Logo Search packages:      
Sourcecode: linux version File versions  Download package

ncr53c8xx.c

/******************************************************************************
**  Device driver for the PCI-SCSI NCR538XX controller family.
**
**  Copyright (C) 1994  Wolfgang Stanglmeier
**
**  This program is free software; you can redistribute it and/or modify
**  it under the terms of the GNU General Public License as published by
**  the Free Software Foundation; either version 2 of the License, or
**  (at your option) any later version.
**
**  This program is distributed in the hope that it will be useful,
**  but WITHOUT ANY WARRANTY; without even the implied warranty of
**  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
**  GNU General Public License for more details.
**
**  You should have received a copy of the GNU General Public License
**  along with this program; if not, write to the Free Software
**  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**
**-----------------------------------------------------------------------------
**
**  This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
**  and is currently maintained by
**
**          Gerard Roudier              <groudier@free.fr>
**
**  Being given that this driver originates from the FreeBSD version, and
**  in order to keep synergy on both, any suggested enhancements and corrections
**  received on Linux are automatically a potential candidate for the FreeBSD 
**  version.
**
**  The original driver has been written for 386bsd and FreeBSD by
**          Wolfgang Stanglmeier        <wolf@cologne.de>
**          Stefan Esser                <se@mi.Uni-Koeln.de>
**
**  And has been ported to NetBSD by
**          Charles M. Hannum           <mycroft@gnu.ai.mit.edu>
**
**-----------------------------------------------------------------------------
**
**                     Brief history
**
**  December 10 1995 by Gerard Roudier:
**     Initial port to Linux.
**
**  June 23 1996 by Gerard Roudier:
**     Support for 64 bits architectures (Alpha).
**
**  November 30 1996 by Gerard Roudier:
**     Support for Fast-20 scsi.
**     Support for large DMA fifo and 128 dwords bursting.
**
**  February 27 1997 by Gerard Roudier:
**     Support for Fast-40 scsi.
**     Support for on-Board RAM.
**
**  May 3 1997 by Gerard Roudier:
**     Full support for scsi scripts instructions pre-fetching.
**
**  May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
**     Support for NvRAM detection and reading.
**
**  August 18 1997 by Cort <cort@cs.nmt.edu>:
**     Support for Power/PC (Big Endian).
**
**  June 20 1998 by Gerard Roudier
**     Support for up to 64 tags per lun.
**     O(1) everywhere (C and SCRIPTS) for normal cases.
**     Low PCI traffic for command handling when on-chip RAM is present.
**     Aggressive SCSI SCRIPTS optimizations.
**
**  2005 by Matthew Wilcox and James Bottomley
**     PCI-ectomy.  This driver now supports only the 720 chip (see the
**     NCR_Q720 and zalon drivers for the bus probe logic).
**
*******************************************************************************
*/

/*
**    Supported SCSI-II features:
**        Synchronous negotiation
**        Wide negotiation        (depends on the NCR Chip)
**        Enable disconnection
**        Tagged command queuing
**        Parity checking
**        Etc...
**
**    Supported NCR/SYMBIOS chips:
**          53C720            (Wide,   Fast SCSI-2, intfly problems)
*/

/* Name and version of the driver */
#define SCSI_NCR_DRIVER_NAME  "ncr53c8xx-3.4.3g"

#define SCSI_NCR_DEBUG_FLAGS  (0)

#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/types.h>

#include <asm/dma.h>
#include <asm/io.h>
#include <asm/system.h>

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_spi.h>

#include "ncr53c8xx.h"

#define NAME53C8XX            "ncr53c8xx"

/*==========================================================
**
**    Debugging tags
**
**==========================================================
*/

#define DEBUG_ALLOC    (0x0001)
#define DEBUG_PHASE    (0x0002)
#define DEBUG_QUEUE    (0x0008)
#define DEBUG_RESULT   (0x0010)
#define DEBUG_POINTER  (0x0020)
#define DEBUG_SCRIPT   (0x0040)
#define DEBUG_TINY     (0x0080)
#define DEBUG_TIMING   (0x0100)
#define DEBUG_NEGO     (0x0200)
#define DEBUG_TAGS     (0x0400)
#define DEBUG_SCATTER  (0x0800)
#define DEBUG_IC        (0x1000)

/*
**    Enable/Disable debug messages.
**    Can be changed at runtime too.
*/

#ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
      #define DEBUG_FLAGS ncr_debug
#else
      #define DEBUG_FLAGS     SCSI_NCR_DEBUG_FLAGS
#endif

static inline struct list_head *ncr_list_pop(struct list_head *head)
{
      if (!list_empty(head)) {
            struct list_head *elem = head->next;

            list_del(elem);
            return elem;
      }

      return NULL;
}

/*==========================================================
**
**    Simple power of two buddy-like allocator.
**
**    This simple code is not intended to be fast, but to 
**    provide power of 2 aligned memory allocations.
**    Since the SCRIPTS processor only supplies 8 bit 
**    arithmetic, this allocator allows simple and fast 
**    address calculations  from the SCRIPTS code.
**    In addition, cache line alignment is guaranteed for 
**    power of 2 cache line size.
**    Enhanced in linux-2.3.44 to provide a memory pool 
**    per pcidev to support dynamic dma mapping. (I would 
**    have preferred a real bus abstraction, btw).
**
**==========================================================
*/

#define MEMO_SHIFT      4     /* 16 bytes minimum memory chunk */
#if PAGE_SIZE >= 8192
#define MEMO_PAGE_ORDER 0     /* 1 PAGE  maximum */
#else
#define MEMO_PAGE_ORDER 1     /* 2 PAGES maximum */
#endif
#define MEMO_FREE_UNUSED      /* Free unused pages immediately */
#define MEMO_WARN 1
#define MEMO_GFP_FLAGS  GFP_ATOMIC
#define MEMO_CLUSTER_SHIFT    (PAGE_SHIFT+MEMO_PAGE_ORDER)
#define MEMO_CLUSTER_SIZE     (1UL << MEMO_CLUSTER_SHIFT)
#define MEMO_CLUSTER_MASK     (MEMO_CLUSTER_SIZE-1)

typedef u_long m_addr_t;      /* Enough bits to bit-hack addresses */
typedef struct device *m_bush_t;    /* Something that addresses DMAable */

typedef struct m_link {       /* Link between free memory chunks */
      struct m_link *next;
} m_link_s;

typedef struct m_vtob {       /* Virtual to Bus address translation */
      struct m_vtob *next;
      m_addr_t vaddr;
      m_addr_t baddr;
} m_vtob_s;
#define VTOB_HASH_SHIFT       5
#define VTOB_HASH_SIZE        (1UL << VTOB_HASH_SHIFT)
#define VTOB_HASH_MASK        (VTOB_HASH_SIZE-1)
#define VTOB_HASH_CODE(m)     \
      ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)

typedef struct m_pool {       /* Memory pool of a given kind */
      m_bush_t bush;
      m_addr_t (*getp)(struct m_pool *);
      void (*freep)(struct m_pool *, m_addr_t);
      int nump;
      m_vtob_s *(vtob[VTOB_HASH_SIZE]);
      struct m_pool *next;
      struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
} m_pool_s;

static void *___m_alloc(m_pool_s *mp, int size)
{
      int i = 0;
      int s = (1 << MEMO_SHIFT);
      int j;
      m_addr_t a;
      m_link_s *h = mp->h;

      if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
            return NULL;

      while (size > s) {
            s <<= 1;
            ++i;
      }

      j = i;
      while (!h[j].next) {
            if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
                  h[j].next = (m_link_s *)mp->getp(mp);
                  if (h[j].next)
                        h[j].next->next = NULL;
                  break;
            }
            ++j;
            s <<= 1;
      }
      a = (m_addr_t) h[j].next;
      if (a) {
            h[j].next = h[j].next->next;
            while (j > i) {
                  j -= 1;
                  s >>= 1;
                  h[j].next = (m_link_s *) (a+s);
                  h[j].next->next = NULL;
            }
      }
#ifdef DEBUG
      printk("___m_alloc(%d) = %p\n", size, (void *) a);
#endif
      return (void *) a;
}

static void ___m_free(m_pool_s *mp, void *ptr, int size)
{
      int i = 0;
      int s = (1 << MEMO_SHIFT);
      m_link_s *q;
      m_addr_t a, b;
      m_link_s *h = mp->h;

#ifdef DEBUG
      printk("___m_free(%p, %d)\n", ptr, size);
#endif

      if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
            return;

      while (size > s) {
            s <<= 1;
            ++i;
      }

      a = (m_addr_t) ptr;

      while (1) {
#ifdef MEMO_FREE_UNUSED
            if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
                  mp->freep(mp, a);
                  break;
            }
#endif
            b = a ^ s;
            q = &h[i];
            while (q->next && q->next != (m_link_s *) b) {
                  q = q->next;
            }
            if (!q->next) {
                  ((m_link_s *) a)->next = h[i].next;
                  h[i].next = (m_link_s *) a;
                  break;
            }
            q->next = q->next->next;
            a = a & b;
            s <<= 1;
            ++i;
      }
}

static DEFINE_SPINLOCK(ncr53c8xx_lock);

static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
{
      void *p;

      p = ___m_alloc(mp, size);

      if (DEBUG_FLAGS & DEBUG_ALLOC)
            printk ("new %-10s[%4d] @%p.\n", name, size, p);

      if (p)
            memset(p, 0, size);
      else if (uflags & MEMO_WARN)
            printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);

      return p;
}

#define __m_calloc(mp, s, n)  __m_calloc2(mp, s, n, MEMO_WARN)

static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
{
      if (DEBUG_FLAGS & DEBUG_ALLOC)
            printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);

      ___m_free(mp, ptr, size);

}

/*
 * With pci bus iommu support, we use a default pool of unmapped memory 
 * for memory we donnot need to DMA from/to and one pool per pcidev for 
 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
 */

static m_addr_t ___mp0_getp(m_pool_s *mp)
{
      m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
      if (m)
            ++mp->nump;
      return m;
}

static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
{
      free_pages(m, MEMO_PAGE_ORDER);
      --mp->nump;
}

static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};

/*
 * DMAable pools.
 */

/*
 * With pci bus iommu support, we maintain one pool per pcidev and a 
 * hashed reverse table for virtual to bus physical address translations.
 */
static m_addr_t ___dma_getp(m_pool_s *mp)
{
      m_addr_t vp;
      m_vtob_s *vbp;

      vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
      if (vbp) {
            dma_addr_t daddr;
            vp = (m_addr_t) dma_alloc_coherent(mp->bush,
                                    PAGE_SIZE<<MEMO_PAGE_ORDER,
                                    &daddr, GFP_ATOMIC);
            if (vp) {
                  int hc = VTOB_HASH_CODE(vp);
                  vbp->vaddr = vp;
                  vbp->baddr = daddr;
                  vbp->next = mp->vtob[hc];
                  mp->vtob[hc] = vbp;
                  ++mp->nump;
                  return vp;
            }
      }
      if (vbp)
            __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
      return 0;
}

static void ___dma_freep(m_pool_s *mp, m_addr_t m)
{
      m_vtob_s **vbpp, *vbp;
      int hc = VTOB_HASH_CODE(m);

      vbpp = &mp->vtob[hc];
      while (*vbpp && (*vbpp)->vaddr != m)
            vbpp = &(*vbpp)->next;
      if (*vbpp) {
            vbp = *vbpp;
            *vbpp = (*vbpp)->next;
            dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
                          (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
            __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
            --mp->nump;
      }
}

static inline m_pool_s *___get_dma_pool(m_bush_t bush)
{
      m_pool_s *mp;
      for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
      return mp;
}

static m_pool_s *___cre_dma_pool(m_bush_t bush)
{
      m_pool_s *mp;
      mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
      if (mp) {
            memset(mp, 0, sizeof(*mp));
            mp->bush = bush;
            mp->getp = ___dma_getp;
            mp->freep = ___dma_freep;
            mp->next = mp0.next;
            mp0.next = mp;
      }
      return mp;
}

static void ___del_dma_pool(m_pool_s *p)
{
      struct m_pool **pp = &mp0.next;

      while (*pp && *pp != p)
            pp = &(*pp)->next;
      if (*pp) {
            *pp = (*pp)->next;
            __m_free(&mp0, p, sizeof(*p), "MPOOL");
      }
}

static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
{
      u_long flags;
      struct m_pool *mp;
      void *m = NULL;

      spin_lock_irqsave(&ncr53c8xx_lock, flags);
      mp = ___get_dma_pool(bush);
      if (!mp)
            mp = ___cre_dma_pool(bush);
      if (mp)
            m = __m_calloc(mp, size, name);
      if (mp && !mp->nump)
            ___del_dma_pool(mp);
      spin_unlock_irqrestore(&ncr53c8xx_lock, flags);

      return m;
}

static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
{
      u_long flags;
      struct m_pool *mp;

      spin_lock_irqsave(&ncr53c8xx_lock, flags);
      mp = ___get_dma_pool(bush);
      if (mp)
            __m_free(mp, m, size, name);
      if (mp && !mp->nump)
            ___del_dma_pool(mp);
      spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
}

static m_addr_t __vtobus(m_bush_t bush, void *m)
{
      u_long flags;
      m_pool_s *mp;
      int hc = VTOB_HASH_CODE(m);
      m_vtob_s *vp = NULL;
      m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;

      spin_lock_irqsave(&ncr53c8xx_lock, flags);
      mp = ___get_dma_pool(bush);
      if (mp) {
            vp = mp->vtob[hc];
            while (vp && (m_addr_t) vp->vaddr != a)
                  vp = vp->next;
      }
      spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
      return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
}

#define _m_calloc_dma(np, s, n)           __m_calloc_dma(np->dev, s, n)
#define _m_free_dma(np, p, s, n)    __m_free_dma(np->dev, p, s, n)
#define m_calloc_dma(s, n)          _m_calloc_dma(np, s, n)
#define m_free_dma(p, s, n)         _m_free_dma(np, p, s, n)
#define _vtobus(np, p)              __vtobus(np->dev, p)
#define vtobus(p)             _vtobus(np, p)

/*
 *  Deal with DMA mapping/unmapping.
 */

/* To keep track of the dma mapping (sg/single) that has been set */
#define __data_mapped   SCp.phase
#define __data_mapping  SCp.have_data_in

static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
{
      switch(cmd->__data_mapped) {
      case 2:
            scsi_dma_unmap(cmd);
            break;
      }
      cmd->__data_mapped = 0;
}

static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
{
      int use_sg;

      use_sg = scsi_dma_map(cmd);
      if (!use_sg)
            return 0;

      cmd->__data_mapped = 2;
      cmd->__data_mapping = use_sg;

      return use_sg;
}

#define unmap_scsi_data(np, cmd)    __unmap_scsi_data(np->dev, cmd)
#define map_scsi_sg_data(np, cmd)   __map_scsi_sg_data(np->dev, cmd)

/*==========================================================
**
**    Driver setup.
**
**    This structure is initialized from linux config 
**    options. It can be overridden at boot-up by the boot 
**    command line.
**
**==========================================================
*/
static struct ncr_driver_setup
      driver_setup                  = SCSI_NCR_DRIVER_SETUP;

#ifndef MODULE
#ifdef      SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
static struct ncr_driver_setup
      driver_safe_setup __initdata  = SCSI_NCR_DRIVER_SAFE_SETUP;
#endif
#endif /* !MODULE */

#define initverbose (driver_setup.verbose)
#define bootverbose (np->verbose)


/*===================================================================
**
**    Driver setup from the boot command line
**
**===================================================================
*/

#ifdef MODULE
#define     ARG_SEP     ' '
#else
#define     ARG_SEP     ','
#endif

#define OPT_TAGS        1
#define OPT_MASTER_PARITY     2
#define OPT_SCSI_PARITY       3
#define OPT_DISCONNECTION     4
#define OPT_SPECIAL_FEATURES  5
#define OPT_UNUSED_1          6
#define OPT_FORCE_SYNC_NEGO   7
#define OPT_REVERSE_PROBE     8
#define OPT_DEFAULT_SYNC      9
#define OPT_VERBOSE           10
#define OPT_DEBUG       11
#define OPT_BURST_MAX         12
#define OPT_LED_PIN           13
#define OPT_MAX_WIDE          14
#define OPT_SETTLE_DELAY      15
#define OPT_DIFF_SUPPORT      16
#define OPT_IRQM        17
#define OPT_PCI_FIX_UP        18
#define OPT_BUS_CHECK         19
#define OPT_OPTIMIZE          20
#define OPT_RECOVERY          21
#define OPT_SAFE_SETUP        22
#define OPT_USE_NVRAM         23
#define OPT_EXCLUDE           24
#define OPT_HOST_ID           25

