Logo Search packages:      
Sourcecode: linux version File versions  Download package

memory.c

/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *          Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 *          Idea by Alex Bligh (alex@cconcepts.co.uk)
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *          (Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/module.h>
#include <linux/delayacct.h>
#include <linux/init.h>
#include <linux/writeback.h>

#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

#include <linux/swapops.h>
#include <linux/elf.h>

#ifndef CONFIG_NEED_MULTIPLE_NODES
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;

EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif

unsigned long num_physpages;
/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
void * high_memory;

EXPORT_SYMBOL(num_physpages);
EXPORT_SYMBOL(high_memory);

int randomize_va_space __read_mostly = 1;

static int __init disable_randmaps(char *s)
{
      randomize_va_space = 0;
      return 1;
}
__setup("norandmaps", disable_randmaps);


/*
 * If a p?d_bad entry is found while walking page tables, report
 * the error, before resetting entry to p?d_none.  Usually (but
 * very seldom) called out from the p?d_none_or_clear_bad macros.
 */

void pgd_clear_bad(pgd_t *pgd)
{
      pgd_ERROR(*pgd);
      pgd_clear(pgd);
}

void pud_clear_bad(pud_t *pud)
{
      pud_ERROR(*pud);
      pud_clear(pud);
}

void pmd_clear_bad(pmd_t *pmd)
{
      pmd_ERROR(*pmd);
      pmd_clear(pmd);
}

/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
{
      struct page *page = pmd_page(*pmd);
      pmd_clear(pmd);
      pte_lock_deinit(page);
      pte_free_tlb(tlb, page);
      dec_zone_page_state(page, NR_PAGETABLE);
      tlb->mm->nr_ptes--;
}

static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
                        unsigned long addr, unsigned long end,
                        unsigned long floor, unsigned long ceiling)
{
      pmd_t *pmd;
      unsigned long next;
      unsigned long start;

      start = addr;
      pmd = pmd_offset(pud, addr);
      do {
            next = pmd_addr_end(addr, end);
            if (pmd_none_or_clear_bad(pmd))
                  continue;
            free_pte_range(tlb, pmd);
      } while (pmd++, addr = next, addr != end);

      start &= PUD_MASK;
      if (start < floor)
            return;
      if (ceiling) {
            ceiling &= PUD_MASK;
            if (!ceiling)
                  return;
      }
      if (end - 1 > ceiling - 1)
            return;

      pmd = pmd_offset(pud, start);
      pud_clear(pud);
      pmd_free_tlb(tlb, pmd);
}

static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
                        unsigned long addr, unsigned long end,
                        unsigned long floor, unsigned long ceiling)
{
      pud_t *pud;
      unsigned long next;
      unsigned long start;

      start = addr;
      pud = pud_offset(pgd, addr);
      do {
            next = pud_addr_end(addr, end);
            if (pud_none_or_clear_bad(pud))
                  continue;
            free_pmd_range(tlb, pud, addr, next, floor, ceiling);
      } while (pud++, addr = next, addr != end);

      start &= PGDIR_MASK;
      if (start < floor)
            return;
      if (ceiling) {
            ceiling &= PGDIR_MASK;
            if (!ceiling)
                  return;
      }
      if (end - 1 > ceiling - 1)
            return;

      pud = pud_offset(pgd, start);
      pgd_clear(pgd);
      pud_free_tlb(tlb, pud);
}

/*
 * This function frees user-level page tables of a process.
 *
 * Must be called with pagetable lock held.
 */
void free_pgd_range(struct mmu_gather **tlb,
                  unsigned long addr, unsigned long end,
                  unsigned long floor, unsigned long ceiling)
{
      pgd_t *pgd;
      unsigned long next;
      unsigned long start;

      /*
       * The next few lines have given us lots of grief...
       *
       * Why are we testing PMD* at this top level?  Because often
       * there will be no work to do at all, and we'd prefer not to
       * go all the way down to the bottom just to discover that.
       *
       * Why all these "- 1"s?  Because 0 represents both the bottom
       * of the address space and the top of it (using -1 for the
       * top wouldn't help much: the masks would do the wrong thing).
       * The rule is that addr 0 and floor 0 refer to the bottom of
       * the address space, but end 0 and ceiling 0 refer to the top
       * Comparisons need to use "end - 1" and "ceiling - 1" (though
       * that end 0 case should be mythical).
       *
       * Wherever addr is brought up or ceiling brought down, we must
       * be careful to reject "the opposite 0" before it confuses the
       * subsequent tests.  But what about where end is brought down
       * by PMD_SIZE below? no, end can't go down to 0 there.
       *
       * Whereas we round start (addr) and ceiling down, by different
       * masks at different levels, in order to test whether a table
       * now has no other vmas using it, so can be freed, we don't
       * bother to round floor or end up - the tests don't need that.
       */

      addr &= PMD_MASK;
      if (addr < floor) {
            addr += PMD_SIZE;
            if (!addr)
                  return;
      }
      if (ceiling) {
            ceiling &= PMD_MASK;
            if (!ceiling)
                  return;
      }
      if (end - 1 > ceiling - 1)
            end -= PMD_SIZE;
      if (addr > end - 1)
            return;

      start = addr;
      pgd = pgd_offset((*tlb)->mm, addr);
      do {
            next = pgd_addr_end(addr, end);
            if (pgd_none_or_clear_bad(pgd))
                  continue;
            free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
      } while (pgd++, addr = next, addr != end);
}

void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
            unsigned long floor, unsigned long ceiling)
{
      while (vma) {
            struct vm_area_struct *next = vma->vm_next;
            unsigned long addr = vma->vm_start;

            /*
             * Hide vma from rmap and vmtruncate before freeing pgtables
             */
            anon_vma_unlink(vma);
            unlink_file_vma(vma);

            if (is_vm_hugetlb_page(vma)) {
                  hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
                        floor, next? next->vm_start: ceiling);
            } else {
                  /*
                   * Optimization: gather nearby vmas into one call down
                   */
                  while (next && next->vm_start <= vma->vm_end + PMD_SIZE
                         && !is_vm_hugetlb_page(next)) {
                        vma = next;
                        next = vma->vm_next;
                        anon_vma_unlink(vma);
                        unlink_file_vma(vma);
                  }
                  free_pgd_range(tlb, addr, vma->vm_end,
                        floor, next? next->vm_start: ceiling);
            }
            vma = next;
      }
}

int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
{
      struct page *new = pte_alloc_one(mm, address);
      if (!new)
            return -ENOMEM;

      pte_lock_init(new);
      spin_lock(&mm->page_table_lock);
      if (pmd_present(*pmd)) {      /* Another has populated it */
            pte_lock_deinit(new);
            pte_free(new);
      } else {
            mm->nr_ptes++;
            inc_zone_page_state(new, NR_PAGETABLE);
            pmd_populate(mm, pmd, new);
      }
      spin_unlock(&mm->page_table_lock);
      return 0;
}

int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
      pte_t *new = pte_alloc_one_kernel(&init_mm, address);
      if (!new)
            return -ENOMEM;

      spin_lock(&init_mm.page_table_lock);
      if (pmd_present(*pmd))        /* Another has populated it */
            pte_free_kernel(new);
      else
            pmd_populate_kernel(&init_mm, pmd, new);
      spin_unlock(&init_mm.page_table_lock);
      return 0;
}

static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
{
      if (file_rss)
            add_mm_counter(mm, file_rss, file_rss);
      if (anon_rss)
            add_mm_counter(mm, anon_rss, anon_rss);
}

/*
 * This function is called to print an error when a bad pte
 * is found. For example, we might have a PFN-mapped pte in
 * a region that doesn't allow it.
 *
 * The calling function must still handle the error.
 */
void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
{
      printk(KERN_ERR "Bad pte = %08llx, process = %s, "
                  "vm_flags = %lx, vaddr = %lx\n",
            (long long)pte_val(pte),
            (vma->vm_mm == current->mm ? current->comm : "???"),
            vma->vm_flags, vaddr);
      dump_stack();
}

static inline int is_cow_mapping(unsigned int flags)
{
      return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}

/*
 * This function gets the "struct page" associated with a pte.
 *
 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
 * will have each page table entry just pointing to a raw page frame
 * number, and as far as the VM layer is concerned, those do not have
 * pages associated with them - even if the PFN might point to memory
 * that otherwise is perfectly fine and has a "struct page".
 *
 * The way we recognize those mappings is through the rules set up
 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
 * and the vm_pgoff will point to the first PFN mapped: thus every
 * page that is a raw mapping will always honor the rule
 *
 *    pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 *
 * and if that isn't true, the page has been COW'ed (in which case it
 * _does_ have a "struct page" associated with it even if it is in a
 * VM_PFNMAP range).
 */
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
{
      unsigned long pfn = pte_pfn(pte);

      if (unlikely(vma->vm_flags & VM_PFNMAP)) {
            unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
            if (pfn == vma->vm_pgoff + off)
                  return NULL;
            if (!is_cow_mapping(vma->vm_flags))
                  return NULL;
      }

#ifdef CONFIG_DEBUG_VM
      /*
       * Add some anal sanity checks for now. Eventually,
       * we should just do "return pfn_to_page(pfn)", but
       * in the meantime we check that we get a valid pfn,
       * and that the resulting page looks ok.
       */
      if (unlikely(!pfn_valid(pfn))) {
            print_bad_pte(vma, pte, addr);
            return NULL;
      }
#endif

