Logo Search packages:      
Sourcecode: linux version File versions  Download package

lm85.c

/*
    lm85.c - Part of lm_sensors, Linux kernel modules for hardware
             monitoring
    Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl> 
    Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
    Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
    Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>

    Chip details at           <http://www.national.com/ds/LM/LM85.pdf>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>

/* Addresses to scan */
static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };

/* Insmod parameters */
I2C_CLIENT_INSMOD_6(lm85b, lm85c, adm1027, adt7463, emc6d100, emc6d102);

/* The LM85 registers */

#define     LM85_REG_IN(nr)               (0x20 + (nr))
#define     LM85_REG_IN_MIN(nr)           (0x44 + (nr) * 2)
#define     LM85_REG_IN_MAX(nr)           (0x45 + (nr) * 2)

#define     LM85_REG_TEMP(nr)       (0x25 + (nr))
#define     LM85_REG_TEMP_MIN(nr)         (0x4e + (nr) * 2)
#define     LM85_REG_TEMP_MAX(nr)         (0x4f + (nr) * 2)

/* Fan speeds are LSB, MSB (2 bytes) */
#define     LM85_REG_FAN(nr)        (0x28 + (nr) *2)
#define     LM85_REG_FAN_MIN(nr)          (0x54 + (nr) *2)

#define     LM85_REG_PWM(nr)        (0x30 + (nr))

#define     ADT7463_REG_OPPOINT(nr)       (0x33 + (nr))

#define     ADT7463_REG_TMIN_CTL1         0x36
#define     ADT7463_REG_TMIN_CTL2         0x37

#define     LM85_REG_DEVICE               0x3d
#define     LM85_REG_COMPANY        0x3e
#define     LM85_REG_VERSTEP        0x3f
/* These are the recognized values for the above regs */
#define     LM85_DEVICE_ADX               0x27
#define     LM85_COMPANY_NATIONAL         0x01
#define     LM85_COMPANY_ANALOG_DEV       0x41
#define     LM85_COMPANY_SMSC             0x5c
#define     LM85_VERSTEP_VMASK              0xf0
#define     LM85_VERSTEP_GENERIC          0x60
#define     LM85_VERSTEP_LM85C            0x60
#define     LM85_VERSTEP_LM85B            0x62
#define     LM85_VERSTEP_ADM1027          0x60
#define     LM85_VERSTEP_ADT7463          0x62
#define     LM85_VERSTEP_ADT7463C         0x6A
#define     LM85_VERSTEP_EMC6D100_A0        0x60
#define     LM85_VERSTEP_EMC6D100_A1        0x61
#define     LM85_VERSTEP_EMC6D102         0x65

#define     LM85_REG_CONFIG               0x40

#define     LM85_REG_ALARM1               0x41
#define     LM85_REG_ALARM2               0x42

#define     LM85_REG_VID                  0x43

/* Automated FAN control */
#define     LM85_REG_AFAN_CONFIG(nr)      (0x5c + (nr))
#define     LM85_REG_AFAN_RANGE(nr)       (0x5f + (nr))
#define     LM85_REG_AFAN_SPIKE1          0x62
#define     LM85_REG_AFAN_SPIKE2          0x63
#define     LM85_REG_AFAN_MINPWM(nr)      (0x64 + (nr))
#define     LM85_REG_AFAN_LIMIT(nr)       (0x67 + (nr))
#define     LM85_REG_AFAN_CRITICAL(nr)    (0x6a + (nr))
#define     LM85_REG_AFAN_HYST1           0x6d
#define     LM85_REG_AFAN_HYST2           0x6e

#define     LM85_REG_TACH_MODE            0x74
#define     LM85_REG_SPINUP_CTL           0x75

#define     ADM1027_REG_TEMP_OFFSET(nr)   (0x70 + (nr))
#define     ADM1027_REG_CONFIG2           0x73
#define     ADM1027_REG_INTMASK1          0x74
#define     ADM1027_REG_INTMASK2          0x75
#define     ADM1027_REG_EXTEND_ADC1       0x76
#define     ADM1027_REG_EXTEND_ADC2       0x77
#define     ADM1027_REG_CONFIG3           0x78
#define     ADM1027_REG_FAN_PPR           0x7b

#define     ADT7463_REG_THERM       0x79
#define     ADT7463_REG_THERM_LIMIT       0x7A

#define EMC6D100_REG_ALARM3             0x7d
/* IN5, IN6 and IN7 */
#define     EMC6D100_REG_IN(nr)             (0x70 + ((nr)-5))
#define     EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr)-5) * 2)
#define     EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr)-5) * 2)
#define     EMC6D102_REG_EXTEND_ADC1      0x85
#define     EMC6D102_REG_EXTEND_ADC2      0x86
#define     EMC6D102_REG_EXTEND_ADC3      0x87
#define     EMC6D102_REG_EXTEND_ADC4      0x88


/* Conversions. Rounding and limit checking is only done on the TO_REG 
   variants. Note that you should be a bit careful with which arguments
   these macros are called: arguments may be evaluated more than once.
 */

/* IN are scaled acording to built-in resistors */
static int lm85_scaling[] = {  /* .001 Volts */
            2500, 2250, 3300, 5000, 12000,
            3300, 1500, 1800 /*EMC6D100*/
      };
#define SCALE(val,from,to)          (((val)*(to) + ((from)/2))/(from))

#define INS_TO_REG(n,val)     \
            SENSORS_LIMIT(SCALE(val,lm85_scaling[n],192),0,255)

#define INSEXT_FROM_REG(n,val,ext)  \
            SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])

#define INS_FROM_REG(n,val)   SCALE((val), 192, lm85_scaling[n])

/* FAN speed is measured using 90kHz clock */
static inline u16 FAN_TO_REG(unsigned long val)
{
      if (!val)
            return 0xffff;
      return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
}
#define FAN_FROM_REG(val)     ((val)==0?-1:(val)==0xffff?0:5400000/(val))

/* Temperature is reported in .001 degC increments */
#define TEMP_TO_REG(val)      \
            SENSORS_LIMIT(SCALE(val,1000,1),-127,127)
#define TEMPEXT_FROM_REG(val,ext)   \
            SCALE(((val) << 4) + (ext), 16, 1000)
#define TEMP_FROM_REG(val)    ((val) * 1000)