#ifdef SCSI_NCR_IARB_SUPPORT
#define OPT_IARB        26
#endif

#ifdef MODULE
#define     ARG_SEP     ' '
#else
#define     ARG_SEP     ','
#endif

#ifndef MODULE
static char setup_token[] __initdata = 
      "tags:"   "mpar:"
      "spar:"   "disc:"
      "specf:"  "ultra:"
      "fsn:"    "revprob:"
      "sync:"   "verb:"
      "debug:"  "burst:"
      "led:"    "wide:"
      "settle:" "diff:"
      "irqm:"   "pcifix:"
      "buschk:" "optim:"
      "recovery:"
      "safe:"   "nvram:"
      "excl:"   "hostid:"
#ifdef SCSI_NCR_IARB_SUPPORT
      "iarb:"
#endif
      ;     /* DONNOT REMOVE THIS ';' */

static int __init get_setup_token(char *p)
{
      char *cur = setup_token;
      char *pc;
      int i = 0;

      while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
            ++pc;
            ++i;
            if (!strncmp(p, cur, pc - cur))
                  return i;
            cur = pc;
      }
      return 0;
}

static int __init sym53c8xx__setup(char *str)
{
#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
      char *cur = str;
      char *pc, *pv;
      int i, val, c;
      int xi = 0;

      while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
            char *pe;

            val = 0;
            pv = pc;
            c = *++pv;

            if    (c == 'n')
                  val = 0;
            else if     (c == 'y')
                  val = 1;
            else
                  val = (int) simple_strtoul(pv, &pe, 0);

            switch (get_setup_token(cur)) {
            case OPT_TAGS:
                  driver_setup.default_tags = val;
                  if (pe && *pe == '/') {
                        i = 0;
                        while (*pe && *pe != ARG_SEP && 
                              i < sizeof(driver_setup.tag_ctrl)-1) {
                              driver_setup.tag_ctrl[i++] = *pe++;
                        }
                        driver_setup.tag_ctrl[i] = '\0';
                  }
                  break;
            case OPT_MASTER_PARITY:
                  driver_setup.master_parity = val;
                  break;
            case OPT_SCSI_PARITY:
                  driver_setup.scsi_parity = val;
                  break;
            case OPT_DISCONNECTION:
                  driver_setup.disconnection = val;
                  break;
            case OPT_SPECIAL_FEATURES:
                  driver_setup.special_features = val;
                  break;
            case OPT_FORCE_SYNC_NEGO:
                  driver_setup.force_sync_nego = val;
                  break;
            case OPT_REVERSE_PROBE:
                  driver_setup.reverse_probe = val;
                  break;
            case OPT_DEFAULT_SYNC:
                  driver_setup.default_sync = val;
                  break;
            case OPT_VERBOSE:
                  driver_setup.verbose = val;
                  break;
            case OPT_DEBUG:
                  driver_setup.debug = val;
                  break;
            case OPT_BURST_MAX:
                  driver_setup.burst_max = val;
                  break;
            case OPT_LED_PIN:
                  driver_setup.led_pin = val;
                  break;
            case OPT_MAX_WIDE:
                  driver_setup.max_wide = val? 1:0;
                  break;
            case OPT_SETTLE_DELAY:
                  driver_setup.settle_delay = val;
                  break;
            case OPT_DIFF_SUPPORT:
                  driver_setup.diff_support = val;
                  break;
            case OPT_IRQM:
                  driver_setup.irqm = val;
                  break;
            case OPT_PCI_FIX_UP:
                  driver_setup.pci_fix_up = val;
                  break;
            case OPT_BUS_CHECK:
                  driver_setup.bus_check = val;
                  break;
            case OPT_OPTIMIZE:
                  driver_setup.optimize = val;
                  break;
            case OPT_RECOVERY:
                  driver_setup.recovery = val;
                  break;
            case OPT_USE_NVRAM:
                  driver_setup.use_nvram = val;
                  break;
            case OPT_SAFE_SETUP:
                  memcpy(&driver_setup, &driver_safe_setup,
                        sizeof(driver_setup));
                  break;
            case OPT_EXCLUDE:
                  if (xi < SCSI_NCR_MAX_EXCLUDES)
                        driver_setup.excludes[xi++] = val;
                  break;
            case OPT_HOST_ID:
                  driver_setup.host_id = val;
                  break;
#ifdef SCSI_NCR_IARB_SUPPORT
            case OPT_IARB:
                  driver_setup.iarb = val;
                  break;
#endif
            default:
                  printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
                  break;
            }

            if ((cur = strchr(cur, ARG_SEP)) != NULL)
                  ++cur;
      }
#endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
      return 1;
}
#endif /* !MODULE */

/*===================================================================
**
**    Get device queue depth from boot command line.
**
**===================================================================
*/
#define DEF_DEPTH (driver_setup.default_tags)
#define ALL_TARGETS     -2
#define NO_TARGET -1
#define ALL_LUNS  -2
#define NO_LUN          -1

static int device_queue_depth(int unit, int target, int lun)
{
      int c, h, t, u, v;
      char *p = driver_setup.tag_ctrl;
      char *ep;

      h = -1;
      t = NO_TARGET;
      u = NO_LUN;
      while ((c = *p++) != 0) {
            v = simple_strtoul(p, &ep, 0);
            switch(c) {
            case '/':
                  ++h;
                  t = ALL_TARGETS;
                  u = ALL_LUNS;
                  break;
            case 't':
                  if (t != target)
                        t = (target == v) ? v : NO_TARGET;
                  u = ALL_LUNS;
                  break;
            case 'u':
                  if (u != lun)
                        u = (lun == v) ? v : NO_LUN;
                  break;
            case 'q':
                  if (h == unit &&
                        (t == ALL_TARGETS || t == target) &&
                        (u == ALL_LUNS    || u == lun))
                        return v;
                  break;
            case '-':
                  t = ALL_TARGETS;
                  u = ALL_LUNS;
                  break;
            default:
                  break;
            }
            p = ep;
      }
      return DEF_DEPTH;
}


/*==========================================================
**
**    The CCB done queue uses an array of CCB virtual 
**    addresses. Empty entries are flagged using the bogus 
**    virtual address 0xffffffff.
**
**    Since PCI ensures that only aligned DWORDs are accessed 
**    atomically, 64 bit little-endian architecture requires 
**    to test the high order DWORD of the entry to determine 
**    if it is empty or valid.
**
**    BTW, I will make things differently as soon as I will 
**    have a better idea, but this is simple and should work.
**
**==========================================================
*/
 
#define SCSI_NCR_CCB_DONE_SUPPORT
#ifdef  SCSI_NCR_CCB_DONE_SUPPORT

#define MAX_DONE 24
#define CCB_DONE_EMPTY 0xffffffffUL

/* All 32 bit architectures */
#if BITS_PER_LONG == 32
#define CCB_DONE_VALID(cp)  (((u_long) cp) != CCB_DONE_EMPTY)

/* All > 32 bit (64 bit) architectures regardless endian-ness */
#else
#define CCB_DONE_VALID(cp)  \
      ((((u_long) cp) & 0xffffffff00000000ul) &&      \
       (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
#endif

#endif /* SCSI_NCR_CCB_DONE_SUPPORT */

/*==========================================================
**
**    Configuration and Debugging
**
**==========================================================
*/

/*
**    SCSI address of this device.
**    The boot routines should have set it.
**    If not, use this.
*/

#ifndef SCSI_NCR_MYADDR
#define SCSI_NCR_MYADDR      (7)
#endif

/*
**    The maximum number of tags per logic unit.
**    Used only for disk devices that support tags.
*/

#ifndef SCSI_NCR_MAX_TAGS
#define SCSI_NCR_MAX_TAGS    (8)
#endif

/*
**    TAGS are actually limited to 64 tags/lun.
**    We need to deal with power of 2, for alignment constraints.
*/
#if   SCSI_NCR_MAX_TAGS > 64
#define     MAX_TAGS (64)
#else
#define     MAX_TAGS SCSI_NCR_MAX_TAGS
#endif

#define NO_TAG    (255)

/*
**    Choose appropriate type for tag bitmap.
*/
#if   MAX_TAGS > 32
typedef u64 tagmap_t;
#else
typedef u32 tagmap_t;
#endif

/*
**    Number of targets supported by the driver.
**    n permits target numbers 0..n-1.
**    Default is 16, meaning targets #0..#15.
**    #7 .. is myself.
*/

#ifdef SCSI_NCR_MAX_TARGET
#define MAX_TARGET  (SCSI_NCR_MAX_TARGET)
#else
#define MAX_TARGET  (16)
#endif

/*
**    Number of logic units supported by the driver.
**    n enables logic unit numbers 0..n-1.
**    The common SCSI devices require only
**    one lun, so take 1 as the default.
*/

#ifdef SCSI_NCR_MAX_LUN
#define MAX_LUN    SCSI_NCR_MAX_LUN
#else
#define MAX_LUN    (1)
#endif

/*
**    Asynchronous pre-scaler (ns). Shall be 40
*/
 
#ifndef SCSI_NCR_MIN_ASYNC
#define SCSI_NCR_MIN_ASYNC (40)
#endif

/*
**    The maximum number of jobs scheduled for starting.
**    There should be one slot per target, and one slot
**    for each tag of each target in use.
**    The calculation below is actually quite silly ...
*/

#ifdef SCSI_NCR_CAN_QUEUE
#define MAX_START   (SCSI_NCR_CAN_QUEUE + 4)
#else
#define MAX_START   (MAX_TARGET + 7 * MAX_TAGS)
#endif

/*
**   We limit the max number of pending IO to 250.
**   since we donnot want to allocate more than 1 
**   PAGE for 'scripth'.
*/
#if   MAX_START > 250
#undef      MAX_START
#define     MAX_START 250
#endif

/*
**    The maximum number of segments a transfer is split into.
**    We support up to 127 segments for both read and write.
**    The data scripts are broken into 2 sub-scripts.
**    80 (MAX_SCATTERL) segments are moved from a sub-script
**    in on-chip RAM. This makes data transfers shorter than 
**    80k (assuming 1k fs) as fast as possible.
*/

#define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)

#if (MAX_SCATTER > 80)
#define MAX_SCATTERL    80
#define     MAX_SCATTERH      (MAX_SCATTER - MAX_SCATTERL)
#else
#define MAX_SCATTERL    (MAX_SCATTER-1)
#define     MAX_SCATTERH      1
#endif

/*
**    other
*/

#define NCR_SNOOP_TIMEOUT (1000000)

/*
**    Other definitions
*/

#define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))

#define initverbose (driver_setup.verbose)
#define bootverbose (np->verbose)

/*==========================================================
**
**    Command control block states.
**
**==========================================================
*/

#define HS_IDLE         (0)
#define HS_BUSY         (1)
#define HS_NEGOTIATE    (2)   /* sync/wide data transfer*/
#define HS_DISCONNECT   (3)   /* Disconnected by target */

#define HS_DONEMASK     (0x80)
#define HS_COMPLETE     (4|HS_DONEMASK)
#define HS_SEL_TIMEOUT  (5|HS_DONEMASK)   /* Selection timeout      */
#define HS_RESET  (6|HS_DONEMASK)   /* SCSI reset               */
#define HS_ABORTED      (7|HS_DONEMASK)   /* Transfer aborted       */
#define HS_TIMEOUT      (8|HS_DONEMASK)   /* Software timeout       */
#define HS_FAIL         (9|HS_DONEMASK)   /* SCSI or PCI bus errors */
#define HS_UNEXPECTED   (10|HS_DONEMASK)/* Unexpected disconnect  */

/*
**    Invalid host status values used by the SCRIPTS processor 
**    when the nexus is not fully identified.
**    Shall never appear in a CCB.
*/

#define HS_INVALMASK    (0x40)
#define     HS_SELECTING      (0|HS_INVALMASK)
#define     HS_IN_RESELECT    (1|HS_INVALMASK)
#define     HS_STARTING (2|HS_INVALMASK)

/*
**    Flags set by the SCRIPT processor for commands 
**    that have been skipped.
*/
#define HS_SKIPMASK     (0x20)

/*==========================================================
**
**    Software Interrupt Codes
**
**==========================================================
*/

#define     SIR_BAD_STATUS          (1)
#define     SIR_XXXXXXXXXX          (2)
#define     SIR_NEGO_SYNC           (3)
#define     SIR_NEGO_WIDE           (4)
#define     SIR_NEGO_FAILED         (5)
#define     SIR_NEGO_PROTO          (6)
#define     SIR_REJECT_RECEIVED     (7)
#define     SIR_REJECT_SENT         (8)
#define     SIR_IGN_RESIDUE         (9)
#define     SIR_MISSING_SAVE  (10)
#define     SIR_RESEL_NO_MSG_IN     (11)
#define     SIR_RESEL_NO_IDENTIFY   (12)
#define     SIR_RESEL_BAD_LUN (13)
#define     SIR_RESEL_BAD_TARGET    (14)
#define     SIR_RESEL_BAD_I_T_L     (15)
#define     SIR_RESEL_BAD_I_T_L_Q   (16)
#define     SIR_DONE_OVERFLOW (17)
#define     SIR_INTFLY        (18)
#define     SIR_MAX                 (18)

/*==========================================================
**
**    Extended error codes.
**    xerr_status field of struct ccb.
**
**==========================================================
*/

#define     XE_OK       (0)
#define     XE_EXTRA_DATA     (1)   /* unexpected data phase */
#define     XE_BAD_PHASE      (2)   /* illegal phase (4/5)   */

/*==========================================================
**
**    Negotiation status.
**    nego_status field of struct ccb.
**
**==========================================================
*/

#define NS_NOCHANGE     (0)
#define NS_SYNC         (1)
#define NS_WIDE         (2)
#define NS_PPR          (4)

/*==========================================================
**
**    Misc.
**
**==========================================================
*/

#define CCB_MAGIC (0xf2691ad2)

/*==========================================================
**
**    Declaration of structs.
**
**==========================================================
*/

static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;

struct tcb;
struct lcb;
struct ccb;
struct ncb;
struct script;

struct link {
      ncrcmd      l_cmd;
      ncrcmd      l_paddr;
};

struct      usrcmd {
      u_long      target;
      u_long      lun;
      u_long      data;
      u_long      cmd;
};

#define UC_SETSYNC      10
#define UC_SETTAGS      11
#define UC_SETDEBUG     12
#define UC_SETORDER     13
#define UC_SETWIDE      14
#define UC_SETFLAG      15
#define UC_SETVERBOSE   17

#define     UF_TRACE    (0x01)
#define     UF_NODISC   (0x02)
#define     UF_NOSCAN   (0x04)

/*========================================================================
**
**    Declaration of structs:       target control block
**
**========================================================================
*/
struct tcb {
      /*----------------------------------------------------------------
      **    During reselection the ncr jumps to this point with SFBR 
      **    set to the encoded target number with bit 7 set.
      **    if it's not this target, jump to the next.
      **
      **    JUMP  IF (SFBR != #target#), @(next tcb)
      **----------------------------------------------------------------
      */
      struct link   jump_tcb;

      /*----------------------------------------------------------------
      **    Load the actual values for the sxfer and the scntl3
      **    register (sync/wide mode).
      **
      **    SCR_COPY (1), @(sval field of this tcb), @(sxfer  register)
      **    SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
      **----------------------------------------------------------------
      */
      ncrcmd      getscr[6];

      /*----------------------------------------------------------------
      **    Get the IDENTIFY message and load the LUN to SFBR.
      **
      **    CALL, <RESEL_LUN>
      **----------------------------------------------------------------
      */
      struct link   call_lun;