      /*
       * NOTE! We still have PageReserved() pages in the page 
       * tables. 
       *
       * The PAGE_ZERO() pages and various VDSO mappings can
       * cause them to exist.
       */
      return pfn_to_page(pfn);
}

/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 */

static inline void
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
            pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
            unsigned long addr, int *rss)
{
      unsigned long vm_flags = vma->vm_flags;
      pte_t pte = *src_pte;
      struct page *page;

      /* pte contains position in swap or file, so copy. */
      if (unlikely(!pte_present(pte))) {
            if (!pte_file(pte)) {
                  swp_entry_t entry = pte_to_swp_entry(pte);

                  swap_duplicate(entry);
                  /* make sure dst_mm is on swapoff's mmlist. */
                  if (unlikely(list_empty(&dst_mm->mmlist))) {
                        spin_lock(&mmlist_lock);
                        if (list_empty(&dst_mm->mmlist))
                              list_add(&dst_mm->mmlist,
                                     &src_mm->mmlist);
                        spin_unlock(&mmlist_lock);
                  }
                  if (is_write_migration_entry(entry) &&
                              is_cow_mapping(vm_flags)) {
                        /*
                         * COW mappings require pages in both parent
                         * and child to be set to read.
                         */
                        make_migration_entry_read(&entry);
                        pte = swp_entry_to_pte(entry);
                        set_pte_at(src_mm, addr, src_pte, pte);
                  }
            }
            goto out_set_pte;
      }

      /*
       * If it's a COW mapping, write protect it both
       * in the parent and the child
       */
      if (is_cow_mapping(vm_flags)) {
            ptep_set_wrprotect(src_mm, addr, src_pte);
            pte = pte_wrprotect(pte);
      }

      /*
       * If it's a shared mapping, mark it clean in
       * the child
       */
      if (vm_flags & VM_SHARED)
            pte = pte_mkclean(pte);
      pte = pte_mkold(pte);

      page = vm_normal_page(vma, addr, pte);
      if (page) {
            get_page(page);
            page_dup_rmap(page, vma, addr);
            rss[!!PageAnon(page)]++;
      }

out_set_pte:
      set_pte_at(dst_mm, addr, dst_pte, pte);
}

static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
            pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
            unsigned long addr, unsigned long end)
{
      pte_t *src_pte, *dst_pte;
      spinlock_t *src_ptl, *dst_ptl;
      int progress = 0;
      int rss[2];

again:
      rss[1] = rss[0] = 0;
      dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
      if (!dst_pte)
            return -ENOMEM;
      src_pte = pte_offset_map_nested(src_pmd, addr);
      src_ptl = pte_lockptr(src_mm, src_pmd);
      spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
      arch_enter_lazy_mmu_mode();

      do {
            /*
             * We are holding two locks at this point - either of them
             * could generate latencies in another task on another CPU.
             */
            if (progress >= 32) {
                  progress = 0;
                  if (need_resched() ||
                      need_lockbreak(src_ptl) ||
                      need_lockbreak(dst_ptl))
                        break;
            }
            if (pte_none(*src_pte)) {
                  progress++;
                  continue;
            }
            copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
            progress += 8;
      } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

      arch_leave_lazy_mmu_mode();
      spin_unlock(src_ptl);
      pte_unmap_nested(src_pte - 1);
      add_mm_rss(dst_mm, rss[0], rss[1]);
      pte_unmap_unlock(dst_pte - 1, dst_ptl);
      cond_resched();
      if (addr != end)
            goto again;
      return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
            pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
            unsigned long addr, unsigned long end)
{
      pmd_t *src_pmd, *dst_pmd;
      unsigned long next;

      dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
      if (!dst_pmd)
            return -ENOMEM;
      src_pmd = pmd_offset(src_pud, addr);
      do {
            next = pmd_addr_end(addr, end);
            if (pmd_none_or_clear_bad(src_pmd))
                  continue;
            if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
                                    vma, addr, next))
                  return -ENOMEM;
      } while (dst_pmd++, src_pmd++, addr = next, addr != end);
      return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
            pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
            unsigned long addr, unsigned long end)
{
      pud_t *src_pud, *dst_pud;
      unsigned long next;

      dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
      if (!dst_pud)
            return -ENOMEM;
      src_pud = pud_offset(src_pgd, addr);
      do {
            next = pud_addr_end(addr, end);
            if (pud_none_or_clear_bad(src_pud))
                  continue;
            if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
                                    vma, addr, next))
                  return -ENOMEM;
      } while (dst_pud++, src_pud++, addr = next, addr != end);
      return 0;
}

int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
            struct vm_area_struct *vma)
{
      pgd_t *src_pgd, *dst_pgd;
      unsigned long next;
      unsigned long addr = vma->vm_start;
      unsigned long end = vma->vm_end;

      /*
       * Don't copy ptes where a page fault will fill them correctly.
       * Fork becomes much lighter when there are big shared or private
       * readonly mappings. The tradeoff is that copy_page_range is more
       * efficient than faulting.
       */
      if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
            if (!vma->anon_vma)
                  return 0;
      }

      if (is_vm_hugetlb_page(vma))
            return copy_hugetlb_page_range(dst_mm, src_mm, vma);

      dst_pgd = pgd_offset(dst_mm, addr);
      src_pgd = pgd_offset(src_mm, addr);
      do {
            next = pgd_addr_end(addr, end);
            if (pgd_none_or_clear_bad(src_pgd))
                  continue;
            if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
                                    vma, addr, next))
                  return -ENOMEM;
      } while (dst_pgd++, src_pgd++, addr = next, addr != end);
      return 0;
}

static unsigned long zap_pte_range(struct mmu_gather *tlb,
                        struct vm_area_struct *vma, pmd_t *pmd,
                        unsigned long addr, unsigned long end,
                        long *zap_work, struct zap_details *details)
{
      struct mm_struct *mm = tlb->mm;
      pte_t *pte;
      spinlock_t *ptl;
      int file_rss = 0;
      int anon_rss = 0;

      pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
      arch_enter_lazy_mmu_mode();
      do {
            pte_t ptent = *pte;
            if (pte_none(ptent)) {
                  (*zap_work)--;
                  continue;
            }

            (*zap_work) -= PAGE_SIZE;

            if (pte_present(ptent)) {
                  struct page *page;

                  page = vm_normal_page(vma, addr, ptent);
                  if (unlikely(details) && page) {
                        /*
                         * unmap_shared_mapping_pages() wants to
                         * invalidate cache without truncating:
                         * unmap shared but keep private pages.
                         */
                        if (details->check_mapping &&
                            details->check_mapping != page->mapping)
                              continue;
                        /*
                         * Each page->index must be checked when
                         * invalidating or truncating nonlinear.
                         */
                        if (details->nonlinear_vma &&
                            (page->index < details->first_index ||
                             page->index > details->last_index))
                              continue;
                  }
                  ptent = ptep_get_and_clear_full(mm, addr, pte,
                                          tlb->fullmm);
                  tlb_remove_tlb_entry(tlb, pte, addr);
                  if (unlikely(!page))
                        continue;
                  if (unlikely(details) && details->nonlinear_vma
                      && linear_page_index(details->nonlinear_vma,
                                    addr) != page->index)
                        set_pte_at(mm, addr, pte,
                                 pgoff_to_pte(page->index));
                  if (PageAnon(page))
                        anon_rss--;
                  else {
                        if (pte_dirty(ptent))
                              set_page_dirty(page);
                        if (pte_young(ptent))
                              SetPageReferenced(page);
                        file_rss--;
                  }
                  page_remove_rmap(page, vma);
                  tlb_remove_page(tlb, page);
                  continue;
            }
            /*
             * If details->check_mapping, we leave swap entries;
             * if details->nonlinear_vma, we leave file entries.
             */
            if (unlikely(details))
                  continue;
            if (!pte_file(ptent))
                  free_swap_and_cache(pte_to_swp_entry(ptent));
            pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
      } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));

      add_mm_rss(mm, file_rss, anon_rss);
      arch_leave_lazy_mmu_mode();
      pte_unmap_unlock(pte - 1, ptl);

      return addr;
}

static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
                        struct vm_area_struct *vma, pud_t *pud,
                        unsigned long addr, unsigned long end,
                        long *zap_work, struct zap_details *details)
{
      pmd_t *pmd;
      unsigned long next;

      pmd = pmd_offset(pud, addr);
      do {
            next = pmd_addr_end(addr, end);
            if (pmd_none_or_clear_bad(pmd)) {
                  (*zap_work)--;
                  continue;
            }
            next = zap_pte_range(tlb, vma, pmd, addr, next,
                                    zap_work, details);
      } while (pmd++, addr = next, (addr != end && *zap_work > 0));

      return addr;
}

static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
                        struct vm_area_struct *vma, pgd_t *pgd,
                        unsigned long addr, unsigned long end,
                        long *zap_work, struct zap_details *details)
{
      pud_t *pud;
      unsigned long next;

      pud = pud_offset(pgd, addr);
      do {
            next = pud_addr_end(addr, end);
            if (pud_none_or_clear_bad(pud)) {
                  (*zap_work)--;
                  continue;
            }
            next = zap_pmd_range(tlb, vma, pud, addr, next,
                                    zap_work, details);
      } while (pud++, addr = next, (addr != end && *zap_work > 0));

      return addr;
}

static unsigned long unmap_page_range(struct mmu_gather *tlb,
                        struct vm_area_struct *vma,
                        unsigned long addr, unsigned long end,
                        long *zap_work, struct zap_details *details)
{
      pgd_t *pgd;
      unsigned long next;

      if (details && !details->check_mapping && !details->nonlinear_vma)
            details = NULL;

