Logo Search packages:      
Sourcecode: linux version File versions  Download package

mmtimer.c

/*
 * Timer device implementation for SGI SN platforms.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (c) 2001-2006 Silicon Graphics, Inc.  All rights reserved.
 *
 * This driver exports an API that should be supportable by any HPET or IA-PC
 * multimedia timer.  The code below is currently specific to the SGI Altix
 * SHub RTC, however.
 *
 * 11/01/01 - jbarnes - initial revision
 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
 *          support via the posix timer interface
 */

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/mmtimer.h>
#include <linux/miscdevice.h>
#include <linux/posix-timers.h>
#include <linux/interrupt.h>

#include <asm/uaccess.h>
#include <asm/sn/addrs.h>
#include <asm/sn/intr.h>
#include <asm/sn/shub_mmr.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/shubio.h>

MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
MODULE_DESCRIPTION("SGI Altix RTC Timer");
MODULE_LICENSE("GPL");

/* name of the device, usually in /dev */
#define MMTIMER_NAME "mmtimer"
#define MMTIMER_DESC "SGI Altix RTC Timer"
#define MMTIMER_VERSION "2.1"

#define RTC_BITS 55 /* 55 bits for this implementation */

extern unsigned long sn_rtc_cycles_per_second;

#define RTC_COUNTER_ADDR        ((long *)LOCAL_MMR_ADDR(SH_RTC))

#define rtc_time()              (*RTC_COUNTER_ADDR)

static int mmtimer_ioctl(struct inode *inode, struct file *file,
                   unsigned int cmd, unsigned long arg);
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);

/*
 * Period in femtoseconds (10^-15 s)
 */
static unsigned long mmtimer_femtoperiod = 0;

static const struct file_operations mmtimer_fops = {
      .owner =    THIS_MODULE,
      .mmap =           mmtimer_mmap,
      .ioctl =    mmtimer_ioctl,
};

/*
 * We only have comparison registers RTC1-4 currently available per
 * node.  RTC0 is used by SAL.
 */
#define NUM_COMPARATORS 3
/* Check for an RTC interrupt pending */
static int inline mmtimer_int_pending(int comparator)
{
      if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
                  SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
            return 1;
      else
            return 0;
}
/* Clear the RTC interrupt pending bit */
static void inline mmtimer_clr_int_pending(int comparator)
{
      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
            SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
}

/* Setup timer on comparator RTC1 */
static void inline mmtimer_setup_int_0(u64 expires)
{
      u64 val;

      /* Disable interrupt */
      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);

      /* Initialize comparator value */
      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);

      /* Clear pending bit */
      mmtimer_clr_int_pending(0);

      val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
            ((u64)cpu_physical_id(smp_processor_id()) <<
                  SH_RTC1_INT_CONFIG_PID_SHFT);

      /* Set configuration */
      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);

      /* Enable RTC interrupts */
      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);

      /* Initialize comparator value */
      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);


}

/* Setup timer on comparator RTC2 */
static void inline mmtimer_setup_int_1(u64 expires)
{
      u64 val;

      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);

      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);

      mmtimer_clr_int_pending(1);

      val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
            ((u64)cpu_physical_id(smp_processor_id()) <<
                  SH_RTC2_INT_CONFIG_PID_SHFT);

      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);

      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);

      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
}

/* Setup timer on comparator RTC3 */
static void inline mmtimer_setup_int_2(u64 expires)
{
      u64 val;

      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);

      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);

      mmtimer_clr_int_pending(2);

      val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
            ((u64)cpu_physical_id(smp_processor_id()) <<
                  SH_RTC3_INT_CONFIG_PID_SHFT);

      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);

      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);

      HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
}

/*
 * This function must be called with interrupts disabled and preemption off
 * in order to insure that the setup succeeds in a deterministic time frame.
 * It will check if the interrupt setup succeeded.
 */
static int inline mmtimer_setup(int comparator, unsigned long expires)
{

      switch (comparator) {
      case 0:
            mmtimer_setup_int_0(expires);
            break;
      case 1:
            mmtimer_setup_int_1(expires);
            break;
      case 2:
            mmtimer_setup_int_2(expires);
            break;
      }
      /* We might've missed our expiration time */
      if (rtc_time() < expires)
            return 1;

      /*
       * If an interrupt is already pending then its okay
       * if not then we failed
       */
      return mmtimer_int_pending(comparator);
}

static int inline mmtimer_disable_int(long nasid, int comparator)
{
      switch (comparator) {
      case 0:
            nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
                  0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
            break;
      case 1:
            nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
                  0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
            break;
      case 2:
            nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
                  0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
            break;
      default:
            return -EFAULT;
      }
      return 0;
}

#define TIMER_OFF 0xbadcabLL

/* There is one of these for each comparator */
typedef struct mmtimer {
      spinlock_t lock ____cacheline_aligned;
      struct k_itimer *timer;
      int i;
      int cpu;
      struct tasklet_struct tasklet;
} mmtimer_t;

static mmtimer_t ** timers;

/**
 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
 * @inode: inode of the device
 * @file: file structure for the device
 * @cmd: command to execute
 * @arg: optional argument to command
 *
 * Executes the command specified by @cmd.  Returns 0 for success, < 0 for
 * failure.
 *
 * Valid commands:
 *
 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
 * of the page where the registers are mapped) for the counter in question.
 *
 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
 * seconds
 *
 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
 * specified by @arg
 *
 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
 *
 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
 *
 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
 * in the address specified by @arg.
 */
static int mmtimer_ioctl(struct inode *inode, struct file *file,
                   unsigned int cmd, unsigned long arg)
{
      int ret = 0;

      switch (cmd) {
      case MMTIMER_GETOFFSET: /* offset of the counter */
            /*
             * SN RTC registers are on their own 64k page
             */
            if(PAGE_SIZE <= (1 << 16))
                  ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
            else
                  ret = -ENOSYS;
            break;

      case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
            if(copy_to_user((unsigned long __user *)arg,
                        &mmtimer_femtoperiod, sizeof(unsigned long)))
                  return -EFAULT;
            break;

      case MMTIMER_GETFREQ: /* frequency in Hz */
            if(copy_to_user((unsigned long __user *)arg,
                        &sn_rtc_cycles_per_second,
                        sizeof(unsigned long)))
                  return -EFAULT;
            ret = 0;
            break;

      case MMTIMER_GETBITS: /* number of bits in the clock */
            ret = RTC_BITS;
            break;

      case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
            ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
            break;

      case MMTIMER_GETCOUNTER:
            if(copy_to_user((unsigned long __user *)arg,
                        RTC_COUNTER_ADDR, sizeof(unsigned long)))
                  return -EFAULT;
            break;
      default:
            ret = -ENOSYS;
            break;
      }

      return ret;
}

/**
 * mmtimer_mmap - maps the clock's registers into userspace
 * @file: file structure for the device
 * @vma: VMA to map the registers into
 *
 * Calls remap_pfn_range() to map the clock's registers into
 * the calling process' address space.
 */
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
{
      unsigned long mmtimer_addr;

      if (vma->vm_end - vma->vm_start != PAGE_SIZE)
            return -EINVAL;

      if (vma->vm_flags & VM_WRITE)
            return -EPERM;

      if (PAGE_SIZE > (1 << 16))
            return -ENOSYS;

      vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);

      mmtimer_addr = __pa(RTC_COUNTER_ADDR);
      mmtimer_addr &= ~(PAGE_SIZE - 1);
      mmtimer_addr &= 0xfffffffffffffffUL;

      if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
                              PAGE_SIZE, vma->vm_page_prot)) {
            printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
            return -EAGAIN;
      }

      return 0;
}

static struct miscdevice mmtimer_miscdev = {
      SGI_MMTIMER,
      MMTIMER_NAME,
      &mmtimer_fops
};

static struct timespec sgi_clock_offset;
static int sgi_clock_period;