      /*----------------------------------------------------------------
      **    Now look for the right lun.
      **
      **    For i = 0 to 3
      **          SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
      **
      **    Recent chips will prefetch the 4 JUMPS using only 1 burst.
      **    It is kind of hashcoding.
      **----------------------------------------------------------------
      */
      struct link     jump_lcb[4];  /* JUMPs for reselection      */
      struct lcb *      lp[MAX_LUN];      /* The lcb's of this tcb      */

      /*----------------------------------------------------------------
      **    Pointer to the ccb used for negotiation.
      **    Prevent from starting a negotiation for all queued commands 
      **    when tagged command queuing is enabled.
      **----------------------------------------------------------------
      */
      struct ccb *   nego_cp;

      /*----------------------------------------------------------------
      **    statistical data
      **----------------------------------------------------------------
      */
      u_long      transfers;
      u_long      bytes;

      /*----------------------------------------------------------------
      **    negotiation of wide and synch transfer and device quirks.
      **----------------------------------------------------------------
      */
#ifdef SCSI_NCR_BIG_ENDIAN
/*0*/ u16   period;
/*2*/ u_char      sval;
/*3*/ u_char      minsync;
/*0*/ u_char      wval;
/*1*/ u_char      widedone;
/*2*/ u_char      quirks;
/*3*/ u_char      maxoffs;
#else
/*0*/ u_char      minsync;
/*1*/ u_char      sval;
/*2*/ u16   period;
/*0*/ u_char      maxoffs;
/*1*/ u_char      quirks;
/*2*/ u_char      widedone;
/*3*/ u_char      wval;
#endif

      /* User settable limits and options.  */
      u_char      usrsync;
      u_char      usrwide;
      u_char      usrtags;
      u_char      usrflag;
      struct scsi_target *starget;
};

/*========================================================================
**
**    Declaration of structs:       lun control block
**
**========================================================================
*/
struct lcb {
      /*----------------------------------------------------------------
      **    During reselection the ncr jumps to this point
      **    with SFBR set to the "Identify" message.
      **    if it's not this lun, jump to the next.
      **
      **    JUMP  IF (SFBR != #lun#), @(next lcb of this target)
      **
      **    It is this lun. Load TEMP with the nexus jumps table 
      **    address and jump to RESEL_TAG (or RESEL_NOTAG).
      **
      **          SCR_COPY (4), p_jump_ccb, TEMP,
      **          SCR_JUMP, <RESEL_TAG>
      **----------------------------------------------------------------
      */
      struct link jump_lcb;
      ncrcmd            load_jump_ccb[3];
      struct link jump_tag;
      ncrcmd            p_jump_ccb; /* Jump table bus address     */

      /*----------------------------------------------------------------
      **    Jump table used by the script processor to directly jump 
      **    to the CCB corresponding to the reselected nexus.
      **    Address is allocated on 256 bytes boundary in order to 
      **    allow 8 bit calculation of the tag jump entry for up to 
      **    64 possible tags.
      **----------------------------------------------------------------
      */
      u32         jump_ccb_0; /* Default table if no tags   */
      u32         *jump_ccb;  /* Virtual address            */

      /*----------------------------------------------------------------
      **    CCB queue management.
      **----------------------------------------------------------------
      */
      struct list_head free_ccbq;   /* Queue of available CCBs    */
      struct list_head busy_ccbq;   /* Queue of busy CCBs         */
      struct list_head wait_ccbq;   /* Queue of waiting for IO CCBs     */
      struct list_head skip_ccbq;   /* Queue of skipped CCBs      */
      u_char            actccbs;    /* Number of allocated CCBs   */
      u_char            busyccbs;   /* CCBs busy for this lun     */
      u_char            queuedccbs; /* CCBs queued to the controller*/
      u_char            queuedepth; /* Queue depth for this lun   */
      u_char            scdev_depth;      /* SCSI device queue depth    */
      u_char            maxnxs;           /* Max possible nexuses       */

      /*----------------------------------------------------------------
      **    Control of tagged command queuing.
      **    Tags allocation is performed using a circular buffer.
      **    This avoids using a loop for tag allocation.
      **----------------------------------------------------------------
      */
      u_char            ia_tag;           /* Allocation index           */
      u_char            if_tag;           /* Freeing index        */
      u_char cb_tags[MAX_TAGS];     /* Circular tags buffer */
      u_char            usetags;    /* Command queuing is active  */
      u_char            maxtags;    /* Max nr of tags asked by user     */
      u_char            numtags;    /* Current number of tags     */

      /*----------------------------------------------------------------
      **    QUEUE FULL control and ORDERED tag control.
      **----------------------------------------------------------------
      */
      /*----------------------------------------------------------------
      **    QUEUE FULL and ORDERED tag control.
      **----------------------------------------------------------------
      */
      u16         num_good;   /* Nr of GOOD since QUEUE FULL      */
      tagmap_t    tags_umap;  /* Used tags bitmap           */
      tagmap_t    tags_smap;  /* Tags in use at 'tag_stime' */
      u_long            tags_stime; /* Last time we set smap=umap */
      struct ccb *      held_ccb;   /* CCB held for QUEUE FULL    */
};

/*========================================================================
**
**      Declaration of structs:     the launch script.
**
**========================================================================
**
**    It is part of the CCB and is called by the scripts processor to 
**    start or restart the data structure (nexus).
**    This 6 DWORDs mini script makes use of prefetching.
**
**------------------------------------------------------------------------
*/
struct launch {
      /*----------------------------------------------------------------
      **    SCR_COPY(4),      @(p_phys), @(dsa register)
      **    SCR_JUMP,   @(scheduler_point)
      **----------------------------------------------------------------
      */
      ncrcmd            setup_dsa[3];     /* Copy 'phys' address to dsa */
      struct link schedule;   /* Jump to scheduler point    */
      ncrcmd            p_phys;           /* 'phys' header bus address  */
};

/*========================================================================
**
**      Declaration of structs:     global HEADER.
**
**========================================================================
**
**    This substructure is copied from the ccb to a global address after 
**    selection (or reselection) and copied back before disconnect.
**
**    These fields are accessible to the script processor.
**
**------------------------------------------------------------------------
*/

struct head {
      /*----------------------------------------------------------------
      **    Saved data pointer.
      **    Points to the position in the script responsible for the
      **    actual transfer transfer of data.
      **    It's written after reception of a SAVE_DATA_POINTER message.
      **    The goalpointer points after the last transfer command.
      **----------------------------------------------------------------
      */
      u32         savep;
      u32         lastp;
      u32         goalp;

      /*----------------------------------------------------------------
      **    Alternate data pointer.
      **    They are copied back to savep/lastp/goalp by the SCRIPTS 
      **    when the direction is unknown and the device claims data out.
      **----------------------------------------------------------------
      */
      u32         wlastp;
      u32         wgoalp;

      /*----------------------------------------------------------------
      **    The virtual address of the ccb containing this header.
      **----------------------------------------------------------------
      */
      struct ccb *      cp;

      /*----------------------------------------------------------------
      **    Status fields.
      **----------------------------------------------------------------
      */
      u_char            scr_st[4];  /* script status        */
      u_char            status[4];  /* host status. must be the   */
                              /*  last DWORD of the header. */
};

/*
**    The status bytes are used by the host and the script processor.
**
**    The byte corresponding to the host_status must be stored in the 
**    last DWORD of the CCB header since it is used for command 
**    completion (ncr_wakeup()). Doing so, we are sure that the header 
**    has been entirely copied back to the CCB when the host_status is 
**    seen complete by the CPU.
**
**    The last four bytes (status[4]) are copied to the scratchb register
**    (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
**    and copied back just after disconnecting.
**    Inside the script the XX_REG are used.
**
**    The first four bytes (scr_st[4]) are used inside the script by 
**    "COPY" commands.
**    Because source and destination must have the same alignment
**    in a DWORD, the fields HAVE to be at the chosen offsets.
**          xerr_st           0     (0x34)      scratcha
**          sync_st           1     (0x05)      sxfer
**          wide_st           3     (0x03)      scntl3
*/

/*
**    Last four bytes (script)
*/
#define  QU_REG   scr0
#define  HS_REG   scr1
#define  HS_PRT   nc_scr1
#define  SS_REG   scr2
#define  SS_PRT   nc_scr2
#define  PS_REG   scr3

/*
**    Last four bytes (host)
*/
#ifdef SCSI_NCR_BIG_ENDIAN
#define  actualquirks  phys.header.status[3]
#define  host_status   phys.header.status[2]
#define  scsi_status   phys.header.status[1]
#define  parity_status phys.header.status[0]
#else
#define  actualquirks  phys.header.status[0]
#define  host_status   phys.header.status[1]
#define  scsi_status   phys.header.status[2]
#define  parity_status phys.header.status[3]
#endif

/*
**    First four bytes (script)
*/
#define  xerr_st       header.scr_st[0]
#define  sync_st       header.scr_st[1]
#define  nego_st       header.scr_st[2]
#define  wide_st       header.scr_st[3]

/*
**    First four bytes (host)
*/
#define  xerr_status   phys.xerr_st
#define  nego_status   phys.nego_st

#if 0
#define  sync_status   phys.sync_st
#define  wide_status   phys.wide_st
#endif

/*==========================================================
**
**      Declaration of structs:     Data structure block
**
**==========================================================
**
**    During execution of a ccb by the script processor,
**    the DSA (data structure address) register points
**    to this substructure of the ccb.
**    This substructure contains the header with
**    the script-processor-changeable data and
**    data blocks for the indirect move commands.
**
**----------------------------------------------------------
*/

struct dsb {

      /*
      **    Header.
      */

      struct head header;

      /*
      **    Table data for Script
      */

      struct scr_tblsel  select;
      struct scr_tblmove smsg  ;
      struct scr_tblmove cmd   ;
      struct scr_tblmove sense ;
      struct scr_tblmove data[MAX_SCATTER];
};


/*========================================================================
**
**      Declaration of structs:     Command control block.
**
**========================================================================
*/
struct ccb {
      /*----------------------------------------------------------------
      **    This is the data structure which is pointed by the DSA 
      **    register when it is executed by the script processor.
      **    It must be the first entry because it contains the header 
      **    as first entry that must be cache line aligned.
      **----------------------------------------------------------------
      */
      struct dsb  phys;

      /*----------------------------------------------------------------
      **    Mini-script used at CCB execution start-up.
      **    Load the DSA with the data structure address (phys) and 
      **    jump to SELECT. Jump to CANCEL if CCB is to be canceled.
      **----------------------------------------------------------------
      */
      struct launch     start;

      /*----------------------------------------------------------------
      **    Mini-script used at CCB relection to restart the nexus.
      **    Load the DSA with the data structure address (phys) and 
      **    jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
      **----------------------------------------------------------------
      */
      struct launch     restart;

      /*----------------------------------------------------------------
      **    If a data transfer phase is terminated too early
      **    (after reception of a message (i.e. DISCONNECT)),
      **    we have to prepare a mini script to transfer
      **    the rest of the data.
      **----------------------------------------------------------------
      */
      ncrcmd            patch[8];

      /*----------------------------------------------------------------
      **    The general SCSI driver provides a
      **    pointer to a control block.
      **----------------------------------------------------------------
      */
      struct scsi_cmnd  *cmd;       /* SCSI command         */
      u_char            cdb_buf[16];      /* Copy of CDB                */
      u_char            sense_buf[64];
      int         data_len;   /* Total data length          */

      /*----------------------------------------------------------------
      **    Message areas.
      **    We prepare a message to be sent after selection.
      **    We may use a second one if the command is rescheduled 
      **    due to GETCC or QFULL.
      **      Contents are IDENTIFY and SIMPLE_TAG.
      **    While negotiating sync or wide transfer,
      **    a SDTR or WDTR message is appended.
      **----------------------------------------------------------------
      */
      u_char            scsi_smsg [8];
      u_char            scsi_smsg2[8];

      /*----------------------------------------------------------------
      **    Other fields.
      **----------------------------------------------------------------
      */
      u_long            p_ccb;            /* BUS address of this CCB    */
      u_char            sensecmd[6];      /* Sense command        */
      u_char            tag;        /* Tag for this transfer      */
                              /*  255 means no tag          */
      u_char            target;
      u_char            lun;
      u_char            queued;
      u_char            auto_sense;
      struct ccb *      link_ccb;   /* Host adapter CCB chain     */
      struct list_head link_ccbq;   /* Link to unit CCB queue     */
      u32         startp;           /* Initial data pointer       */
      u_long            magic;            /* Free / busy  CCB flag      */
};

#define CCB_PHYS(cp,lbl)      (cp->p_ccb + offsetof(struct ccb, lbl))


/*========================================================================
**
**      Declaration of structs:     NCR device descriptor
**
**========================================================================
*/
struct ncb {
      /*----------------------------------------------------------------
      **    The global header.
      **    It is accessible to both the host and the script processor.
      **    Must be cache line size aligned (32 for x86) in order to 
      **    allow cache line bursting when it is copied to/from CCB.
      **----------------------------------------------------------------
      */
      struct head     header;

      /*----------------------------------------------------------------
      **    CCBs management queues.
      **----------------------------------------------------------------
      */
      struct scsi_cmnd  *waiting_list;    /* Commands waiting for a CCB */
                              /*  when lcb is not allocated.      */
      struct scsi_cmnd  *done_list; /* Commands waiting for done()  */
                              /* callback to be invoked.      */ 
      spinlock_t  smp_lock;   /* Lock for SMP threading       */

      /*----------------------------------------------------------------
      **    Chip and controller indentification.
      **----------------------------------------------------------------
      */
      int         unit;       /* Unit number                */
      char        inst_name[16];    /* ncb instance name          */

      /*----------------------------------------------------------------
      **    Initial value of some IO register bits.
      **    These values are assumed to have been set by BIOS, and may 
      **    be used for probing adapter implementation differences.
      **----------------------------------------------------------------
      */
      u_char      sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
            sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;

      /*----------------------------------------------------------------
      **    Actual initial value of IO register bits used by the 
      **    driver. They are loaded at initialisation according to  
      **    features that are to be enabled.
      **----------------------------------------------------------------
      */
      u_char      rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
            rv_ctest4, rv_ctest5, rv_stest2;

      /*----------------------------------------------------------------
      **    Targets management.
      **    During reselection the ncr jumps to jump_tcb.
      **    The SFBR register is loaded with the encoded target id.
      **    For i = 0 to 3
      **          SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
      **
      **    Recent chips will prefetch the 4 JUMPS using only 1 burst.
      **    It is kind of hashcoding.
      **----------------------------------------------------------------
      */
      struct link     jump_tcb[4];  /* JUMPs for reselection      */
      struct tcb  target[MAX_TARGET];     /* Target data                */

      /*----------------------------------------------------------------
      **    Virtual and physical bus addresses of the chip.
      **----------------------------------------------------------------
      */
      void __iomem *vaddr;          /* Virtual and bus address of */
      unsigned long     paddr;            /*  chip's IO registers.      */
      unsigned long     paddr2;           /* On-chip RAM bus address.   */
      volatile                /* Pointer to volatile for    */
      struct ncr_reg    __iomem *reg;     /*  memory mapped IO.         */

      /*----------------------------------------------------------------
      **    SCRIPTS virtual and physical bus addresses.
      **    'script'  is loaded in the on-chip RAM if present.
      **    'scripth' stays in main memory.
      **----------------------------------------------------------------
      */
      struct script     *script0;   /* Copies of script and scripth     */
      struct scripth    *scripth0;  /*  relocated for this ncb.   */
      struct scripth    *scripth;   /* Actual scripth virt. address     */
      u_long            p_script;   /* Actual script and scripth  */
      u_long            p_scripth;  /*  bus addresses.            */

      /*----------------------------------------------------------------
      **    General controller parameters and configuration.
      **----------------------------------------------------------------
      */
      struct device     *dev;
      u_char            revision_id;      /* PCI device revision id     */
      u32         irq;        /* IRQ level                  */
      u32         features;   /* Chip features map          */
      u_char            myaddr;           /* SCSI id of the adapter     */
      u_char            maxburst;   /* log base 2 of dwords burst */
      u_char            maxwide;    /* Maximum transfer width     */
      u_char            minsync;    /* Minimum sync period factor */
      u_char            maxsync;    /* Maximum sync period factor */
      u_char            maxoffs;    /* Max scsi offset            */
      u_char            multiplier; /* Clock multiplier (1,2,4)   */
      u_char            clock_divn; /* Number of clock divisors   */
      u_long            clock_khz;  /* SCSI clock frequency in KHz      */