      BUG_ON(addr >= end);
      tlb_start_vma(tlb, vma);
      pgd = pgd_offset(vma->vm_mm, addr);
      do {
            next = pgd_addr_end(addr, end);
            if (pgd_none_or_clear_bad(pgd)) {
                  (*zap_work)--;
                  continue;
            }
            next = zap_pud_range(tlb, vma, pgd, addr, next,
                                    zap_work, details);
      } while (pgd++, addr = next, (addr != end && *zap_work > 0));
      tlb_end_vma(tlb, vma);

      return addr;
}

#ifdef CONFIG_PREEMPT
# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
#else
/* No preempt: go for improved straight-line efficiency */
# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
#endif

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
 * @tlbp: address of the caller's struct mmu_gather
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
 * @details: details of nonlinear truncation or shared cache invalidation
 *
 * Returns the end address of the unmapping (restart addr if interrupted).
 *
 * Unmap all pages in the vma list.
 *
 * We aim to not hold locks for too long (for scheduling latency reasons).
 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
 * return the ending mmu_gather to the caller.
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
unsigned long unmap_vmas(struct mmu_gather **tlbp,
            struct vm_area_struct *vma, unsigned long start_addr,
            unsigned long end_addr, unsigned long *nr_accounted,
            struct zap_details *details)
{
      long zap_work = ZAP_BLOCK_SIZE;
      unsigned long tlb_start = 0;  /* For tlb_finish_mmu */
      int tlb_start_valid = 0;
      unsigned long start = start_addr;
      spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
      int fullmm = (*tlbp)->fullmm;

      for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
            unsigned long end;

            start = max(vma->vm_start, start_addr);
            if (start >= vma->vm_end)
                  continue;
            end = min(vma->vm_end, end_addr);
            if (end <= vma->vm_start)
                  continue;

            if (vma->vm_flags & VM_ACCOUNT)
                  *nr_accounted += (end - start) >> PAGE_SHIFT;

            while (start != end) {
                  if (!tlb_start_valid) {
                        tlb_start = start;
                        tlb_start_valid = 1;
                  }

                  if (unlikely(is_vm_hugetlb_page(vma))) {
                        unmap_hugepage_range(vma, start, end);
                        zap_work -= (end - start) /
                                    (HPAGE_SIZE / PAGE_SIZE);
                        start = end;
                  } else
                        start = unmap_page_range(*tlbp, vma,
                                    start, end, &zap_work, details);

                  if (zap_work > 0) {
                        BUG_ON(start != end);
                        break;
                  }

                  tlb_finish_mmu(*tlbp, tlb_start, start);

                  if (need_resched() ||
                        (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
                        if (i_mmap_lock) {
                              *tlbp = NULL;
                              goto out;
                        }
                        cond_resched();
                  }

                  *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
                  tlb_start_valid = 0;
                  zap_work = ZAP_BLOCK_SIZE;
            }
      }
out:
      return start;     /* which is now the end (or restart) address */
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 * @details: details of nonlinear truncation or shared cache invalidation
 */
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
            unsigned long size, struct zap_details *details)
{
      struct mm_struct *mm = vma->vm_mm;
      struct mmu_gather *tlb;
      unsigned long end = address + size;
      unsigned long nr_accounted = 0;

      lru_add_drain();
      tlb = tlb_gather_mmu(mm, 0);
      update_hiwater_rss(mm);
      end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
      if (tlb)
            tlb_finish_mmu(tlb, address, end);
      return end;
}

/*
 * Do a quick page-table lookup for a single page.
 */
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
                  unsigned int flags)
{
      pgd_t *pgd;
      pud_t *pud;
      pmd_t *pmd;
      pte_t *ptep, pte;
      spinlock_t *ptl;
      struct page *page;
      struct mm_struct *mm = vma->vm_mm;

      page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
      if (!IS_ERR(page)) {
            BUG_ON(flags & FOLL_GET);
            goto out;
      }

      page = NULL;
      pgd = pgd_offset(mm, address);
      if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
            goto no_page_table;

      pud = pud_offset(pgd, address);
      if (pud_none(*pud) || unlikely(pud_bad(*pud)))
            goto no_page_table;
      
      pmd = pmd_offset(pud, address);
      if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
            goto no_page_table;

      if (pmd_huge(*pmd)) {
            BUG_ON(flags & FOLL_GET);
            page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
            goto out;
      }

      ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
      if (!ptep)
            goto out;

      pte = *ptep;
      if (!pte_present(pte))
            goto unlock;
      if ((flags & FOLL_WRITE) && !pte_write(pte))
            goto unlock;
      page = vm_normal_page(vma, address, pte);
      if (unlikely(!page))
            goto unlock;

      if (flags & FOLL_GET)
            get_page(page);
      if (flags & FOLL_TOUCH) {
            if ((flags & FOLL_WRITE) &&
                !pte_dirty(pte) && !PageDirty(page))
                  set_page_dirty(page);
            mark_page_accessed(page);
      }
unlock:
      pte_unmap_unlock(ptep, ptl);
out:
      return page;

no_page_table:
      /*
       * When core dumping an enormous anonymous area that nobody
       * has touched so far, we don't want to allocate page tables.
       */
      if (flags & FOLL_ANON) {
            page = ZERO_PAGE(0);
            if (flags & FOLL_GET)
                  get_page(page);
            BUG_ON(flags & FOLL_WRITE);
      }
      return page;
}

int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
            unsigned long start, int len, int write, int force,
            struct page **pages, struct vm_area_struct **vmas)
{
      int i;
      unsigned int vm_flags;

      /* 
       * Require read or write permissions.
       * If 'force' is set, we only require the "MAY" flags.
       */
      vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
      vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
      i = 0;

      do {
            struct vm_area_struct *vma;
            unsigned int foll_flags;

            vma = find_extend_vma(mm, start);
            if (!vma && in_gate_area(tsk, start)) {
                  unsigned long pg = start & PAGE_MASK;
                  struct vm_area_struct *gate_vma = get_gate_vma(tsk);
                  pgd_t *pgd;
                  pud_t *pud;
                  pmd_t *pmd;
                  pte_t *pte;
                  if (write) /* user gate pages are read-only */
                        return i ? : -EFAULT;
                  if (pg > TASK_SIZE)
                        pgd = pgd_offset_k(pg);
                  else
                        pgd = pgd_offset_gate(mm, pg);
                  BUG_ON(pgd_none(*pgd));
                  pud = pud_offset(pgd, pg);
                  BUG_ON(pud_none(*pud));
                  pmd = pmd_offset(pud, pg);
                  if (pmd_none(*pmd))
                        return i ? : -EFAULT;
                  pte = pte_offset_map(pmd, pg);
                  if (pte_none(*pte)) {
                        pte_unmap(pte);
                        return i ? : -EFAULT;
                  }
                  if (pages) {
                        struct page *page = vm_normal_page(gate_vma, start, *pte);
                        pages[i] = page;
                        if (page)
                              get_page(page);
                  }
                  pte_unmap(pte);
                  if (vmas)
                        vmas[i] = gate_vma;
                  i++;
                  start += PAGE_SIZE;
                  len--;
                  continue;
            }

            if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
                        || !(vm_flags & vma->vm_flags))
                  return i ? : -EFAULT;

            if (is_vm_hugetlb_page(vma)) {
                  i = follow_hugetlb_page(mm, vma, pages, vmas,
                                    &start, &len, i, write);
                  continue;
            }

            foll_flags = FOLL_TOUCH;
            if (pages)
                  foll_flags |= FOLL_GET;
            if (!write && !(vma->vm_flags & VM_LOCKED) &&
                (!vma->vm_ops || (!vma->vm_ops->nopage &&
                              !vma->vm_ops->fault)))
                  foll_flags |= FOLL_ANON;

            do {
                  struct page *page;

                  /*
                   * If tsk is ooming, cut off its access to large memory
                   * allocations. It has a pending SIGKILL, but it can't
                   * be processed until returning to user space.
                   */
                  if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
                        return -ENOMEM;

                  if (write)
                        foll_flags |= FOLL_WRITE;

                  cond_resched();
                  while (!(page = follow_page(vma, start, foll_flags))) {
                        int ret;
                        ret = handle_mm_fault(mm, vma, start,
                                    foll_flags & FOLL_WRITE);
                        if (ret & VM_FAULT_ERROR) {
                              if (ret & VM_FAULT_OOM)
                                    return i ? i : -ENOMEM;
                              else if (ret & VM_FAULT_SIGBUS)
                                    return i ? i : -EFAULT;
                              BUG();
                        }
                        if (ret & VM_FAULT_MAJOR)
                              tsk->maj_flt++;
                        else
                              tsk->min_flt++;