#define PWM_TO_REG(val)             (SENSORS_LIMIT(val,0,255))
#define PWM_FROM_REG(val)           (val)


/* ZONEs have the following parameters:
 *    Limit (low) temp,           1. degC
 *    Hysteresis (below limit),   1. degC (0-15)
 *    Range of speed control,     .1 degC (2-80)
 *    Critical (high) temp,       1. degC
 *
 * FAN PWMs have the following parameters:
 *    Reference Zone,                 1, 2, 3, etc.
 *    Spinup time,                    .05 sec
 *    PWM value at limit/low temp,    1 count
 *    PWM Frequency,                  1. Hz
 *    PWM is Min or OFF below limit,  flag
 *    Invert PWM output,              flag
 *
 * Some chips filter the temp, others the fan.
 *    Filter constant (or disabled)   .1 seconds
 */

/* These are the zone temperature range encodings in .001 degree C */
static int lm85_range_map[] = {   
            2000,  2500,  3300,  4000,  5000,  6600,
            8000, 10000, 13300, 16000, 20000, 26600,
            32000, 40000, 53300, 80000
      };
static int RANGE_TO_REG( int range )
{
      int i;

      if ( range < lm85_range_map[0] ) { 
            return 0 ;
      } else if ( range > lm85_range_map[15] ) {
            return 15 ;
      } else {  /* find closest match */
            for ( i = 14 ; i >= 0 ; --i ) {
                  if ( range > lm85_range_map[i] ) { /* range bracketed */
                        if ((lm85_range_map[i+1] - range) < 
                              (range - lm85_range_map[i])) {
                              i++;
                              break;
                        }
                        break;
                  }
            }
      }
      return( i & 0x0f );
}
#define RANGE_FROM_REG(val) (lm85_range_map[(val)&0x0f])

/* These are the Acoustic Enhancement, or Temperature smoothing encodings
 * NOTE: The enable/disable bit is INCLUDED in these encodings as the
 *       MSB (bit 3, value 8).  If the enable bit is 0, the encoded value
 *       is ignored, or set to 0.
 */
/* These are the PWM frequency encodings */
static int lm85_freq_map[] = { /* .1 Hz */
            100, 150, 230, 300, 380, 470, 620, 940
      };
static int FREQ_TO_REG( int freq )
{
      int i;

      if( freq >= lm85_freq_map[7] ) { return 7 ; }
      for( i = 0 ; i < 7 ; ++i )
            if( freq <= lm85_freq_map[i] )
                  break ;
      return( i & 0x07 );
}
#define FREQ_FROM_REG(val) (lm85_freq_map[(val)&0x07])

/* Since we can't use strings, I'm abusing these numbers
 *   to stand in for the following meanings:
 *      1 -- PWM responds to Zone 1
 *      2 -- PWM responds to Zone 2
 *      3 -- PWM responds to Zone 3
 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 *      0 -- PWM is always at 0% (ie, off)
 *     -1 -- PWM is always at 100%
 *     -2 -- PWM responds to manual control
 */

static int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
#define ZONE_FROM_REG(val) (lm85_zone_map[((val)>>5)&0x07])

static int ZONE_TO_REG( int zone )
{
      int i;

      for( i = 0 ; i <= 7 ; ++i )
            if( zone == lm85_zone_map[i] )
                  break ;
      if( i > 7 )   /* Not found. */
            i = 3;  /* Always 100% */
      return( (i & 0x07)<<5 );
}

#define HYST_TO_REG(val) (SENSORS_LIMIT(((val)+500)/1000,0,15))
#define HYST_FROM_REG(val) ((val)*1000)

#define OFFSET_TO_REG(val) (SENSORS_LIMIT((val)/25,-127,127))
#define OFFSET_FROM_REG(val) ((val)*25)

#define PPR_MASK(fan) (0x03<<(fan *2))
#define PPR_TO_REG(val,fan) (SENSORS_LIMIT((val)-1,0,3)<<(fan *2))
#define PPR_FROM_REG(val,fan) ((((val)>>(fan * 2))&0x03)+1)

/* Chip sampling rates
 *
 * Some sensors are not updated more frequently than once per second
 *    so it doesn't make sense to read them more often than that.
 *    We cache the results and return the saved data if the driver
 *    is called again before a second has elapsed.
 *
 * Also, there is significant configuration data for this chip
 *    given the automatic PWM fan control that is possible.  There
 *    are about 47 bytes of config data to only 22 bytes of actual
 *    readings.  So, we keep the config data up to date in the cache
 *    when it is written and only sample it once every 1 *minute*
 */
#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)

/* LM85 can automatically adjust fan speeds based on temperature
 * This structure encapsulates an entire Zone config.  There are
 * three zones (one for each temperature input) on the lm85
 */
struct lm85_zone {
      s8 limit;   /* Low temp limit */
      u8 hyst;    /* Low limit hysteresis. (0-15) */
      u8 range;   /* Temp range, encoded */
      s8 critical;      /* "All fans ON" temp limit */
      u8 off_desired; /* Actual "off" temperature specified.  Preserved 
                   * to prevent "drift" as other autofan control
                   * values change.
                   */
      u8 max_desired; /* Actual "max" temperature specified.  Preserved 
                   * to prevent "drift" as other autofan control
                   * values change.
                   */
};

struct lm85_autofan {
      u8 config;  /* Register value */
      u8 freq;    /* PWM frequency, encoded */
      u8 min_pwm; /* Minimum PWM value, encoded */
      u8 min_off; /* Min PWM or OFF below "limit", flag */
};