      /*----------------------------------------------------------------
      **    Start queue management.
      **    It is filled up by the host processor and accessed by the 
      **    SCRIPTS processor in order to start SCSI commands.
      **----------------------------------------------------------------
      */
      u16         squeueput;  /* Next free slot of the queue      */
      u16         actccbs;    /* Number of allocated CCBs   */
      u16         queuedccbs; /* Number of CCBs in start queue*/
      u16         queuedepth; /* Start queue depth          */

      /*----------------------------------------------------------------
      **    Timeout handler.
      **----------------------------------------------------------------
      */
      struct timer_list timer;      /* Timer handler link header  */
      u_long            lasttime;
      u_long            settle_time;      /* Resetting the SCSI BUS     */

      /*----------------------------------------------------------------
      **    Debugging and profiling.
      **----------------------------------------------------------------
      */
      struct ncr_reg    regdump;    /* Register dump        */
      u_long            regtime;    /* Time it has been done      */

      /*----------------------------------------------------------------
      **    Miscellaneous buffers accessed by the scripts-processor.
      **    They shall be DWORD aligned, because they may be read or 
      **    written with a SCR_COPY script command.
      **----------------------------------------------------------------
      */
      u_char            msgout[8];  /* Buffer for MESSAGE OUT     */
      u_char            msgin [8];  /* Buffer for MESSAGE IN      */
      u32         lastmsg;    /* Last SCSI message sent     */
      u_char            scratch;    /* Scratch for SCSI receive   */

      /*----------------------------------------------------------------
      **    Miscellaneous configuration and status parameters.
      **----------------------------------------------------------------
      */
      u_char            disc;       /* Diconnection allowed       */
      u_char            scsi_mode;  /* Current SCSI BUS mode      */
      u_char            order;            /* Tag order to use           */
      u_char            verbose;    /* Verbosity for this controller*/
      int         ncr_cache;  /* Used for cache test at init.     */
      u_long            p_ncb;            /* BUS address of this NCB    */

      /*----------------------------------------------------------------
      **    Command completion handling.
      **----------------------------------------------------------------
      */
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
      struct ccb  *(ccb_done[MAX_DONE]);
      int         ccb_done_ic;
#endif
      /*----------------------------------------------------------------
      **    Fields that should be removed or changed.
      **----------------------------------------------------------------
      */
      struct ccb  *ccb;       /* Global CCB                 */
      struct usrcmd     user;       /* Command from user          */
      volatile u_char   release_stage;    /* Synchronisation stage on release  */
};

#define NCB_SCRIPT_PHYS(np,lbl)      (np->p_script  + offsetof (struct script, lbl))
#define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))

/*==========================================================
**
**
**      Script for NCR-Processor.
**
**    Use ncr_script_fill() to create the variable parts.
**    Use ncr_script_copy_and_bind() to make a copy and
**    bind to physical addresses.
**
**
**==========================================================
**
**    We have to know the offsets of all labels before
**    we reach them (for forward jumps).
**    Therefore we declare a struct here.
**    If you make changes inside the script,
**    DONT FORGET TO CHANGE THE LENGTHS HERE!
**
**----------------------------------------------------------
*/

/*
**    For HP Zalon/53c720 systems, the Zalon interface
**    between CPU and 53c720 does prefetches, which causes
**    problems with self modifying scripts.  The problem
**    is overcome by calling a dummy subroutine after each
**    modification, to force a refetch of the script on
**    return from the subroutine.
*/

#ifdef CONFIG_NCR53C8XX_PREFETCH
#define PREFETCH_FLUSH_CNT    2
#define PREFETCH_FLUSH        SCR_CALL, PADDRH (wait_dma),
#else
#define PREFETCH_FLUSH_CNT    0
#define PREFETCH_FLUSH
#endif

/*
**    Script fragments which are loaded into the on-chip RAM 
**    of 825A, 875 and 895 chips.
*/
struct script {
      ncrcmd      start       [  5];
      ncrcmd  startpos  [  1];
      ncrcmd      select            [  6];
      ncrcmd      select2           [  9 + PREFETCH_FLUSH_CNT];
      ncrcmd      loadpos           [  4];
      ncrcmd      send_ident  [  9];
      ncrcmd      prepare           [  6];
      ncrcmd      prepare2    [  7];
      ncrcmd  command         [  6];
      ncrcmd  dispatch  [ 32];
      ncrcmd  clrack          [  4];
      ncrcmd      no_data           [ 17];
      ncrcmd  status          [  8];
      ncrcmd  msg_in          [  2];
      ncrcmd  msg_in2         [ 16];
      ncrcmd  msg_bad         [  4];
      ncrcmd      setmsg            [  7];
      ncrcmd      cleanup           [  6];
      ncrcmd  complete  [  9];
      ncrcmd      cleanup_ok  [  8 + PREFETCH_FLUSH_CNT];
      ncrcmd      cleanup0    [  1];
#ifndef SCSI_NCR_CCB_DONE_SUPPORT
      ncrcmd      signal            [ 12];
#else
      ncrcmd      signal            [  9];
      ncrcmd      done_pos    [  1];
      ncrcmd      done_plug   [  2];
      ncrcmd      done_end    [  7];
#endif
      ncrcmd  save_dp         [  7];
      ncrcmd  restore_dp      [  5];
      ncrcmd  disconnect      [ 10];
      ncrcmd      msg_out           [  9];
      ncrcmd      msg_out_done      [  7];
      ncrcmd  idle            [  2];
      ncrcmd      reselect    [  8];
      ncrcmd      reselected  [  8];
      ncrcmd      resel_dsa   [  6 + PREFETCH_FLUSH_CNT];
      ncrcmd      loadpos1    [  4];
      ncrcmd  resel_lun [  6];
      ncrcmd      resel_tag   [  6];
      ncrcmd      jump_to_nexus     [  4 + PREFETCH_FLUSH_CNT];
      ncrcmd      nexus_indirect    [  4];
      ncrcmd      resel_notag [  4];
      ncrcmd  data_in         [MAX_SCATTERL * 4];
      ncrcmd  data_in2  [  4];
      ncrcmd  data_out  [MAX_SCATTERL * 4];
      ncrcmd  data_out2 [  4];
};

/*
**    Script fragments which stay in main memory for all chips.
*/
struct scripth {
      ncrcmd  tryloop         [MAX_START*2];
      ncrcmd  tryloop2  [  2];
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
      ncrcmd  done_queue      [MAX_DONE*5];
      ncrcmd  done_queue2     [  2];
#endif
      ncrcmd      select_no_atn     [  8];
      ncrcmd      cancel            [  4];
      ncrcmd      skip        [  9 + PREFETCH_FLUSH_CNT];
      ncrcmd      skip2       [ 19];
      ncrcmd      par_err_data_in   [  6];
      ncrcmd      par_err_other     [  4];
      ncrcmd      msg_reject  [  8];
      ncrcmd      msg_ign_residue   [ 24];
      ncrcmd  msg_extended    [ 10];
      ncrcmd  msg_ext_2 [ 10];
      ncrcmd      msg_wdtr    [ 14];
      ncrcmd      send_wdtr   [  7];
      ncrcmd  msg_ext_3 [ 10];
      ncrcmd      msg_sdtr    [ 14];
      ncrcmd      send_sdtr   [  7];
      ncrcmd      nego_bad_phase    [  4];
      ncrcmd      msg_out_abort     [ 10];
      ncrcmd  hdata_in  [MAX_SCATTERH * 4];
      ncrcmd  hdata_in2 [  2];
      ncrcmd  hdata_out [MAX_SCATTERH * 4];
      ncrcmd  hdata_out2      [  2];
      ncrcmd      reset       [  4];
      ncrcmd      aborttag    [  4];
      ncrcmd      abort       [  2];
      ncrcmd      abort_resel [ 20];
      ncrcmd      resend_ident      [  4];
      ncrcmd      clratn_go_on      [  3];
      ncrcmd      nxtdsp_go_on      [  1];
      ncrcmd      sdata_in    [  8];
      ncrcmd  data_io         [ 18];
      ncrcmd      bad_identify      [ 12];
      ncrcmd      bad_i_t_l   [  4];
      ncrcmd      bad_i_t_l_q [  4];
      ncrcmd      bad_target  [  8];
      ncrcmd      bad_status  [  8];
      ncrcmd      start_ram   [  4 + PREFETCH_FLUSH_CNT];
      ncrcmd      start_ram0  [  4];
      ncrcmd      sto_restart [  5];
      ncrcmd      wait_dma    [  2];
      ncrcmd      snooptest   [  9];
      ncrcmd      snoopend    [  2];
};

/*==========================================================
**
**
**      Function headers.
**
**
**==========================================================
*/

static      void  ncr_alloc_ccb     (struct ncb *np, u_char tn, u_char ln);
static      void  ncr_complete      (struct ncb *np, struct ccb *cp);
static      void  ncr_exception     (struct ncb *np);
static      void  ncr_free_ccb      (struct ncb *np, struct ccb *cp);
static      void  ncr_init_ccb      (struct ncb *np, struct ccb *cp);
static      void  ncr_init_tcb      (struct ncb *np, u_char tn);
static      struct lcb *      ncr_alloc_lcb     (struct ncb *np, u_char tn, u_char ln);
static      struct lcb *      ncr_setup_lcb     (struct ncb *np, struct scsi_device *sdev);
static      void  ncr_getclock      (struct ncb *np, int mult);
static      void  ncr_selectclock   (struct ncb *np, u_char scntl3);
static      struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd);
static      void  ncr_chip_reset    (struct ncb *np, int delay);
static      void  ncr_init    (struct ncb *np, int reset, char * msg, u_long code);
static      int   ncr_int_sbmc      (struct ncb *np);
static      int   ncr_int_par (struct ncb *np);
static      void  ncr_int_ma  (struct ncb *np);
static      void  ncr_int_sir (struct ncb *np);
static  void    ncr_int_sto     (struct ncb *np);
static      void  ncr_negotiate     (struct ncb* np, struct tcb* tp);
static      int   ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);

static      void  ncr_script_copy_and_bind
                        (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
static  void    ncr_script_fill (struct script * scr, struct scripth * scripth);
static      int   ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
static      void  ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
static      void  ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
static      void  ncr_setup_tags    (struct ncb *np, struct scsi_device *sdev);
static      void  ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
static      int   ncr_snooptest     (struct ncb *np);
static      void  ncr_timeout (struct ncb *np);
static  void    ncr_wakeup      (struct ncb *np, u_long code);
static  void    ncr_wakeup_done (struct ncb *np);
static      void  ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
static      void  ncr_put_start_queue(struct ncb *np, struct ccb *cp);

static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
static void process_waiting_list(struct ncb *np, int sts);

#define remove_from_waiting_list(np, cmd) \
            retrieve_from_waiting_list(1, (np), (cmd))
#define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
#define reset_waiting_list(np) process_waiting_list((np), DID_RESET)

static inline char *ncr_name (struct ncb *np)
{
      return np->inst_name;
}


/*==========================================================
**
**
**      Scripts for NCR-Processor.
**
**      Use ncr_script_bind for binding to physical addresses.
**
**
**==========================================================
**
**    NADDR generates a reference to a field of the controller data.
**    PADDR generates a reference to another part of the script.
**    RADDR generates a reference to a script processor register.
**    FADDR generates a reference to a script processor register
**          with offset.
**
**----------------------------------------------------------
*/

#define     RELOC_SOFTC 0x40000000
#define     RELOC_LABEL 0x50000000
#define     RELOC_REGISTER    0x60000000
#if 0
#define     RELOC_KVAR  0x70000000
#endif
#define     RELOC_LABELH      0x80000000
#define     RELOC_MASK  0xf0000000

#define     NADDR(label)      (RELOC_SOFTC | offsetof(struct ncb, label))
#define PADDR(label)    (RELOC_LABEL | offsetof(struct script, label))
#define PADDRH(label)   (RELOC_LABELH | offsetof(struct scripth, label))
#define     RADDR(label)      (RELOC_REGISTER | REG(label))
#define     FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
#if 0
#define     KVAR(which) (RELOC_KVAR | (which))
#endif

#if 0
#define     SCRIPT_KVAR_JIFFIES     (0)
#define     SCRIPT_KVAR_FIRST       SCRIPT_KVAR_JIFFIES
#define     SCRIPT_KVAR_LAST        SCRIPT_KVAR_JIFFIES
/*
 * Kernel variables referenced in the scripts.
 * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
 */
static void *script_kvars[] __initdata =
      { (void *)&jiffies };
#endif

static      struct script script0 __initdata = {
/*--------------------------< START >-----------------------*/ {
      /*
      **    This NOP will be patched with LED ON
      **    SCR_REG_REG (gpreg, SCR_AND, 0xfe)
      */
      SCR_NO_OP,
            0,
      /*
      **      Clear SIGP.
      */
      SCR_FROM_REG (ctest2),
            0,
      /*
      **    Then jump to a certain point in tryloop.
      **    Due to the lack of indirect addressing the code
      **    is self modifying here.
      */
      SCR_JUMP,
}/*-------------------------< STARTPOS >--------------------*/,{
            PADDRH(tryloop),

}/*-------------------------< SELECT >----------------------*/,{
      /*
      **    DSA   contains the address of a scheduled
      **          data structure.
      **
      **    SCRATCHA contains the address of the script,
      **          which starts the next entry.
      **
      **    Set Initiator mode.
      **
      **    (Target mode is left as an exercise for the reader)
      */

      SCR_CLR (SCR_TRG),
            0,
      SCR_LOAD_REG (HS_REG, HS_SELECTING),
            0,

      /*
      **      And try to select this target.
      */
      SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
            PADDR (reselect),

}/*-------------------------< SELECT2 >----------------------*/,{
      /*
      **    Now there are 4 possibilities:
      **
      **    (1) The ncr loses arbitration.
      **    This is ok, because it will try again,
      **    when the bus becomes idle.
      **    (But beware of the timeout function!)
      **
      **    (2) The ncr is reselected.
      **    Then the script processor takes the jump
      **    to the RESELECT label.
      **
      **    (3) The ncr wins arbitration.
      **    Then it will execute SCRIPTS instruction until 
      **    the next instruction that checks SCSI phase.
      **    Then will stop and wait for selection to be 
      **    complete or selection time-out to occur.
      **    As a result the SCRIPTS instructions until 
      **    LOADPOS + 2 should be executed in parallel with 
      **    the SCSI core performing selection.
      */

      /*
      **    The MESSAGE_REJECT problem seems to be due to a selection 
      **    timing problem.
      **    Wait immediately for the selection to complete. 
      **    (2.5x behaves so)
      */
      SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
            0,

      /*
      **    Next time use the next slot.
      */
      SCR_COPY (4),
            RADDR (temp),
            PADDR (startpos),
      /*
      **      The ncr doesn't have an indirect load
      **    or store command. So we have to
      **    copy part of the control block to a
      **    fixed place, where we can access it.
      **
      **    We patch the address part of a
      **    COPY command with the DSA-register.
      */
      SCR_COPY_F (4),
            RADDR (dsa),
            PADDR (loadpos),
      /*
      **    Flush script prefetch if required
      */
      PREFETCH_FLUSH
      /*
      **    then we do the actual copy.
      */
      SCR_COPY (sizeof (struct head)),
      /*
      **    continued after the next label ...
      */
}/*-------------------------< LOADPOS >---------------------*/,{
            0,
            NADDR (header),
      /*
      **    Wait for the next phase or the selection
      **    to complete or time-out.
      */
      SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
            PADDR (prepare),