                        /*
                         * The VM_FAULT_WRITE bit tells us that
                         * do_wp_page has broken COW when necessary,
                         * even if maybe_mkwrite decided not to set
                         * pte_write. We can thus safely do subsequent
                         * page lookups as if they were reads.
                         */
                        if (ret & VM_FAULT_WRITE)
                              foll_flags &= ~FOLL_WRITE;

                        cond_resched();
                  }
                  if (pages) {
                        pages[i] = page;

                        flush_anon_page(vma, page, start);
                        flush_dcache_page(page);
                  }
                  if (vmas)
                        vmas[i] = vma;
                  i++;
                  start += PAGE_SIZE;
                  len--;
            } while (len && start < vma->vm_end);
      } while (len);
      return i;
}
EXPORT_SYMBOL(get_user_pages);

pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
{
      pgd_t * pgd = pgd_offset(mm, addr);
      pud_t * pud = pud_alloc(mm, pgd, addr);
      if (pud) {
            pmd_t * pmd = pmd_alloc(mm, pud, addr);
            if (pmd)
                  return pte_alloc_map_lock(mm, pmd, addr, ptl);
      }
      return NULL;
}

/*
 * This is the old fallback for page remapping.
 *
 * For historical reasons, it only allows reserved pages. Only
 * old drivers should use this, and they needed to mark their
 * pages reserved for the old functions anyway.
 */
static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
{
      int retval;
      pte_t *pte;
      spinlock_t *ptl;  

      retval = -EINVAL;
      if (PageAnon(page))
            goto out;
      retval = -ENOMEM;
      flush_dcache_page(page);
      pte = get_locked_pte(mm, addr, &ptl);
      if (!pte)
            goto out;
      retval = -EBUSY;
      if (!pte_none(*pte))
            goto out_unlock;

      /* Ok, finally just insert the thing.. */
      get_page(page);
      inc_mm_counter(mm, file_rss);
      page_add_file_rmap(page);
      set_pte_at(mm, addr, pte, mk_pte(page, prot));

      retval = 0;
out_unlock:
      pte_unmap_unlock(pte, ptl);
out:
      return retval;
}

/**
 * vm_insert_page - insert single page into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @page: source kernel page
 *
 * This allows drivers to insert individual pages they've allocated
 * into a user vma.
 *
 * The page has to be a nice clean _individual_ kernel allocation.
 * If you allocate a compound page, you need to have marked it as
 * such (__GFP_COMP), or manually just split the page up yourself
 * (see split_page()).
 *
 * NOTE! Traditionally this was done with "remap_pfn_range()" which
 * took an arbitrary page protection parameter. This doesn't allow
 * that. Your vma protection will have to be set up correctly, which
 * means that if you want a shared writable mapping, you'd better
 * ask for a shared writable mapping!
 *
 * The page does not need to be reserved.
 */
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
{
      if (addr < vma->vm_start || addr >= vma->vm_end)
            return -EFAULT;
      if (!page_count(page))
            return -EINVAL;
      vma->vm_flags |= VM_INSERTPAGE;
      return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_insert_page);

/**
 * vm_insert_pfn - insert single pfn into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 *
 * Similar to vm_inert_page, this allows drivers to insert individual pages
 * they've allocated into a user vma. Same comments apply.
 *
 * This function should only be called from a vm_ops->fault handler, and
 * in that case the handler should return NULL.
 */
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
            unsigned long pfn)
{
      struct mm_struct *mm = vma->vm_mm;
      int retval;
      pte_t *pte, entry;
      spinlock_t *ptl;

      BUG_ON(!(vma->vm_flags & VM_PFNMAP));
      BUG_ON(is_cow_mapping(vma->vm_flags));

      retval = -ENOMEM;
      pte = get_locked_pte(mm, addr, &ptl);
      if (!pte)
            goto out;
      retval = -EBUSY;
      if (!pte_none(*pte))
            goto out_unlock;

      /* Ok, finally just insert the thing.. */
      entry = pfn_pte(pfn, vma->vm_page_prot);
      set_pte_at(mm, addr, pte, entry);
      update_mmu_cache(vma, addr, entry);

      retval = 0;
out_unlock:
      pte_unmap_unlock(pte, ptl);

out:
      return retval;
}
EXPORT_SYMBOL(vm_insert_pfn);

/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
                  unsigned long addr, unsigned long end,
                  unsigned long pfn, pgprot_t prot)
{
      pte_t *pte;
      spinlock_t *ptl;

      pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
      if (!pte)
            return -ENOMEM;
      arch_enter_lazy_mmu_mode();
      do {
            BUG_ON(!pte_none(*pte));
            set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
            pfn++;
      } while (pte++, addr += PAGE_SIZE, addr != end);
      arch_leave_lazy_mmu_mode();
      pte_unmap_unlock(pte - 1, ptl);
      return 0;
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
                  unsigned long addr, unsigned long end,
                  unsigned long pfn, pgprot_t prot)
{
      pmd_t *pmd;
      unsigned long next;

      pfn -= addr >> PAGE_SHIFT;
      pmd = pmd_alloc(mm, pud, addr);
      if (!pmd)
            return -ENOMEM;
      do {
            next = pmd_addr_end(addr, end);
            if (remap_pte_range(mm, pmd, addr, next,
                        pfn + (addr >> PAGE_SHIFT), prot))
                  return -ENOMEM;
      } while (pmd++, addr = next, addr != end);
      return 0;
}

static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
                  unsigned long addr, unsigned long end,
                  unsigned long pfn, pgprot_t prot)
{
      pud_t *pud;
      unsigned long next;

      pfn -= addr >> PAGE_SHIFT;
      pud = pud_alloc(mm, pgd, addr);
      if (!pud)
            return -ENOMEM;
      do {
            next = pud_addr_end(addr, end);
            if (remap_pmd_range(mm, pud, addr, next,
                        pfn + (addr >> PAGE_SHIFT), prot))
                  return -ENOMEM;
      } while (pud++, addr = next, addr != end);
      return 0;
}

/**
 * remap_pfn_range - remap kernel memory to userspace
 * @vma: user vma to map to
 * @addr: target user address to start at
 * @pfn: physical address of kernel memory
 * @size: size of map area
 * @prot: page protection flags for this mapping
 *
 *  Note: this is only safe if the mm semaphore is held when called.
 */
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
                unsigned long pfn, unsigned long size, pgprot_t prot)
{
      pgd_t *pgd;
      unsigned long next;
      unsigned long end = addr + PAGE_ALIGN(size);
      struct mm_struct *mm = vma->vm_mm;
      int err;

      /*
       * Physically remapped pages are special. Tell the
       * rest of the world about it:
       *   VM_IO tells people not to look at these pages
       *    (accesses can have side effects).
       *   VM_RESERVED is specified all over the place, because
       *    in 2.4 it kept swapout's vma scan off this vma; but
       *    in 2.6 the LRU scan won't even find its pages, so this
       *    flag means no more than count its pages in reserved_vm,
       *    and omit it from core dump, even when VM_IO turned off.
       *   VM_PFNMAP tells the core MM that the base pages are just
       *    raw PFN mappings, and do not have a "struct page" associated
       *    with them.
       *
       * There's a horrible special case to handle copy-on-write
       * behaviour that some programs depend on. We mark the "original"
       * un-COW'ed pages by matching them up with "vma->vm_pgoff".
       */
      if (is_cow_mapping(vma->vm_flags)) {
            if (addr != vma->vm_start || end != vma->vm_end)
                  return -EINVAL;
            vma->vm_pgoff = pfn;
      }

      vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;

      BUG_ON(addr >= end);
      pfn -= addr >> PAGE_SHIFT;
      pgd = pgd_offset(mm, addr);
      flush_cache_range(vma, addr, end);
      do {
            next = pgd_addr_end(addr, end);
            err = remap_pud_range(mm, pgd, addr, next,
                        pfn + (addr >> PAGE_SHIFT), prot);
            if (err)
                  break;
      } while (pgd++, addr = next, addr != end);
      return err;
}
EXPORT_SYMBOL(remap_pfn_range);

static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
                             unsigned long addr, unsigned long end,
                             pte_fn_t fn, void *data)
{
      pte_t *pte;
      int err;
      struct page *pmd_page;
      spinlock_t *uninitialized_var(ptl);

      pte = (mm == &init_mm) ?
            pte_alloc_kernel(pmd, addr) :
            pte_alloc_map_lock(mm, pmd, addr, &ptl);
      if (!pte)
            return -ENOMEM;

      BUG_ON(pmd_huge(*pmd));

      pmd_page = pmd_page(*pmd);

      do {
            err = fn(pte, pmd_page, addr, data);
            if (err)
                  break;
      } while (pte++, addr += PAGE_SIZE, addr != end);

      if (mm != &init_mm)
            pte_unmap_unlock(pte-1, ptl);
      return err;
}

static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
                             unsigned long addr, unsigned long end,
                             pte_fn_t fn, void *data)
{
      pmd_t *pmd;
      unsigned long next;
      int err;

      pmd = pmd_alloc(mm, pud, addr);
      if (!pmd)
            return -ENOMEM;
      do {
            next = pmd_addr_end(addr, end);
            err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
            if (err)
                  break;
      } while (pmd++, addr = next, addr != end);
      return err;
}

static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
                             unsigned long addr, unsigned long end,
                             pte_fn_t fn, void *data)
{
      pud_t *pud;
      unsigned long next;
      int err;

      pud = pud_alloc(mm, pgd, addr);
      if (!pud)
            return -ENOMEM;
      do {
            next = pud_addr_end(addr, end);
            err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
            if (err)
                  break;
      } while (pud++, addr = next, addr != end);
      return err;
}