/* For each registered chip, we need to keep some data in memory.
   The structure is dynamically allocated. */
struct lm85_data {
      struct i2c_client client;
      struct device *hwmon_dev;
      enum chips type;

      struct mutex update_lock;
      int valid;        /* !=0 if following fields are valid */
      unsigned long last_reading;   /* In jiffies */
      unsigned long last_config;    /* In jiffies */

      u8 in[8];         /* Register value */
      u8 in_max[8];           /* Register value */
      u8 in_min[8];           /* Register value */
      s8 temp[3];       /* Register value */
      s8 temp_min[3];         /* Register value */
      s8 temp_max[3];         /* Register value */
      s8 temp_offset[3];      /* Register value */
      u16 fan[4];       /* Register value */
      u16 fan_min[4];         /* Register value */
      u8 pwm[3];        /* Register value */
      u8 spinup_ctl;          /* Register encoding, combined */
      u8 tach_mode;           /* Register encoding, combined */
      u8 temp_ext[3];         /* Decoded values */
      u8 in_ext[8];           /* Decoded values */
      u8 fan_ppr;       /* Register value */
      u8 smooth[3];           /* Register encoding */
      u8 vid;                 /* Register value */
      u8 vrm;                 /* VRM version */
      u8 syncpwm3;            /* Saved PWM3 for TACH 2,3,4 config */
      u8 oppoint[3];          /* Register value */
      u16 tmin_ctl;           /* Register value */
      unsigned long therm_total; /* Cummulative therm count */
      u8 therm_limit;         /* Register value */
      u32 alarms;       /* Register encoding, combined */
      struct lm85_autofan autofan[3];
      struct lm85_zone zone[3];
};

static int lm85_attach_adapter(struct i2c_adapter *adapter);
static int lm85_detect(struct i2c_adapter *adapter, int address,
                  int kind);
static int lm85_detach_client(struct i2c_client *client);

static int lm85_read_value(struct i2c_client *client, u8 reg);
static int lm85_write_value(struct i2c_client *client, u8 reg, int value);
static struct lm85_data *lm85_update_device(struct device *dev);
static void lm85_init_client(struct i2c_client *client);


static struct i2c_driver lm85_driver = {
      .driver = {
            .name   = "lm85",
      },
      .id             = I2C_DRIVERID_LM85,
      .attach_adapter = lm85_attach_adapter,
      .detach_client  = lm85_detach_client,
};


/* 4 Fans */
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan[nr]) );
}

static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan_min[nr]) );
}

static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      unsigned long val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->fan_min[nr] = FAN_TO_REG(val);
      lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define show_fan_offset(offset)                                   \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,                 \
            show_fan, NULL, offset - 1);                    \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,         \
            show_fan_min, set_fan_min, offset - 1)

show_fan_offset(1);
show_fan_offset(2);
show_fan_offset(3);
show_fan_offset(4);

/* vid, vrm, alarms */

static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct lm85_data *data = lm85_update_device(dev);
      int vid;

      if (data->type == adt7463 && (data->vid & 0x80)) {
            /* 6-pin VID (VRM 10) */
            vid = vid_from_reg(data->vid & 0x3f, data->vrm);
      } else {
            /* 5-pin VID (VRM 9) */
            vid = vid_from_reg(data->vid & 0x1f, data->vrm);
      }

      return sprintf(buf, "%d\n", vid);
}

static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);

static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct lm85_data *data = dev_get_drvdata(dev);
      return sprintf(buf, "%ld\n", (long) data->vrm);
}

static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      u32 val;

      val = simple_strtoul(buf, NULL, 10);
      data->vrm = val;
      return count;
}

static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);

static ssize_t show_alarms_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf, "%u\n", data->alarms);
}

static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);

static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
}

static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);

/* pwm */

static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", PWM_FROM_REG(data->pwm[nr]) );
}

static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->pwm[nr] = PWM_TO_REG(val);
      lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
            *attr, char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      int   pwm_zone;

      pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
      return sprintf(buf,"%d\n", (pwm_zone != 0 && pwm_zone != -1) );
}

#define show_pwm_reg(offset)                                \
static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,         \
            show_pwm, set_pwm, offset - 1);                       \
static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO,          \
            show_pwm_enable, NULL, offset - 1)

show_pwm_reg(1);
show_pwm_reg(2);
show_pwm_reg(3);

/* Voltages */

static ssize_t show_in(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(   buf, "%d\n", INSEXT_FROM_REG(nr,
                                         data->in[nr],
                                         data->in_ext[nr]));
}

static ssize_t show_in_min(struct device *dev,  struct device_attribute *attr,
            char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_min[nr]) );
}

static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->in_min[nr] = INS_TO_REG(nr, val);
      lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_max[nr]) );
}

static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->in_max[nr] = INS_TO_REG(nr, val);
      lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define show_in_reg(offset)                                 \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,                  \
            show_in, NULL, offset);                         \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,          \
            show_in_min, set_in_min, offset);               \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,          \
            show_in_max, set_in_max, offset)

show_in_reg(0);
show_in_reg(1);
show_in_reg(2);
show_in_reg(3);
show_in_reg(4);
show_in_reg(5);
show_in_reg(6);
show_in_reg(7);

/* Temps */

static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", TEMPEXT_FROM_REG(data->temp[nr],
                                        data->temp_ext[nr]));
}

static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_min[nr]) );
}

static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_min[nr] = TEMP_TO_REG(val);
      lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
            char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_max[nr]) );
}

static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);  

      mutex_lock(&data->update_lock);
      data->temp_max[nr] = TEMP_TO_REG(val);
      lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

#define show_temp_reg(offset)                               \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,          \
            show_temp, NULL, offset - 1);                   \
static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,  \
            show_temp_min, set_temp_min, offset - 1);       \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,  \
            show_temp_max, set_temp_max, offset - 1);

show_temp_reg(1);
show_temp_reg(2);
show_temp_reg(3);