/*
 * Posix Timer Interface
 */

static struct timespec sgi_clock_offset;
static int sgi_clock_period;

static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
{
      u64 nsec;

      nsec = rtc_time() * sgi_clock_period
                  + sgi_clock_offset.tv_nsec;
      tp->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tp->tv_nsec)
                  + sgi_clock_offset.tv_sec;
      return 0;
};

static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
{

      u64 nsec;
      u64 rem;

      nsec = rtc_time() * sgi_clock_period;

      sgi_clock_offset.tv_sec = tp->tv_sec - div_long_long_rem(nsec, NSEC_PER_SEC, &rem);

      if (rem <= tp->tv_nsec)
            sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
      else {
            sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
            sgi_clock_offset.tv_sec--;
      }
      return 0;
}

/*
 * Schedule the next periodic interrupt. This function will attempt
 * to schedule a periodic interrupt later if necessary. If the scheduling
 * of an interrupt fails then the time to skip is lengthened
 * exponentially in order to ensure that the next interrupt
 * can be properly scheduled..
 */
static int inline reschedule_periodic_timer(mmtimer_t *x)
{
      int n;
      struct k_itimer *t = x->timer;

      t->it.mmtimer.clock = x->i;
      t->it_overrun--;

      n = 0;
      do {

            t->it.mmtimer.expires += t->it.mmtimer.incr << n;
            t->it_overrun += 1 << n;
            n++;
            if (n > 20)
                  return 1;

      } while (!mmtimer_setup(x->i, t->it.mmtimer.expires));

      return 0;
}

/**
 * mmtimer_interrupt - timer interrupt handler
 * @irq: irq received
 * @dev_id: device the irq came from
 *
 * Called when one of the comarators matches the counter, This
 * routine will send signals to processes that have requested
 * them.
 *
 * This interrupt is run in an interrupt context
 * by the SHUB. It is therefore safe to locally access SHub
 * registers.
 */
static irqreturn_t
mmtimer_interrupt(int irq, void *dev_id)
{
      int i;
      unsigned long expires = 0;
      int result = IRQ_NONE;
      unsigned indx = cpu_to_node(smp_processor_id());

      /*
       * Do this once for each comparison register
       */
      for (i = 0; i < NUM_COMPARATORS; i++) {
            mmtimer_t *base = timers[indx] + i;
            /* Make sure this doesn't get reused before tasklet_sched */
            spin_lock(&base->lock);
            if (base->cpu == smp_processor_id()) {
                  if (base->timer)
                        expires = base->timer->it.mmtimer.expires;
                  /* expires test won't work with shared irqs */
                  if ((mmtimer_int_pending(i) > 0) ||
                        (expires && (expires < rtc_time()))) {
                        mmtimer_clr_int_pending(i);
                        tasklet_schedule(&base->tasklet);
                        result = IRQ_HANDLED;
                  }
            }
            spin_unlock(&base->lock);
            expires = 0;
      }
      return result;
}

void mmtimer_tasklet(unsigned long data) {
      mmtimer_t *x = (mmtimer_t *)data;
      struct k_itimer *t = x->timer;
      unsigned long flags;

      if (t == NULL)
            return;

      /* Send signal and deal with periodic signals */
      spin_lock_irqsave(&t->it_lock, flags);
      spin_lock(&x->lock);
      /* If timer was deleted between interrupt and here, leave */
      if (t != x->timer)
            goto out;
      t->it_overrun = 0;

      if (posix_timer_event(t, 0) != 0) {

            // printk(KERN_WARNING "mmtimer: cannot deliver signal.\n");

            t->it_overrun++;
      }
      if(t->it.mmtimer.incr) {
            /* Periodic timer */
            if (reschedule_periodic_timer(x)) {
                  printk(KERN_WARNING "mmtimer: unable to reschedule\n");
                  x->timer = NULL;
            }
      } else {
            /* Ensure we don't false trigger in mmtimer_interrupt */
            t->it.mmtimer.expires = 0;
      }
      t->it_overrun_last = t->it_overrun;
out:
      spin_unlock(&x->lock);
      spin_unlock_irqrestore(&t->it_lock, flags);
}

static int sgi_timer_create(struct k_itimer *timer)
{
      /* Insure that a newly created timer is off */
      timer->it.mmtimer.clock = TIMER_OFF;
      return 0;
}