/*
 * Scan a region of virtual memory, filling in page tables as necessary
 * and calling a provided function on each leaf page table.
 */
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
                  unsigned long size, pte_fn_t fn, void *data)
{
      pgd_t *pgd;
      unsigned long next;
      unsigned long end = addr + size;
      int err;

      BUG_ON(addr >= end);
      pgd = pgd_offset(mm, addr);
      do {
            next = pgd_addr_end(addr, end);
            err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
            if (err)
                  break;
      } while (pgd++, addr = next, addr != end);
      return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);

/*
 * handle_pte_fault chooses page fault handler according to an entry
 * which was read non-atomically.  Before making any commitment, on
 * those architectures or configurations (e.g. i386 with PAE) which
 * might give a mix of unmatched parts, do_swap_page and do_file_page
 * must check under lock before unmapping the pte and proceeding
 * (but do_wp_page is only called after already making such a check;
 * and do_anonymous_page and do_no_page can safely check later on).
 */
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
                        pte_t *page_table, pte_t orig_pte)
{
      int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
      if (sizeof(pte_t) > sizeof(unsigned long)) {
            spinlock_t *ptl = pte_lockptr(mm, pmd);
            spin_lock(ptl);
            same = pte_same(*page_table, orig_pte);
            spin_unlock(ptl);
      }
#endif
      pte_unmap(page_table);
      return same;
}

/*
 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 * servicing faults for write access.  In the normal case, do always want
 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 * that do not have writing enabled, when used by access_process_vm.
 */
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
      if (likely(vma->vm_flags & VM_WRITE))
            pte = pte_mkwrite(pte);
      return pte;
}

static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
{
      /*
       * If the source page was a PFN mapping, we don't have
       * a "struct page" for it. We do a best-effort copy by
       * just copying from the original user address. If that
       * fails, we just zero-fill it. Live with it.
       */
      if (unlikely(!src)) {
            void *kaddr = kmap_atomic(dst, KM_USER0);
            void __user *uaddr = (void __user *)(va & PAGE_MASK);

            /*
             * This really shouldn't fail, because the page is there
             * in the page tables. But it might just be unreadable,
             * in which case we just give up and fill the result with
             * zeroes.
             */
            if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
                  memset(kaddr, 0, PAGE_SIZE);
            kunmap_atomic(kaddr, KM_USER0);
            flush_dcache_page(dst);
            return;

      }
      copy_user_highpage(dst, src, va, vma);
}

/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), with pte both mapped and locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
            unsigned long address, pte_t *page_table, pmd_t *pmd,
            spinlock_t *ptl, pte_t orig_pte)
{
      struct page *old_page, *new_page;
      pte_t entry;
      int reuse = 0, ret = 0;
      int page_mkwrite = 0;
      struct page *dirty_page = NULL;

      old_page = vm_normal_page(vma, address, orig_pte);
      if (!old_page)
            goto gotten;

      /*
       * Take out anonymous pages first, anonymous shared vmas are
       * not dirty accountable.
       */
      if (PageAnon(old_page)) {
            if (!TestSetPageLocked(old_page)) {
                  reuse = can_share_swap_page(old_page);
                  unlock_page(old_page);
            }
      } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
                              (VM_WRITE|VM_SHARED))) {
            /*
             * Only catch write-faults on shared writable pages,
             * read-only shared pages can get COWed by
             * get_user_pages(.write=1, .force=1).
             */
            if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
                  /*
                   * Notify the address space that the page is about to
                   * become writable so that it can prohibit this or wait
                   * for the page to get into an appropriate state.
                   *
                   * We do this without the lock held, so that it can
                   * sleep if it needs to.
                   */
                  page_cache_get(old_page);
                  pte_unmap_unlock(page_table, ptl);

                  if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
                        goto unwritable_page;

                  /*
                   * Since we dropped the lock we need to revalidate
                   * the PTE as someone else may have changed it.  If
                   * they did, we just return, as we can count on the
                   * MMU to tell us if they didn't also make it writable.
                   */
                  page_table = pte_offset_map_lock(mm, pmd, address,
                                           &ptl);
                  page_cache_release(old_page);
                  if (!pte_same(*page_table, orig_pte))
                        goto unlock;

                  page_mkwrite = 1;
            }
            dirty_page = old_page;
            get_page(dirty_page);
            reuse = 1;
      }

      if (reuse) {
            flush_cache_page(vma, address, pte_pfn(orig_pte));
            entry = pte_mkyoung(orig_pte);
            entry = maybe_mkwrite(pte_mkdirty(entry), vma);
            if (ptep_set_access_flags(vma, address, page_table, entry,1))
                  update_mmu_cache(vma, address, entry);
            ret |= VM_FAULT_WRITE;
            goto unlock;
      }

      /*
       * Ok, we need to copy. Oh, well..
       */
      page_cache_get(old_page);
gotten:
      pte_unmap_unlock(page_table, ptl);

      if (unlikely(anon_vma_prepare(vma)))
            goto oom;
      VM_BUG_ON(old_page == ZERO_PAGE(0));
      new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
      if (!new_page)
            goto oom;
      cow_user_page(new_page, old_page, address, vma);

      /*
       * Re-check the pte - we dropped the lock
       */
      page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
      if (likely(pte_same(*page_table, orig_pte))) {
            if (old_page) {
                  page_remove_rmap(old_page, vma);
                  if (!PageAnon(old_page)) {
                        dec_mm_counter(mm, file_rss);
                        inc_mm_counter(mm, anon_rss);
                  }
            } else
                  inc_mm_counter(mm, anon_rss);
            flush_cache_page(vma, address, pte_pfn(orig_pte));
            entry = mk_pte(new_page, vma->vm_page_prot);
            entry = maybe_mkwrite(pte_mkdirty(entry), vma);
            /*
             * Clear the pte entry and flush it first, before updating the
             * pte with the new entry. This will avoid a race condition
             * seen in the presence of one thread doing SMC and another
             * thread doing COW.
             */
            ptep_clear_flush(vma, address, page_table);
            set_pte_at(mm, address, page_table, entry);
            update_mmu_cache(vma, address, entry);
            lru_cache_add_active(new_page);
            page_add_new_anon_rmap(new_page, vma, address);

            /* Free the old page.. */
            new_page = old_page;
            ret |= VM_FAULT_WRITE;
      }
      if (new_page)
            page_cache_release(new_page);
      if (old_page)
            page_cache_release(old_page);
unlock:
      pte_unmap_unlock(page_table, ptl);
      if (dirty_page) {
            if (vma->vm_file)
                  file_update_time(vma->vm_file);

            /*
             * Yes, Virginia, this is actually required to prevent a race
             * with clear_page_dirty_for_io() from clearing the page dirty
             * bit after it clear all dirty ptes, but before a racing
             * do_wp_page installs a dirty pte.
             *
             * do_no_page is protected similarly.
             */
            wait_on_page_locked(dirty_page);
            set_page_dirty_balance(dirty_page, page_mkwrite);
            put_page(dirty_page);
      }
      return ret;
oom:
      if (old_page)
            page_cache_release(old_page);
      return VM_FAULT_OOM;

unwritable_page:
      page_cache_release(old_page);
      return VM_FAULT_SIGBUS;
}

/*
 * Helper functions for unmap_mapping_range().
 *
 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
 *
 * We have to restart searching the prio_tree whenever we drop the lock,
 * since the iterator is only valid while the lock is held, and anyway
 * a later vma might be split and reinserted earlier while lock dropped.
 *
 * The list of nonlinear vmas could be handled more efficiently, using
 * a placeholder, but handle it in the same way until a need is shown.
 * It is important to search the prio_tree before nonlinear list: a vma
 * may become nonlinear and be shifted from prio_tree to nonlinear list
 * while the lock is dropped; but never shifted from list to prio_tree.
 *
 * In order to make forward progress despite restarting the search,
 * vm_truncate_count is used to mark a vma as now dealt with, so we can
 * quickly skip it next time around.  Since the prio_tree search only
 * shows us those vmas affected by unmapping the range in question, we
 * can't efficiently keep all vmas in step with mapping->truncate_count:
 * so instead reset them all whenever it wraps back to 0 (then go to 1).
 * mapping->truncate_count and vma->vm_truncate_count are protected by
 * i_mmap_lock.
 *
 * In order to make forward progress despite repeatedly restarting some
 * large vma, note the restart_addr from unmap_vmas when it breaks out:
 * and restart from that address when we reach that vma again.  It might
 * have been split or merged, shrunk or extended, but never shifted: so
 * restart_addr remains valid so long as it remains in the vma's range.
 * unmap_mapping_range forces truncate_count to leap over page-aligned
 * values so we can save vma's restart_addr in its truncate_count field.
 */
#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))

static void reset_vma_truncate_counts(struct address_space *mapping)
{
      struct vm_area_struct *vma;
      struct prio_tree_iter iter;

      vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
            vma->vm_truncate_count = 0;
      list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
            vma->vm_truncate_count = 0;
}

static int unmap_mapping_range_vma(struct vm_area_struct *vma,
            unsigned long start_addr, unsigned long end_addr,
            struct zap_details *details)
{
      unsigned long restart_addr;
      int need_break;

