Logo Search packages:      
Sourcecode: linux version File versions  Download package

lm93.c

/*
    lm93.c - Part of lm_sensors, Linux kernel modules for hardware monitoring

    Author/Maintainer: Mark M. Hoffman <mhoffman@lightlink.com>
      Copyright (c) 2004 Utilitek Systems, Inc.

    derived in part from lm78.c:
      Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>

    derived in part from lm85.c:
      Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
      Copyright (c) 2003       Margit Schubert-While <margitsw@t-online.de>

    derived in part from w83l785ts.c:
      Copyright (c) 2003-2004 Jean Delvare <khali@linux-fr.org>

    Ported to Linux 2.6 by Eric J. Bowersox <ericb@aspsys.com>
      Copyright (c) 2005 Aspen Systems, Inc.

    Adapted to 2.6.20 by Carsten Emde <cbe@osadl.org>
        Copyright (c) 2006 Carsten Emde, Open Source Automation Development Lab

    Modified for mainline integration by Hans J. Koch <hjk@linutronix.de>
        Copyright (c) 2007 Hans J. Koch, Linutronix GmbH

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/delay.h>

/* LM93 REGISTER ADDRESSES */

/* miscellaneous */
#define LM93_REG_MFR_ID             0x3e
#define LM93_REG_VER                0x3f
#define LM93_REG_STATUS_CONTROL           0xe2
#define LM93_REG_CONFIG             0xe3
#define LM93_REG_SLEEP_CONTROL            0xe4

/* alarm values start here */
#define LM93_REG_HOST_ERROR_1       0x48

/* voltage inputs: in1-in16 (nr => 0-15) */
#define LM93_REG_IN(nr)             (0x56 + (nr))
#define LM93_REG_IN_MIN(nr)         (0x90 + (nr) * 2)
#define LM93_REG_IN_MAX(nr)         (0x91 + (nr) * 2)

/* temperature inputs: temp1-temp4 (nr => 0-3) */
#define LM93_REG_TEMP(nr)           (0x50 + (nr))
#define LM93_REG_TEMP_MIN(nr)       (0x78 + (nr) * 2)
#define LM93_REG_TEMP_MAX(nr)       (0x79 + (nr) * 2)

/* temp[1-4]_auto_boost (nr => 0-3) */
#define LM93_REG_BOOST(nr)          (0x80 + (nr))

/* #PROCHOT inputs: prochot1-prochot2 (nr => 0-1) */
#define LM93_REG_PROCHOT_CUR(nr)    (0x67 + (nr) * 2)
#define LM93_REG_PROCHOT_AVG(nr)    (0x68 + (nr) * 2)
#define LM93_REG_PROCHOT_MAX(nr)    (0xb0 + (nr))

/* fan tach inputs: fan1-fan4 (nr => 0-3) */
#define LM93_REG_FAN(nr)            (0x6e + (nr) * 2)
#define LM93_REG_FAN_MIN(nr)        (0xb4 + (nr) * 2)

/* pwm outputs: pwm1-pwm2 (nr => 0-1, reg => 0-3) */
#define LM93_REG_PWM_CTL(nr,reg)    (0xc8 + (reg) + (nr) * 4)
#define LM93_PWM_CTL1   0x0
#define LM93_PWM_CTL2   0x1
#define LM93_PWM_CTL3   0x2
#define LM93_PWM_CTL4   0x3

/* GPIO input state */
#define LM93_REG_GPI                0x6b

/* vid inputs: vid1-vid2 (nr => 0-1) */
#define LM93_REG_VID(nr)            (0x6c + (nr))

/* vccp1 & vccp2: VID relative inputs (nr => 0-1) */
#define LM93_REG_VCCP_LIMIT_OFF(nr) (0xb2 + (nr))

/* temp[1-4]_auto_boost_hyst */
#define LM93_REG_BOOST_HYST_12            0xc0
#define LM93_REG_BOOST_HYST_34            0xc1
#define LM93_REG_BOOST_HYST(nr)           (0xc0 + (nr)/2)

/* temp[1-4]_auto_pwm_[min|hyst] */
#define LM93_REG_PWM_MIN_HYST_12    0xc3
#define LM93_REG_PWM_MIN_HYST_34    0xc4
#define LM93_REG_PWM_MIN_HYST(nr)   (0xc3 + (nr)/2)

/* prochot_override & prochot_interval */
#define LM93_REG_PROCHOT_OVERRIDE   0xc6
#define LM93_REG_PROCHOT_INTERVAL   0xc7

/* temp[1-4]_auto_base (nr => 0-3) */
#define LM93_REG_TEMP_BASE(nr)            (0xd0 + (nr))

/* temp[1-4]_auto_offsets (step => 0-11) */
#define LM93_REG_TEMP_OFFSET(step)  (0xd4 + (step))

/* #PROCHOT & #VRDHOT PWM ramp control */
#define LM93_REG_PWM_RAMP_CTL       0xbf

/* miscellaneous */
#define LM93_REG_SFC1         0xbc
#define LM93_REG_SFC2         0xbd
#define LM93_REG_GPI_VID_CTL  0xbe
#define LM93_REG_SF_TACH_TO_PWM     0xe0

/* error masks */
#define LM93_REG_GPI_ERR_MASK 0xec
#define LM93_REG_MISC_ERR_MASK      0xed

/* LM93 REGISTER VALUES */
#define LM93_MFR_ID           0x73
#define LM93_MFR_ID_PROTOTYPE 0x72

/* SMBus capabilities */
#define LM93_SMBUS_FUNC_FULL (I2C_FUNC_SMBUS_BYTE_DATA | \
            I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_BLOCK_DATA)
#define LM93_SMBUS_FUNC_MIN  (I2C_FUNC_SMBUS_BYTE_DATA | \
            I2C_FUNC_SMBUS_WORD_DATA)

/* Addresses to scan */
static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };

/* Insmod parameters */
I2C_CLIENT_INSMOD_1(lm93);

static int disable_block;
module_param(disable_block, bool, 0);
MODULE_PARM_DESC(disable_block,
      "Set to non-zero to disable SMBus block data transactions.");

static int init;
module_param(init, bool, 0);
MODULE_PARM_DESC(init, "Set to non-zero to force chip initialization.");

static int vccp_limit_type[2] = {0,0};
module_param_array(vccp_limit_type, int, NULL, 0);
MODULE_PARM_DESC(vccp_limit_type, "Configures in7 and in8 limit modes.");

static int vid_agtl;
module_param(vid_agtl, int, 0);
MODULE_PARM_DESC(vid_agtl, "Configures VID pin input thresholds.");

/* Driver data */
static struct i2c_driver lm93_driver;

/* LM93 BLOCK READ COMMANDS */
static const struct { u8 cmd; u8 len; } lm93_block_read_cmds[12] = {
      { 0xf2,  8 },
      { 0xf3,  8 },
      { 0xf4,  6 },
      { 0xf5, 16 },
      { 0xf6,  4 },
      { 0xf7,  8 },
      { 0xf8, 12 },
      { 0xf9, 32 },
      { 0xfa,  8 },
      { 0xfb,  8 },
      { 0xfc, 16 },
      { 0xfd,  9 },
};

/* ALARMS: SYSCTL format described further below
   REG: 64 bits in 8 registers, as immediately below */
struct block1_t {
      u8 host_status_1;
      u8 host_status_2;
      u8 host_status_3;
      u8 host_status_4;
      u8 p1_prochot_status;
      u8 p2_prochot_status;
      u8 gpi_status;
      u8 fan_status;
};

/*
 * Client-specific data
 */
struct lm93_data {
      struct i2c_client client;
      struct device *hwmon_dev;

      struct mutex update_lock;
      unsigned long last_updated;   /* In jiffies */

      /* client update function */
      void (*update)(struct lm93_data *, struct i2c_client *);

      char valid; /* !=0 if following fields are valid */

      /* register values, arranged by block read groups */
      struct block1_t block1;

      /* temp1 - temp4: unfiltered readings
         temp1 - temp2: filtered readings */
      u8 block2[6];

      /* vin1 - vin16: readings */
      u8 block3[16];

      /* prochot1 - prochot2: readings */
      struct {
            u8 cur;
            u8 avg;
      } block4[2];

      /* fan counts 1-4 => 14-bits, LE, *left* justified */
      u16 block5[4];

      /* block6 has a lot of data we don't need */
      struct {
            u8 min;
            u8 max;
      } temp_lim[4];

      /* vin1 - vin16: low and high limits */
      struct {
            u8 min;
            u8 max;
      } block7[16];

      /* fan count limits 1-4 => same format as block5 */
      u16 block8[4];

      /* pwm control registers (2 pwms, 4 regs) */
      u8 block9[2][4];

      /* auto/pwm base temp and offset temp registers */
      struct {
            u8 base[4];
            u8 offset[12];
      } block10;

      /* master config register */
      u8 config;

      /* VID1 & VID2 => register format, 6-bits, right justified */
      u8 vid[2];

      /* prochot1 - prochot2: limits */
      u8 prochot_max[2];

      /* vccp1 & vccp2 (in7 & in8): VID relative limits (register format) */
      u8 vccp_limits[2];

      /* GPIO input state (register format, i.e. inverted) */
      u8 gpi;

      /* #PROCHOT override (register format) */
      u8 prochot_override;

      /* #PROCHOT intervals (register format) */
      u8 prochot_interval;

      /* Fan Boost Temperatures (register format) */
      u8 boost[4];

      /* Fan Boost Hysteresis (register format) */
      u8 boost_hyst[2];

      /* Temperature Zone Min. PWM & Hysteresis (register format) */
      u8 auto_pwm_min_hyst[2];

      /* #PROCHOT & #VRDHOT PWM Ramp Control */
      u8 pwm_ramp_ctl;

      /* miscellaneous setup regs */
      u8 sfc1;
      u8 sfc2;
      u8 sf_tach_to_pwm;

      /* The two PWM CTL2  registers can read something other than what was
         last written for the OVR_DC field (duty cycle override).  So, we
         save the user-commanded value here. */
      u8 pwm_override[2];
};

/* VID:     mV
   REG: 6-bits, right justified, *always* using Intel VRM/VRD 10 */
static int LM93_VID_FROM_REG(u8 reg)
{
      return vid_from_reg((reg & 0x3f), 100);
}

/* min, max, and nominal register values, per channel (u8) */
static const u8 lm93_vin_reg_min[16] = {
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xae,
};
static const u8 lm93_vin_reg_max[16] = {
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xfa, 0xff, 0xff, 0xff, 0xff, 0xff, 0xd1,
};
/* Values from the datasheet. They're here for documentation only.
static const u8 lm93_vin_reg_nom[16] = {
      0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0,
      0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0x40, 0xc0,
};
*/