/* This does not really delete a timer. It just insures
 * that the timer is not active
 *
 * Assumption: it_lock is already held with irq's disabled
 */
static int sgi_timer_del(struct k_itimer *timr)
{
      int i = timr->it.mmtimer.clock;
      cnodeid_t nodeid = timr->it.mmtimer.node;
      mmtimer_t *t = timers[nodeid] + i;
      unsigned long irqflags;

      if (i != TIMER_OFF) {
            spin_lock_irqsave(&t->lock, irqflags);
            mmtimer_disable_int(cnodeid_to_nasid(nodeid),i);
            t->timer = NULL;
            timr->it.mmtimer.clock = TIMER_OFF;
            timr->it.mmtimer.expires = 0;
            spin_unlock_irqrestore(&t->lock, irqflags);
      }
      return 0;
}

#define timespec_to_ns(x) ((x).tv_nsec + (x).tv_sec * NSEC_PER_SEC)
#define ns_to_timespec(ts, nsec) (ts).tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &(ts).tv_nsec)

/* Assumption: it_lock is already held with irq's disabled */
static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
{

      if (timr->it.mmtimer.clock == TIMER_OFF) {
            cur_setting->it_interval.tv_nsec = 0;
            cur_setting->it_interval.tv_sec = 0;
            cur_setting->it_value.tv_nsec = 0;
            cur_setting->it_value.tv_sec =0;
            return;
      }

      ns_to_timespec(cur_setting->it_interval, timr->it.mmtimer.incr * sgi_clock_period);
      ns_to_timespec(cur_setting->it_value, (timr->it.mmtimer.expires - rtc_time())* sgi_clock_period);
      return;
}


static int sgi_timer_set(struct k_itimer *timr, int flags,
      struct itimerspec * new_setting,
      struct itimerspec * old_setting)
{

      int i;
      unsigned long when, period, irqflags;
      int err = 0;
      cnodeid_t nodeid;
      mmtimer_t *base;

      if (old_setting)
            sgi_timer_get(timr, old_setting);

      sgi_timer_del(timr);
      when = timespec_to_ns(new_setting->it_value);
      period = timespec_to_ns(new_setting->it_interval);

      if (when == 0)
            /* Clear timer */
            return 0;

      if (flags & TIMER_ABSTIME) {
            struct timespec n;
            unsigned long now;

            getnstimeofday(&n);
            now = timespec_to_ns(n);
            if (when > now)
                  when -= now;
            else
                  /* Fire the timer immediately */
                  when = 0;
      }

      /*
       * Convert to sgi clock period. Need to keep rtc_time() as near as possible
       * to getnstimeofday() in order to be as faithful as possible to the time
       * specified.
       */
      when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
      period = (period + sgi_clock_period - 1)  / sgi_clock_period;

      /*
       * We are allocating a local SHub comparator. If we would be moved to another
       * cpu then another SHub may be local to us. Prohibit that by switching off
       * preemption.
       */
      preempt_disable();

      nodeid =  cpu_to_node(smp_processor_id());
retry:
      /* Don't use an allocated timer, or a deleted one that's pending */
      for(i = 0; i< NUM_COMPARATORS; i++) {
            base = timers[nodeid] + i;
            if (!base->timer && !base->tasklet.state) {
                  break;
            }
      }

      if (i == NUM_COMPARATORS) {
            preempt_enable();
            return -EBUSY;
      }