      /*
       * files that support invalidating or truncating portions of the
       * file from under mmaped areas must have their ->fault function
       * return a locked page (and set VM_FAULT_LOCKED in the return).
       * This provides synchronisation against concurrent unmapping here.
       */

again:
      restart_addr = vma->vm_truncate_count;
      if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
            start_addr = restart_addr;
            if (start_addr >= end_addr) {
                  /* Top of vma has been split off since last time */
                  vma->vm_truncate_count = details->truncate_count;
                  return 0;
            }
      }

      restart_addr = zap_page_range(vma, start_addr,
                              end_addr - start_addr, details);
      need_break = need_resched() ||
                  need_lockbreak(details->i_mmap_lock);

      if (restart_addr >= end_addr) {
            /* We have now completed this vma: mark it so */
            vma->vm_truncate_count = details->truncate_count;
            if (!need_break)
                  return 0;
      } else {
            /* Note restart_addr in vma's truncate_count field */
            vma->vm_truncate_count = restart_addr;
            if (!need_break)
                  goto again;
      }

      spin_unlock(details->i_mmap_lock);
      cond_resched();
      spin_lock(details->i_mmap_lock);
      return -EINTR;
}

static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
                                  struct zap_details *details)
{
      struct vm_area_struct *vma;
      struct prio_tree_iter iter;
      pgoff_t vba, vea, zba, zea;

restart:
      vma_prio_tree_foreach(vma, &iter, root,
                  details->first_index, details->last_index) {
            /* Skip quickly over those we have already dealt with */
            if (vma->vm_truncate_count == details->truncate_count)
                  continue;

            vba = vma->vm_pgoff;
            vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
            /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
            zba = details->first_index;
            if (zba < vba)
                  zba = vba;
            zea = details->last_index;
            if (zea > vea)
                  zea = vea;

            if (unmap_mapping_range_vma(vma,
                  ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
                  ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
                        details) < 0)
                  goto restart;
      }
}

static inline void unmap_mapping_range_list(struct list_head *head,
                                  struct zap_details *details)
{
      struct vm_area_struct *vma;

      /*
       * In nonlinear VMAs there is no correspondence between virtual address
       * offset and file offset.  So we must perform an exhaustive search
       * across *all* the pages in each nonlinear VMA, not just the pages
       * whose virtual address lies outside the file truncation point.
       */
restart:
      list_for_each_entry(vma, head, shared.vm_set.list) {
            /* Skip quickly over those we have already dealt with */
            if (vma->vm_truncate_count == details->truncate_count)
                  continue;
            details->nonlinear_vma = vma;
            if (unmap_mapping_range_vma(vma, vma->vm_start,
                              vma->vm_end, details) < 0)
                  goto restart;
      }
}

/**
 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
 * @mapping: the address space containing mmaps to be unmapped.
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
 * boundary.  Note that this is different from vmtruncate(), which
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
            loff_t const holebegin, loff_t const holelen, int even_cows)
{
      struct zap_details details;
      pgoff_t hba = holebegin >> PAGE_SHIFT;
      pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

      /* Check for overflow. */
      if (sizeof(holelen) > sizeof(hlen)) {
            long long holeend =
                  (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
            if (holeend & ~(long long)ULONG_MAX)
                  hlen = ULONG_MAX - hba + 1;
      }

      details.check_mapping = even_cows? NULL: mapping;
      details.nonlinear_vma = NULL;
      details.first_index = hba;
      details.last_index = hba + hlen - 1;
      if (details.last_index < details.first_index)
            details.last_index = ULONG_MAX;
      details.i_mmap_lock = &mapping->i_mmap_lock;

      spin_lock(&mapping->i_mmap_lock);

      /* Protect against endless unmapping loops */
      mapping->truncate_count++;
      if (unlikely(is_restart_addr(mapping->truncate_count))) {
            if (mapping->truncate_count == 0)
                  reset_vma_truncate_counts(mapping);
            mapping->truncate_count++;
      }
      details.truncate_count = mapping->truncate_count;

      if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
            unmap_mapping_range_tree(&mapping->i_mmap, &details);
      if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
            unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
      spin_unlock(&mapping->i_mmap_lock);
}
EXPORT_SYMBOL(unmap_mapping_range);

/**
 * vmtruncate - unmap mappings "freed" by truncate() syscall
 * @inode: inode of the file used
 * @offset: file offset to start truncating
 *
 * NOTE! We have to be ready to update the memory sharing
 * between the file and the memory map for a potential last
 * incomplete page.  Ugly, but necessary.
 */
int vmtruncate(struct inode * inode, loff_t offset)
{
      struct address_space *mapping = inode->i_mapping;
      unsigned long limit;

      if (inode->i_size < offset)
            goto do_expand;
      /*
       * truncation of in-use swapfiles is disallowed - it would cause
       * subsequent swapout to scribble on the now-freed blocks.
       */
      if (IS_SWAPFILE(inode))
            goto out_busy;
      i_size_write(inode, offset);

      /*
       * unmap_mapping_range is called twice, first simply for efficiency
       * so that truncate_inode_pages does fewer single-page unmaps. However
       * after this first call, and before truncate_inode_pages finishes,
       * it is possible for private pages to be COWed, which remain after
       * truncate_inode_pages finishes, hence the second unmap_mapping_range
       * call must be made for correctness.
       */
      unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
      truncate_inode_pages(mapping, offset);
      unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
      goto out_truncate;

do_expand:
      limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
      if (limit != RLIM_INFINITY && offset > limit)
            goto out_sig;
      if (offset > inode->i_sb->s_maxbytes)
            goto out_big;
      i_size_write(inode, offset);

out_truncate:
      if (inode->i_op && inode->i_op->truncate)
            inode->i_op->truncate(inode);
      return 0;
out_sig:
      send_sig(SIGXFSZ, current, 0);
out_big:
      return -EFBIG;
out_busy:
      return -ETXTBSY;
}
EXPORT_SYMBOL(vmtruncate);

int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
{
      struct address_space *mapping = inode->i_mapping;

      /*
       * If the underlying filesystem is not going to provide
       * a way to truncate a range of blocks (punch a hole) -
       * we should return failure right now.
       */
      if (!inode->i_op || !inode->i_op->truncate_range)
            return -ENOSYS;

      mutex_lock(&inode->i_mutex);
      down_write(&inode->i_alloc_sem);
      unmap_mapping_range(mapping, offset, (end - offset), 1);
      truncate_inode_pages_range(mapping, offset, end);
      unmap_mapping_range(mapping, offset, (end - offset), 1);
      inode->i_op->truncate_range(inode, offset, end);
      up_write(&inode->i_alloc_sem);
      mutex_unlock(&inode->i_mutex);

      return 0;
}

/**
 * swapin_readahead - swap in pages in hope we need them soon
 * @entry: swap entry of this memory
 * @addr: address to start
 * @vma: user vma this addresses belong to
 *
 * Primitive swap readahead code. We simply read an aligned block of
 * (1 << page_cluster) entries in the swap area. This method is chosen
 * because it doesn't cost us any seek time.  We also make sure to queue
 * the 'original' request together with the readahead ones...
 *
 * This has been extended to use the NUMA policies from the mm triggering
 * the readahead.
 *
 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
 */
void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
{
#ifdef CONFIG_NUMA
      struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
#endif
      int i, num;
      struct page *new_page;
      unsigned long offset;

      /*
       * Get the number of handles we should do readahead io to.
       */
      num = valid_swaphandles(entry, &offset);
      for (i = 0; i < num; offset++, i++) {
            /* Ok, do the async read-ahead now */
            new_page = read_swap_cache_async(swp_entry(swp_type(entry),
                                             offset), vma, addr);
            if (!new_page)
                  break;
            page_cache_release(new_page);
#ifdef CONFIG_NUMA
            /*
             * Find the next applicable VMA for the NUMA policy.
             */
            addr += PAGE_SIZE;
            if (addr == 0)
                  vma = NULL;
            if (vma) {
                  if (addr >= vma->vm_end) {
                        vma = next_vma;
                        next_vma = vma ? vma->vm_next : NULL;
                  }
                  if (vma && addr < vma->vm_start)
                        vma = NULL;
            } else {
                  if (next_vma && addr >= next_vma->vm_start) {
                        vma = next_vma;
                        next_vma = vma->vm_next;
                  }
            }
#endif
      }
      lru_add_drain();  /* Push any new pages onto the LRU now */
}

/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
            unsigned long address, pte_t *page_table, pmd_t *pmd,
            int write_access, pte_t orig_pte)
{
      spinlock_t *ptl;
      struct page *page;
      swp_entry_t entry;
      pte_t pte;
      int ret = 0;

      if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
            goto out;

      entry = pte_to_swp_entry(orig_pte);
      if (is_migration_entry(entry)) {
            migration_entry_wait(mm, pmd, address);
            goto out;
      }
      delayacct_set_flag(DELAYACCT_PF_SWAPIN);
      page = lookup_swap_cache(entry);
      if (!page) {
            grab_swap_token(); /* Contend for token _before_ read-in */
            swapin_readahead(entry, address, vma);
            page = read_swap_cache_async(entry, vma, address);
            if (!page) {
                  /*
                   * Back out if somebody else faulted in this pte
                   * while we released the pte lock.
                   */
                  page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
                  if (likely(pte_same(*page_table, orig_pte)))
                        ret = VM_FAULT_OOM;
                  delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
                  goto unlock;
            }