/* min, max, and nominal voltage readings, per channel (mV)*/
static const unsigned long lm93_vin_val_min[16] = {
      0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 3000,
};

static const unsigned long lm93_vin_val_max[16] = {
      1236, 1236, 1236, 1600, 2000, 2000, 1600, 1600,
      4400, 6500, 3333, 2625, 1312, 1312, 1236, 3600,
};
/* Values from the datasheet. They're here for documentation only.
static const unsigned long lm93_vin_val_nom[16] = {
       927,  927,  927, 1200, 1500, 1500, 1200, 1200,
      3300, 5000, 2500, 1969,  984,  984,  309, 3300,
};
*/

static unsigned LM93_IN_FROM_REG(int nr, u8 reg)
{
      const long uV_max = lm93_vin_val_max[nr] * 1000;
      const long uV_min = lm93_vin_val_min[nr] * 1000;

      const long slope = (uV_max - uV_min) /
            (lm93_vin_reg_max[nr] - lm93_vin_reg_min[nr]);
      const long intercept = uV_min - slope * lm93_vin_reg_min[nr];

      return (slope * reg + intercept + 500) / 1000;
}

/* IN: mV, limits determined by channel nr
   REG: scaling determined by channel nr */
static u8 LM93_IN_TO_REG(int nr, unsigned val)
{
      /* range limit */
      const long mV = SENSORS_LIMIT(val,
            lm93_vin_val_min[nr], lm93_vin_val_max[nr]);

      /* try not to lose too much precision here */
      const long uV = mV * 1000;
      const long uV_max = lm93_vin_val_max[nr] * 1000;
      const long uV_min = lm93_vin_val_min[nr] * 1000;

      /* convert */
      const long slope = (uV_max - uV_min) /
            (lm93_vin_reg_max[nr] - lm93_vin_reg_min[nr]);
      const long intercept = uV_min - slope * lm93_vin_reg_min[nr];

      u8 result = ((uV - intercept + (slope/2)) / slope);
      result = SENSORS_LIMIT(result,
                  lm93_vin_reg_min[nr], lm93_vin_reg_max[nr]);
      return result;
}

/* vid in mV, upper == 0 indicates low limit, otherwise upper limit */
static unsigned LM93_IN_REL_FROM_REG(u8 reg, int upper, int vid)
{
      const long uV_offset = upper ? (((reg >> 4 & 0x0f) + 1) * 12500) :
                        (((reg >> 0 & 0x0f) + 1) * -25000);
      const long uV_vid = vid * 1000;
      return (uV_vid + uV_offset + 5000) / 10000;
}

#define LM93_IN_MIN_FROM_REG(reg,vid)     LM93_IN_REL_FROM_REG(reg,0,vid)
#define LM93_IN_MAX_FROM_REG(reg,vid)     LM93_IN_REL_FROM_REG(reg,1,vid)

/* vid in mV , upper == 0 indicates low limit, otherwise upper limit
   upper also determines which nibble of the register is returned
   (the other nibble will be 0x0) */
static u8 LM93_IN_REL_TO_REG(unsigned val, int upper, int vid)
{
      long uV_offset = vid * 1000 - val * 10000;
      if (upper) {
            uV_offset = SENSORS_LIMIT(uV_offset, 12500, 200000);
            return (u8)((uV_offset /  12500 - 1) << 4);
      } else {
            uV_offset = SENSORS_LIMIT(uV_offset, -400000, -25000);
            return (u8)((uV_offset / -25000 - 1) << 0);
      }
}

/* TEMP: 1/1000 degrees C (-128C to +127C)
   REG: 1C/bit, two's complement */
static int LM93_TEMP_FROM_REG(u8 reg)
{
      return (s8)reg * 1000;
}

#define LM93_TEMP_MIN (-128000)
#define LM93_TEMP_MAX ( 127000)

/* TEMP: 1/1000 degrees C (-128C to +127C)
   REG: 1C/bit, two's complement */
static u8 LM93_TEMP_TO_REG(long temp)
{
      int ntemp = SENSORS_LIMIT(temp, LM93_TEMP_MIN, LM93_TEMP_MAX);
      ntemp += (ntemp<0 ? -500 : 500);
      return (u8)(ntemp / 1000);
}

/* Determine 4-bit temperature offset resolution */
static int LM93_TEMP_OFFSET_MODE_FROM_REG(u8 sfc2, int nr)
{
      /* mode: 0 => 1C/bit, nonzero => 0.5C/bit */
      return sfc2 & (nr < 2 ? 0x10 : 0x20);
}

/* This function is common to all 4-bit temperature offsets
   reg is 4 bits right justified
   mode 0 => 1C/bit, mode !0 => 0.5C/bit */
static int LM93_TEMP_OFFSET_FROM_REG(u8 reg, int mode)
{
      return (reg & 0x0f) * (mode ? 5 : 10);
}

#define LM93_TEMP_OFFSET_MIN  (  0)
#define LM93_TEMP_OFFSET_MAX0 (150)
#define LM93_TEMP_OFFSET_MAX1 ( 75)

/* This function is common to all 4-bit temperature offsets
   returns 4 bits right justified
   mode 0 => 1C/bit, mode !0 => 0.5C/bit */
static u8 LM93_TEMP_OFFSET_TO_REG(int off, int mode)
{
      int factor = mode ? 5 : 10;

      off = SENSORS_LIMIT(off, LM93_TEMP_OFFSET_MIN,
            mode ? LM93_TEMP_OFFSET_MAX1 : LM93_TEMP_OFFSET_MAX0);
      return (u8)((off + factor/2) / factor);
}

/* 0 <= nr <= 3 */
static int LM93_TEMP_AUTO_OFFSET_FROM_REG(u8 reg, int nr, int mode)
{
      /* temp1-temp2 (nr=0,1) use lower nibble */
      if (nr < 2)
            return LM93_TEMP_OFFSET_FROM_REG(reg & 0x0f, mode);

      /* temp3-temp4 (nr=2,3) use upper nibble */
      else
            return LM93_TEMP_OFFSET_FROM_REG(reg >> 4 & 0x0f, mode);
}

/* TEMP: 1/10 degrees C (0C to +15C (mode 0) or +7.5C (mode non-zero))
   REG: 1.0C/bit (mode 0) or 0.5C/bit (mode non-zero)
   0 <= nr <= 3 */
static u8 LM93_TEMP_AUTO_OFFSET_TO_REG(u8 old, int off, int nr, int mode)
{
      u8 new = LM93_TEMP_OFFSET_TO_REG(off, mode);

      /* temp1-temp2 (nr=0,1) use lower nibble */
      if (nr < 2)
            return (old & 0xf0) | (new & 0x0f);

      /* temp3-temp4 (nr=2,3) use upper nibble */
      else
            return (new << 4 & 0xf0) | (old & 0x0f);
}

static int LM93_AUTO_BOOST_HYST_FROM_REGS(struct lm93_data *data, int nr,
            int mode)
{
      u8 reg;

      switch (nr) {
      case 0:
            reg = data->boost_hyst[0] & 0x0f;
            break;
      case 1:
            reg = data->boost_hyst[0] >> 4 & 0x0f;
            break;
      case 2:
            reg = data->boost_hyst[1] & 0x0f;
            break;
      case 3:
      default:
            reg = data->boost_hyst[1] >> 4 & 0x0f;
            break;
      }

      return LM93_TEMP_FROM_REG(data->boost[nr]) -
                  LM93_TEMP_OFFSET_FROM_REG(reg, mode);
}

static u8 LM93_AUTO_BOOST_HYST_TO_REG(struct lm93_data *data, long hyst,
            int nr, int mode)
{
      u8 reg = LM93_TEMP_OFFSET_TO_REG(
                  (LM93_TEMP_FROM_REG(data->boost[nr]) - hyst), mode);

      switch (nr) {
      case 0:
            reg = (data->boost_hyst[0] & 0xf0) | (reg & 0x0f);
            break;
      case 1:
            reg = (reg << 4 & 0xf0) | (data->boost_hyst[0] & 0x0f);
            break;
      case 2:
            reg = (data->boost_hyst[1] & 0xf0) | (reg & 0x0f);
            break;
      case 3:
      default:
            reg = (reg << 4 & 0xf0) | (data->boost_hyst[1] & 0x0f);
            break;
      }

      return reg;
}

/* PWM: 0-255 per sensors documentation
   REG: 0-13 as mapped below... right justified */
typedef enum { LM93_PWM_MAP_HI_FREQ, LM93_PWM_MAP_LO_FREQ } pwm_freq_t;
static int lm93_pwm_map[2][16] = {
      {
            0x00, /*   0.00% */ 0x40, /*  25.00% */
            0x50, /*  31.25% */ 0x60, /*  37.50% */
            0x70, /*  43.75% */ 0x80, /*  50.00% */
            0x90, /*  56.25% */ 0xa0, /*  62.50% */
            0xb0, /*  68.75% */ 0xc0, /*  75.00% */
            0xd0, /*  81.25% */ 0xe0, /*  87.50% */
            0xf0, /*  93.75% */ 0xff, /* 100.00% */
            0xff, 0xff, /* 14, 15 are reserved and should never occur */
      },
      {
            0x00, /*   0.00% */ 0x40, /*  25.00% */
            0x49, /*  28.57% */ 0x52, /*  32.14% */
            0x5b, /*  35.71% */ 0x64, /*  39.29% */
            0x6d, /*  42.86% */ 0x76, /*  46.43% */
            0x80, /*  50.00% */ 0x89, /*  53.57% */
            0x92, /*  57.14% */ 0xb6, /*  71.43% */
            0xdb, /*  85.71% */ 0xff, /* 100.00% */
            0xff, 0xff, /* 14, 15 are reserved and should never occur */
      },
};

static int LM93_PWM_FROM_REG(u8 reg, pwm_freq_t freq)
{
      return lm93_pwm_map[freq][reg & 0x0f];
}

/* round up to nearest match */
static u8 LM93_PWM_TO_REG(int pwm, pwm_freq_t freq)
{
      int i;
      for (i = 0; i < 13; i++)
            if (pwm <= lm93_pwm_map[freq][i])
                  break;

      /* can fall through with i==13 */
      return (u8)i;
}

static int LM93_FAN_FROM_REG(u16 regs)
{
      const u16 count = le16_to_cpu(regs) >> 2;
      return count==0 ? -1 : count==0x3fff ? 0: 1350000 / count;
}

/*
 * RPM: (82.5 to 1350000)
 * REG: 14-bits, LE, *left* justified
 */
static u16 LM93_FAN_TO_REG(long rpm)
{
      u16 count, regs;

      if (rpm == 0) {
            count = 0x3fff;
      } else {
            rpm = SENSORS_LIMIT(rpm, 1, 1000000);
            count = SENSORS_LIMIT((1350000 + rpm) / rpm, 1, 0x3ffe);
      }

      regs = count << 2;
      return cpu_to_le16(regs);
}

/* PWM FREQ: HZ
   REG: 0-7 as mapped below */
static int lm93_pwm_freq_map[8] = {
      22500, 96, 84, 72, 60, 48, 36, 12
};

static int LM93_PWM_FREQ_FROM_REG(u8 reg)
{
      return lm93_pwm_freq_map[reg & 0x07];
}