/* Automatic PWM control */

static ssize_t show_pwm_auto_channels(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", ZONE_FROM_REG(data->autofan[nr].config));
}

static ssize_t set_pwm_auto_channels(struct device *dev,
            struct device_attribute *attr, const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);   

      mutex_lock(&data->update_lock);
      data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
            | ZONE_TO_REG(val) ;
      lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
            data->autofan[nr].config);
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t show_pwm_auto_pwm_min(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
}

static ssize_t set_pwm_auto_pwm_min(struct device *dev,
            struct device_attribute *attr, const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->autofan[nr].min_pwm = PWM_TO_REG(val);
      lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
            data->autofan[nr].min_pwm);
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", data->autofan[nr].min_off);
}

static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
            struct device_attribute *attr, const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->autofan[nr].min_off = val;
      lm85_write_value(client, LM85_REG_AFAN_SPIKE1, data->smooth[0]
            | data->syncpwm3
            | (data->autofan[0].min_off ? 0x20 : 0)
            | (data->autofan[1].min_off ? 0x40 : 0)
            | (data->autofan[2].min_off ? 0x80 : 0)
      );
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t show_pwm_auto_pwm_freq(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", FREQ_FROM_REG(data->autofan[nr].freq));
}

static ssize_t set_pwm_auto_pwm_freq(struct device *dev,
            struct device_attribute *attr, const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->autofan[nr].freq = FREQ_TO_REG(val);
      lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
            (data->zone[nr].range << 4)
            | data->autofan[nr].freq
      ); 
      mutex_unlock(&data->update_lock);
      return count;
}

#define pwm_auto(offset)                                    \
static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,                  \
            S_IRUGO | S_IWUSR, show_pwm_auto_channels,            \
            set_pwm_auto_channels, offset - 1);             \
static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,             \
            S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,       \
            set_pwm_auto_pwm_min, offset - 1);              \
static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,          \
            S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,          \
            set_pwm_auto_pwm_minctl, offset - 1);                 \
static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_freq,                  \
            S_IRUGO | S_IWUSR, show_pwm_auto_pwm_freq,            \
            set_pwm_auto_pwm_freq, offset - 1);

pwm_auto(1);
pwm_auto(2);
pwm_auto(3);

/* Temperature settings for automatic PWM control */

static ssize_t show_temp_auto_temp_off(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
            HYST_FROM_REG(data->zone[nr].hyst));
}

static ssize_t set_temp_auto_temp_off(struct device *dev,
            struct device_attribute *attr, const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      int min;
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      min = TEMP_FROM_REG(data->zone[nr].limit);
      data->zone[nr].off_desired = TEMP_TO_REG(val);
      data->zone[nr].hyst = HYST_TO_REG(min - val);
      if ( nr == 0 || nr == 1 ) {
            lm85_write_value(client, LM85_REG_AFAN_HYST1,
                  (data->zone[0].hyst << 4)
                  | data->zone[1].hyst
                  );
      } else {
            lm85_write_value(client, LM85_REG_AFAN_HYST2,
                  (data->zone[2].hyst << 4)
            );
      }
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t show_temp_auto_temp_min(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) );
}

static ssize_t set_temp_auto_temp_min(struct device *dev,
            struct device_attribute *attr, const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->zone[nr].limit = TEMP_TO_REG(val);
      lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
            data->zone[nr].limit);

/* Update temp_auto_max and temp_auto_range */
      data->zone[nr].range = RANGE_TO_REG(
            TEMP_FROM_REG(data->zone[nr].max_desired) -
            TEMP_FROM_REG(data->zone[nr].limit));
      lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
            ((data->zone[nr].range & 0x0f) << 4)
            | (data->autofan[nr].freq & 0x07));

/* Update temp_auto_hyst and temp_auto_off */
      data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
            data->zone[nr].limit) - TEMP_FROM_REG(
            data->zone[nr].off_desired));
      if ( nr == 0 || nr == 1 ) {
            lm85_write_value(client, LM85_REG_AFAN_HYST1,
                  (data->zone[0].hyst << 4)
                  | data->zone[1].hyst
                  );
      } else {
            lm85_write_value(client, LM85_REG_AFAN_HYST2,
                  (data->zone[2].hyst << 4)
            );
      }
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t show_temp_auto_temp_max(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
            RANGE_FROM_REG(data->zone[nr].range));
}

static ssize_t set_temp_auto_temp_max(struct device *dev,
            struct device_attribute *attr, const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      int min;
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      min = TEMP_FROM_REG(data->zone[nr].limit);
      data->zone[nr].max_desired = TEMP_TO_REG(val);
      data->zone[nr].range = RANGE_TO_REG(
            val - min);
      lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
            ((data->zone[nr].range & 0x0f) << 4)
            | (data->autofan[nr].freq & 0x07));
      mutex_unlock(&data->update_lock);
      return count;
}

static ssize_t show_temp_auto_temp_crit(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct lm85_data *data = lm85_update_device(dev);
      return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].critical));
}

static ssize_t set_temp_auto_temp_crit(struct device *dev,
            struct device_attribute *attr,const char *buf, size_t count)
{
      int nr = to_sensor_dev_attr(attr)->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->zone[nr].critical = TEMP_TO_REG(val);
      lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
            data->zone[nr].critical);
      mutex_unlock(&data->update_lock);
      return count;
}

#define temp_auto(offset)                                   \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,                 \
            S_IRUGO | S_IWUSR, show_temp_auto_temp_off,           \
            set_temp_auto_temp_off, offset - 1);                  \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,                 \
            S_IRUGO | S_IWUSR, show_temp_auto_temp_min,           \
            set_temp_auto_temp_min, offset - 1);                  \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,                 \
            S_IRUGO | S_IWUSR, show_temp_auto_temp_max,           \
            set_temp_auto_temp_max, offset - 1);                  \
static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,          \
            S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,          \
            set_temp_auto_temp_crit, offset - 1);

temp_auto(1);
temp_auto(2);
temp_auto(3);

static int lm85_attach_adapter(struct i2c_adapter *adapter)
{
      if (!(adapter->class & I2C_CLASS_HWMON))
            return 0;
      return i2c_probe(adapter, &addr_data, lm85_detect);
}

static struct attribute *lm85_attributes[] = {
      &sensor_dev_attr_fan1_input.dev_attr.attr,
      &sensor_dev_attr_fan2_input.dev_attr.attr,
      &sensor_dev_attr_fan3_input.dev_attr.attr,
      &sensor_dev_attr_fan4_input.dev_attr.attr,
      &sensor_dev_attr_fan1_min.dev_attr.attr,
      &sensor_dev_attr_fan2_min.dev_attr.attr,
      &sensor_dev_attr_fan3_min.dev_attr.attr,
      &sensor_dev_attr_fan4_min.dev_attr.attr,
      &sensor_dev_attr_fan1_alarm.dev_attr.attr,
      &sensor_dev_attr_fan2_alarm.dev_attr.attr,
      &sensor_dev_attr_fan3_alarm.dev_attr.attr,
      &sensor_dev_attr_fan4_alarm.dev_attr.attr,