            /* Had to read the page from swap area: Major fault */
            ret = VM_FAULT_MAJOR;
            count_vm_event(PGMAJFAULT);
      }

      mark_page_accessed(page);
      lock_page(page);
      delayacct_clear_flag(DELAYACCT_PF_SWAPIN);

      /*
       * Back out if somebody else already faulted in this pte.
       */
      page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
      if (unlikely(!pte_same(*page_table, orig_pte)))
            goto out_nomap;

      if (unlikely(!PageUptodate(page))) {
            ret = VM_FAULT_SIGBUS;
            goto out_nomap;
      }

      /* The page isn't present yet, go ahead with the fault. */

      inc_mm_counter(mm, anon_rss);
      pte = mk_pte(page, vma->vm_page_prot);
      if (write_access && can_share_swap_page(page)) {
            pte = maybe_mkwrite(pte_mkdirty(pte), vma);
            write_access = 0;
      }

      flush_icache_page(vma, page);
      set_pte_at(mm, address, page_table, pte);
      page_add_anon_rmap(page, vma, address);

      swap_free(entry);
      if (vm_swap_full())
            remove_exclusive_swap_page(page);
      unlock_page(page);

      if (write_access) {
            /* XXX: We could OR the do_wp_page code with this one? */
            if (do_wp_page(mm, vma, address,
                        page_table, pmd, ptl, pte) & VM_FAULT_OOM)
                  ret = VM_FAULT_OOM;
            goto out;
      }

      /* No need to invalidate - it was non-present before */
      update_mmu_cache(vma, address, pte);
unlock:
      pte_unmap_unlock(page_table, ptl);
out:
      return ret;
out_nomap:
      pte_unmap_unlock(page_table, ptl);
      unlock_page(page);
      page_cache_release(page);
      return ret;
}

/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
            unsigned long address, pte_t *page_table, pmd_t *pmd,
            int write_access)
{
      struct page *page;
      spinlock_t *ptl;
      pte_t entry;

      /* Allocate our own private page. */
      pte_unmap(page_table);

      if (unlikely(anon_vma_prepare(vma)))
            goto oom;
      page = alloc_zeroed_user_highpage_movable(vma, address);
      if (!page)
            goto oom;

      entry = mk_pte(page, vma->vm_page_prot);
      entry = maybe_mkwrite(pte_mkdirty(entry), vma);

      page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
      if (!pte_none(*page_table))
            goto release;
      inc_mm_counter(mm, anon_rss);
      lru_cache_add_active(page);
      page_add_new_anon_rmap(page, vma, address);
      set_pte_at(mm, address, page_table, entry);

      /* No need to invalidate - it was non-present before */
      update_mmu_cache(vma, address, entry);
unlock:
      pte_unmap_unlock(page_table, ptl);
      return 0;
release:
      page_cache_release(page);
      goto unlock;
oom:
      return VM_FAULT_OOM;
}

/*
 * __do_fault() tries to create a new page mapping. It aggressively
 * tries to share with existing pages, but makes a separate copy if
 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
 * the next page fault.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte neither mapped nor locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
            unsigned long address, pmd_t *pmd,
            pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
      pte_t *page_table;
      spinlock_t *ptl;
      struct page *page;
      pte_t entry;
      int anon = 0;
      struct page *dirty_page = NULL;
      struct vm_fault vmf;
      int ret;
      int page_mkwrite = 0;

      vmf.virtual_address = (void __user *)(address & PAGE_MASK);
      vmf.pgoff = pgoff;
      vmf.flags = flags;
      vmf.page = NULL;

      BUG_ON(vma->vm_flags & VM_PFNMAP);

      if (likely(vma->vm_ops->fault)) {
            ret = vma->vm_ops->fault(vma, &vmf);
            if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
                  return ret;
      } else {
            /* Legacy ->nopage path */
            ret = 0;
            vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
            /* no page was available -- either SIGBUS or OOM */
            if (unlikely(vmf.page == NOPAGE_SIGBUS))
                  return VM_FAULT_SIGBUS;
            else if (unlikely(vmf.page == NOPAGE_OOM))
                  return VM_FAULT_OOM;
      }

      /*
       * For consistency in subsequent calls, make the faulted page always
       * locked.
       */
      if (unlikely(!(ret & VM_FAULT_LOCKED)))
            lock_page(vmf.page);
      else
            VM_BUG_ON(!PageLocked(vmf.page));

      /*
       * Should we do an early C-O-W break?
       */
      page = vmf.page;
      if (flags & FAULT_FLAG_WRITE) {
            if (!(vma->vm_flags & VM_SHARED)) {
                  anon = 1;
                  if (unlikely(anon_vma_prepare(vma))) {
                        ret = VM_FAULT_OOM;
                        goto out;
                  }
                  page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
                                    vma, address);
                  if (!page) {
                        ret = VM_FAULT_OOM;
                        goto out;
                  }
                  copy_user_highpage(page, vmf.page, address, vma);
            } else {
                  /*
                   * If the page will be shareable, see if the backing
                   * address space wants to know that the page is about
                   * to become writable
                   */
                  if (vma->vm_ops->page_mkwrite) {
                        unlock_page(page);
                        if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
                              ret = VM_FAULT_SIGBUS;
                              anon = 1; /* no anon but release vmf.page */
                              goto out_unlocked;
                        }
                        lock_page(page);
                        /*
                         * XXX: this is not quite right (racy vs
                         * invalidate) to unlock and relock the page
                         * like this, however a better fix requires
                         * reworking page_mkwrite locking API, which
                         * is better done later.
                         */
                        if (!page->mapping) {
                              ret = 0;
                              anon = 1; /* no anon but release vmf.page */
                              goto out;
                        }
                        page_mkwrite = 1;
                  }
            }

      }

      page_table = pte_offset_map_lock(mm, pmd, address, &ptl);

      /*
       * This silly early PAGE_DIRTY setting removes a race
       * due to the bad i386 page protection. But it's valid
       * for other architectures too.
       *
       * Note that if write_access is true, we either now have
       * an exclusive copy of the page, or this is a shared mapping,
       * so we can make it writable and dirty to avoid having to
       * handle that later.
       */
      /* Only go through if we didn't race with anybody else... */
      if (likely(pte_same(*page_table, orig_pte))) {
            flush_icache_page(vma, page);
            entry = mk_pte(page, vma->vm_page_prot);
            if (flags & FAULT_FLAG_WRITE)
                  entry = maybe_mkwrite(pte_mkdirty(entry), vma);
            set_pte_at(mm, address, page_table, entry);
            if (anon) {
                        inc_mm_counter(mm, anon_rss);
                        lru_cache_add_active(page);
                        page_add_new_anon_rmap(page, vma, address);
            } else {
                  inc_mm_counter(mm, file_rss);
                  page_add_file_rmap(page);
                  if (flags & FAULT_FLAG_WRITE) {
                        dirty_page = page;
                        get_page(dirty_page);
                  }
            }

            /* no need to invalidate: a not-present page won't be cached */
            update_mmu_cache(vma, address, entry);
      } else {
            if (anon)
                  page_cache_release(page);
            else
                  anon = 1; /* no anon but release faulted_page */
      }

      pte_unmap_unlock(page_table, ptl);

out:
      unlock_page(vmf.page);
out_unlocked:
      if (anon)
            page_cache_release(vmf.page);
      else if (dirty_page) {
            if (vma->vm_file)
                  file_update_time(vma->vm_file);

            set_page_dirty_balance(dirty_page, page_mkwrite);
            put_page(dirty_page);
      }

      return ret;
}

static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
            unsigned long address, pte_t *page_table, pmd_t *pmd,
            int write_access, pte_t orig_pte)
{
      pgoff_t pgoff = (((address & PAGE_MASK)
                  - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
      unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);

      pte_unmap(page_table);
      return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
}


/*
 * do_no_pfn() tries to create a new page mapping for a page without
 * a struct_page backing it
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 *
 * It is expected that the ->nopfn handler always returns the same pfn
 * for a given virtual mapping.
 *
 * Mark this `noinline' to prevent it from bloating the main pagefault code.
 */
static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
                 unsigned long address, pte_t *page_table, pmd_t *pmd,
                 int write_access)
{
      spinlock_t *ptl;
      pte_t entry;
      unsigned long pfn;

      pte_unmap(page_table);
      BUG_ON(!(vma->vm_flags & VM_PFNMAP));
      BUG_ON(is_cow_mapping(vma->vm_flags));

      pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
      if (unlikely(pfn == NOPFN_OOM))
            return VM_FAULT_OOM;
      else if (unlikely(pfn == NOPFN_SIGBUS))
            return VM_FAULT_SIGBUS;
      else if (unlikely(pfn == NOPFN_REFAULT))
            return 0;

      page_table = pte_offset_map_lock(mm, pmd, address, &ptl);