/* round up to nearest match */
static u8 LM93_PWM_FREQ_TO_REG(int freq)
{
      int i;
      for (i = 7; i > 0; i--)
            if (freq <= lm93_pwm_freq_map[i])
                  break;

      /* can fall through with i==0 */
      return (u8)i;
}

/* TIME: 1/100 seconds
 * REG: 0-7 as mapped below */
static int lm93_spinup_time_map[8] = {
      0, 10, 25, 40, 70, 100, 200, 400,
};

static int LM93_SPINUP_TIME_FROM_REG(u8 reg)
{
      return lm93_spinup_time_map[reg >> 5 & 0x07];
}

/* round up to nearest match */
static u8 LM93_SPINUP_TIME_TO_REG(int time)
{
      int i;
      for (i = 0; i < 7; i++)
            if (time <= lm93_spinup_time_map[i])
                  break;

      /* can fall through with i==8 */
      return (u8)i;
}

#define LM93_RAMP_MIN 0
#define LM93_RAMP_MAX 75

static int LM93_RAMP_FROM_REG(u8 reg)
{
      return (reg & 0x0f) * 5;
}

/* RAMP: 1/100 seconds
   REG: 50mS/bit 4-bits right justified */
static u8 LM93_RAMP_TO_REG(int ramp)
{
      ramp = SENSORS_LIMIT(ramp, LM93_RAMP_MIN, LM93_RAMP_MAX);
      return (u8)((ramp + 2) / 5);
}

/* PROCHOT: 0-255, 0 => 0%, 255 => > 96.6%
 * REG: (same) */
static u8 LM93_PROCHOT_TO_REG(long prochot)
{
      prochot = SENSORS_LIMIT(prochot, 0, 255);
      return (u8)prochot;
}

/* PROCHOT-INTERVAL: 73 - 37200 (1/100 seconds)
 * REG: 0-9 as mapped below */
static int lm93_interval_map[10] = {
      73, 146, 290, 580, 1170, 2330, 4660, 9320, 18600, 37200,
};

static int LM93_INTERVAL_FROM_REG(u8 reg)
{
      return lm93_interval_map[reg & 0x0f];
}

/* round up to nearest match */
static u8 LM93_INTERVAL_TO_REG(long interval)
{
      int i;
      for (i = 0; i < 9; i++)
            if (interval <= lm93_interval_map[i])
                  break;

      /* can fall through with i==9 */
      return (u8)i;
}

/* GPIO: 0-255, GPIO0 is LSB
 * REG: inverted */
static unsigned LM93_GPI_FROM_REG(u8 reg)
{
      return ~reg & 0xff;
}

/* alarm bitmask definitions
   The LM93 has nearly 64 bits of error status... I've pared that down to
   what I think is a useful subset in order to fit it into 32 bits.

   Especially note that the #VRD_HOT alarms are missing because we provide
   that information as values in another sysfs file.

   If libsensors is extended to support 64 bit values, this could be revisited.
*/
#define LM93_ALARM_IN1        0x00000001
#define LM93_ALARM_IN2        0x00000002
#define LM93_ALARM_IN3        0x00000004
#define LM93_ALARM_IN4        0x00000008
#define LM93_ALARM_IN5        0x00000010
#define LM93_ALARM_IN6        0x00000020
#define LM93_ALARM_IN7        0x00000040
#define LM93_ALARM_IN8        0x00000080
#define LM93_ALARM_IN9        0x00000100
#define LM93_ALARM_IN10       0x00000200
#define LM93_ALARM_IN11       0x00000400
#define LM93_ALARM_IN12       0x00000800
#define LM93_ALARM_IN13       0x00001000
#define LM93_ALARM_IN14       0x00002000
#define LM93_ALARM_IN15       0x00004000
#define LM93_ALARM_IN16       0x00008000
#define LM93_ALARM_FAN1       0x00010000
#define LM93_ALARM_FAN2       0x00020000
#define LM93_ALARM_FAN3       0x00040000
#define LM93_ALARM_FAN4       0x00080000
#define LM93_ALARM_PH1_ERR    0x00100000
#define LM93_ALARM_PH2_ERR    0x00200000
#define LM93_ALARM_SCSI1_ERR  0x00400000
#define LM93_ALARM_SCSI2_ERR  0x00800000
#define LM93_ALARM_DVDDP1_ERR 0x01000000
#define LM93_ALARM_DVDDP2_ERR 0x02000000
#define LM93_ALARM_D1_ERR     0x04000000
#define LM93_ALARM_D2_ERR     0x08000000
#define LM93_ALARM_TEMP1      0x10000000
#define LM93_ALARM_TEMP2      0x20000000
#define LM93_ALARM_TEMP3      0x40000000

static unsigned LM93_ALARMS_FROM_REG(struct block1_t b1)
{
      unsigned result;
      result  = b1.host_status_2 & 0x3f;

      if (vccp_limit_type[0])
            result |= (b1.host_status_4 & 0x10) << 2;
      else
            result |= b1.host_status_2 & 0x40;

      if (vccp_limit_type[1])
            result |= (b1.host_status_4 & 0x20) << 2;
      else
            result |= b1.host_status_2 & 0x80;

      result |= b1.host_status_3 << 8;
      result |= (b1.fan_status & 0x0f) << 16;
      result |= (b1.p1_prochot_status & 0x80) << 13;
      result |= (b1.p2_prochot_status & 0x80) << 14;
      result |= (b1.host_status_4 & 0xfc) << 20;
      result |= (b1.host_status_1 & 0x07) << 28;
      return result;
}

#define MAX_RETRIES 5

static u8 lm93_read_byte(struct i2c_client *client, u8 reg)
{
      int value, i;

      /* retry in case of read errors */
      for (i=1; i<=MAX_RETRIES; i++) {
            if ((value = i2c_smbus_read_byte_data(client, reg)) >= 0) {
                  return value;
            } else {
                  dev_warn(&client->dev,"lm93: read byte data failed, "
                        "address 0x%02x.\n", reg);
                  mdelay(i + 3);
            }

      }

      /* <TODO> what to return in case of error? */
      dev_err(&client->dev,"lm93: All read byte retries failed!!\n");
      return 0;
}

static int lm93_write_byte(struct i2c_client *client, u8 reg, u8 value)
{
      int result;

      /* <TODO> how to handle write errors? */
      result = i2c_smbus_write_byte_data(client, reg, value);

      if (result < 0)
            dev_warn(&client->dev,"lm93: write byte data failed, "
                   "0x%02x at address 0x%02x.\n", value, reg);

      return result;
}

static u16 lm93_read_word(struct i2c_client *client, u8 reg)
{
      int value, i;

      /* retry in case of read errors */
      for (i=1; i<=MAX_RETRIES; i++) {
            if ((value = i2c_smbus_read_word_data(client, reg)) >= 0) {
                  return value;
            } else {
                  dev_warn(&client->dev,"lm93: read word data failed, "
                         "address 0x%02x.\n", reg);
                  mdelay(i + 3);
            }

      }

      /* <TODO> what to return in case of error? */
      dev_err(&client->dev,"lm93: All read word retries failed!!\n");
      return 0;
}

static int lm93_write_word(struct i2c_client *client, u8 reg, u16 value)
{
      int result;

      /* <TODO> how to handle write errors? */
      result = i2c_smbus_write_word_data(client, reg, value);

      if (result < 0)
            dev_warn(&client->dev,"lm93: write word data failed, "
                   "0x%04x at address 0x%02x.\n", value, reg);

      return result;
}

static u8 lm93_block_buffer[I2C_SMBUS_BLOCK_MAX];

/*
      read block data into values, retry if not expected length
      fbn => index to lm93_block_read_cmds table
            (Fixed Block Number - section 14.5.2 of LM93 datasheet)
*/
static void lm93_read_block(struct i2c_client *client, u8 fbn, u8 *values)
{
      int i, result=0;

      for (i = 1; i <= MAX_RETRIES; i++) {
            result = i2c_smbus_read_block_data(client,
                  lm93_block_read_cmds[fbn].cmd, lm93_block_buffer);

            if (result == lm93_block_read_cmds[fbn].len) {
                  break;
            } else {
                  dev_warn(&client->dev,"lm93: block read data failed, "
                         "command 0x%02x.\n",
                         lm93_block_read_cmds[fbn].cmd);
                  mdelay(i + 3);
            }
      }

      if (result == lm93_block_read_cmds[fbn].len) {
            memcpy(values,lm93_block_buffer,lm93_block_read_cmds[fbn].len);
      } else {
            /* <TODO> what to do in case of error? */
      }
}

static struct lm93_data *lm93_update_device(struct device *dev)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      const unsigned long interval = HZ + (HZ / 2);

      mutex_lock(&data->update_lock);

      if (time_after(jiffies, data->last_updated + interval) ||
            !data->valid) {

            data->update(data, client);
            data->last_updated = jiffies;
            data->valid = 1;
      }

      mutex_unlock(&data->update_lock);
      return data;
}

/* update routine for data that has no corresponding SMBus block command */
static void lm93_update_client_common(struct lm93_data *data,
                              struct i2c_client *client)
{
      int i;
      u8 *ptr;

      /* temp1 - temp4: limits */
      for (i = 0; i < 4; i++) {
            data->temp_lim[i].min =
                  lm93_read_byte(client, LM93_REG_TEMP_MIN(i));
            data->temp_lim[i].max =
                  lm93_read_byte(client, LM93_REG_TEMP_MAX(i));
      }

      /* config register */
      data->config = lm93_read_byte(client, LM93_REG_CONFIG);

      /* vid1 - vid2: values */
      for (i = 0; i < 2; i++)
            data->vid[i] = lm93_read_byte(client, LM93_REG_VID(i));

      /* prochot1 - prochot2: limits */
      for (i = 0; i < 2; i++)
            data->prochot_max[i] = lm93_read_byte(client,
                        LM93_REG_PROCHOT_MAX(i));

      /* vccp1 - vccp2: VID relative limits */
      for (i = 0; i < 2; i++)
            data->vccp_limits[i] = lm93_read_byte(client,
                        LM93_REG_VCCP_LIMIT_OFF(i));

      /* GPIO input state */
      data->gpi = lm93_read_byte(client, LM93_REG_GPI);

      /* #PROCHOT override state */
      data->prochot_override = lm93_read_byte(client,
                  LM93_REG_PROCHOT_OVERRIDE);

      /* #PROCHOT intervals */
      data->prochot_interval = lm93_read_byte(client,
                  LM93_REG_PROCHOT_INTERVAL);

      /* Fan Boost Termperature registers */
      for (i = 0; i < 4; i++)
            data->boost[i] = lm93_read_byte(client, LM93_REG_BOOST(i));

      /* Fan Boost Temperature Hyst. registers */
      data->boost_hyst[0] = lm93_read_byte(client, LM93_REG_BOOST_HYST_12);
      data->boost_hyst[1] = lm93_read_byte(client, LM93_REG_BOOST_HYST_34);