      &sensor_dev_attr_pwm1.dev_attr.attr,
      &sensor_dev_attr_pwm2.dev_attr.attr,
      &sensor_dev_attr_pwm3.dev_attr.attr,
      &sensor_dev_attr_pwm1_enable.dev_attr.attr,
      &sensor_dev_attr_pwm2_enable.dev_attr.attr,
      &sensor_dev_attr_pwm3_enable.dev_attr.attr,

      &sensor_dev_attr_in0_input.dev_attr.attr,
      &sensor_dev_attr_in1_input.dev_attr.attr,
      &sensor_dev_attr_in2_input.dev_attr.attr,
      &sensor_dev_attr_in3_input.dev_attr.attr,
      &sensor_dev_attr_in0_min.dev_attr.attr,
      &sensor_dev_attr_in1_min.dev_attr.attr,
      &sensor_dev_attr_in2_min.dev_attr.attr,
      &sensor_dev_attr_in3_min.dev_attr.attr,
      &sensor_dev_attr_in0_max.dev_attr.attr,
      &sensor_dev_attr_in1_max.dev_attr.attr,
      &sensor_dev_attr_in2_max.dev_attr.attr,
      &sensor_dev_attr_in3_max.dev_attr.attr,
      &sensor_dev_attr_in0_alarm.dev_attr.attr,
      &sensor_dev_attr_in1_alarm.dev_attr.attr,
      &sensor_dev_attr_in2_alarm.dev_attr.attr,
      &sensor_dev_attr_in3_alarm.dev_attr.attr,

      &sensor_dev_attr_temp1_input.dev_attr.attr,
      &sensor_dev_attr_temp2_input.dev_attr.attr,
      &sensor_dev_attr_temp3_input.dev_attr.attr,
      &sensor_dev_attr_temp1_min.dev_attr.attr,
      &sensor_dev_attr_temp2_min.dev_attr.attr,
      &sensor_dev_attr_temp3_min.dev_attr.attr,
      &sensor_dev_attr_temp1_max.dev_attr.attr,
      &sensor_dev_attr_temp2_max.dev_attr.attr,
      &sensor_dev_attr_temp3_max.dev_attr.attr,
      &sensor_dev_attr_temp1_alarm.dev_attr.attr,
      &sensor_dev_attr_temp2_alarm.dev_attr.attr,
      &sensor_dev_attr_temp3_alarm.dev_attr.attr,
      &sensor_dev_attr_temp1_fault.dev_attr.attr,
      &sensor_dev_attr_temp3_fault.dev_attr.attr,

      &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
      &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
      &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
      &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
      &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
      &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
      &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
      &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
      &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
      &sensor_dev_attr_pwm1_auto_pwm_freq.dev_attr.attr,
      &sensor_dev_attr_pwm2_auto_pwm_freq.dev_attr.attr,
      &sensor_dev_attr_pwm3_auto_pwm_freq.dev_attr.attr,

      &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,

      &dev_attr_vrm.attr,
      &dev_attr_cpu0_vid.attr,
      &dev_attr_alarms.attr,
      NULL
};

static const struct attribute_group lm85_group = {
      .attrs = lm85_attributes,
};

static struct attribute *lm85_attributes_in4[] = {
      &sensor_dev_attr_in4_input.dev_attr.attr,
      &sensor_dev_attr_in4_min.dev_attr.attr,
      &sensor_dev_attr_in4_max.dev_attr.attr,
      &sensor_dev_attr_in4_alarm.dev_attr.attr,
      NULL
};

static const struct attribute_group lm85_group_in4 = {
      .attrs = lm85_attributes_in4,
};

static struct attribute *lm85_attributes_in567[] = {
      &sensor_dev_attr_in5_input.dev_attr.attr,
      &sensor_dev_attr_in6_input.dev_attr.attr,
      &sensor_dev_attr_in7_input.dev_attr.attr,
      &sensor_dev_attr_in5_min.dev_attr.attr,
      &sensor_dev_attr_in6_min.dev_attr.attr,
      &sensor_dev_attr_in7_min.dev_attr.attr,
      &sensor_dev_attr_in5_max.dev_attr.attr,
      &sensor_dev_attr_in6_max.dev_attr.attr,
      &sensor_dev_attr_in7_max.dev_attr.attr,
      &sensor_dev_attr_in5_alarm.dev_attr.attr,
      &sensor_dev_attr_in6_alarm.dev_attr.attr,
      &sensor_dev_attr_in7_alarm.dev_attr.attr,
      NULL
};

static const struct attribute_group lm85_group_in567 = {
      .attrs = lm85_attributes_in567,
};

static int lm85_detect(struct i2c_adapter *adapter, int address,
            int kind)
{
      int company, verstep ;
      struct i2c_client *new_client = NULL;
      struct lm85_data *data;
      int err = 0;
      const char *type_name = "";

      if (!i2c_check_functionality(adapter,
                              I2C_FUNC_SMBUS_BYTE_DATA)) {
            /* We need to be able to do byte I/O */
            goto ERROR0 ;
      };

      /* OK. For now, we presume we have a valid client. We now create the
         client structure, even though we cannot fill it completely yet.
         But it allows us to access lm85_{read,write}_value. */

      if (!(data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL))) {
            err = -ENOMEM;
            goto ERROR0;
      }

      new_client = &data->client;
      i2c_set_clientdata(new_client, data);
      new_client->addr = address;
      new_client->adapter = adapter;
      new_client->driver = &lm85_driver;
      new_client->flags = 0;

      /* Now, we do the remaining detection. */

      company = lm85_read_value(new_client, LM85_REG_COMPANY);
      verstep = lm85_read_value(new_client, LM85_REG_VERSTEP);

      dev_dbg(&adapter->dev, "Detecting device at %d,0x%02x with"
            " COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
            i2c_adapter_id(new_client->adapter), new_client->addr,
            company, verstep);