      /* Only go through if we didn't race with anybody else... */
      if (pte_none(*page_table)) {
            entry = pfn_pte(pfn, vma->vm_page_prot);
            if (write_access)
                  entry = maybe_mkwrite(pte_mkdirty(entry), vma);
            set_pte_at(mm, address, page_table, entry);
      }
      pte_unmap_unlock(page_table, ptl);
      return 0;
}

/*
 * Fault of a previously existing named mapping. Repopulate the pte
 * from the encoded file_pte if possible. This enables swappable
 * nonlinear vmas.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
            unsigned long address, pte_t *page_table, pmd_t *pmd,
            int write_access, pte_t orig_pte)
{
      unsigned int flags = FAULT_FLAG_NONLINEAR |
                        (write_access ? FAULT_FLAG_WRITE : 0);
      pgoff_t pgoff;

      if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
            return 0;

      if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
                  !(vma->vm_flags & VM_CAN_NONLINEAR))) {
            /*
             * Page table corrupted: show pte and kill process.
             */
            print_bad_pte(vma, orig_pte, address);
            return VM_FAULT_OOM;
      }

      pgoff = pte_to_pgoff(orig_pte);
      return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
}

/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static inline int handle_pte_fault(struct mm_struct *mm,
            struct vm_area_struct *vma, unsigned long address,
            pte_t *pte, pmd_t *pmd, int write_access)
{
      pte_t entry;
      spinlock_t *ptl;

      entry = *pte;
      if (!pte_present(entry)) {
            if (pte_none(entry)) {
                  if (vma->vm_ops) {
                        if (vma->vm_ops->fault || vma->vm_ops->nopage)
                              return do_linear_fault(mm, vma, address,
                                    pte, pmd, write_access, entry);
                        if (unlikely(vma->vm_ops->nopfn))
                              return do_no_pfn(mm, vma, address, pte,
                                           pmd, write_access);
                  }
                  return do_anonymous_page(mm, vma, address,
                                     pte, pmd, write_access);
            }
            if (pte_file(entry))
                  return do_nonlinear_fault(mm, vma, address,
                              pte, pmd, write_access, entry);
            return do_swap_page(mm, vma, address,
                              pte, pmd, write_access, entry);
      }

      ptl = pte_lockptr(mm, pmd);
      spin_lock(ptl);
      if (unlikely(!pte_same(*pte, entry)))
            goto unlock;
      if (write_access) {
            if (!pte_write(entry))
                  return do_wp_page(mm, vma, address,
                              pte, pmd, ptl, entry);
            entry = pte_mkdirty(entry);
      }
      entry = pte_mkyoung(entry);
      if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
            update_mmu_cache(vma, address, entry);
      } else {
            /*
             * This is needed only for protection faults but the arch code
             * is not yet telling us if this is a protection fault or not.
             * This still avoids useless tlb flushes for .text page faults
             * with threads.
             */
            if (write_access)
                  flush_tlb_page(vma, address);
      }
unlock:
      pte_unmap_unlock(pte, ptl);
      return 0;
}

/*
 * By the time we get here, we already hold the mm semaphore
 */
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
            unsigned long address, int write_access)
{
      pgd_t *pgd;
      pud_t *pud;
      pmd_t *pmd;
      pte_t *pte;

      __set_current_state(TASK_RUNNING);

      count_vm_event(PGFAULT);

      if (unlikely(is_vm_hugetlb_page(vma)))
            return hugetlb_fault(mm, vma, address, write_access);

      pgd = pgd_offset(mm, address);
      pud = pud_alloc(mm, pgd, address);
      if (!pud)
            return VM_FAULT_OOM;
      pmd = pmd_alloc(mm, pud, address);
      if (!pmd)
            return VM_FAULT_OOM;
      pte = pte_alloc_map(mm, pmd, address);
      if (!pte)
            return VM_FAULT_OOM;

      return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
}

#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
 * We've already handled the fast-path in-line.
 */
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
      pud_t *new = pud_alloc_one(mm, address);
      if (!new)
            return -ENOMEM;

      spin_lock(&mm->page_table_lock);
      if (pgd_present(*pgd))        /* Another has populated it */
            pud_free(new);
      else
            pgd_populate(mm, pgd, new);
      spin_unlock(&mm->page_table_lock);
      return 0;
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
 * We've already handled the fast-path in-line.
 */
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
      pmd_t *new = pmd_alloc_one(mm, address);
      if (!new)
            return -ENOMEM;

      spin_lock(&mm->page_table_lock);
#ifndef __ARCH_HAS_4LEVEL_HACK
      if (pud_present(*pud))        /* Another has populated it */
            pmd_free(new);
      else
            pud_populate(mm, pud, new);
#else
      if (pgd_present(*pud))        /* Another has populated it */
            pmd_free(new);
      else
            pgd_populate(mm, pud, new);
#endif /* __ARCH_HAS_4LEVEL_HACK */
      spin_unlock(&mm->page_table_lock);
      return 0;
}
#endif /* __PAGETABLE_PMD_FOLDED */

int make_pages_present(unsigned long addr, unsigned long end)
{
      int ret, len, write;
      struct vm_area_struct * vma;

      vma = find_vma(current->mm, addr);
      if (!vma)
            return -1;
      write = (vma->vm_flags & VM_WRITE) != 0;
      BUG_ON(addr >= end);
      BUG_ON(end > vma->vm_end);
      len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
      ret = get_user_pages(current, current->mm, addr,
                  len, write, 0, NULL, NULL);
      if (ret < 0)
            return ret;
      return ret == len ? 0 : -1;
}

/* 
 * Map a vmalloc()-space virtual address to the physical page.
 */
struct page * vmalloc_to_page(void * vmalloc_addr)
{
      unsigned long addr = (unsigned long) vmalloc_addr;
      struct page *page = NULL;
      pgd_t *pgd = pgd_offset_k(addr);
      pud_t *pud;
      pmd_t *pmd;
      pte_t *ptep, pte;
  
      if (!pgd_none(*pgd)) {
            pud = pud_offset(pgd, addr);
            if (!pud_none(*pud)) {
                  pmd = pmd_offset(pud, addr);
                  if (!pmd_none(*pmd)) {
                        ptep = pte_offset_map(pmd, addr);
                        pte = *ptep;
                        if (pte_present(pte))
                              page = pte_page(pte);
                        pte_unmap(ptep);
                  }
            }
      }
      return page;
}

EXPORT_SYMBOL(vmalloc_to_page);

/*
 * Map a vmalloc()-space virtual address to the physical page frame number.
 */
unsigned long vmalloc_to_pfn(void * vmalloc_addr)
{
      return page_to_pfn(vmalloc_to_page(vmalloc_addr));
}

EXPORT_SYMBOL(vmalloc_to_pfn);

#if !defined(__HAVE_ARCH_GATE_AREA)

#if defined(AT_SYSINFO_EHDR)
static struct vm_area_struct gate_vma;

static int __init gate_vma_init(void)
{
      gate_vma.vm_mm = NULL;
      gate_vma.vm_start = FIXADDR_USER_START;
      gate_vma.vm_end = FIXADDR_USER_END;
      gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
      gate_vma.vm_page_prot = __P101;
      /*
       * Make sure the vDSO gets into every core dump.
       * Dumping its contents makes post-mortem fully interpretable later
       * without matching up the same kernel and hardware config to see
       * what PC values meant.
       */
      gate_vma.vm_flags |= VM_ALWAYSDUMP;
      return 0;
}
__initcall(gate_vma_init);
#endif

struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef AT_SYSINFO_EHDR
      return &gate_vma;
#else
      return NULL;
#endif
}

int in_gate_area_no_task(unsigned long addr)
{
#ifdef AT_SYSINFO_EHDR
      if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
            return 1;
#endif
      return 0;
}

#endif      /* __HAVE_ARCH_GATE_AREA */

/*
 * Access another process' address space.
 * Source/target buffer must be kernel space,
 * Do not walk the page table directly, use get_user_pages
 */
int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
{
      struct mm_struct *mm;
      struct vm_area_struct *vma;
      struct page *page;
      void *old_buf = buf;

      mm = get_task_mm(tsk);
      if (!mm)
            return 0;

      down_read(&mm->mmap_sem);
      /* ignore errors, just check how much was successfully transferred */
      while (len) {
            int bytes, ret, offset;
            void *maddr;

            ret = get_user_pages(tsk, mm, addr, 1,
                        write, 1, &page, &vma);
            if (ret <= 0)
                  break;

            bytes = len;
            offset = addr & (PAGE_SIZE-1);
            if (bytes > PAGE_SIZE-offset)
                  bytes = PAGE_SIZE-offset;

            maddr = kmap(page);
            if (write) {
                  copy_to_user_page(vma, page, addr,
                                maddr + offset, buf, bytes);
                  set_page_dirty_lock(page);
            } else {
                  copy_from_user_page(vma, page, addr,
                                  buf, maddr + offset, bytes);
            }
            kunmap(page);
            page_cache_release(page);
            len -= bytes;
            buf += bytes;
            addr += bytes;
      }
      up_read(&mm->mmap_sem);
      mmput(mm);

      return buf - old_buf;
}

Generated by  Doxygen 1.6.0   Back to index