      /* Temperature Zone Min. PWM & Hysteresis registers */
      data->auto_pwm_min_hyst[0] =
                  lm93_read_byte(client, LM93_REG_PWM_MIN_HYST_12);
      data->auto_pwm_min_hyst[1] =
                  lm93_read_byte(client, LM93_REG_PWM_MIN_HYST_34);

      /* #PROCHOT & #VRDHOT PWM Ramp Control register */
      data->pwm_ramp_ctl = lm93_read_byte(client, LM93_REG_PWM_RAMP_CTL);

      /* misc setup registers */
      data->sfc1 = lm93_read_byte(client, LM93_REG_SFC1);
      data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
      data->sf_tach_to_pwm = lm93_read_byte(client,
                  LM93_REG_SF_TACH_TO_PWM);

      /* write back alarm values to clear */
      for (i = 0, ptr = (u8 *)(&data->block1); i < 8; i++)
            lm93_write_byte(client, LM93_REG_HOST_ERROR_1 + i, *(ptr + i));
}

/* update routine which uses SMBus block data commands */
static void lm93_update_client_full(struct lm93_data *data,
                            struct i2c_client *client)
{
      dev_dbg(&client->dev,"starting device update (block data enabled)\n");

      /* in1 - in16: values & limits */
      lm93_read_block(client, 3, (u8 *)(data->block3));
      lm93_read_block(client, 7, (u8 *)(data->block7));

      /* temp1 - temp4: values */
      lm93_read_block(client, 2, (u8 *)(data->block2));

      /* prochot1 - prochot2: values */
      lm93_read_block(client, 4, (u8 *)(data->block4));

      /* fan1 - fan4: values & limits */
      lm93_read_block(client, 5, (u8 *)(data->block5));
      lm93_read_block(client, 8, (u8 *)(data->block8));

      /* pmw control registers */
      lm93_read_block(client, 9, (u8 *)(data->block9));

      /* alarm values */
      lm93_read_block(client, 1, (u8 *)(&data->block1));

      /* auto/pwm registers */
      lm93_read_block(client, 10, (u8 *)(&data->block10));

      lm93_update_client_common(data, client);
}

/* update routine which uses SMBus byte/word data commands only */
static void lm93_update_client_min(struct lm93_data *data,
                           struct i2c_client *client)
{
      int i,j;
      u8 *ptr;

      dev_dbg(&client->dev,"starting device update (block data disabled)\n");

      /* in1 - in16: values & limits */
      for (i = 0; i < 16; i++) {
            data->block3[i] =
                  lm93_read_byte(client, LM93_REG_IN(i));
            data->block7[i].min =
                  lm93_read_byte(client, LM93_REG_IN_MIN(i));
            data->block7[i].max =
                  lm93_read_byte(client, LM93_REG_IN_MAX(i));
      }

      /* temp1 - temp4: values */
      for (i = 0; i < 4; i++) {
            data->block2[i] =
                  lm93_read_byte(client, LM93_REG_TEMP(i));
      }

      /* prochot1 - prochot2: values */
      for (i = 0; i < 2; i++) {
            data->block4[i].cur =
                  lm93_read_byte(client, LM93_REG_PROCHOT_CUR(i));
            data->block4[i].avg =
                  lm93_read_byte(client, LM93_REG_PROCHOT_AVG(i));
      }

      /* fan1 - fan4: values & limits */
      for (i = 0; i < 4; i++) {
            data->block5[i] =
                  lm93_read_word(client, LM93_REG_FAN(i));
            data->block8[i] =
                  lm93_read_word(client, LM93_REG_FAN_MIN(i));
      }

      /* pwm control registers */
      for (i = 0; i < 2; i++) {
            for (j = 0; j < 4; j++) {
                  data->block9[i][j] =
                        lm93_read_byte(client, LM93_REG_PWM_CTL(i,j));
            }
      }

      /* alarm values */
      for (i = 0, ptr = (u8 *)(&data->block1); i < 8; i++) {
            *(ptr + i) =
                  lm93_read_byte(client, LM93_REG_HOST_ERROR_1 + i);
      }

      /* auto/pwm (base temp) registers */
      for (i = 0; i < 4; i++) {
            data->block10.base[i] =
                  lm93_read_byte(client, LM93_REG_TEMP_BASE(i));
      }

      /* auto/pwm (offset temp) registers */
      for (i = 0; i < 12; i++) {
            data->block10.offset[i] =
                  lm93_read_byte(client, LM93_REG_TEMP_OFFSET(i));
      }

      lm93_update_client_common(data, client);
}

/* following are the sysfs callback functions */
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
                  char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;

      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf, "%d\n", LM93_IN_FROM_REG(nr, data->block3[nr]));
}

static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_in, NULL, 0);
static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_in, NULL, 1);
static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_in, NULL, 2);
static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_in, NULL, 3);
static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_in, NULL, 4);
static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_in, NULL, 5);
static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_in, NULL, 6);
static SENSOR_DEVICE_ATTR(in8_input, S_IRUGO, show_in, NULL, 7);
static SENSOR_DEVICE_ATTR(in9_input, S_IRUGO, show_in, NULL, 8);
static SENSOR_DEVICE_ATTR(in10_input, S_IRUGO, show_in, NULL, 9);
static SENSOR_DEVICE_ATTR(in11_input, S_IRUGO, show_in, NULL, 10);
static SENSOR_DEVICE_ATTR(in12_input, S_IRUGO, show_in, NULL, 11);
static SENSOR_DEVICE_ATTR(in13_input, S_IRUGO, show_in, NULL, 12);
static SENSOR_DEVICE_ATTR(in14_input, S_IRUGO, show_in, NULL, 13);
static SENSOR_DEVICE_ATTR(in15_input, S_IRUGO, show_in, NULL, 14);
static SENSOR_DEVICE_ATTR(in16_input, S_IRUGO, show_in, NULL, 15);

static ssize_t show_in_min(struct device *dev,
                  struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      int vccp = nr - 6;
      long rc, vid;

      if ((nr==6 || nr==7) && (vccp_limit_type[vccp])) {
            vid = LM93_VID_FROM_REG(data->vid[vccp]);
            rc = LM93_IN_MIN_FROM_REG(data->vccp_limits[vccp], vid);
      }
      else {
            rc = LM93_IN_FROM_REG(nr, data->block7[nr].min); \
      }
      return sprintf(buf, "%ld\n", rc); \
}

static ssize_t store_in_min(struct device *dev, struct device_attribute *attr,
                      const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      int vccp = nr - 6;
      long vid;

      mutex_lock(&data->update_lock);
      if ((nr==6 || nr==7) && (vccp_limit_type[vccp])) {
            vid = LM93_VID_FROM_REG(data->vid[vccp]);
            data->vccp_limits[vccp] = (data->vccp_limits[vccp] & 0xf0) |
                        LM93_IN_REL_TO_REG(val, 0, vid);
            lm93_write_byte(client, LM93_REG_VCCP_LIMIT_OFF(vccp),
                        data->vccp_limits[vccp]);
      }
      else {
            data->block7[nr].min = LM93_IN_TO_REG(nr,val);
            lm93_write_byte(client, LM93_REG_IN_MIN(nr),
                        data->block7[nr].min);
      }
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 0);
static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 1);
static SENSOR_DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 2);
static SENSOR_DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 3);
static SENSOR_DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 4);
static SENSOR_DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 5);
static SENSOR_DEVICE_ATTR(in7_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 6);
static SENSOR_DEVICE_ATTR(in8_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 7);
static SENSOR_DEVICE_ATTR(in9_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 8);
static SENSOR_DEVICE_ATTR(in10_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 9);
static SENSOR_DEVICE_ATTR(in11_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 10);
static SENSOR_DEVICE_ATTR(in12_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 11);
static SENSOR_DEVICE_ATTR(in13_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 12);
static SENSOR_DEVICE_ATTR(in14_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 13);
static SENSOR_DEVICE_ATTR(in15_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 14);
static SENSOR_DEVICE_ATTR(in16_min, S_IWUSR | S_IRUGO,
                    show_in_min, store_in_min, 15);

static ssize_t show_in_max(struct device *dev,
                     struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      int vccp = nr - 6;
      long rc, vid;

      if ((nr==6 || nr==7) && (vccp_limit_type[vccp])) {
            vid = LM93_VID_FROM_REG(data->vid[vccp]);
            rc = LM93_IN_MAX_FROM_REG(data->vccp_limits[vccp],vid);
      }
      else {
            rc = LM93_IN_FROM_REG(nr,data->block7[nr].max); \
      }
      return sprintf(buf,"%ld\n",rc); \
}

static ssize_t store_in_max(struct device *dev, struct device_attribute *attr,
                      const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      int vccp = nr - 6;
      long vid;

      mutex_lock(&data->update_lock);
      if ((nr==6 || nr==7) && (vccp_limit_type[vccp])) {
            vid = LM93_VID_FROM_REG(data->vid[vccp]);
            data->vccp_limits[vccp] = (data->vccp_limits[vccp] & 0x0f) |
                        LM93_IN_REL_TO_REG(val, 1, vid);
            lm93_write_byte(client, LM93_REG_VCCP_LIMIT_OFF(vccp),
                        data->vccp_limits[vccp]);
      }
      else {
            data->block7[nr].max = LM93_IN_TO_REG(nr,val);
            lm93_write_byte(client, LM93_REG_IN_MAX(nr),
                        data->block7[nr].max);
      }
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 0);
static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 1);
static SENSOR_DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 2);
static SENSOR_DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 3);
static SENSOR_DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 4);
static SENSOR_DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 5);
static SENSOR_DEVICE_ATTR(in7_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 6);
static SENSOR_DEVICE_ATTR(in8_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 7);
static SENSOR_DEVICE_ATTR(in9_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 8);
static SENSOR_DEVICE_ATTR(in10_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 9);
static SENSOR_DEVICE_ATTR(in11_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 10);
static SENSOR_DEVICE_ATTR(in12_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 11);
static SENSOR_DEVICE_ATTR(in13_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 12);
static SENSOR_DEVICE_ATTR(in14_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 13);
static SENSOR_DEVICE_ATTR(in15_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 14);
static SENSOR_DEVICE_ATTR(in16_max, S_IWUSR | S_IRUGO,
                    show_in_max, store_in_max, 15);

static ssize_t show_temp(struct device *dev,
                   struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",LM93_TEMP_FROM_REG(data->block2[nr]));
}

static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2);

static ssize_t show_temp_min(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",LM93_TEMP_FROM_REG(data->temp_lim[nr].min));
}

static ssize_t store_temp_min(struct device *dev, struct device_attribute *attr,
                        const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_lim[nr].min = LM93_TEMP_TO_REG(val);
      lm93_write_byte(client, LM93_REG_TEMP_MIN(nr), data->temp_lim[nr].min);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO,
                    show_temp_min, store_temp_min, 0);
static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO,
                    show_temp_min, store_temp_min, 1);
static SENSOR_DEVICE_ATTR(temp3_min, S_IWUSR | S_IRUGO,
                    show_temp_min, store_temp_min, 2);