      /* If auto-detecting, Determine the chip type. */
      if (kind <= 0) {
            dev_dbg(&adapter->dev, "Autodetecting device at %d,0x%02x ...\n",
                  i2c_adapter_id(adapter), address );
            if( company == LM85_COMPANY_NATIONAL
                && verstep == LM85_VERSTEP_LM85C ) {
                  kind = lm85c ;
            } else if( company == LM85_COMPANY_NATIONAL
                && verstep == LM85_VERSTEP_LM85B ) {
                  kind = lm85b ;
            } else if( company == LM85_COMPANY_NATIONAL
                && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC ) {
                  dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
                        " Defaulting to LM85.\n", verstep);
                  kind = any_chip ;
            } else if( company == LM85_COMPANY_ANALOG_DEV
                && verstep == LM85_VERSTEP_ADM1027 ) {
                  kind = adm1027 ;
            } else if( company == LM85_COMPANY_ANALOG_DEV
                && (verstep == LM85_VERSTEP_ADT7463
                   || verstep == LM85_VERSTEP_ADT7463C) ) {
                  kind = adt7463 ;
            } else if( company == LM85_COMPANY_ANALOG_DEV
                && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC ) {
                  dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
                        " Defaulting to Generic LM85.\n", verstep );
                  kind = any_chip ;
            } else if( company == LM85_COMPANY_SMSC
                && (verstep == LM85_VERSTEP_EMC6D100_A0
                   || verstep == LM85_VERSTEP_EMC6D100_A1) ) {
                  /* Unfortunately, we can't tell a '100 from a '101
                   * from the registers.  Since a '101 is a '100
                   * in a package with fewer pins and therefore no
                   * 3.3V, 1.5V or 1.8V inputs, perhaps if those
                   * inputs read 0, then it's a '101.
                   */
                  kind = emc6d100 ;
            } else if( company == LM85_COMPANY_SMSC
                && verstep == LM85_VERSTEP_EMC6D102) {
                  kind = emc6d102 ;
            } else if( company == LM85_COMPANY_SMSC
                && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
                  dev_err(&adapter->dev, "lm85: Detected SMSC chip\n");
                  dev_err(&adapter->dev, "lm85: Unrecognized version/stepping 0x%02x"
                      " Defaulting to Generic LM85.\n", verstep );
                  kind = any_chip ;
            } else if( kind == any_chip
                && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
                  dev_err(&adapter->dev, "Generic LM85 Version 6 detected\n");
                  /* Leave kind as "any_chip" */
            } else {
                  dev_dbg(&adapter->dev, "Autodetection failed\n");
                  /* Not an LM85 ... */
                  if( kind == any_chip ) {  /* User used force=x,y */
                        dev_err(&adapter->dev, "Generic LM85 Version 6 not"
                              " found at %d,0x%02x. Try force_lm85c.\n",
                              i2c_adapter_id(adapter), address );
                  }
                  err = 0 ;
                  goto ERROR1;
            }
      }

      /* Fill in the chip specific driver values */
      if ( kind == any_chip ) {
            type_name = "lm85";
      } else if ( kind == lm85b ) {
            type_name = "lm85b";
      } else if ( kind == lm85c ) {
            type_name = "lm85c";
      } else if ( kind == adm1027 ) {
            type_name = "adm1027";
      } else if ( kind == adt7463 ) {
            type_name = "adt7463";
      } else if ( kind == emc6d100){
            type_name = "emc6d100";
      } else if ( kind == emc6d102 ) {
            type_name = "emc6d102";
      }
      strlcpy(new_client->name, type_name, I2C_NAME_SIZE);

      /* Fill in the remaining client fields */
      data->type = kind;
      data->valid = 0;
      mutex_init(&data->update_lock);

      /* Tell the I2C layer a new client has arrived */
      if ((err = i2c_attach_client(new_client)))
            goto ERROR1;

      /* Set the VRM version */
      data->vrm = vid_which_vrm();

      /* Initialize the LM85 chip */
      lm85_init_client(new_client);

      /* Register sysfs hooks */
      if ((err = sysfs_create_group(&new_client->dev.kobj, &lm85_group)))
            goto ERROR2;

      /* The ADT7463 has an optional VRM 10 mode where pin 21 is used
         as a sixth digital VID input rather than an analog input. */
      data->vid = lm85_read_value(new_client, LM85_REG_VID);
      if (!(kind == adt7463 && (data->vid & 0x80)))
            if ((err = sysfs_create_group(&new_client->dev.kobj,
                              &lm85_group_in4)))
                  goto ERROR3;

      /* The EMC6D100 has 3 additional voltage inputs */
      if (kind == emc6d100)
            if ((err = sysfs_create_group(&new_client->dev.kobj,
                              &lm85_group_in567)))
                  goto ERROR3;

      data->hwmon_dev = hwmon_device_register(&new_client->dev);
      if (IS_ERR(data->hwmon_dev)) {
            err = PTR_ERR(data->hwmon_dev);
            goto ERROR3;
      }

      return 0;

      /* Error out and cleanup code */
    ERROR3:
      sysfs_remove_group(&new_client->dev.kobj, &lm85_group);
      sysfs_remove_group(&new_client->dev.kobj, &lm85_group_in4);
      if (kind == emc6d100)
            sysfs_remove_group(&new_client->dev.kobj, &lm85_group_in567);
    ERROR2:
      i2c_detach_client(new_client);
    ERROR1:
      kfree(data);
    ERROR0:
      return err;
}

static int lm85_detach_client(struct i2c_client *client)
{
      struct lm85_data *data = i2c_get_clientdata(client);
      hwmon_device_unregister(data->hwmon_dev);
      sysfs_remove_group(&client->dev.kobj, &lm85_group);
      sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
      if (data->type == emc6d100)
            sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
      i2c_detach_client(client);
      kfree(data);
      return 0;
}


static int lm85_read_value(struct i2c_client *client, u8 reg)
{
      int res;