}/*-------------------------< SEND_IDENT >----------------------*/,{
      /*
      **    Selection complete.
      **    Send the IDENTIFY and SIMPLE_TAG messages
      **    (and the EXTENDED_SDTR message)
      */
      SCR_MOVE_TBL ^ SCR_MSG_OUT,
            offsetof (struct dsb, smsg),
      SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
            PADDRH (resend_ident),
      SCR_LOAD_REG (scratcha, 0x80),
            0,
      SCR_COPY (1),
            RADDR (scratcha),
            NADDR (lastmsg),
}/*-------------------------< PREPARE >----------------------*/,{
      /*
      **      load the savep (saved pointer) into
      **      the TEMP register (actual pointer)
      */
      SCR_COPY (4),
            NADDR (header.savep),
            RADDR (temp),
      /*
      **      Initialize the status registers
      */
      SCR_COPY (4),
            NADDR (header.status),
            RADDR (scr0),
}/*-------------------------< PREPARE2 >---------------------*/,{
      /*
      **    Initialize the msgout buffer with a NOOP message.
      */
      SCR_LOAD_REG (scratcha, NOP),
            0,
      SCR_COPY (1),
            RADDR (scratcha),
            NADDR (msgout),
#if 0
      SCR_COPY (1),
            RADDR (scratcha),
            NADDR (msgin),
#endif
      /*
      **    Anticipate the COMMAND phase.
      **    This is the normal case for initial selection.
      */
      SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
            PADDR (dispatch),

}/*-------------------------< COMMAND >--------------------*/,{
      /*
      **    ... and send the command
      */
      SCR_MOVE_TBL ^ SCR_COMMAND,
            offsetof (struct dsb, cmd),
      /*
      **    If status is still HS_NEGOTIATE, negotiation failed.
      **    We check this here, since we want to do that 
      **    only once.
      */
      SCR_FROM_REG (HS_REG),
            0,
      SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
            SIR_NEGO_FAILED,

}/*-----------------------< DISPATCH >----------------------*/,{
      /*
      **    MSG_IN is the only phase that shall be 
      **    entered at least once for each (re)selection.
      **    So we test it first.
      */
      SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
            PADDR (msg_in),

      SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
            0,
      /*
      **    DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
      **    Possible data corruption during Memory Write and Invalidate.
      **    This work-around resets the addressing logic prior to the 
      **    start of the first MOVE of a DATA IN phase.
      **    (See Documentation/scsi/ncr53c8xx.txt for more information)
      */
      SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
            20,
      SCR_COPY (4),
            RADDR (scratcha),
            RADDR (scratcha),
      SCR_RETURN,
            0,
      SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
            PADDR (status),
      SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
            PADDR (command),
      SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
            PADDR (msg_out),
      /*
      **      Discard one illegal phase byte, if required.
      */
      SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
            0,
      SCR_COPY (1),
            RADDR (scratcha),
            NADDR (xerr_st),
      SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
            8,
      SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
            NADDR (scratch),
      SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
            8,
      SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
            NADDR (scratch),
      SCR_JUMP,
            PADDR (dispatch),

}/*-------------------------< CLRACK >----------------------*/,{
      /*
      **    Terminate possible pending message phase.
      */
      SCR_CLR (SCR_ACK),
            0,
      SCR_JUMP,
            PADDR (dispatch),

}/*-------------------------< NO_DATA >--------------------*/,{
      /*
      **    The target wants to tranfer too much data
      **    or in the wrong direction.
      **      Remember that in extended error.
      */
      SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
            0,
      SCR_COPY (1),
            RADDR (scratcha),
            NADDR (xerr_st),
      /*
      **      Discard one data byte, if required.
      */
      SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
            8,
      SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
            NADDR (scratch),
      SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
            8,
      SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
            NADDR (scratch),
      /*
      **      .. and repeat as required.
      */
      SCR_CALL,
            PADDR (dispatch),
      SCR_JUMP,
            PADDR (no_data),

}/*-------------------------< STATUS >--------------------*/,{
      /*
      **    get the status
      */
      SCR_MOVE_ABS (1) ^ SCR_STATUS,
            NADDR (scratch),
      /*
      **    save status to scsi_status.
      **    mark as complete.
      */
      SCR_TO_REG (SS_REG),
            0,
      SCR_LOAD_REG (HS_REG, HS_COMPLETE),
            0,
      SCR_JUMP,
            PADDR (dispatch),
}/*-------------------------< MSG_IN >--------------------*/,{
      /*
      **    Get the first byte of the message
      **    and save it to SCRATCHA.
      **
      **    The script processor doesn't negate the
      **    ACK signal after this transfer.
      */
      SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
            NADDR (msgin[0]),
}/*-------------------------< MSG_IN2 >--------------------*/,{
      /*
      **    Handle this message.
      */
      SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
            PADDR (complete),
      SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
            PADDR (disconnect),
      SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
            PADDR (save_dp),
      SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
            PADDR (restore_dp),
      SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
            PADDRH (msg_extended),
      SCR_JUMP ^ IFTRUE (DATA (NOP)),
            PADDR (clrack),
      SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
            PADDRH (msg_reject),
      SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
            PADDRH (msg_ign_residue),
      /*
      **    Rest of the messages left as
      **    an exercise ...
      **
      **    Unimplemented messages:
      **    fall through to MSG_BAD.
      */
}/*-------------------------< MSG_BAD >------------------*/,{
      /*
      **    unimplemented message - reject it.
      */
      SCR_INT,
            SIR_REJECT_SENT,
      SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
            0,
}/*-------------------------< SETMSG >----------------------*/,{
      SCR_COPY (1),
            RADDR (scratcha),
            NADDR (msgout),
      SCR_SET (SCR_ATN),
            0,
      SCR_JUMP,
            PADDR (clrack),
}/*-------------------------< CLEANUP >-------------------*/,{
      /*
      **      dsa:    Pointer to ccb
      **          or xxxxxxFF (no ccb)
      **
      **      HS_REG:   Host-Status (<>0!)
      */
      SCR_FROM_REG (dsa),
            0,
      SCR_JUMP ^ IFTRUE (DATA (0xff)),
            PADDR (start),
      /*
      **      dsa is valid.
      **    complete the cleanup.
      */
      SCR_JUMP,
            PADDR (cleanup_ok),

}/*-------------------------< COMPLETE >-----------------*/,{
      /*
      **    Complete message.
      **
      **    Copy TEMP register to LASTP in header.
      */
      SCR_COPY (4),
            RADDR (temp),
            NADDR (header.lastp),
      /*
      **    When we terminate the cycle by clearing ACK,
      **    the target may disconnect immediately.
      **
      **    We don't want to be told of an
      **    "unexpected disconnect",
      **    so we disable this feature.
      */
      SCR_REG_REG (scntl2, SCR_AND, 0x7f),
            0,
      /*
      **    Terminate cycle ...
      */
      SCR_CLR (SCR_ACK|SCR_ATN),
            0,
      /*
      **    ... and wait for the disconnect.
      */
      SCR_WAIT_DISC,
            0,
}/*-------------------------< CLEANUP_OK >----------------*/,{
      /*
      **    Save host status to header.
      */
      SCR_COPY (4),
            RADDR (scr0),
            NADDR (header.status),
      /*
      **    and copy back the header to the ccb.
      */
      SCR_COPY_F (4),
            RADDR (dsa),
            PADDR (cleanup0),
      /*
      **    Flush script prefetch if required
      */
      PREFETCH_FLUSH
      SCR_COPY (sizeof (struct head)),
            NADDR (header),
}/*-------------------------< CLEANUP0 >--------------------*/,{
            0,
}/*-------------------------< SIGNAL >----------------------*/,{
      /*
      **    if job not completed ...
      */
      SCR_FROM_REG (HS_REG),
            0,
      /*
      **    ... start the next command.
      */
      SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
            PADDR(start),
      /*
      **    If command resulted in not GOOD status,
      **    call the C code if needed.
      */
      SCR_FROM_REG (SS_REG),
            0,
      SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
            PADDRH (bad_status),

#ifndef     SCSI_NCR_CCB_DONE_SUPPORT

      /*
      **    ... signal completion to the host
      */
      SCR_INT,
            SIR_INTFLY,
      /*
      **    Auf zu neuen Schandtaten!
      */
      SCR_JUMP,
            PADDR(start),

#else /* defined SCSI_NCR_CCB_DONE_SUPPORT */

      /*
      **    ... signal completion to the host
      */
      SCR_JUMP,
}/*------------------------< DONE_POS >---------------------*/,{
            PADDRH (done_queue),
}/*------------------------< DONE_PLUG >--------------------*/,{
      SCR_INT,
            SIR_DONE_OVERFLOW,
}/*------------------------< DONE_END >---------------------*/,{
      SCR_INT,
            SIR_INTFLY,
      SCR_COPY (4),
            RADDR (temp),
            PADDR (done_pos),
      SCR_JUMP,
            PADDR (start),

#endif      /* SCSI_NCR_CCB_DONE_SUPPORT */

}/*-------------------------< SAVE_DP >------------------*/,{
      /*
      **    SAVE_DP message:
      **    Copy TEMP register to SAVEP in header.
      */
      SCR_COPY (4),
            RADDR (temp),
            NADDR (header.savep),
      SCR_CLR (SCR_ACK),
            0,
      SCR_JUMP,
            PADDR (dispatch),
}/*-------------------------< RESTORE_DP >---------------*/,{
      /*
      **    RESTORE_DP message:
      **    Copy SAVEP in header to TEMP register.
      */
      SCR_COPY (4),
            NADDR (header.savep),
            RADDR (temp),
      SCR_JUMP,
            PADDR (clrack),

}/*-------------------------< DISCONNECT >---------------*/,{
      /*
      **    DISCONNECTing  ...
      **
      **    disable the "unexpected disconnect" feature,
      **    and remove the ACK signal.
      */
      SCR_REG_REG (scntl2, SCR_AND, 0x7f),
            0,
      SCR_CLR (SCR_ACK|SCR_ATN),
            0,
      /*
      **    Wait for the disconnect.
      */
      SCR_WAIT_DISC,
            0,
      /*
      **    Status is: DISCONNECTED.
      */
      SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
            0,
      SCR_JUMP,
            PADDR (cleanup_ok),

}/*-------------------------< MSG_OUT >-------------------*/,{
      /*
      **    The target requests a message.
      */
      SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
            NADDR (msgout),
      SCR_COPY (1),
            NADDR (msgout),
            NADDR (lastmsg),
      /*
      **    If it was no ABORT message ...
      */
      SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
            PADDRH (msg_out_abort),
      /*
      **    ... wait for the next phase
      **    if it's a message out, send it again, ...
      */
      SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
            PADDR (msg_out),
}/*-------------------------< MSG_OUT_DONE >--------------*/,{
      /*
      **    ... else clear the message ...
      */
      SCR_LOAD_REG (scratcha, NOP),
            0,
      SCR_COPY (4),
            RADDR (scratcha),
            NADDR (msgout),
      /*
      **    ... and process the next phase
      */
      SCR_JUMP,
            PADDR (dispatch),
}/*-------------------------< IDLE >------------------------*/,{
      /*
      **    Nothing to do?
      **    Wait for reselect.
      **    This NOP will be patched with LED OFF
      **    SCR_REG_REG (gpreg, SCR_OR, 0x01)
      */
      SCR_NO_OP,
            0,
}/*-------------------------< RESELECT >--------------------*/,{
      /*
      **    make the DSA invalid.
      */
      SCR_LOAD_REG (dsa, 0xff),
            0,
      SCR_CLR (SCR_TRG),
            0,
      SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
            0,
      /*
      **    Sleep waiting for a reselection.
      **    If SIGP is set, special treatment.
      **
      **    Zu allem bereit ..
      */
      SCR_WAIT_RESEL,
            PADDR(start),
}/*-------------------------< RESELECTED >------------------*/,{
      /*
      **    This NOP will be patched with LED ON
      **    SCR_REG_REG (gpreg, SCR_AND, 0xfe)
      */
      SCR_NO_OP,
            0,
      /*
      **    ... zu nichts zu gebrauchen ?
      **
      **      load the target id into the SFBR
      **    and jump to the control block.
      **
      **    Look at the declarations of
      **    - struct ncb
      **    - struct tcb
      **    - struct lcb
      **    - struct ccb
      **    to understand what's going on.
      */
      SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
            0,
      SCR_TO_REG (sdid),
            0,
      SCR_JUMP,
            NADDR (jump_tcb),

}/*-------------------------< RESEL_DSA >-------------------*/,{
      /*
      **    Ack the IDENTIFY or TAG previously received.
      */
      SCR_CLR (SCR_ACK),
            0,
      /*
      **      The ncr doesn't have an indirect load
      **    or store command. So we have to
      **    copy part of the control block to a
      **    fixed place, where we can access it.
      **
      **    We patch the address part of a
      **    COPY command with the DSA-register.
      */
      SCR_COPY_F (4),
            RADDR (dsa),
            PADDR (loadpos1),
      /*
      **    Flush script prefetch if required
      */
      PREFETCH_FLUSH
      /*
      **    then we do the actual copy.
      */
      SCR_COPY (sizeof (struct head)),
      /*
      **    continued after the next label ...
      */

}/*-------------------------< LOADPOS1 >-------------------*/,{
            0,
            NADDR (header),
      /*
      **    The DSA contains the data structure address.
      */
      SCR_JUMP,
            PADDR (prepare),

}/*-------------------------< RESEL_LUN >-------------------*/,{
      /*
      **    come back to this point
      **    to get an IDENTIFY message
      **    Wait for a msg_in phase.
      */
      SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
            SIR_RESEL_NO_MSG_IN,
      /*
      **    message phase.
      **    Read the data directly from the BUS DATA lines.
      **    This helps to support very old SCSI devices that 
      **    may reselect without sending an IDENTIFY.
      */
      SCR_FROM_REG (sbdl),
            0,
      /*
      **    It should be an Identify message.
      */
      SCR_RETURN,
            0,
}/*-------------------------< RESEL_TAG >-------------------*/,{
      /*
      **    Read IDENTIFY + SIMPLE + TAG using a single MOVE.
      **    Agressive optimization, is'nt it?
      **    No need to test the SIMPLE TAG message, since the 
      **    driver only supports conformant devices for tags. ;-)
      */
      SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
            NADDR (msgin),
      /*
      **    Read the TAG from the SIDL.
      **    Still an aggressive optimization. ;-)
      **    Compute the CCB indirect jump address which 
      **    is (#TAG*2 & 0xfc) due to tag numbering using 
      **    1,3,5..MAXTAGS*2+1 actual values.
      */
      SCR_REG_SFBR (sidl, SCR_SHL, 0),
            0,
      SCR_SFBR_REG (temp, SCR_AND, 0xfc),
            0,
}/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
      SCR_COPY_F (4),
            RADDR (temp),
            PADDR (nexus_indirect),
      /*
      **    Flush script prefetch if required
      */
      PREFETCH_FLUSH
      SCR_COPY (4),
}/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
            0,
            RADDR (temp),
      SCR_RETURN,
            0,
}/*-------------------------< RESEL_NOTAG >-------------------*/,{
      /*
      **    No tag expected.
      **    Read an throw away the IDENTIFY.
      */
      SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
            NADDR (msgin),
      SCR_JUMP,
            PADDR (jump_to_nexus),
}/*-------------------------< DATA_IN >--------------------*/,{
/*
**    Because the size depends on the
**    #define MAX_SCATTERL parameter,
**    it is filled in at runtime.
**
**  ##===========< i=0; i<MAX_SCATTERL >=========
**  ||      SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
**  ||            PADDR (dispatch),
**  ||      SCR_MOVE_TBL ^ SCR_DATA_IN,
**  ||            offsetof (struct dsb, data[ i]),
**  ##==========================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< DATA_IN2 >-------------------*/,{
      SCR_CALL,
            PADDR (dispatch),
      SCR_JUMP,
            PADDR (no_data),
}/*-------------------------< DATA_OUT >--------------------*/,{
/*
**    Because the size depends on the
**    #define MAX_SCATTERL parameter,
**    it is filled in at runtime.
**
**  ##===========< i=0; i<MAX_SCATTERL >=========
**  ||      SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
**  ||            PADDR (dispatch),
**  ||      SCR_MOVE_TBL ^ SCR_DATA_OUT,
**  ||            offsetof (struct dsb, data[ i]),
**  ##==========================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< DATA_OUT2 >-------------------*/,{
      SCR_CALL,
            PADDR (dispatch),
      SCR_JUMP,
            PADDR (no_data),
}/*--------------------------------------------------------*/
};

static      struct scripth scripth0 __initdata = {
/*-------------------------< TRYLOOP >---------------------*/{
/*
**    Start the next entry.
**    Called addresses point to the launch script in the CCB.
**    They are patched by the main processor.
**
**    Because the size depends on the
**    #define MAX_START parameter, it is filled
**    in at runtime.
**
**-----------------------------------------------------------
**
**  ##===========< I=0; i<MAX_START >===========
**  ||      SCR_CALL,
**  ||            PADDR (idle),
**  ##==========================================
**
**-----------------------------------------------------------
*/
0
}/*------------------------< TRYLOOP2 >---------------------*/,{
      SCR_JUMP,
            PADDRH(tryloop),