static ssize_t show_temp_max(struct device *dev,
                       struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",LM93_TEMP_FROM_REG(data->temp_lim[nr].max));
}

static ssize_t store_temp_max(struct device *dev, struct device_attribute *attr,
                        const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->temp_lim[nr].max = LM93_TEMP_TO_REG(val);
      lm93_write_byte(client, LM93_REG_TEMP_MAX(nr), data->temp_lim[nr].max);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO,
                    show_temp_max, store_temp_max, 0);
static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO,
                    show_temp_max, store_temp_max, 1);
static SENSOR_DEVICE_ATTR(temp3_max, S_IWUSR | S_IRUGO,
                    show_temp_max, store_temp_max, 2);

static ssize_t show_temp_auto_base(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",LM93_TEMP_FROM_REG(data->block10.base[nr]));
}

static ssize_t store_temp_auto_base(struct device *dev,
                              struct device_attribute *attr,
                              const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->block10.base[nr] = LM93_TEMP_TO_REG(val);
      lm93_write_byte(client, LM93_REG_TEMP_BASE(nr), data->block10.base[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(temp1_auto_base, S_IWUSR | S_IRUGO,
                    show_temp_auto_base, store_temp_auto_base, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_base, S_IWUSR | S_IRUGO,
                    show_temp_auto_base, store_temp_auto_base, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_base, S_IWUSR | S_IRUGO,
                    show_temp_auto_base, store_temp_auto_base, 2);

static ssize_t show_temp_auto_boost(struct device *dev,
                            struct device_attribute *attr,char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",LM93_TEMP_FROM_REG(data->boost[nr]));
}

static ssize_t store_temp_auto_boost(struct device *dev,
                             struct device_attribute *attr,
                             const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      long val = simple_strtol(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->boost[nr] = LM93_TEMP_TO_REG(val);
      lm93_write_byte(client, LM93_REG_BOOST(nr), data->boost[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(temp1_auto_boost, S_IWUSR | S_IRUGO,
                    show_temp_auto_boost, store_temp_auto_boost, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_boost, S_IWUSR | S_IRUGO,
                    show_temp_auto_boost, store_temp_auto_boost, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_boost, S_IWUSR | S_IRUGO,
                    show_temp_auto_boost, store_temp_auto_boost, 2);

static ssize_t show_temp_auto_boost_hyst(struct device *dev,
                               struct device_attribute *attr,
                               char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      int mode = LM93_TEMP_OFFSET_MODE_FROM_REG(data->sfc2, nr);
      return sprintf(buf,"%d\n",
                   LM93_AUTO_BOOST_HYST_FROM_REGS(data, nr, mode));
}

static ssize_t store_temp_auto_boost_hyst(struct device *dev,
                                struct device_attribute *attr,
                                const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      /* force 0.5C/bit mode */
      data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
      data->sfc2 |= ((nr < 2) ? 0x10 : 0x20);
      lm93_write_byte(client, LM93_REG_SFC2, data->sfc2);
      data->boost_hyst[nr/2] = LM93_AUTO_BOOST_HYST_TO_REG(data, val, nr, 1);
      lm93_write_byte(client, LM93_REG_BOOST_HYST(nr),
                  data->boost_hyst[nr/2]);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(temp1_auto_boost_hyst, S_IWUSR | S_IRUGO,
                    show_temp_auto_boost_hyst,
                    store_temp_auto_boost_hyst, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_boost_hyst, S_IWUSR | S_IRUGO,
                    show_temp_auto_boost_hyst,
                    store_temp_auto_boost_hyst, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_boost_hyst, S_IWUSR | S_IRUGO,
                    show_temp_auto_boost_hyst,
                    store_temp_auto_boost_hyst, 2);

static ssize_t show_temp_auto_offset(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      struct sensor_device_attribute_2 *s_attr = to_sensor_dev_attr_2(attr);
      int nr = s_attr->index;
      int ofs = s_attr->nr;
      struct lm93_data *data = lm93_update_device(dev);
      int mode = LM93_TEMP_OFFSET_MODE_FROM_REG(data->sfc2, nr);
      return sprintf(buf,"%d\n",
             LM93_TEMP_AUTO_OFFSET_FROM_REG(data->block10.offset[ofs],
                                    nr,mode));
}

static ssize_t store_temp_auto_offset(struct device *dev,
                              struct device_attribute *attr,
                              const char *buf, size_t count)
{
      struct sensor_device_attribute_2 *s_attr = to_sensor_dev_attr_2(attr);
      int nr = s_attr->index;
      int ofs = s_attr->nr;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      /* force 0.5C/bit mode */
      data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
      data->sfc2 |= ((nr < 2) ? 0x10 : 0x20);
      lm93_write_byte(client, LM93_REG_SFC2, data->sfc2);
      data->block10.offset[ofs] = LM93_TEMP_AUTO_OFFSET_TO_REG(
                  data->block10.offset[ofs], val, nr, 1);
      lm93_write_byte(client, LM93_REG_TEMP_OFFSET(ofs),
                  data->block10.offset[ofs]);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR_2(temp1_auto_offset1, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 0, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset2, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 1, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset3, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 2, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset4, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 3, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset5, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 4, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset6, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 5, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset7, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 6, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset8, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 7, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset9, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 8, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset10, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 9, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset11, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 10, 0);
static SENSOR_DEVICE_ATTR_2(temp1_auto_offset12, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 11, 0);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset1, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 0, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset2, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 1, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset3, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 2, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset4, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 3, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset5, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 4, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset6, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 5, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset7, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 6, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset8, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 7, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset9, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 8, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset10, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 9, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset11, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 10, 1);
static SENSOR_DEVICE_ATTR_2(temp2_auto_offset12, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 11, 1);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset1, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 0, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset2, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 1, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset3, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 2, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset4, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 3, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset5, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 4, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset6, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 5, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset7, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 6, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset8, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 7, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset9, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 8, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset10, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 9, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset11, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 10, 2);
static SENSOR_DEVICE_ATTR_2(temp3_auto_offset12, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset, store_temp_auto_offset, 11, 2);

static ssize_t show_temp_auto_pwm_min(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      u8 reg, ctl4;
      struct lm93_data *data = lm93_update_device(dev);
      reg = data->auto_pwm_min_hyst[nr/2] >> 4 & 0x0f;
      ctl4 = data->block9[nr][LM93_PWM_CTL4];
      return sprintf(buf,"%d\n",LM93_PWM_FROM_REG(reg, (ctl4 & 0x07) ?
                        LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ));
}

static ssize_t store_temp_auto_pwm_min(struct device *dev,
                              struct device_attribute *attr,
                              const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      u8 reg, ctl4;

      mutex_lock(&data->update_lock);
      reg = lm93_read_byte(client, LM93_REG_PWM_MIN_HYST(nr));
      ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr,LM93_PWM_CTL4));
      reg = (reg & 0x0f) |
            LM93_PWM_TO_REG(val, (ctl4 & 0x07) ?
                        LM93_PWM_MAP_LO_FREQ :
                        LM93_PWM_MAP_HI_FREQ) << 4;
      data->auto_pwm_min_hyst[nr/2] = reg;
      lm93_write_byte(client, LM93_REG_PWM_MIN_HYST(nr), reg);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(temp1_auto_pwm_min, S_IWUSR | S_IRUGO,
                    show_temp_auto_pwm_min,
                    store_temp_auto_pwm_min, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_pwm_min, S_IWUSR | S_IRUGO,
                    show_temp_auto_pwm_min,
                    store_temp_auto_pwm_min, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_pwm_min, S_IWUSR | S_IRUGO,
                    show_temp_auto_pwm_min,
                    store_temp_auto_pwm_min, 2);

static ssize_t show_temp_auto_offset_hyst(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      int mode = LM93_TEMP_OFFSET_MODE_FROM_REG(data->sfc2, nr);
      return sprintf(buf,"%d\n",LM93_TEMP_OFFSET_FROM_REG(
                              data->auto_pwm_min_hyst[nr/2], mode));
}

static ssize_t store_temp_auto_offset_hyst(struct device *dev,
                                    struct device_attribute *attr,
                                    const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      u8 reg;

      mutex_lock(&data->update_lock);
      /* force 0.5C/bit mode */
      data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
      data->sfc2 |= ((nr < 2) ? 0x10 : 0x20);
      lm93_write_byte(client, LM93_REG_SFC2, data->sfc2);
      reg = data->auto_pwm_min_hyst[nr/2];
      reg = (reg & 0xf0) | (LM93_TEMP_OFFSET_TO_REG(val, 1) & 0x0f);
      data->auto_pwm_min_hyst[nr/2] = reg;
      lm93_write_byte(client, LM93_REG_PWM_MIN_HYST(nr), reg);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(temp1_auto_offset_hyst, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset_hyst,
                    store_temp_auto_offset_hyst, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_offset_hyst, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset_hyst,
                    store_temp_auto_offset_hyst, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_offset_hyst, S_IWUSR | S_IRUGO,
                    show_temp_auto_offset_hyst,
                    store_temp_auto_offset_hyst, 2);

static ssize_t show_fan_input(struct device *dev,
            struct device_attribute *attr, char *buf)
{
      struct sensor_device_attribute *s_attr = to_sensor_dev_attr(attr);
      int nr = s_attr->index;
      struct lm93_data *data = lm93_update_device(dev);

      return sprintf(buf,"%d\n",LM93_FAN_FROM_REG(data->block5[nr]));
}

static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan_input, NULL, 0);
static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan_input, NULL, 1);
static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_fan_input, NULL, 2);
static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_fan_input, NULL, 3);

static ssize_t show_fan_min(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);

      return sprintf(buf,"%d\n",LM93_FAN_FROM_REG(data->block8[nr]));
}

static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
                        const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->block8[nr] = LM93_FAN_TO_REG(val);
      lm93_write_word(client,LM93_REG_FAN_MIN(nr),data->block8[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO,
                    show_fan_min, store_fan_min, 0);
static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO,
                    show_fan_min, store_fan_min, 1);
static SENSOR_DEVICE_ATTR(fan3_min, S_IWUSR | S_IRUGO,
                    show_fan_min, store_fan_min, 2);
static SENSOR_DEVICE_ATTR(fan4_min, S_IWUSR | S_IRUGO,
                    show_fan_min, store_fan_min, 3);

/* some tedious bit-twiddling here to deal with the register format:

      data->sf_tach_to_pwm: (tach to pwm mapping bits)

            bit |  7  |  6  |  5  |  4  |  3  |  2  |  1  |  0
                 T4:P2 T4:P1 T3:P2 T3:P1 T2:P2 T2:P1 T1:P2 T1:P1

      data->sfc2: (enable bits)

            bit |  3  |  2  |  1  |  0
                   T4    T3    T2    T1
*/

static ssize_t show_fan_smart_tach(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      long rc = 0;
      int mapping;

      /* extract the relevant mapping */
      mapping = (data->sf_tach_to_pwm >> (nr * 2)) & 0x03;

      /* if there's a mapping and it's enabled */
      if (mapping && ((data->sfc2 >> nr) & 0x01))
            rc = mapping;
      return sprintf(buf,"%ld\n",rc);
}