      /* What size location is it? */
      switch( reg ) {
      case LM85_REG_FAN(0) :  /* Read WORD data */
      case LM85_REG_FAN(1) :
      case LM85_REG_FAN(2) :
      case LM85_REG_FAN(3) :
      case LM85_REG_FAN_MIN(0) :
      case LM85_REG_FAN_MIN(1) :
      case LM85_REG_FAN_MIN(2) :
      case LM85_REG_FAN_MIN(3) :
      case LM85_REG_ALARM1 :  /* Read both bytes at once */
            res = i2c_smbus_read_byte_data(client, reg) & 0xff ;
            res |= i2c_smbus_read_byte_data(client, reg+1) << 8 ;
            break ;
      case ADT7463_REG_TMIN_CTL1 :  /* Read WORD MSB, LSB */
            res = i2c_smbus_read_byte_data(client, reg) << 8 ;
            res |= i2c_smbus_read_byte_data(client, reg+1) & 0xff ;
            break ;
      default:    /* Read BYTE data */
            res = i2c_smbus_read_byte_data(client, reg);
            break ;
      }

      return res ;
}

static int lm85_write_value(struct i2c_client *client, u8 reg, int value)
{
      int res ;

      switch( reg ) {
      case LM85_REG_FAN(0) :  /* Write WORD data */
      case LM85_REG_FAN(1) :
      case LM85_REG_FAN(2) :
      case LM85_REG_FAN(3) :
      case LM85_REG_FAN_MIN(0) :
      case LM85_REG_FAN_MIN(1) :
      case LM85_REG_FAN_MIN(2) :
      case LM85_REG_FAN_MIN(3) :
      /* NOTE: ALARM is read only, so not included here */
            res = i2c_smbus_write_byte_data(client, reg, value & 0xff) ;
            res |= i2c_smbus_write_byte_data(client, reg+1, (value>>8) & 0xff) ;
            break ;
      case ADT7463_REG_TMIN_CTL1 :  /* Write WORD MSB, LSB */
            res = i2c_smbus_write_byte_data(client, reg, (value>>8) & 0xff);
            res |= i2c_smbus_write_byte_data(client, reg+1, value & 0xff) ;
            break ;
      default:    /* Write BYTE data */
            res = i2c_smbus_write_byte_data(client, reg, value);
            break ;
      }

      return res ;
}

static void lm85_init_client(struct i2c_client *client)
{
      int value;
      struct lm85_data *data = i2c_get_clientdata(client);

      dev_dbg(&client->dev, "Initializing device\n");

      /* Warn if part was not "READY" */
      value = lm85_read_value(client, LM85_REG_CONFIG);
      dev_dbg(&client->dev, "LM85_REG_CONFIG is: 0x%02x\n", value);
      if( value & 0x02 ) {
            dev_err(&client->dev, "Client (%d,0x%02x) config is locked.\n",
                      i2c_adapter_id(client->adapter), client->addr );
      };
      if( ! (value & 0x04) ) {
            dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
                      i2c_adapter_id(client->adapter), client->addr );
      };
      if( value & 0x10
          && ( data->type == adm1027
            || data->type == adt7463 ) ) {
            dev_err(&client->dev, "Client (%d,0x%02x) VxI mode is set.  "
                  "Please report this to the lm85 maintainer.\n",
                      i2c_adapter_id(client->adapter), client->addr );
      };

      /* WE INTENTIONALLY make no changes to the limits,
       *   offsets, pwms, fans and zones.  If they were
       *   configured, we don't want to mess with them.
       *   If they weren't, the default is 100% PWM, no
       *   control and will suffice until 'sensors -s'
       *   can be run by the user.
       */

      /* Start monitoring */
      value = lm85_read_value(client, LM85_REG_CONFIG);
      /* Try to clear LOCK, Set START, save everything else */
      value = (value & ~ 0x02) | 0x01 ;
      dev_dbg(&client->dev, "Setting CONFIG to: 0x%02x\n", value);
      lm85_write_value(client, LM85_REG_CONFIG, value);
}

static struct lm85_data *lm85_update_device(struct device *dev)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct lm85_data *data = i2c_get_clientdata(client);
      int i;

      mutex_lock(&data->update_lock);

      if ( !data->valid ||
           time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL) ) {
            /* Things that change quickly */
            dev_dbg(&client->dev, "Reading sensor values\n");
            
            /* Have to read extended bits first to "freeze" the
             * more significant bits that are read later.
             * There are 2 additional resolution bits per channel and we
             * have room for 4, so we shift them to the left.
             */
            if ( (data->type == adm1027) || (data->type == adt7463) ) {
                  int ext1 = lm85_read_value(client,
                                       ADM1027_REG_EXTEND_ADC1);
                  int ext2 =  lm85_read_value(client,
                                        ADM1027_REG_EXTEND_ADC2);
                  int val = (ext1 << 8) + ext2;

                  for(i = 0; i <= 4; i++)
                        data->in_ext[i] = ((val>>(i * 2))&0x03) << 2;

                  for(i = 0; i <= 2; i++)
                        data->temp_ext[i] = (val>>((i + 4) * 2))&0x0c;
            }

            data->vid = lm85_read_value(client, LM85_REG_VID);

            for (i = 0; i <= 3; ++i) {
                  data->in[i] =
                      lm85_read_value(client, LM85_REG_IN(i));
            }

            if (!(data->type == adt7463 && (data->vid & 0x80))) {
                  data->in[4] = lm85_read_value(client,
                              LM85_REG_IN(4));
            }

            for (i = 0; i <= 3; ++i) {
                  data->fan[i] =
                      lm85_read_value(client, LM85_REG_FAN(i));
            }

            for (i = 0; i <= 2; ++i) {
                  data->temp[i] =
                      lm85_read_value(client, LM85_REG_TEMP(i));
            }

            for (i = 0; i <= 2; ++i) {
                  data->pwm[i] =
                      lm85_read_value(client, LM85_REG_PWM(i));
            }

            data->alarms = lm85_read_value(client, LM85_REG_ALARM1);