#ifdef SCSI_NCR_CCB_DONE_SUPPORT

}/*------------------------< DONE_QUEUE >-------------------*/,{
/*
**    Copy the CCB address to the next done entry.
**    Because the size depends on the
**    #define MAX_DONE parameter, it is filled
**    in at runtime.
**
**-----------------------------------------------------------
**
**  ##===========< I=0; i<MAX_DONE >===========
**  ||      SCR_COPY (sizeof(struct ccb *),
**  ||            NADDR (header.cp),
**  ||            NADDR (ccb_done[i]),
**  ||      SCR_CALL,
**  ||            PADDR (done_end),
**  ##==========================================
**
**-----------------------------------------------------------
*/
0
}/*------------------------< DONE_QUEUE2 >------------------*/,{
      SCR_JUMP,
            PADDRH (done_queue),

#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
}/*------------------------< SELECT_NO_ATN >-----------------*/,{
      /*
      **    Set Initiator mode.
      **      And try to select this target without ATN.
      */

      SCR_CLR (SCR_TRG),
            0,
      SCR_LOAD_REG (HS_REG, HS_SELECTING),
            0,
      SCR_SEL_TBL ^ offsetof (struct dsb, select),
            PADDR (reselect),
      SCR_JUMP,
            PADDR (select2),

}/*-------------------------< CANCEL >------------------------*/,{

      SCR_LOAD_REG (scratcha, HS_ABORTED),
            0,
      SCR_JUMPR,
            8,
}/*-------------------------< SKIP >------------------------*/,{
      SCR_LOAD_REG (scratcha, 0),
            0,
      /*
      **    This entry has been canceled.
      **    Next time use the next slot.
      */
      SCR_COPY (4),
            RADDR (temp),
            PADDR (startpos),
      /*
      **      The ncr doesn't have an indirect load
      **    or store command. So we have to
      **    copy part of the control block to a
      **    fixed place, where we can access it.
      **
      **    We patch the address part of a
      **    COPY command with the DSA-register.
      */
      SCR_COPY_F (4),
            RADDR (dsa),
            PADDRH (skip2),
      /*
      **    Flush script prefetch if required
      */
      PREFETCH_FLUSH
      /*
      **    then we do the actual copy.
      */
      SCR_COPY (sizeof (struct head)),
      /*
      **    continued after the next label ...
      */
}/*-------------------------< SKIP2 >---------------------*/,{
            0,
            NADDR (header),
      /*
      **      Initialize the status registers
      */
      SCR_COPY (4),
            NADDR (header.status),
            RADDR (scr0),
      /*
      **    Force host status.
      */
      SCR_FROM_REG (scratcha),
            0,
      SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
            16,
      SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
            0,
      SCR_JUMPR,
            8,
      SCR_TO_REG (HS_REG),
            0,
      SCR_LOAD_REG (SS_REG, S_GOOD),
            0,
      SCR_JUMP,
            PADDR (cleanup_ok),

},/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
      /*
      **    Ignore all data in byte, until next phase
      */
      SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
            PADDRH (par_err_other),
      SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
            NADDR (scratch),
      SCR_JUMPR,
            -24,
},/*-------------------------< PAR_ERR_OTHER >------------------*/{
      /*
      **    count it.
      */
      SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
            0,
      /*
      **    jump to dispatcher.
      */
      SCR_JUMP,
            PADDR (dispatch),
}/*-------------------------< MSG_REJECT >---------------*/,{
      /*
      **    If a negotiation was in progress,
      **    negotiation failed.
      **    Otherwise, let the C code print 
      **    some message.
      */
      SCR_FROM_REG (HS_REG),
            0,
      SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
            SIR_REJECT_RECEIVED,
      SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
            SIR_NEGO_FAILED,
      SCR_JUMP,
            PADDR (clrack),

}/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
      /*
      **    Terminate cycle
      */
      SCR_CLR (SCR_ACK),
            0,
      SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
            PADDR (dispatch),
      /*
      **    get residue size.
      */
      SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
            NADDR (msgin[1]),
      /*
      **    Size is 0 .. ignore message.
      */
      SCR_JUMP ^ IFTRUE (DATA (0)),
            PADDR (clrack),
      /*
      **    Size is not 1 .. have to interrupt.
      */
      SCR_JUMPR ^ IFFALSE (DATA (1)),
            40,
      /*
      **    Check for residue byte in swide register
      */
      SCR_FROM_REG (scntl2),
            0,
      SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
            16,
      /*
      **    There IS data in the swide register.
      **    Discard it.
      */
      SCR_REG_REG (scntl2, SCR_OR, WSR),
            0,
      SCR_JUMP,
            PADDR (clrack),
      /*
      **    Load again the size to the sfbr register.
      */
      SCR_FROM_REG (scratcha),
            0,
      SCR_INT,
            SIR_IGN_RESIDUE,
      SCR_JUMP,
            PADDR (clrack),

}/*-------------------------< MSG_EXTENDED >-------------*/,{
      /*
      **    Terminate cycle
      */
      SCR_CLR (SCR_ACK),
            0,
      SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
            PADDR (dispatch),
      /*
      **    get length.
      */
      SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
            NADDR (msgin[1]),
      /*
      */
      SCR_JUMP ^ IFTRUE (DATA (3)),
            PADDRH (msg_ext_3),
      SCR_JUMP ^ IFFALSE (DATA (2)),
            PADDR (msg_bad),
}/*-------------------------< MSG_EXT_2 >----------------*/,{
      SCR_CLR (SCR_ACK),
            0,
      SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
            PADDR (dispatch),
      /*
      **    get extended message code.
      */
      SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
            NADDR (msgin[2]),
      SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
            PADDRH (msg_wdtr),
      /*
      **    unknown extended message
      */
      SCR_JUMP,
            PADDR (msg_bad)
}/*-------------------------< MSG_WDTR >-----------------*/,{
      SCR_CLR (SCR_ACK),
            0,
      SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
            PADDR (dispatch),
      /*
      **    get data bus width
      */
      SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
            NADDR (msgin[3]),
      /*
      **    let the host do the real work.
      */
      SCR_INT,
            SIR_NEGO_WIDE,
      /*
      **    let the target fetch our answer.
      */
      SCR_SET (SCR_ATN),
            0,
      SCR_CLR (SCR_ACK),
            0,
      SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
            PADDRH (nego_bad_phase),

}/*-------------------------< SEND_WDTR >----------------*/,{
      /*
      **    Send the EXTENDED_WDTR
      */
      SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
            NADDR (msgout),
      SCR_COPY (1),
            NADDR (msgout),
            NADDR (lastmsg),
      SCR_JUMP,
            PADDR (msg_out_done),

}/*-------------------------< MSG_EXT_3 >----------------*/,{
      SCR_CLR (SCR_ACK),
            0,
      SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
            PADDR (dispatch),
      /*
      **    get extended message code.
      */
      SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
            NADDR (msgin[2]),
      SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
            PADDRH (msg_sdtr),
      /*
      **    unknown extended message
      */
      SCR_JUMP,
            PADDR (msg_bad)

}/*-------------------------< MSG_SDTR >-----------------*/,{
      SCR_CLR (SCR_ACK),
            0,
      SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
            PADDR (dispatch),
      /*
      **    get period and offset
      */
      SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
            NADDR (msgin[3]),
      /*
      **    let the host do the real work.
      */
      SCR_INT,
            SIR_NEGO_SYNC,
      /*
      **    let the target fetch our answer.
      */
      SCR_SET (SCR_ATN),
            0,
      SCR_CLR (SCR_ACK),
            0,
      SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
            PADDRH (nego_bad_phase),

}/*-------------------------< SEND_SDTR >-------------*/,{
      /*
      **    Send the EXTENDED_SDTR
      */
      SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
            NADDR (msgout),
      SCR_COPY (1),
            NADDR (msgout),
            NADDR (lastmsg),
      SCR_JUMP,
            PADDR (msg_out_done),

}/*-------------------------< NEGO_BAD_PHASE >------------*/,{
      SCR_INT,
            SIR_NEGO_PROTO,
      SCR_JUMP,
            PADDR (dispatch),

}/*-------------------------< MSG_OUT_ABORT >-------------*/,{
      /*
      **    After ABORT message,
      **
      **    expect an immediate disconnect, ...
      */
      SCR_REG_REG (scntl2, SCR_AND, 0x7f),
            0,
      SCR_CLR (SCR_ACK|SCR_ATN),
            0,
      SCR_WAIT_DISC,
            0,
      /*
      **    ... and set the status to "ABORTED"
      */
      SCR_LOAD_REG (HS_REG, HS_ABORTED),
            0,
      SCR_JUMP,
            PADDR (cleanup),

}/*-------------------------< HDATA_IN >-------------------*/,{
/*
**    Because the size depends on the
**    #define MAX_SCATTERH parameter,
**    it is filled in at runtime.
**
**  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
**  ||      SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
**  ||            PADDR (dispatch),
**  ||      SCR_MOVE_TBL ^ SCR_DATA_IN,
**  ||            offsetof (struct dsb, data[ i]),
**  ##===================================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< HDATA_IN2 >------------------*/,{
      SCR_JUMP,
            PADDR (data_in),

}/*-------------------------< HDATA_OUT >-------------------*/,{
/*
**    Because the size depends on the
**    #define MAX_SCATTERH parameter,
**    it is filled in at runtime.
**
**  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
**  ||      SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
**  ||            PADDR (dispatch),
**  ||      SCR_MOVE_TBL ^ SCR_DATA_OUT,
**  ||            offsetof (struct dsb, data[ i]),
**  ##===================================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< HDATA_OUT2 >------------------*/,{
      SCR_JUMP,
            PADDR (data_out),

}/*-------------------------< RESET >----------------------*/,{
      /*
      **      Send a TARGET_RESET message if bad IDENTIFY 
      **    received on reselection.
      */
      SCR_LOAD_REG (scratcha, ABORT_TASK),
            0,
      SCR_JUMP,
            PADDRH (abort_resel),
}/*-------------------------< ABORTTAG >-------------------*/,{
      /*
      **      Abort a wrong tag received on reselection.
      */
      SCR_LOAD_REG (scratcha, ABORT_TASK),
            0,
      SCR_JUMP,
            PADDRH (abort_resel),
}/*-------------------------< ABORT >----------------------*/,{
      /*
      **      Abort a reselection when no active CCB.
      */
      SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
            0,
}/*-------------------------< ABORT_RESEL >----------------*/,{
      SCR_COPY (1),
            RADDR (scratcha),
            NADDR (msgout),
      SCR_SET (SCR_ATN),
            0,
      SCR_CLR (SCR_ACK),
            0,
      /*
      **    and send it.
      **    we expect an immediate disconnect
      */
      SCR_REG_REG (scntl2, SCR_AND, 0x7f),
            0,
      SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
            NADDR (msgout),
      SCR_COPY (1),
            NADDR (msgout),
            NADDR (lastmsg),
      SCR_CLR (SCR_ACK|SCR_ATN),
            0,
      SCR_WAIT_DISC,
            0,
      SCR_JUMP,
            PADDR (start),
}/*-------------------------< RESEND_IDENT >-------------------*/,{
      /*
      **    The target stays in MSG OUT phase after having acked 
      **    Identify [+ Tag [+ Extended message ]]. Targets shall
      **    behave this way on parity error.
      **    We must send it again all the messages.
      */
      SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
            0,         /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
      SCR_JUMP,
            PADDR (send_ident),
}/*-------------------------< CLRATN_GO_ON >-------------------*/,{
      SCR_CLR (SCR_ATN),
            0,
      SCR_JUMP,
}/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
            0,
}/*-------------------------< SDATA_IN >-------------------*/,{
      SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
            PADDR (dispatch),
      SCR_MOVE_TBL ^ SCR_DATA_IN,
            offsetof (struct dsb, sense),
      SCR_CALL,
            PADDR (dispatch),
      SCR_JUMP,
            PADDR (no_data),
}/*-------------------------< DATA_IO >--------------------*/,{
      /*
      **    We jump here if the data direction was unknown at the 
      **    time we had to queue the command to the scripts processor.
      **    Pointers had been set as follow in this situation:
      **      savep   -->   DATA_IO
      **      lastp   -->   start pointer when DATA_IN
      **      goalp   -->   goal  pointer when DATA_IN
      **      wlastp  -->   start pointer when DATA_OUT
      **      wgoalp  -->   goal  pointer when DATA_OUT
      **    This script sets savep/lastp/goalp according to the 
      **    direction chosen by the target.
      */
      SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
            32,
      /*
      **    Direction is DATA IN.
      **    Warning: we jump here, even when phase is DATA OUT.
      */
      SCR_COPY (4),
            NADDR (header.lastp),
            NADDR (header.savep),

      /*
      **    Jump to the SCRIPTS according to actual direction.
      */
      SCR_COPY (4),
            NADDR (header.savep),
            RADDR (temp),
      SCR_RETURN,
            0,
      /*
      **    Direction is DATA OUT.
      */
      SCR_COPY (4),
            NADDR (header.wlastp),
            NADDR (header.lastp),
      SCR_COPY (4),
            NADDR (header.wgoalp),
            NADDR (header.goalp),
      SCR_JUMPR,
            -64,
}/*-------------------------< BAD_IDENTIFY >---------------*/,{
      /*
      **    If message phase but not an IDENTIFY,
      **    get some help from the C code.
      **    Old SCSI device may behave so.
      */
      SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
            16,
      SCR_INT,
            SIR_RESEL_NO_IDENTIFY,
      SCR_JUMP,
            PADDRH (reset),
      /*
      **    Message is an IDENTIFY, but lun is unknown.
      **    Read the message, since we got it directly 
      **    from the SCSI BUS data lines.
      **    Signal problem to C code for logging the event.
      **    Send an ABORT_TASK_SET to clear all pending tasks.
      */
      SCR_INT,
            SIR_RESEL_BAD_LUN,
      SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
            NADDR (msgin),
      SCR_JUMP,
            PADDRH (abort),
}/*-------------------------< BAD_I_T_L >------------------*/,{
      /*
      **    We donnot have a task for that I_T_L.
      **    Signal problem to C code for logging the event.
      **    Send an ABORT_TASK_SET message.
      */
      SCR_INT,
            SIR_RESEL_BAD_I_T_L,
      SCR_JUMP,
            PADDRH (abort),
}/*-------------------------< BAD_I_T_L_Q >----------------*/,{
      /*
      **    We donnot have a task that matches the tag.
      **    Signal problem to C code for logging the event.
      **    Send an ABORT_TASK message.
      */
      SCR_INT,
            SIR_RESEL_BAD_I_T_L_Q,
      SCR_JUMP,
            PADDRH (aborttag),
}/*-------------------------< BAD_TARGET >-----------------*/,{
      /*
      **    We donnot know the target that reselected us.
      **    Grab the first message if any (IDENTIFY).
      **    Signal problem to C code for logging the event.
      **    TARGET_RESET message.
      */
      SCR_INT,
            SIR_RESEL_BAD_TARGET,
      SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
            8,
      SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
            NADDR (msgin),
      SCR_JUMP,
            PADDRH (reset),
}/*-------------------------< BAD_STATUS >-----------------*/,{
      /*
      **    If command resulted in either QUEUE FULL,
      **    CHECK CONDITION or COMMAND TERMINATED,
      **    call the C code.
      */
      SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
            SIR_BAD_STATUS,
      SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
            SIR_BAD_STATUS,
      SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
            SIR_BAD_STATUS,
      SCR_RETURN,
            0,
}/*-------------------------< START_RAM >-------------------*/,{
      /*
      **    Load the script into on-chip RAM, 
      **    and jump to start point.
      */
      SCR_COPY_F (4),
            RADDR (scratcha),
            PADDRH (start_ram0),
      /*
      **    Flush script prefetch if required
      */
      PREFETCH_FLUSH
      SCR_COPY (sizeof (struct script)),
}/*-------------------------< START_RAM0 >--------------------*/,{
            0,
            PADDR (start),
      SCR_JUMP,
            PADDR (start),
}/*-------------------------< STO_RESTART >-------------------*/,{
      /*
      **
      **    Repair start queue (e.g. next time use the next slot) 
      **    and jump to start point.
      */
      SCR_COPY (4),
            RADDR (temp),
            PADDR (startpos),
      SCR_JUMP,
            PADDR (start),
}/*-------------------------< WAIT_DMA >-------------------*/,{
      /*
      **    For HP Zalon/53c720 systems, the Zalon interface
      **    between CPU and 53c720 does prefetches, which causes
      **    problems with self modifying scripts.  The problem
      **    is overcome by calling a dummy subroutine after each
      **    modification, to force a refetch of the script on
      **    return from the subroutine.
      */
      SCR_RETURN,
            0,
}/*-------------------------< SNOOPTEST >-------------------*/,{
      /*
      **    Read the variable.
      */
      SCR_COPY (4),
            NADDR(ncr_cache),
            RADDR (scratcha),
      /*
      **    Write the variable.
      */
      SCR_COPY (4),
            RADDR (temp),
            NADDR(ncr_cache),
      /*
      **    Read back the variable.
      */
      SCR_COPY (4),
            NADDR(ncr_cache),
            RADDR (temp),
}/*-------------------------< SNOOPEND >-------------------*/,{
      /*
      **    And stop.
      */
      SCR_INT,
            99,
}/*--------------------------------------------------------*/
};