/* helper function - must grab data->update_lock before calling
   fan is 0-3, indicating fan1-fan4 */
static void lm93_write_fan_smart_tach(struct i2c_client *client,
      struct lm93_data *data, int fan, long value)
{
      /* insert the new mapping and write it out */
      data->sf_tach_to_pwm = lm93_read_byte(client, LM93_REG_SF_TACH_TO_PWM);
      data->sf_tach_to_pwm &= ~(0x3 << fan * 2);
      data->sf_tach_to_pwm |= value << fan * 2;
      lm93_write_byte(client, LM93_REG_SF_TACH_TO_PWM, data->sf_tach_to_pwm);

      /* insert the enable bit and write it out */
      data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
      if (value)
            data->sfc2 |= 1 << fan;
      else
            data->sfc2 &= ~(1 << fan);
      lm93_write_byte(client, LM93_REG_SFC2, data->sfc2);
}

static ssize_t store_fan_smart_tach(struct device *dev,
                              struct device_attribute *attr,
                              const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      /* sanity test, ignore the write otherwise */
      if (0 <= val && val <= 2) {
            /* can't enable if pwm freq is 22.5KHz */
            if (val) {
                  u8 ctl4 = lm93_read_byte(client,
                        LM93_REG_PWM_CTL(val-1,LM93_PWM_CTL4));
                  if ((ctl4 & 0x07) == 0)
                        val = 0;
            }
            lm93_write_fan_smart_tach(client, data, nr, val);
      }
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(fan1_smart_tach, S_IWUSR | S_IRUGO,
                    show_fan_smart_tach, store_fan_smart_tach, 0);
static SENSOR_DEVICE_ATTR(fan2_smart_tach, S_IWUSR | S_IRUGO,
                    show_fan_smart_tach, store_fan_smart_tach, 1);
static SENSOR_DEVICE_ATTR(fan3_smart_tach, S_IWUSR | S_IRUGO,
                    show_fan_smart_tach, store_fan_smart_tach, 2);
static SENSOR_DEVICE_ATTR(fan4_smart_tach, S_IWUSR | S_IRUGO,
                    show_fan_smart_tach, store_fan_smart_tach, 3);

static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
                  char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      u8 ctl2, ctl4;
      long rc;

      ctl2 = data->block9[nr][LM93_PWM_CTL2];
      ctl4 = data->block9[nr][LM93_PWM_CTL4];
      if (ctl2 & 0x01) /* show user commanded value if enabled */
            rc = data->pwm_override[nr];
      else /* show present h/w value if manual pwm disabled */
            rc = LM93_PWM_FROM_REG(ctl2 >> 4, (ctl4 & 0x07) ?
                  LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ);
      return sprintf(buf,"%ld\n",rc);
}

static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
                        const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      u8 ctl2, ctl4;

      mutex_lock(&data->update_lock);
      ctl2 = lm93_read_byte(client,LM93_REG_PWM_CTL(nr,LM93_PWM_CTL2));
      ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr,LM93_PWM_CTL4));
      ctl2 = (ctl2 & 0x0f) | LM93_PWM_TO_REG(val,(ctl4 & 0x07) ?
                  LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ) << 4;
      /* save user commanded value */
      data->pwm_override[nr] = LM93_PWM_FROM_REG(ctl2 >> 4,
                  (ctl4 & 0x07) ?  LM93_PWM_MAP_LO_FREQ :
                  LM93_PWM_MAP_HI_FREQ);
      lm93_write_byte(client,LM93_REG_PWM_CTL(nr,LM93_PWM_CTL2),ctl2);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0);
static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1);

static ssize_t show_pwm_enable(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      u8 ctl2;
      long rc;

      ctl2 = data->block9[nr][LM93_PWM_CTL2];
      if (ctl2 & 0x01) /* manual override enabled ? */
            rc = ((ctl2 & 0xF0) == 0xF0) ? 0 : 1;
      else
            rc = 2;
      return sprintf(buf,"%ld\n",rc);
}

static ssize_t store_pwm_enable(struct device *dev,
                        struct device_attribute *attr,
                        const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      u8 ctl2;

      mutex_lock(&data->update_lock);
      ctl2 = lm93_read_byte(client,LM93_REG_PWM_CTL(nr,LM93_PWM_CTL2));

      switch (val) {
      case 0:
            ctl2 |= 0xF1; /* enable manual override, set PWM to max */
            break;
      case 1: ctl2 |= 0x01; /* enable manual override */
            break;
      case 2: ctl2 &= ~0x01; /* disable manual override */
            break;
      default:
            mutex_unlock(&data->update_lock);
            return -EINVAL;
      }

      lm93_write_byte(client,LM93_REG_PWM_CTL(nr,LM93_PWM_CTL2),ctl2);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
                        show_pwm_enable, store_pwm_enable, 0);
static SENSOR_DEVICE_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
                        show_pwm_enable, store_pwm_enable, 1);

static ssize_t show_pwm_freq(struct device *dev, struct device_attribute *attr,
                        char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      u8 ctl4;

      ctl4 = data->block9[nr][LM93_PWM_CTL4];
      return sprintf(buf,"%d\n",LM93_PWM_FREQ_FROM_REG(ctl4));
}

/* helper function - must grab data->update_lock before calling
   pwm is 0-1, indicating pwm1-pwm2
   this disables smart tach for all tach channels bound to the given pwm */
static void lm93_disable_fan_smart_tach(struct i2c_client *client,
      struct lm93_data *data, int pwm)
{
      int mapping = lm93_read_byte(client, LM93_REG_SF_TACH_TO_PWM);
      int mask;

      /* collapse the mapping into a mask of enable bits */
      mapping = (mapping >> pwm) & 0x55;
      mask = mapping & 0x01;
      mask |= (mapping & 0x04) >> 1;
      mask |= (mapping & 0x10) >> 2;
      mask |= (mapping & 0x40) >> 3;

      /* disable smart tach according to the mask */
      data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2);
      data->sfc2 &= ~mask;
      lm93_write_byte(client, LM93_REG_SFC2, data->sfc2);
}

static ssize_t store_pwm_freq(struct device *dev,
                        struct device_attribute *attr,
                        const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      u8 ctl4;

      mutex_lock(&data->update_lock);
      ctl4 = lm93_read_byte(client,LM93_REG_PWM_CTL(nr,LM93_PWM_CTL4));
      ctl4 = (ctl4 & 0xf8) | LM93_PWM_FREQ_TO_REG(val);
      data->block9[nr][LM93_PWM_CTL4] = ctl4;
      /* ctl4 == 0 -> 22.5KHz -> disable smart tach */
      if (!ctl4)
            lm93_disable_fan_smart_tach(client, data, nr);
      lm93_write_byte(client, LM93_REG_PWM_CTL(nr,LM93_PWM_CTL4), ctl4);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(pwm1_freq, S_IWUSR | S_IRUGO,
                    show_pwm_freq, store_pwm_freq, 0);
static SENSOR_DEVICE_ATTR(pwm2_freq, S_IWUSR | S_IRUGO,
                    show_pwm_freq, store_pwm_freq, 1);

static ssize_t show_pwm_auto_channels(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",data->block9[nr][LM93_PWM_CTL1]);
}

static ssize_t store_pwm_auto_channels(struct device *dev,
                              struct device_attribute *attr,
                              const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->block9[nr][LM93_PWM_CTL1] = SENSORS_LIMIT(val, 0, 255);
      lm93_write_byte(client, LM93_REG_PWM_CTL(nr,LM93_PWM_CTL1),
                        data->block9[nr][LM93_PWM_CTL1]);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(pwm1_auto_channels, S_IWUSR | S_IRUGO,
                    show_pwm_auto_channels, store_pwm_auto_channels, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_channels, S_IWUSR | S_IRUGO,
                    show_pwm_auto_channels, store_pwm_auto_channels, 1);

static ssize_t show_pwm_auto_spinup_min(struct device *dev,
                        struct device_attribute *attr,char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      u8 ctl3, ctl4;

      ctl3 = data->block9[nr][LM93_PWM_CTL3];
      ctl4 = data->block9[nr][LM93_PWM_CTL4];
      return sprintf(buf,"%d\n",
                   LM93_PWM_FROM_REG(ctl3 & 0x0f, (ctl4 & 0x07) ?
                  LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ));
}

static ssize_t store_pwm_auto_spinup_min(struct device *dev,
                                    struct device_attribute *attr,
                                    const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      u8 ctl3, ctl4;

      mutex_lock(&data->update_lock);
      ctl3 = lm93_read_byte(client,LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3));
      ctl4 = lm93_read_byte(client,LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4));
      ctl3 = (ctl3 & 0xf0) |  LM93_PWM_TO_REG(val, (ctl4 & 0x07) ?
                  LM93_PWM_MAP_LO_FREQ :
                  LM93_PWM_MAP_HI_FREQ);
      data->block9[nr][LM93_PWM_CTL3] = ctl3;
      lm93_write_byte(client,LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3), ctl3);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(pwm1_auto_spinup_min, S_IWUSR | S_IRUGO,
                    show_pwm_auto_spinup_min,
                    store_pwm_auto_spinup_min, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_spinup_min, S_IWUSR | S_IRUGO,
                    show_pwm_auto_spinup_min,
                    store_pwm_auto_spinup_min, 1);

static ssize_t show_pwm_auto_spinup_time(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",LM93_SPINUP_TIME_FROM_REG(
                        data->block9[nr][LM93_PWM_CTL3]));
}

static ssize_t store_pwm_auto_spinup_time(struct device *dev,
                                    struct device_attribute *attr,
                                    const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      u8 ctl3;

      mutex_lock(&data->update_lock);
      ctl3 = lm93_read_byte(client,LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3));
      ctl3 = (ctl3 & 0x1f) | (LM93_SPINUP_TIME_TO_REG(val) << 5 & 0xe0);
      data->block9[nr][LM93_PWM_CTL3] = ctl3;
      lm93_write_byte(client,LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3), ctl3);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(pwm1_auto_spinup_time, S_IWUSR | S_IRUGO,
                    show_pwm_auto_spinup_time,
                    store_pwm_auto_spinup_time, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_spinup_time, S_IWUSR | S_IRUGO,
                    show_pwm_auto_spinup_time,
                    store_pwm_auto_spinup_time, 1);

static ssize_t show_pwm_auto_prochot_ramp(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",
                   LM93_RAMP_FROM_REG(data->pwm_ramp_ctl >> 4 & 0x0f));
}

static ssize_t store_pwm_auto_prochot_ramp(struct device *dev,
                                    struct device_attribute *attr,
                                    const char *buf, size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      u8 ramp;

      mutex_lock(&data->update_lock);
      ramp = lm93_read_byte(client, LM93_REG_PWM_RAMP_CTL);
      ramp = (ramp & 0x0f) | (LM93_RAMP_TO_REG(val) << 4 & 0xf0);
      lm93_write_byte(client, LM93_REG_PWM_RAMP_CTL, ramp);
      mutex_unlock(&data->update_lock);
      return count;
}

