Logo Search packages:      
Sourcecode: linux version File versions  Download package

mt2060.c

/*
 *  Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
 *
 *  Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
 */

/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */

#include <linux/module.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>

#include "dvb_frontend.h"

#include "mt2060.h"
#include "mt2060_priv.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)

// Reads a single register
static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
{
      struct i2c_msg msg[2] = {
            { .addr = priv->cfg->i2c_address, .flags = 0,        .buf = &reg, .len = 1 },
            { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val,  .len = 1 },
      };

      if (i2c_transfer(priv->i2c, msg, 2) != 2) {
            printk(KERN_WARNING "mt2060 I2C read failed\n");
            return -EREMOTEIO;
      }
      return 0;
}

// Writes a single register
static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
{
      u8 buf[2] = { reg, val };
      struct i2c_msg msg = {
            .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
      };

      if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
            printk(KERN_WARNING "mt2060 I2C write failed\n");
            return -EREMOTEIO;
      }
      return 0;
}

// Writes a set of consecutive registers
static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
{
      struct i2c_msg msg = {
            .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
      };
      if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
            printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
            return -EREMOTEIO;
      }
      return 0;
}

// Initialisation sequences
// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
static u8 mt2060_config1[] = {
      REG_LO1C1,
      0x3F, 0x74, 0x00, 0x08, 0x93
};

// FMCG=2, GP2=0, GP1=0
static u8 mt2060_config2[] = {
      REG_MISC_CTRL,
      0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
};

//  VGAG=3, V1CSE=1

#ifdef  MT2060_SPURCHECK
/* The function below calculates the frequency offset between the output frequency if2
 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
{
      int I,J;
      int dia,diamin,diff;
      diamin=1000000;
      for (I = 1; I < 10; I++) {
            J = ((2*I*lo1)/lo2+1)/2;
            diff = I*(int)lo1-J*(int)lo2;
            if (diff < 0) diff=-diff;
            dia = (diff-(int)if2);
            if (dia < 0) dia=-dia;
            if (diamin > dia) diamin=dia;
      }
      return diamin;
}

#define BANDWIDTH 4000 // kHz

/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
{
      u32 Spur,Sp1,Sp2;
      int I,J;
      I=0;
      J=1000;

      Spur=mt2060_spurcalc(lo1,lo2,if2);
      if (Spur < BANDWIDTH) {
            /* Potential spurs detected */
            dprintk("Spurs before : f_lo1: %d  f_lo2: %d  (kHz)",
                  (int)lo1,(int)lo2);
            I=1000;
            Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
            Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);

            if (Sp1 < Sp2) {
                  J=-J; I=-I; Spur=Sp2;
            } else
                  Spur=Sp1;

            while (Spur < BANDWIDTH) {
                  I += J;
                  Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
            }
            dprintk("Spurs after  : f_lo1: %d  f_lo2: %d  (kHz)",
                  (int)(lo1+I),(int)(lo2+I));
      }
      return I;
}
#endif

#define IF2  36150       // IF2 frequency = 36.150 MHz
#define FREF 16000       // Quartz oscillator 16 MHz

static int mt2060_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params)
{
      struct mt2060_priv *priv;
      int ret=0;
      int i=0;
      u32 freq;
      u8  lnaband;
      u32 f_lo1,f_lo2;
      u32 div1,num1,div2,num2;
      u8  b[8];
      u32 if1;

      priv = fe->tuner_priv;

      if1 = priv->if1_freq;
      b[0] = REG_LO1B1;
      b[1] = 0xFF;

      mt2060_writeregs(priv,b,2);

      freq = params->frequency / 1000; // Hz -> kHz
      priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;

      f_lo1 = freq + if1 * 1000;
      f_lo1 = (f_lo1 / 250) * 250;
      f_lo2 = f_lo1 - freq - IF2;
      // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
      f_lo2 = ((f_lo2 + 25) / 50) * 50;
      priv->frequency =  (f_lo1 - f_lo2 - IF2) * 1000,

#ifdef MT2060_SPURCHECK
      // LO-related spurs detection and correction
      num1   = mt2060_spurcheck(f_lo1,f_lo2,IF2);
      f_lo1 += num1;
      f_lo2 += num1;
#endif
      //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
      num1 = f_lo1 / (FREF / 64);
      div1 = num1 / 64;
      num1 &= 0x3f;

      // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
      num2 = f_lo2 * 64 / (FREF / 128);
      div2 = num2 / 8192;
      num2 &= 0x1fff;

      if (freq <=  95000) lnaband = 0xB0; else
      if (freq <= 180000) lnaband = 0xA0; else
      if (freq <= 260000) lnaband = 0x90; else
      if (freq <= 335000) lnaband = 0x80; else
      if (freq <= 425000) lnaband = 0x70; else
      if (freq <= 480000) lnaband = 0x60; else
      if (freq <= 570000) lnaband = 0x50; else
      if (freq <= 645000) lnaband = 0x40; else
      if (freq <= 730000) lnaband = 0x30; else
      if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;

      b[0] = REG_LO1C1;
      b[1] = lnaband | ((num1 >>2) & 0x0F);
      b[2] = div1;
      b[3] = (num2 & 0x0F)  | ((num1 & 3) << 4);
      b[4] = num2 >> 4;
      b[5] = ((num2 >>12) & 1) | (div2 << 1);

      dprintk("IF1: %dMHz",(int)if1);
      dprintk("PLL freq=%dkHz  f_lo1=%dkHz  f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
      dprintk("PLL div1=%d  num1=%d  div2=%d  num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
      dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);

      mt2060_writeregs(priv,b,6);

      //Waits for pll lock or timeout
      i = 0;
      do {
            mt2060_readreg(priv,REG_LO_STATUS,b);
            if ((b[0] & 0x88)==0x88)
                  break;
            msleep(4);
            i++;
      } while (i<10);

      return ret;
}

static void mt2060_calibrate(struct mt2060_priv *priv)
{
      u8 b = 0;
      int i = 0;

      if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
            return;
      if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
            return;

      /* initialize the clock output */
      mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);

      do {
            b |= (1 << 6); // FM1SS;
            mt2060_writereg(priv, REG_LO2C1,b);
            msleep(20);

            if (i == 0) {
                  b |= (1 << 7); // FM1CA;
                  mt2060_writereg(priv, REG_LO2C1,b);
                  b &= ~(1 << 7); // FM1CA;
                  msleep(20);
            }

            b &= ~(1 << 6); // FM1SS
            mt2060_writereg(priv, REG_LO2C1,b);

            msleep(20);
            i++;
      } while (i < 9);

      i = 0;
      while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
            msleep(20);

      if (i < 10) {
            mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
            dprintk("calibration was successful: %d", (int)priv->fmfreq);
      } else
            dprintk("FMCAL timed out");
}

static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
      struct mt2060_priv *priv = fe->tuner_priv;
      *frequency = priv->frequency;
      return 0;
}

static int mt2060_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
      struct mt2060_priv *priv = fe->tuner_priv;
      *bandwidth = priv->bandwidth;
      return 0;
}

static int mt2060_init(struct dvb_frontend *fe)
{
      struct mt2060_priv *priv = fe->tuner_priv;
      return mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x33);
}

static int mt2060_sleep(struct dvb_frontend *fe)
{
      struct mt2060_priv *priv = fe->tuner_priv;
      return mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
}

static int mt2060_release(struct dvb_frontend *fe)
{
      kfree(fe->tuner_priv);
      fe->tuner_priv = NULL;
      return 0;
}

static const struct dvb_tuner_ops mt2060_tuner_ops = {
      .info = {
            .name           = "Microtune MT2060",
            .frequency_min  =  48000000,
            .frequency_max  = 860000000,
            .frequency_step =     50000,
      },

      .release       = mt2060_release,

      .init          = mt2060_init,
      .sleep         = mt2060_sleep,

      .set_params    = mt2060_set_params,
      .get_frequency = mt2060_get_frequency,
      .get_bandwidth = mt2060_get_bandwidth
};

/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
{
      struct mt2060_priv *priv = NULL;
      u8 id = 0;

      priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
      if (priv == NULL)
            return NULL;

      priv->cfg      = cfg;
      priv->i2c      = i2c;
      priv->if1_freq = if1;

      if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
            kfree(priv);
            return NULL;
      }

      if (id != PART_REV) {
            kfree(priv);
            return NULL;
      }
      printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
      memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));

      fe->tuner_priv = priv;

      mt2060_calibrate(priv);

      return fe;
}
EXPORT_SYMBOL(mt2060_attach);

MODULE_AUTHOR("Olivier DANET");
MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index