/*==========================================================
**
**
**    Fill in #define dependent parts of the script
**
**
**==========================================================
*/

void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
{
      int   i;
      ncrcmd      *p;

      p = scrh->tryloop;
      for (i=0; i<MAX_START; i++) {
            *p++ =SCR_CALL;
            *p++ =PADDR (idle);
      }

      BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));

#ifdef SCSI_NCR_CCB_DONE_SUPPORT

      p = scrh->done_queue;
      for (i = 0; i<MAX_DONE; i++) {
            *p++ =SCR_COPY (sizeof(struct ccb *));
            *p++ =NADDR (header.cp);
            *p++ =NADDR (ccb_done[i]);
            *p++ =SCR_CALL;
            *p++ =PADDR (done_end);
      }

      BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));

#endif /* SCSI_NCR_CCB_DONE_SUPPORT */

      p = scrh->hdata_in;
      for (i=0; i<MAX_SCATTERH; i++) {
            *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
            *p++ =PADDR (dispatch);
            *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
            *p++ =offsetof (struct dsb, data[i]);
      }

      BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));

      p = scr->data_in;
      for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
            *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
            *p++ =PADDR (dispatch);
            *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
            *p++ =offsetof (struct dsb, data[i]);
      }

      BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));

      p = scrh->hdata_out;
      for (i=0; i<MAX_SCATTERH; i++) {
            *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
            *p++ =PADDR (dispatch);
            *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
            *p++ =offsetof (struct dsb, data[i]);
      }

      BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));

      p = scr->data_out;
      for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
            *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
            *p++ =PADDR (dispatch);
            *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
            *p++ =offsetof (struct dsb, data[i]);
      }

      BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
}

/*==========================================================
**
**
**    Copy and rebind a script.
**
**
**==========================================================
*/

static void __init 
ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
{
      ncrcmd  opcode, new, old, tmp1, tmp2;
      ncrcmd      *start, *end;
      int relocs;
      int opchanged = 0;

      start = src;
      end = src + len/4;

      while (src < end) {

            opcode = *src++;
            *dst++ = cpu_to_scr(opcode);

            /*
            **    If we forget to change the length
            **    in struct script, a field will be
            **    padded with 0. This is an illegal
            **    command.
            */

            if (opcode == 0) {
                  printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
                        ncr_name(np), (int) (src-start-1));
                  mdelay(1000);
            }

            if (DEBUG_FLAGS & DEBUG_SCRIPT)
                  printk (KERN_DEBUG "%p:  <%x>\n",
                        (src-1), (unsigned)opcode);

            /*
            **    We don't have to decode ALL commands
            */
            switch (opcode >> 28) {

            case 0xc:
                  /*
                  **    COPY has TWO arguments.
                  */
                  relocs = 2;
                  tmp1 = src[0];
#ifdef      RELOC_KVAR
                  if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
                        tmp1 = 0;
#endif
                  tmp2 = src[1];
#ifdef      RELOC_KVAR
                  if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
                        tmp2 = 0;
#endif
                  if ((tmp1 ^ tmp2) & 3) {
                        printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
                              ncr_name(np), (int) (src-start-1));
                        mdelay(1000);
                  }
                  /*
                  **    If PREFETCH feature not enabled, remove 
                  **    the NO FLUSH bit if present.
                  */
                  if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
                        dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
                        ++opchanged;
                  }
                  break;

            case 0x0:
                  /*
                  **    MOVE (absolute address)
                  */
                  relocs = 1;
                  break;

            case 0x8:
                  /*
                  **    JUMP / CALL
                  **    don't relocate if relative :-)
                  */
                  if (opcode & 0x00800000)
                        relocs = 0;
                  else
                        relocs = 1;
                  break;

            case 0x4:
            case 0x5:
            case 0x6:
            case 0x7:
                  relocs = 1;
                  break;

            default:
                  relocs = 0;
                  break;
            }

            if (relocs) {
                  while (relocs--) {
                        old = *src++;

                        switch (old & RELOC_MASK) {
                        case RELOC_REGISTER:
                              new = (old & ~RELOC_MASK) + np->paddr;
                              break;
                        case RELOC_LABEL:
                              new = (old & ~RELOC_MASK) + np->p_script;
                              break;
                        case RELOC_LABELH:
                              new = (old & ~RELOC_MASK) + np->p_scripth;
                              break;
                        case RELOC_SOFTC:
                              new = (old & ~RELOC_MASK) + np->p_ncb;
                              break;
#ifdef      RELOC_KVAR
                        case RELOC_KVAR:
                              if (((old & ~RELOC_MASK) <
                                   SCRIPT_KVAR_FIRST) ||
                                  ((old & ~RELOC_MASK) >
                                   SCRIPT_KVAR_LAST))
                                    panic("ncr KVAR out of range");
                              new = vtophys(script_kvars[old &
                                  ~RELOC_MASK]);
                              break;
#endif
                        case 0:
                              /* Don't relocate a 0 address. */
                              if (old == 0) {
                                    new = old;
                                    break;
                              }
                              /* fall through */
                        default:
                              panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
                              break;
                        }

                        *dst++ = cpu_to_scr(new);
                  }
            } else
                  *dst++ = cpu_to_scr(*src++);

      }
}

/*
**    Linux host data structure
*/

struct host_data {
     struct ncb *ncb;
};

#define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)

static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
{
      PRINT_ADDR(cp->cmd, "%s: ", label);

      spi_print_msg(msg);
      printk("\n");
}

/*==========================================================
**
**    NCR chip clock divisor table.
**    Divisors are multiplied by 10,000,000 in order to make 
**    calculations more simple.
**
**==========================================================
*/

#define _5M 5000000
static u_long div_10M[] =
      {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};


/*===============================================================
**
**    Prepare io register values used by ncr_init() according 
**    to selected and supported features.
**
**    NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128 
**    transfers. 32,64,128 are only supported by 875 and 895 chips.
**    We use log base 2 (burst length) as internal code, with 
**    value 0 meaning "burst disabled".
**
**===============================================================
*/

/*
 *    Burst length from burst code.
 */
#define burst_length(bc) (!(bc))? 0 : 1 << (bc)

/*
 *    Burst code from io register bits.  Burst enable is ctest0 for c720
 */
#define burst_code(dmode, ctest0) \
      (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1

/*
 *    Set initial io register bits from burst code.
 */
static inline void ncr_init_burst(struct ncb *np, u_char bc)
{
      u_char *be = &np->rv_ctest0;
      *be         &= ~0x80;
      np->rv_dmode      &= ~(0x3 << 6);
      np->rv_ctest5     &= ~0x4;

      if (!bc) {
            *be         |= 0x80;
      } else {
            --bc;
            np->rv_dmode      |= ((bc & 0x3) << 6);
            np->rv_ctest5     |= (bc & 0x4);
      }
}

static void __init ncr_prepare_setting(struct ncb *np)
{
      u_char      burst_max;
      u_long      period;
      int i;

      /*
      **    Save assumed BIOS setting
      */

      np->sv_scntl0     = INB(nc_scntl0) & 0x0a;
      np->sv_scntl3     = INB(nc_scntl3) & 0x07;
      np->sv_dmode      = INB(nc_dmode)  & 0xce;
      np->sv_dcntl      = INB(nc_dcntl)  & 0xa8;
      np->sv_ctest0     = INB(nc_ctest0) & 0x84;
      np->sv_ctest3     = INB(nc_ctest3) & 0x01;
      np->sv_ctest4     = INB(nc_ctest4) & 0x80;
      np->sv_ctest5     = INB(nc_ctest5) & 0x24;
      np->sv_gpcntl     = INB(nc_gpcntl);
      np->sv_stest2     = INB(nc_stest2) & 0x20;
      np->sv_stest4     = INB(nc_stest4);

      /*
      **    Wide ?
      */

      np->maxwide = (np->features & FE_WIDE)? 1 : 0;

      /*
       *  Guess the frequency of the chip's clock.
       */
      if (np->features & FE_ULTRA)
            np->clock_khz = 80000;
      else
            np->clock_khz = 40000;

      /*
       *  Get the clock multiplier factor.
       */
      if    (np->features & FE_QUAD)
            np->multiplier    = 4;
      else if     (np->features & FE_DBLR)
            np->multiplier    = 2;
      else
            np->multiplier    = 1;

      /*
       *  Measure SCSI clock frequency for chips 
       *  it may vary from assumed one.
       */
      if (np->features & FE_VARCLK)
            ncr_getclock(np, np->multiplier);

      /*
       * Divisor to be used for async (timer pre-scaler).
       */
      i = np->clock_divn - 1;
      while (--i >= 0) {
            if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
                  ++i;
                  break;
            }
      }
      np->rv_scntl3 = i+1;

      /*
       * Minimum synchronous period factor supported by the chip.
       * Btw, 'period' is in tenths of nanoseconds.
       */

      period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
      if    (period <= 250)         np->minsync = 10;
      else if     (period <= 303)         np->minsync = 11;
      else if     (period <= 500)         np->minsync = 12;
      else                    np->minsync = (period + 40 - 1) / 40;

      /*
       * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
       */

      if    (np->minsync < 25 && !(np->features & FE_ULTRA))
            np->minsync = 25;

      /*
       * Maximum synchronous period factor supported by the chip.
       */

      period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
      np->maxsync = period > 2540 ? 254 : period / 10;

      /*
      **    Prepare initial value of other IO registers
      */
#if defined SCSI_NCR_TRUST_BIOS_SETTING
      np->rv_scntl0     = np->sv_scntl0;
      np->rv_dmode      = np->sv_dmode;
      np->rv_dcntl      = np->sv_dcntl;
      np->rv_ctest0     = np->sv_ctest0;
      np->rv_ctest3     = np->sv_ctest3;
      np->rv_ctest4     = np->sv_ctest4;
      np->rv_ctest5     = np->sv_ctest5;
      burst_max   = burst_code(np->sv_dmode, np->sv_ctest0);
#else

      /*
      **    Select burst length (dwords)
      */
      burst_max   = driver_setup.burst_max;
      if (burst_max == 255)
            burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
      if (burst_max > 7)
            burst_max = 7;
      if (burst_max > np->maxburst)
            burst_max = np->maxburst;

      /*
      **    Select all supported special features
      */
      if (np->features & FE_ERL)
            np->rv_dmode      |= ERL;           /* Enable Read Line */
      if (np->features & FE_BOF)
            np->rv_dmode      |= BOF;           /* Burst Opcode Fetch */
      if (np->features & FE_ERMP)
            np->rv_dmode      |= ERMP;    /* Enable Read Multiple */
      if (np->features & FE_PFEN)
            np->rv_dcntl      |= PFEN;    /* Prefetch Enable */
      if (np->features & FE_CLSE)
            np->rv_dcntl      |= CLSE;    /* Cache Line Size Enable */
      if (np->features & FE_WRIE)
            np->rv_ctest3     |= WRIE;    /* Write and Invalidate */
      if (np->features & FE_DFS)
            np->rv_ctest5     |= DFS;           /* Dma Fifo Size */
      if (np->features & FE_MUX)
            np->rv_ctest4     |= MUX;           /* Host bus multiplex mode */
      if (np->features & FE_EA)
            np->rv_dcntl      |= EA;            /* Enable ACK */
      if (np->features & FE_EHP)
            np->rv_ctest0     |= EHP;           /* Even host parity */

      /*
      **    Select some other
      */
      if (driver_setup.master_parity)
            np->rv_ctest4     |= MPEE;    /* Master parity checking */
      if (driver_setup.scsi_parity)
            np->rv_scntl0     |= 0x0a;    /*  full arb., ena parity, par->ATN  */

      /*
      **  Get SCSI addr of host adapter (set by bios?).
      */
      if (np->myaddr == 255) {
            np->myaddr = INB(nc_scid) & 0x07;
            if (!np->myaddr)
                  np->myaddr = SCSI_NCR_MYADDR;
      }

#endif /* SCSI_NCR_TRUST_BIOS_SETTING */

      /*
       *    Prepare initial io register bits for burst length
       */
      ncr_init_burst(np, burst_max);

      /*
      **    Set SCSI BUS mode.
      **
      **    - ULTRA2 chips (895/895A/896) report the current 
      **      BUS mode through the STEST4 IO register.
      **    - For previous generation chips (825/825A/875), 
      **      user has to tell us how to check against HVD, 
      **      since a 100% safe algorithm is not possible.
      */
      np->scsi_mode = SMODE_SE;
      if (np->features & FE_DIFF) {
            switch(driver_setup.diff_support) {
            case 4:     /* Trust previous settings if present, then GPIO3 */
                  if (np->sv_scntl3) {
                        if (np->sv_stest2 & 0x20)
                              np->scsi_mode = SMODE_HVD;
                        break;
                  }
            case 3:     /* SYMBIOS controllers report HVD through GPIO3 */
                  if (INB(nc_gpreg) & 0x08)
                        break;
            case 2:     /* Set HVD unconditionally */
                  np->scsi_mode = SMODE_HVD;
            case 1:     /* Trust previous settings for HVD */
                  if (np->sv_stest2 & 0x20)
                        np->scsi_mode = SMODE_HVD;
                  break;
            default:/* Don't care about HVD */  
                  break;
            }
      }
      if (np->scsi_mode == SMODE_HVD)
            np->rv_stest2 |= 0x20;

      /*
      **    Set LED support from SCRIPTS.
      **    Ignore this feature for boards known to use a 
      **    specific GPIO wiring and for the 895A or 896 
      **    that drive the LED directly.
      **    Also probe initial setting of GPIO0 as output.
      */
      if ((driver_setup.led_pin) &&
          !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
            np->features |= FE_LED0;

      /*
      **    Set irq mode.
      */
      switch(driver_setup.irqm & 3) {
      case 2:
            np->rv_dcntl      |= IRQM;
            break;
      case 1:
            np->rv_dcntl      |= (np->sv_dcntl & IRQM);
            break;
      default:
            break;
      }

      /*
      **    Configure targets according to driver setup.
      **    Allow to override sync, wide and NOSCAN from 
      **    boot command line.
      */
      for (i = 0 ; i < MAX_TARGET ; i++) {
            struct tcb *tp = &np->target[i];

            tp->usrsync = driver_setup.default_sync;
            tp->usrwide = driver_setup.max_wide;
            tp->usrtags = MAX_TAGS;
            tp->period = 0xffff;
            if (!driver_setup.disconnection)
                  np->target[i].usrflag = UF_NODISC;
      }

