1_crit_hyst.attr,
      &dev_attr_alarms.attr,

      NULL
};

static const struct attribute_group lm80_group = {
      .attrs = lm80_attributes,
};

static int lm80_detect(struct i2c_adapter *adapter, int address, int kind)
{
      int i, cur;
      struct i2c_client *new_client;
      struct lm80_data *data;
      int err = 0;
      const char *name;

      if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
            goto exit;

      /* OK. For now, we presume we have a valid client. We now create the
         client structure, even though we cannot fill it completely yet.
         But it allows us to access lm80_{read,write}_value. */
      if (!(data = kzalloc(sizeof(struct lm80_data), GFP_KERNEL))) {
            err = -ENOMEM;
            goto exit;
      }

      new_client = &data->client;
      i2c_set_clientdata(new_client, data);
      new_client->addr = address;
      new_client->adapter = adapter;
      new_client->driver = &lm80_driver;
      new_client->flags = 0;

      /* Now, we do the remaining detection. It is lousy. */
      if (lm80_read_value(new_client, LM80_REG_ALARM2) & 0xc0)
            goto error_free;
      for (i = 0x2a; i <= 0x3d; i++) {
            cur = i2c_smbus_read_byte_data(new_client, i);
            if ((i2c_smbus_read_byte_data(new_client, i + 0x40) != cur)
             || (i2c_smbus_read_byte_data(new_client, i + 0x80) != cur)
             || (i2c_smbus_read_byte_data(new_client, i + 0xc0) != cur))
                goto error_free;
      }

      /* Determine the chip type - only one kind supported! */
      kind = lm80;
      name = "lm80";

      /* Fill in the remaining client fields and put it into the global list */
      strlcpy(new_client->name, name, I2C_NAME_SIZE);
      data->valid = 0;
      mutex_init(&data->update_lock);

      /* Tell the I2C layer a new client has arrived */
      if ((err = i2c_attach_client(new_client)))
            goto error_free;

      /* Initialize the LM80 chip */
      lm80_init_client(new_client);

      /* A few vars need to be filled upon startup */
      data->fan_min[0] = lm80_read_value(new_client, LM80_REG_FAN_MIN(1));
      data->fan_min[1] = lm80_read_value(new_client, LM80_REG_FAN_MIN(2));

      /* Register sysfs hooks */
      if ((err = sysfs_create_group(&new_client->dev.kobj, &lm80_group)))
            goto error_detach;

      data->hwmon_dev = hwmon_device_register(&new_client->dev);
      if (IS_ERR(data->hwmon_dev)) {
            err = PTR_ERR(data->hwmon_dev);
            goto error_remove;
      }

      return 0;

error_remove:
      sysfs_remove_group(&new_client->dev.kobj, &lm80_group);
error_detach:
      i2c_detach_client(new_client);
error_free:
      kfree(data);
exit:
      return err;
}

static int lm80_detach_client(struct i2c_client *client)
{
      struct lm80_data *data = i2c_get_clientdata(client);
      int err;

      hwmon_device_unregister(data->hwmon_dev);
      sysfs_remove_group(&client->dev.kobj, &lm80_group);
      if ((err = i2c_detach_client(client)))
            return err;

      kfree(data);
      return 0;
}

static int lm80_read_value(struct i2c_client *client, u8 reg)
{
      return i2c_smbus_read_byte_data(client, reg);
}

static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
{
      return i2c_smbus_write_byte_data(client, reg, value);
}

/* Called when we have found a new LM80. */
static void lm80_init_client(struct i2c_client *client)
{
      /* Reset all except Watchdog values and last conversion values
         This sets fan-divs to 2, among others. This makes most other
         initializations unnecessary */
      lm80_write_value(client, LM80_REG_CONFIG, 0x80);
      /* Set 11-bit temperature resolution */
      lm80_write_value(client, LM80_REG_RES, 0x08);

      /* Start monitoring */
      lm80_write_value(client, LM80_REG_CONFIG, 0x01);
}

static struct lm80_data *lm80_update_device(struct device *dev)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct lm80_data *data = i2c_get_clientdata(client);
      int i;

      mutex_lock(&data->update_lock);

      if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
            dev_dbg(&client->dev, "Starting lm80 update\n");
            for (i = 0; i <= 6; i++) {
                  data->in[i] =
                      lm80_read_value(client, LM80_REG_IN(i));
                  data->in_min[i] =
                      lm80_read_value(client, LM80_REG_IN_MIN(i));
                  data->in_max[i] =
                      lm80_read_value(client, LM80_REG_IN_MAX(i));
            }
            data->fan[0] = lm80_read_value(client, LM80_REG_FAN1);
            data->fan_min[0] =
                lm80_read_value(client, LM80_REG_FAN_MIN(1));
            data->fan[1] = lm80_read_value(client, LM80_REG_FAN2);
            data->fan_min[1] =
                lm80_read_value(client, LM80_REG_FAN_MIN(2));

            data->temp =
                (lm80_read_value(client, LM80_REG_TEMP) << 8) |
                (lm80_read_value(client, LM80_REG_RES) & 0xf0);
            data->temp_os_max =
                lm80_read_value(client, LM80_REG_TEMP_OS_MAX);
            data->temp_os_hyst =
                lm80_read_value(client, LM80_REG_TEMP_OS_HYST);
            data->temp_hot_max =
                lm80_read_value(client, LM80_REG_TEMP_HOT_MAX);
            data->temp_hot_hyst =
                lm80_read_value(client, LM80_REG_TEMP_HOT_HYST);

            i = lm80_read_value(client, LM80_REG_FANDIV);
            data->fan_div[0] = (i >> 2) & 0x03;
            data->fan_div[1] = (i >> 4) & 0x03;
            data->alarms = lm80_read_value(client, LM80_REG_ALARM1) +
                (lm80_read_value(client, LM80_REG_ALARM2) << 8);
            data->last_updated = jiffies;
            data->valid = 1;
      }

      mutex_unlock(&data->update_lock);

      return data;
}

static int __init sensors_lm80_init(void)
{
      return i2c_add_driver(&lm80_driver);
}

static void __exit sensors_lm80_exit(void)
{
      i2c_del_driver(&lm80_driver);
}

MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
      "Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("LM80 driver");
MODULE_LICENSE("GPL");

module_init(sensors_lm80_init);
module_exit(sensors_lm80_exit);

Generated by  Doxygen 1.6.0   Back to index