            if ( data->type == adt7463 ) {
                  if( data->therm_total < ULONG_MAX - 256 ) {
                      data->therm_total +=
                        lm85_read_value(client, ADT7463_REG_THERM );
                  }
            } else if ( data->type == emc6d100 ) {
                  /* Three more voltage sensors */
                  for (i = 5; i <= 7; ++i) {
                        data->in[i] =
                              lm85_read_value(client, EMC6D100_REG_IN(i));
                  }
                  /* More alarm bits */
                  data->alarms |=
                        lm85_read_value(client, EMC6D100_REG_ALARM3) << 16;
            } else if (data->type == emc6d102 ) {
                  /* Have to read LSB bits after the MSB ones because
                     the reading of the MSB bits has frozen the
                     LSBs (backward from the ADM1027).
                   */
                  int ext1 = lm85_read_value(client,
                                       EMC6D102_REG_EXTEND_ADC1);
                  int ext2 = lm85_read_value(client,
                                       EMC6D102_REG_EXTEND_ADC2);
                  int ext3 = lm85_read_value(client,
                                       EMC6D102_REG_EXTEND_ADC3);
                  int ext4 = lm85_read_value(client,
                                       EMC6D102_REG_EXTEND_ADC4);
                  data->in_ext[0] = ext3 & 0x0f;
                  data->in_ext[1] = ext4 & 0x0f;
                  data->in_ext[2] = (ext4 >> 4) & 0x0f;
                  data->in_ext[3] = (ext3 >> 4) & 0x0f;
                  data->in_ext[4] = (ext2 >> 4) & 0x0f;

                  data->temp_ext[0] = ext1 & 0x0f;
                  data->temp_ext[1] = ext2 & 0x0f;
                  data->temp_ext[2] = (ext1 >> 4) & 0x0f;
            }

            data->last_reading = jiffies ;
      };  /* last_reading */

      if ( !data->valid ||
           time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL) ) {
            /* Things that don't change often */
            dev_dbg(&client->dev, "Reading config values\n");

            for (i = 0; i <= 3; ++i) {
                  data->in_min[i] =
                      lm85_read_value(client, LM85_REG_IN_MIN(i));
                  data->in_max[i] =
                      lm85_read_value(client, LM85_REG_IN_MAX(i));
            }

            if (!(data->type == adt7463 && (data->vid & 0x80))) {
                  data->in_min[4] = lm85_read_value(client,
                                LM85_REG_IN_MIN(4));
                  data->in_max[4] = lm85_read_value(client,
                                LM85_REG_IN_MAX(4));
            }

            if ( data->type == emc6d100 ) {
                  for (i = 5; i <= 7; ++i) {
                        data->in_min[i] =
                              lm85_read_value(client, EMC6D100_REG_IN_MIN(i));
                        data->in_max[i] =
                              lm85_read_value(client, EMC6D100_REG_IN_MAX(i));
                  }
            }

            for (i = 0; i <= 3; ++i) {
                  data->fan_min[i] =
                      lm85_read_value(client, LM85_REG_FAN_MIN(i));
            }

            for (i = 0; i <= 2; ++i) {
                  data->temp_min[i] =
                      lm85_read_value(client, LM85_REG_TEMP_MIN(i));
                  data->temp_max[i] =
                      lm85_read_value(client, LM85_REG_TEMP_MAX(i));
            }

            for (i = 0; i <= 2; ++i) {
                  int val ;
                  data->autofan[i].config =
                      lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
                  val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
                  data->autofan[i].freq = val & 0x07 ;
                  data->zone[i].range = (val >> 4) & 0x0f ;
                  data->autofan[i].min_pwm =
                      lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
                  data->zone[i].limit =
                      lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
                  data->zone[i].critical =
                      lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
            }

            i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
            data->smooth[0] = i & 0x0f ;
            data->syncpwm3 = i & 0x10 ;  /* Save PWM3 config */
            data->autofan[0].min_off = (i & 0x20) != 0 ;
            data->autofan[1].min_off = (i & 0x40) != 0 ;
            data->autofan[2].min_off = (i & 0x80) != 0 ;
            i = lm85_read_value(client, LM85_REG_AFAN_SPIKE2);
            data->smooth[1] = (i>>4) & 0x0f ;
            data->smooth[2] = i & 0x0f ;

            i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
            data->zone[0].hyst = (i>>4) & 0x0f ;
            data->zone[1].hyst = i & 0x0f ;

            i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
            data->zone[2].hyst = (i>>4) & 0x0f ;

            if ( (data->type == lm85b) || (data->type == lm85c) ) {
                  data->tach_mode = lm85_read_value(client,
                        LM85_REG_TACH_MODE );
                  data->spinup_ctl = lm85_read_value(client,
                        LM85_REG_SPINUP_CTL );
            } else if ( (data->type == adt7463) || (data->type == adm1027) ) {
                  if ( data->type == adt7463 ) {
                        for (i = 0; i <= 2; ++i) {
                            data->oppoint[i] = lm85_read_value(client,
                              ADT7463_REG_OPPOINT(i) );
                        }
                        data->tmin_ctl = lm85_read_value(client,
                              ADT7463_REG_TMIN_CTL1 );
                        data->therm_limit = lm85_read_value(client,
                              ADT7463_REG_THERM_LIMIT );
                  }
                  for (i = 0; i <= 2; ++i) {
                      data->temp_offset[i] = lm85_read_value(client,
                        ADM1027_REG_TEMP_OFFSET(i) );
                  }
                  data->tach_mode = lm85_read_value(client,
                        ADM1027_REG_CONFIG3 );
                  data->fan_ppr = lm85_read_value(client,
                        ADM1027_REG_FAN_PPR );
            }
      
            data->last_config = jiffies;
      };  /* last_config */

      data->valid = 1;

      mutex_unlock(&data->update_lock);

      return data;
}


static int __init sm_lm85_init(void)
{
      return i2c_add_driver(&lm85_driver);
}

static void  __exit sm_lm85_exit(void)
{
      i2c_del_driver(&lm85_driver);
}

/* Thanks to Richard Barrington for adding the LM85 to sensors-detect.
 * Thanks to Margit Schubert-While <margitsw@t-online.de> for help with
 *     post 2.7.0 CVS changes.
 */
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, Margit Schubert-While <margitsw@t-online.de>, Justin Thiessen <jthiessen@penguincomputing.com");
MODULE_DESCRIPTION("LM85-B, LM85-C driver");

module_init(sm_lm85_init);
module_exit(sm_lm85_exit);

Generated by  Doxygen 1.6.0   Back to index