      spin_lock_irqsave(&base->lock, irqflags);

      if (base->timer || base->tasklet.state != 0) {
            spin_unlock_irqrestore(&base->lock, irqflags);
            goto retry;
      }
      base->timer = timr;
      base->cpu = smp_processor_id();

      timr->it.mmtimer.clock = i;
      timr->it.mmtimer.node = nodeid;
      timr->it.mmtimer.incr = period;
      timr->it.mmtimer.expires = when;

      if (period == 0) {
            if (!mmtimer_setup(i, when)) {
                  mmtimer_disable_int(-1, i);
                  posix_timer_event(timr, 0);
                  timr->it.mmtimer.expires = 0;
            }
      } else {
            timr->it.mmtimer.expires -= period;
            if (reschedule_periodic_timer(base))
                  err = -EINVAL;
      }

      spin_unlock_irqrestore(&base->lock, irqflags);

      preempt_enable();

      return err;
}

static struct k_clock sgi_clock = {
      .res = 0,
      .clock_set = sgi_clock_set,
      .clock_get = sgi_clock_get,
      .timer_create = sgi_timer_create,
      .nsleep = do_posix_clock_nonanosleep,
      .timer_set = sgi_timer_set,
      .timer_del = sgi_timer_del,
      .timer_get = sgi_timer_get
};

/**
 * mmtimer_init - device initialization routine
 *
 * Does initial setup for the mmtimer device.
 */
static int __init mmtimer_init(void)
{
      unsigned i;
      cnodeid_t node, maxn = -1;

      if (!ia64_platform_is("sn2"))
            return 0;

      /*
       * Sanity check the cycles/sec variable
       */
      if (sn_rtc_cycles_per_second < 100000) {
            printk(KERN_ERR "%s: unable to determine clock frequency\n",
                   MMTIMER_NAME);
            goto out1;
      }

      mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
                         2) / sn_rtc_cycles_per_second;

      if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
            printk(KERN_WARNING "%s: unable to allocate interrupt.",
                  MMTIMER_NAME);
            goto out1;
      }

      if (misc_register(&mmtimer_miscdev)) {
            printk(KERN_ERR "%s: failed to register device\n",
                   MMTIMER_NAME);
            goto out2;
      }

      /* Get max numbered node, calculate slots needed */
      for_each_online_node(node) {
            maxn = node;
      }
      maxn++;

      /* Allocate list of node ptrs to mmtimer_t's */
      timers = kzalloc(sizeof(mmtimer_t *)*maxn, GFP_KERNEL);
      if (timers == NULL) {
            printk(KERN_ERR "%s: failed to allocate memory for device\n",
                        MMTIMER_NAME);
            goto out3;
      }

      /* Allocate mmtimer_t's for each online node */
      for_each_online_node(node) {
            timers[node] = kmalloc_node(sizeof(mmtimer_t)*NUM_COMPARATORS, GFP_KERNEL, node);
            if (timers[node] == NULL) {
                  printk(KERN_ERR "%s: failed to allocate memory for device\n",
                        MMTIMER_NAME);
                  goto out4;
            }
            for (i=0; i< NUM_COMPARATORS; i++) {
                  mmtimer_t * base = timers[node] + i;

                  spin_lock_init(&base->lock);
                  base->timer = NULL;
                  base->cpu = 0;
                  base->i = i;
                  tasklet_init(&base->tasklet, mmtimer_tasklet,
                        (unsigned long) (base));
            }
      }

      sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
      register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);

      printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
             sn_rtc_cycles_per_second/(unsigned long)1E6);

      return 0;

out4:
      for_each_online_node(node) {
            kfree(timers[node]);
      }
out3:
      misc_deregister(&mmtimer_miscdev);
out2:
      free_irq(SGI_MMTIMER_VECTOR, NULL);
out1:
      return -1;
}

module_init(mmtimer_init);


Generated by  Doxygen 1.6.0   Back to index