static DEVICE_ATTR(pwm_auto_prochot_ramp, S_IRUGO | S_IWUSR,
                  show_pwm_auto_prochot_ramp,
                  store_pwm_auto_prochot_ramp);

static ssize_t show_pwm_auto_vrdhot_ramp(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",
                   LM93_RAMP_FROM_REG(data->pwm_ramp_ctl & 0x0f));
}

static ssize_t store_pwm_auto_vrdhot_ramp(struct device *dev,
                                    struct device_attribute *attr,
                                    const char *buf, size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      u8 ramp;

      mutex_lock(&data->update_lock);
      ramp = lm93_read_byte(client, LM93_REG_PWM_RAMP_CTL);
      ramp = (ramp & 0xf0) | (LM93_RAMP_TO_REG(val) & 0x0f);
      lm93_write_byte(client, LM93_REG_PWM_RAMP_CTL, ramp);
      mutex_unlock(&data->update_lock);
      return 0;
}

static DEVICE_ATTR(pwm_auto_vrdhot_ramp, S_IRUGO | S_IWUSR,
                  show_pwm_auto_vrdhot_ramp,
                  store_pwm_auto_vrdhot_ramp);

static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
                  char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",LM93_VID_FROM_REG(data->vid[nr]));
}

static SENSOR_DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL, 0);
static SENSOR_DEVICE_ATTR(cpu1_vid, S_IRUGO, show_vid, NULL, 1);

static ssize_t show_prochot(struct device *dev, struct device_attribute *attr,
                        char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",data->block4[nr].cur);
}

static SENSOR_DEVICE_ATTR(prochot1, S_IRUGO, show_prochot, NULL, 0);
static SENSOR_DEVICE_ATTR(prochot2, S_IRUGO, show_prochot, NULL, 1);

static ssize_t show_prochot_avg(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",data->block4[nr].avg);
}

static SENSOR_DEVICE_ATTR(prochot1_avg, S_IRUGO, show_prochot_avg, NULL, 0);
static SENSOR_DEVICE_ATTR(prochot2_avg, S_IRUGO, show_prochot_avg, NULL, 1);

static ssize_t show_prochot_max(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",data->prochot_max[nr]);
}

static ssize_t store_prochot_max(struct device *dev,
                              struct device_attribute *attr,
                              const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->prochot_max[nr] = LM93_PROCHOT_TO_REG(val);
      lm93_write_byte(client, LM93_REG_PROCHOT_MAX(nr),
                  data->prochot_max[nr]);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(prochot1_max, S_IWUSR | S_IRUGO,
                    show_prochot_max, store_prochot_max, 0);
static SENSOR_DEVICE_ATTR(prochot2_max, S_IWUSR | S_IRUGO,
                    show_prochot_max, store_prochot_max, 1);

static const u8 prochot_override_mask[] = { 0x80, 0x40 };

static ssize_t show_prochot_override(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",
            (data->prochot_override & prochot_override_mask[nr]) ? 1 : 0);
}

static ssize_t store_prochot_override(struct device *dev,
                              struct device_attribute *attr,
                              const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      if (val)
            data->prochot_override |= prochot_override_mask[nr];
      else
            data->prochot_override &= (~prochot_override_mask[nr]);
      lm93_write_byte(client, LM93_REG_PROCHOT_OVERRIDE,
                  data->prochot_override);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(prochot1_override, S_IWUSR | S_IRUGO,
                    show_prochot_override, store_prochot_override, 0);
static SENSOR_DEVICE_ATTR(prochot2_override, S_IWUSR | S_IRUGO,
                    show_prochot_override, store_prochot_override, 1);

static ssize_t show_prochot_interval(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      u8 tmp;
      if (nr==1)
            tmp = (data->prochot_interval & 0xf0) >> 4;
      else
            tmp = data->prochot_interval & 0x0f;
      return sprintf(buf,"%d\n",LM93_INTERVAL_FROM_REG(tmp));
}

static ssize_t store_prochot_interval(struct device *dev,
                              struct device_attribute *attr,
                              const char *buf, size_t count)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);
      u8 tmp;

      mutex_lock(&data->update_lock);
      tmp = lm93_read_byte(client, LM93_REG_PROCHOT_INTERVAL);
      if (nr==1)
            tmp = (tmp & 0x0f) | (LM93_INTERVAL_TO_REG(val) << 4);
      else
            tmp = (tmp & 0xf0) | LM93_INTERVAL_TO_REG(val);
      data->prochot_interval = tmp;
      lm93_write_byte(client, LM93_REG_PROCHOT_INTERVAL, tmp);
      mutex_unlock(&data->update_lock);
      return count;
}

static SENSOR_DEVICE_ATTR(prochot1_interval, S_IWUSR | S_IRUGO,
                    show_prochot_interval, store_prochot_interval, 0);
static SENSOR_DEVICE_ATTR(prochot2_interval, S_IWUSR | S_IRUGO,
                    show_prochot_interval, store_prochot_interval, 1);

static ssize_t show_prochot_override_duty_cycle(struct device *dev,
                                    struct device_attribute *attr,
                                    char *buf)
{
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",data->prochot_override & 0x0f);
}

static ssize_t store_prochot_override_duty_cycle(struct device *dev,
                                    struct device_attribute *attr,
                                    const char *buf, size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      data->prochot_override = (data->prochot_override & 0xf0) |
                              SENSORS_LIMIT(val, 0, 15);
      lm93_write_byte(client, LM93_REG_PROCHOT_OVERRIDE,
                  data->prochot_override);
      mutex_unlock(&data->update_lock);
      return count;
}

static DEVICE_ATTR(prochot_override_duty_cycle, S_IRUGO | S_IWUSR,
                  show_prochot_override_duty_cycle,
                  store_prochot_override_duty_cycle);

static ssize_t show_prochot_short(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",(data->config & 0x10) ? 1 : 0);
}

static ssize_t store_prochot_short(struct device *dev,
                              struct device_attribute *attr,
                              const char *buf, size_t count)
{
      struct i2c_client *client = to_i2c_client(dev);
      struct lm93_data *data = i2c_get_clientdata(client);
      u32 val = simple_strtoul(buf, NULL, 10);

      mutex_lock(&data->update_lock);
      if (val)
            data->config |= 0x10;
      else
            data->config &= ~0x10;
      lm93_write_byte(client, LM93_REG_CONFIG, data->config);
      mutex_unlock(&data->update_lock);
      return count;
}

static DEVICE_ATTR(prochot_short, S_IRUGO | S_IWUSR,
               show_prochot_short, store_prochot_short);

static ssize_t show_vrdhot(struct device *dev, struct device_attribute *attr,
                        char *buf)
{
      int nr = (to_sensor_dev_attr(attr))->index;
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",
                   data->block1.host_status_1 & (1 << (nr+4)) ? 1 : 0);
}

static SENSOR_DEVICE_ATTR(vrdhot1, S_IRUGO, show_vrdhot, NULL, 0);
static SENSOR_DEVICE_ATTR(vrdhot2, S_IRUGO, show_vrdhot, NULL, 1);

static ssize_t show_gpio(struct device *dev, struct device_attribute *attr,
                        char *buf)
{
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",LM93_GPI_FROM_REG(data->gpi));
}

static DEVICE_ATTR(gpio, S_IRUGO, show_gpio, NULL);

static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
                        char *buf)
{
      struct lm93_data *data = lm93_update_device(dev);
      return sprintf(buf,"%d\n",LM93_ALARMS_FROM_REG(data->block1));
}

static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);

static struct attribute *lm93_attrs[] = {
      &sensor_dev_attr_in1_input.dev_attr.attr,
      &sensor_dev_attr_in2_input.dev_attr.attr,
      &sensor_dev_attr_in3_input.dev_attr.attr,
      &sensor_dev_attr_in4_input.dev_attr.attr,
      &sensor_dev_attr_in5_input.dev_attr.attr,
      &sensor_dev_attr_in6_input.dev_attr.attr,
      &sensor_dev_attr_in7_input.dev_attr.attr,
      &sensor_dev_attr_in8_input.dev_attr.attr,
      &sensor_dev_attr_in9_input.dev_attr.attr,
      &sensor_dev_attr_in10_input.dev_attr.attr,
      &sensor_dev_attr_in11_input.dev_attr.attr,
      &sensor_dev_attr_in12_input.dev_attr.attr,
      &sensor_dev_attr_in13_input.dev_attr.attr,
      &sensor_dev_attr_in14_input.dev_attr.attr,
      &sensor_dev_attr_in15_input.dev_attr.attr,
      &sensor_dev_attr_in16_input.dev_attr.attr,
      &sensor_dev_attr_in1_min.dev_attr.attr,
      &sensor_dev_attr_in2_min.dev_attr.attr,
      &sensor_dev_attr_in3_min.dev_attr.attr,
      &sensor_dev_attr_in4_min.dev_attr.attr,
      &sensor_dev_attr_in5_min.dev_attr.attr,
      &sensor_dev_attr_in6_min.dev_attr.attr,
      &sensor_dev_attr_in7_min.dev_attr.attr,
      &sensor_dev_attr_in8_min.dev_attr.attr,
      &sensor_dev_attr_in9_min.dev_attr.attr,
      &sensor_dev_attr_in10_min.dev_attr.attr,
      &sensor_dev_attr_in11_min.dev_attr.attr,
      &sensor_dev_attr_in12_min.dev_attr.attr,
      &sensor_dev_attr_in13_min.dev_attr.attr,
      &sensor_dev_attr_in14_min.dev_attr.attr,
      &sensor_dev_attr_in15_min.dev_attr.attr,
      &sensor_dev_attr_in16_min.dev_attr.attr,
      &sensor_dev_attr_in1_max.dev_attr.attr,
      &sensor_dev_attr_in2_max.dev_attr.attr,
      &sensor_dev_attr_in3_max.dev_attr.attr,
      &sensor_dev_attr_in4_max.dev_attr.attr,
      &sensor_dev_attr_in5_max.dev_attr.attr,
      &sensor_dev_attr_in6_max.dev_attr.attr,
      &sensor_dev_attr_in7_max.dev_attr.attr,
      &sensor_dev_attr_in8_max.dev_attr.attr,
      &sensor_dev_attr_in9_max.dev_attr.attr,
      &sensor_dev_attr_in10_max.dev_attr.attr,
      &sensor_dev_attr_in11_max.dev_attr.attr,
      &sensor_dev_attr_in12_max.dev_attr.attr,
      &sensor_dev_attr_in13_max.dev_attr.attr,
      &sensor_dev_attr_in14_max.dev_attr.attr,
      &sensor_dev_attr_in15_max.dev_attr.attr,
      &sensor_dev_attr_in16_max.dev_attr.attr,
      &sensor_dev_attr_temp1_input.dev_attr.attr,
      &sensor_dev_attr_temp2_input.dev_attr.attr,
      &sensor_dev_attr_temp3_input.dev_attr.attr,
      &sensor_dev_attr_temp1_min.dev_attr.attr,
      &sensor_dev_attr_temp2_min.dev_attr.attr,
      &sensor_dev_attr_temp3_min.dev_attr.attr,
      &sensor_dev_attr_temp1_max.dev_attr.attr,
      &sensor_dev_attr_temp2_max.dev_attr.attr,
      &sensor_dev_attr_temp3_max.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_base.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_base.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_base.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_boost.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_boost.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_boost.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_boost_hyst.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_boost_hyst.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_boost_hyst.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset1.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset2.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset3.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset4.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset5.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset6.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset7.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset8.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset9.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset10.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset11.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset12.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset1.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset2.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset3.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset4.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset5.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset6.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset7.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset8.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset9.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset10.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset11.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset12.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset1.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset2.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset3.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset4.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset5.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset6.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset7.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset8.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset9.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset10.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset11.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset12.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_pwm_min.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_pwm_min.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_pwm_min.dev_attr.attr,
      &sensor_dev_attr_temp1_auto_offset_hyst.dev_attr.attr,
      &sensor_dev_attr_temp2_auto_offset_hyst.dev_attr.attr,
      &sensor_dev_attr_temp3_auto_offset_hyst.dev_attr.attr,
      &sensor_dev_attr_fan1_input.dev_attr.attr,
      &sensor_dev_attr_fan2_input.dev_attr.attr,
      &sensor_dev_attr_fan3_input.dev_attr.attr,
      &sensor_dev_attr_fan4_input.dev_attr.attr,
      &sensor_dev_attr_fan1_min.dev_attr.attr,
      &sensor_dev_attr_fan2_min.dev_attr.attr,
      &sensor_dev_attr_fan3_min.dev_attr.attr,
      &sensor_dev_attr_fan4_min.dev_attr.attr,
      &sensor_dev_attr_fan1_smart_tach.dev_attr.attr,
      &sensor_dev_attr_fan2_smart_tach.dev_attr.attr,
      &sensor_dev_attr_fan3_smart_tach.dev_attr.attr,
      &sensor_dev_attr_fan4_smart_tach.dev_attr.attr,
      &sensor_dev_attr_pwm1.dev_attr.attr,
      &sensor_dev_attr_pwm2.dev_attr.attr,
      &sensor_dev_attr_pwm1_enable.dev_attr.attr,
      &sensor_dev_attr_pwm2_enable.dev_attr.attr,
      &sensor_dev_attr_pwm1_freq.dev_attr.attr,
      &sensor_dev_attr_pwm2_freq.dev_attr.attr,
      &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
      &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
      &sensor_dev_attr_pwm1_auto_spinup_min.dev_attr.attr,
      &sensor_dev_attr_pwm2_auto_spinup_min.dev_attr.attr,
      &sensor_dev_attr_pwm1_auto_spinup_time.dev_attr.attr,
      &sensor_dev_attr_pwm2_auto_spinup_time.dev_attr.attr,
      &dev_attr_pwm_auto_prochot_ramp.attr,
      &dev_attr_pwm_auto_vrdhot_ramp.attr,
      &sensor_dev_attr_cpu0_vid.dev_attr.attr,
      &sensor_dev_attr_cpu1_vid.dev_attr.attr,
      &sensor_dev_attr_prochot1.dev_attr.attr,
      &sensor_dev_attr_prochot2.dev_attr.attr,
      &sensor_dev_attr_prochot1_avg.dev_attr.attr,
      &sensor_dev_attr_prochot2_avg.dev_attr.attr,
      &sensor_dev_attr_prochot1_max.dev_attr.attr,
      &sensor_dev_attr_prochot2_max.dev_attr.attr,
      &sensor_dev_attr_prochot1_override.dev_attr.attr,
      &sensor_dev_attr_prochot2_override.dev_attr.attr,
      &sensor_dev_attr_prochot1_interval.dev_attr.attr,
      &sensor_dev_attr_prochot2_interval.dev_attr.attr,
      &dev_attr_prochot_override_duty_cycle.attr,
      &dev_attr_prochot_short.attr,
      &sensor_dev_attr_vrdhot1.dev_attr.attr,
      &sensor_dev_attr_vrdhot2.dev_attr.attr,
      &dev_attr_gpio.attr,
      &dev_attr_alarms.attr,
      NULL
};

static struct attribute_group lm93_attr_grp = {
      .attrs = lm93_attrs,
};

static void lm93_init_client(struct i2c_client *client)
{
      int i;
      u8 reg;

      /* configure VID pin input thresholds */
      reg = lm93_read_byte(client, LM93_REG_GPI_VID_CTL);
      lm93_write_byte(client, LM93_REG_GPI_VID_CTL,
                  reg | (vid_agtl ? 0x03 : 0x00));

      if (init) {
            /* enable #ALERT pin */
            reg = lm93_read_byte(client, LM93_REG_CONFIG);
            lm93_write_byte(client, LM93_REG_CONFIG, reg | 0x08);

            /* enable ASF mode for BMC status registers */
            reg = lm93_read_byte(client, LM93_REG_STATUS_CONTROL);
            lm93_write_byte(client, LM93_REG_STATUS_CONTROL, reg | 0x02);

            /* set sleep state to S0 */
            lm93_write_byte(client, LM93_REG_SLEEP_CONTROL, 0);

            /* unmask #VRDHOT and dynamic VCCP (if nec) error events */
            reg = lm93_read_byte(client, LM93_REG_MISC_ERR_MASK);
            reg &= ~0x03;
            reg &= ~(vccp_limit_type[0] ? 0x10 : 0);
            reg &= ~(vccp_limit_type[1] ? 0x20 : 0);
            lm93_write_byte(client, LM93_REG_MISC_ERR_MASK, reg);
      }

      /* start monitoring */
      reg = lm93_read_byte(client, LM93_REG_CONFIG);
      lm93_write_byte(client, LM93_REG_CONFIG, reg | 0x01);

      /* spin until ready */
      for (i=0; i<20; i++) {
            msleep(10);
            if ((lm93_read_byte(client, LM93_REG_CONFIG) & 0x80) == 0x80)
                  return;
      }

      dev_warn(&client->dev,"timed out waiting for sensor "
             "chip to signal ready!\n");
}

static int lm93_detect(struct i2c_adapter *adapter, int address, int kind)
{
      struct lm93_data *data;
      struct i2c_client *client;

      int err = -ENODEV, func;
      void (*update)(struct lm93_data *, struct i2c_client *);

      /* choose update routine based on bus capabilities */
      func = i2c_get_functionality(adapter);
      if ( ((LM93_SMBUS_FUNC_FULL & func) == LM93_SMBUS_FUNC_FULL) &&
                  (!disable_block) ) {
            dev_dbg(&adapter->dev,"using SMBus block data transactions\n");
            update = lm93_update_client_full;
      } else if ((LM93_SMBUS_FUNC_MIN & func) == LM93_SMBUS_FUNC_MIN) {
            dev_dbg(&adapter->dev,"disabled SMBus block data "
                  "transactions\n");
            update = lm93_update_client_min;
      } else {
            dev_dbg(&adapter->dev,"detect failed, "
                  "smbus byte and/or word data not supported!\n");
            goto err_out;
      }

      /* OK. For now, we presume we have a valid client. We now create the
         client structure, even though we cannot fill it completely yet.
         But it allows us to access lm78_{read,write}_value. */

      if ( !(data = kzalloc(sizeof(struct lm93_data), GFP_KERNEL))) {
            dev_dbg(&adapter->dev,"out of memory!\n");
            err = -ENOMEM;
            goto err_out;
      }

      client = &data->client;
      i2c_set_clientdata(client, data);
      client->addr = address;
      client->adapter = adapter;
      client->driver = &lm93_driver;

      /* detection */
      if (kind < 0) {
            int mfr = lm93_read_byte(client, LM93_REG_MFR_ID);

            if (mfr != 0x01) {
                  dev_dbg(&adapter->dev,"detect failed, "
                        "bad manufacturer id 0x%02x!\n", mfr);
                  goto err_free;
            }
      }

      if (kind <= 0) {
            int ver = lm93_read_byte(client, LM93_REG_VER);

            if ((ver == LM93_MFR_ID) || (ver == LM93_MFR_ID_PROTOTYPE)) {
                  kind = lm93;
            } else {
                  dev_dbg(&adapter->dev,"detect failed, "
                        "bad version id 0x%02x!\n", ver);
                  if (kind == 0)
                        dev_dbg(&adapter->dev,
                              "(ignored 'force' parameter)\n");
                  goto err_free;
            }
      }

      /* fill in remaining client fields */
      strlcpy(client->name, "lm93", I2C_NAME_SIZE);
      dev_dbg(&adapter->dev,"loading %s at %d,0x%02x\n",
            client->name, i2c_adapter_id(client->adapter),
            client->addr);

      /* housekeeping */
      data->valid = 0;
      data->update = update;
      mutex_init(&data->update_lock);

      /* tell the I2C layer a new client has arrived */
      if ((err = i2c_attach_client(client)))
            goto err_free;

      /* initialize the chip */
      lm93_init_client(client);

      err = sysfs_create_group(&client->dev.kobj, &lm93_attr_grp);
      if (err)
            goto err_detach;

      /* Register hwmon driver class */
      data->hwmon_dev = hwmon_device_register(&client->dev);
      if ( !IS_ERR(data->hwmon_dev))
            return 0;

      err = PTR_ERR(data->hwmon_dev);
      dev_err(&client->dev, "error registering hwmon device.\n");
      sysfs_remove_group(&client->dev.kobj, &lm93_attr_grp);
err_detach:
      i2c_detach_client(client);
err_free:
      kfree(data);
err_out:
      return err;
}

/* This function is called when:
     * lm93_driver is inserted (when this module is loaded), for each
       available adapter
     * when a new adapter is inserted (and lm93_driver is still present) */
static int lm93_attach_adapter(struct i2c_adapter *adapter)
{
      return i2c_probe(adapter, &addr_data, lm93_detect);
}

static int lm93_detach_client(struct i2c_client *client)
{
      struct lm93_data *data = i2c_get_clientdata(client);
      int err = 0;

      hwmon_device_unregister(data->hwmon_dev);
      sysfs_remove_group(&client->dev.kobj, &lm93_attr_grp);

      err = i2c_detach_client(client);
      if (!err)
            kfree(data);
      return err;
}

static struct i2c_driver lm93_driver = {
      .driver = {
            .name = "lm93",
      },
      .attach_adapter   = lm93_attach_adapter,
      .detach_client    = lm93_detach_client,
};

static int __init lm93_init(void)
{
      return i2c_add_driver(&lm93_driver);
}

static void __exit lm93_exit(void)
{
      i2c_del_driver(&lm93_driver);
}

MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>, "
            "Hans J. Koch <hjk@linutronix.de");
MODULE_DESCRIPTION("LM93 driver");
MODULE_LICENSE("GPL");

module_init(lm93_init);
module_exit(lm93_exit);

Generated by  Doxygen 1.6.0   Back to index