      /*
      **    Announce all that stuff to user.
      */

      printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
            np->myaddr,
            np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
            (np->rv_scntl0 & 0xa)   ? ", Parity Checking"   : ", NO Parity",
            (np->rv_stest2 & 0x20)  ? ", Differential"      : "");

      if (bootverbose > 1) {
            printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
                  "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
                  ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
                  np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);

            printk (KERN_INFO "%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
                  "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
                  ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
                  np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
      }

      if (bootverbose && np->paddr2)
            printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
                  ncr_name(np), np->paddr2);
}

/*==========================================================
**
**
**    Done SCSI commands list management.
**
**    We donnot enter the scsi_done() callback immediately 
**    after a command has been seen as completed but we 
**    insert it into a list which is flushed outside any kind 
**    of driver critical section.
**    This allows to do minimal stuff under interrupt and 
**    inside critical sections and to also avoid locking up 
**    on recursive calls to driver entry points under SMP.
**    In fact, the only kernel point which is entered by the 
**    driver with a driver lock set is kmalloc(GFP_ATOMIC) 
**    that shall not reenter the driver under any circumstances,
**    AFAIK.
**
**==========================================================
*/
static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
{
      unmap_scsi_data(np, cmd);
      cmd->host_scribble = (char *) np->done_list;
      np->done_list = cmd;
}

static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
{
      struct scsi_cmnd *cmd;

      while (lcmd) {
            cmd = lcmd;
            lcmd = (struct scsi_cmnd *) cmd->host_scribble;
            cmd->scsi_done(cmd);
      }
}

/*==========================================================
**
**
**    Prepare the next negotiation message if needed.
**
**    Fill in the part of message buffer that contains the 
**    negotiation and the nego_status field of the CCB.
**    Returns the size of the message in bytes.
**
**
**==========================================================
*/


static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
{
      struct tcb *tp = &np->target[cp->target];
      int msglen = 0;
      int nego = 0;
      struct scsi_target *starget = tp->starget;

      /* negotiate wide transfers ?  */
      if (!tp->widedone) {
            if (spi_support_wide(starget)) {
                  nego = NS_WIDE;
            } else
                  tp->widedone=1;
      }

      /* negotiate synchronous transfers?  */
      if (!nego && !tp->period) {
            if (spi_support_sync(starget)) {
                  nego = NS_SYNC;
            } else {
                  tp->period  =0xffff;
                  dev_info(&starget->dev, "target did not report SYNC.\n");
            }
      }

      switch (nego) {
      case NS_SYNC:
            msglen += spi_populate_sync_msg(msgptr + msglen,
                        tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
            break;
      case NS_WIDE:
            msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
            break;
      }

      cp->nego_status = nego;

      if (nego) {
            tp->nego_cp = cp;
            if (DEBUG_FLAGS & DEBUG_NEGO) {
                  ncr_print_msg(cp, nego == NS_WIDE ?
                                "wide msgout":"sync_msgout", msgptr);
            }
      }

      return msglen;
}



/*==========================================================
**
**
**    Start execution of a SCSI command.
**    This is called from the generic SCSI driver.
**
**
**==========================================================
*/
static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
{
      struct scsi_device *sdev = cmd->device;
      struct tcb *tp = &np->target[sdev->id];
      struct lcb *lp = tp->lp[sdev->lun];
      struct ccb *cp;

      int   segments;
      u_char      idmsg, *msgptr;
      u32   msglen;
      int   direction;
      u32   lastp, goalp;

      /*---------------------------------------------
      **
      **      Some shortcuts ...
      **
      **---------------------------------------------
      */
      if ((sdev->id == np->myaddr     ) ||
            (sdev->id >= MAX_TARGET) ||
            (sdev->lun    >= MAX_LUN   )) {
            return(DID_BAD_TARGET);
      }

      /*---------------------------------------------
      **
      **    Complete the 1st TEST UNIT READY command
      **    with error condition if the device is 
      **    flagged NOSCAN, in order to speed up 
      **    the boot.
      **
      **---------------------------------------------
      */
      if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) && 
          (tp->usrflag & UF_NOSCAN)) {
            tp->usrflag &= ~UF_NOSCAN;
            return DID_BAD_TARGET;
      }

      if (DEBUG_FLAGS & DEBUG_TINY) {
            PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
      }

      /*---------------------------------------------------
      **
      **    Assign a ccb / bind cmd.
      **    If resetting, shorten settle_time if necessary
      **    in order to avoid spurious timeouts.
      **    If resetting or no free ccb,
      **    insert cmd into the waiting list.
      **
      **----------------------------------------------------
      */
      if (np->settle_time && cmd->timeout_per_command >= HZ) {
            u_long tlimit = jiffies + cmd->timeout_per_command - HZ;
            if (time_after(np->settle_time, tlimit))
                  np->settle_time = tlimit;
      }

      if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
            insert_into_waiting_list(np, cmd);
            return(DID_OK);
      }
      cp->cmd = cmd;

      /*----------------------------------------------------
      **
      **    Build the identify / tag / sdtr message
      **
      **----------------------------------------------------
      */

      idmsg = IDENTIFY(0, sdev->lun);

      if (cp ->tag != NO_TAG ||
            (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
            idmsg |= 0x40;

      msgptr = cp->scsi_smsg;
      msglen = 0;
      msgptr[msglen++] = idmsg;

      if (cp->tag != NO_TAG) {
            char order = np->order;

            /*
            **    Force ordered tag if necessary to avoid timeouts 
            **    and to preserve interactivity.
            */
            if (lp && time_after(jiffies, lp->tags_stime)) {
                  if (lp->tags_smap) {
                        order = ORDERED_QUEUE_TAG;
                        if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){ 
                              PRINT_ADDR(cmd,
                                    "ordered tag forced.\n");
                        }
                  }
                  lp->tags_stime = jiffies + 3*HZ;
                  lp->tags_smap = lp->tags_umap;
            }

            if (order == 0) {
                  /*
                  **    Ordered write ops, unordered read ops.
                  */
                  switch (cmd->cmnd[0]) {
                  case 0x08:  /* READ_SMALL (6) */
                  case 0x28:  /* READ_BIG  (10) */
                  case 0xa8:  /* READ_HUGE (12) */
                        order = SIMPLE_QUEUE_TAG;
                        break;
                  default:
                        order = ORDERED_QUEUE_TAG;
                  }
            }
            msgptr[msglen++] = order;
            /*
            **    Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
            **    since we may have to deal with devices that have 
            **    problems with #TAG 0 or too great #TAG numbers.
            */
            msgptr[msglen++] = (cp->tag << 1) + 1;
      }

      /*----------------------------------------------------
      **
      **    Build the data descriptors
      **
      **----------------------------------------------------
      */

      direction = cmd->sc_data_direction;
      if (direction != DMA_NONE) {
            segments = ncr_scatter(np, cp, cp->cmd);
            if (segments < 0) {
                  ncr_free_ccb(np, cp);
                  return(DID_ERROR);
            }
      }
      else {
            cp->data_len = 0;
            segments = 0;
      }

      /*---------------------------------------------------
      **
      **    negotiation required?
      **
      **    (nego_status is filled by ncr_prepare_nego())
      **
      **---------------------------------------------------
      */

      cp->nego_status = 0;

      if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
            msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
      }

      /*----------------------------------------------------
      **
      **    Determine xfer direction.
      **
      **----------------------------------------------------
      */
      if (!cp->data_len)
            direction = DMA_NONE;

      /*
      **    If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
      **    but prepare alternate pointers for TO_DEVICE in case 
      **    of our speculation will be just wrong.
      **    SCRIPTS will swap values if needed.
      */
      switch(direction) {
      case DMA_BIDIRECTIONAL:
      case DMA_TO_DEVICE:
            goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
            if (segments <= MAX_SCATTERL)
                  lastp = goalp - 8 - (segments * 16);
            else {
                  lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
                  lastp -= (segments - MAX_SCATTERL) * 16;
            }
            if (direction != DMA_BIDIRECTIONAL)
                  break;
            cp->phys.header.wgoalp  = cpu_to_scr(goalp);
            cp->phys.header.wlastp  = cpu_to_scr(lastp);
            /* fall through */
      case DMA_FROM_DEVICE:
            goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
            if (segments <= MAX_SCATTERL)
                  lastp = goalp - 8 - (segments * 16);
            else {
                  lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
                  lastp -= (segments - MAX_SCATTERL) * 16;
            }
            break;
      default:
      case DMA_NONE:
            lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
            break;
      }

      /*
      **    Set all pointers values needed by SCRIPTS.
      **    If direction is unknown, start at data_io.
      */
      cp->phys.header.lastp = cpu_to_scr(lastp);
      cp->phys.header.goalp = cpu_to_scr(goalp);

      if (direction == DMA_BIDIRECTIONAL)
            cp->phys.header.savep = 
                  cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
      else
            cp->phys.header.savep= cpu_to_scr(lastp);

      /*
      **    Save the initial data pointer in order to be able 
      **    to redo the command.
      */
      cp->startp = cp->phys.header.savep;

      /*----------------------------------------------------
      **
      **    fill in ccb
      **
      **----------------------------------------------------
      **
      **
      **    physical -> virtual backlink
      **    Generic SCSI command
      */

      /*
      **    Startqueue
      */
      cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
      cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
      /*
      **    select
      */
      cp->phys.select.sel_id        = sdev_id(sdev);
      cp->phys.select.sel_scntl3    = tp->wval;
      cp->phys.select.sel_sxfer     = tp->sval;
      /*
      **    message
      */
      cp->phys.smsg.addr            = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
      cp->phys.smsg.size            = cpu_to_scr(msglen);

      /*
      **    command
      */
      memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
      cp->phys.cmd.addr       = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
      cp->phys.cmd.size       = cpu_to_scr(cmd->cmd_len);

      /*
      **    status
      */
      cp->actualquirks        = 0;
      cp->host_status               = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
      cp->scsi_status               = S_ILLEGAL;
      cp->parity_status       = 0;

      cp->xerr_status               = XE_OK;
#if 0
      cp->sync_status               = tp->sval;
      cp->wide_status               = tp->wval;
#endif

      /*----------------------------------------------------
      **
      **    Critical region: start this job.
      **
      **----------------------------------------------------
      */

      /* activate this job.  */
      cp->magic         = CCB_MAGIC;

      /*
      **    insert next CCBs into start queue.
      **    2 max at a time is enough to flush the CCB wait queue.
      */
      cp->auto_sense = 0;
      if (lp)
            ncr_start_next_ccb(np, lp, 2);
      else
            ncr_put_start_queue(np, cp);

      /* Command is successfully queued.  */

      return DID_OK;
}


/*==========================================================
**
**
**    Insert a CCB into the start queue and wake up the 
**    SCRIPTS processor.
**
**
**==========================================================
*/

static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
{
      struct list_head *qp;
      struct ccb *cp;

      if (lp->held_ccb)
            return;

      while (maxn-- && lp->queuedccbs < lp->queuedepth) {
            qp = ncr_list_pop(&lp->wait_ccbq);
            if (!qp)
                  break;
            ++lp->queuedccbs;
            cp = list_entry(qp, struct ccb, link_ccbq);
            list_add_tail(qp, &lp->busy_ccbq);
            lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
                  cpu_to_scr(CCB_PHYS (cp, restart));
            ncr_put_start_queue(np, cp);
      }
}

static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
{
      u16   qidx;

      /*
      **    insert into start queue.
      */
      if (!np->squeueput) np->squeueput = 1;
      qidx = np->squeueput + 2;
      if (qidx >= MAX_START + MAX_START) qidx = 1;

      np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
      MEMORY_BARRIER();
      np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));

      np->squeueput = qidx;
      ++np->queuedccbs;
      cp->queued = 1;

      if (DEBUG_FLAGS & DEBUG_QUEUE)
            printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);

      /*
      **    Script processor may be waiting for reselect.
      **    Wake it up.
      */
      MEMORY_BARRIER();
      OUTB (nc_istat, SIGP);
}


static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
{
      u32 term;
      int retv = 0;

      np->settle_time   = jiffies + settle_delay * HZ;

      if (bootverbose > 1)
            printk("%s: resetting, "
                  "command processing suspended for %d seconds\n",
                  ncr_name(np), settle_delay);

      ncr_chip_reset(np, 100);
      udelay(2000);     /* The 895 needs time for the bus mode to settle */
      if (enab_int)
            OUTW (nc_sien, RST);
      /*
      **    Enable Tolerant, reset IRQD if present and 
      **    properly set IRQ mode, prior to resetting the bus.
      */
      OUTB (nc_stest3, TE);
      OUTB (nc_scntl1, CRST);
      udelay(200);

      if (!driver_setup.bus_check)
            goto out;
      /*
      **    Check for no terminators or SCSI bus shorts to ground.
      **    Read SCSI data bus, data parity bits and control signals.
      **    We are expecting RESET to be TRUE and other signals to be 
      **    FALSE.
      */

      term =      INB(nc_sstat0);
      term =      ((term & 2) << 7) + ((term & 1) << 17);   /* rst sdp0 */
      term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1     */
            ((INW(nc_sbdl) & 0xff)   << 9)  |   /* d7-0     */
            ((INW(nc_sbdl) & 0xff00) << 10) |   /* d15-8    */
            INB(nc_sbcl);     /* req ack bsy sel atn msg cd io    */

      if (!(np->features & FE_WIDE))
            term &= 0x3ffff;

      if (term != (2<<7)) {
            printk("%s: suspicious SCSI data while resetting the BUS.\n",
                  ncr_name(np));
            printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
                  "0x%lx, expecting 0x%lx\n",
                  ncr_name(np),
                  (np->features & FE_WIDE) ? "dp1,d15-8," : "",
                  (u_long)term, (u_long)(2<<7));
            if (driver_setup.bus_check == 1)
                  retv = 1;
      }
out:
      OUTB (nc_scntl1, 0);
      return retv;
}

/*
 * Start reset process.
 * If reset in progress do nothing.
 * The interrupt handler will reinitialize the chip.
 * The timeout handler will wait for settle_time before 
 * clearing it and so resuming command processing.
 */
static void ncr_start_reset(struct ncb *np)
{
      if (!np->settle_time) {
            ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
      }
}
 
/*==========================================================
**
**
**    Reset the SCSI BUS.
**    This is called from the generic SCSI driver.
**
**
**==========================================================
*/
static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
{
/*    struct scsi_device        *device    = cmd->device; */
      struct ccb *cp;
      int found;

/*
 * Return immediately if reset is in progress.
 */
      if (np->settle_time) {
            return FAILED;
      }
/*
 * Start the reset process.
 * The script processor is then assumed to be stopped.
 * Commands will now be queued in the waiting list until a settle 
 * delay of 2 seconds will be completed.
 */
      ncr_start_reset(np);
/*
 * First, look in the wakeup list
 */
      for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
            /*
            **    look for the ccb of this command.
            */
            if (cp->host_status == HS_IDLE) continue;
            if (cp->cmd == cmd) {
                  found = 1;
                  break;
            }
      }
/*
 * Then, look in the waiting list
 */
      if (!found && retrieve_from_waiting_list(0, np, cmd))
            found = 1;
/*
 * Wake-up all awaiting commands with DID_RESET.
 */
      reset_waiting_list(np);
/*
 * Wake-up all pending commands with HS_RESET -> DID_RESET.
 */
      ncr_wakeup(np, HS_RESET);
/*
 * If the involved command was not in a driver queue, and the 
 * scsi driver told us reset is synchronous, and the command is not 
 * currently in the waiting list, complete it with DID_RESET status,
 * in order to keep it alive.
 */
      if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
            cmd->result = ScsiResult(DID_RESET, 0);
            ncr_queue_done_cmd(np, cmd);
      }

      return SUCCESS;
}

#if 0 /* unused and broken.. */
/*==========================================================
**
**
**    Abort an SCSI command.
**    This is called from the generic SCSI driver.
**
**
**==========================================================
*/
static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
{
/*    struct scsi_device        *device    = cmd->device; */
      struct ccb *cp;
      int found;
      int retv;

/*
 * First, look for the scsi command in the waiting list
 */
      if (remove_from_waiting_list(np, cmd)) {
            cmd->result = ScsiResult(DID_ABORT, 0);
            ncr_queue_done_cmd(np, cmd);
            return SCSI_ABORT_SUCCESS;
      }

/*
 * Then, look in the wakeup list
 */
      for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
            /*
            **    look for the ccb of this command.
            */
            if (cp->host_status == HS_IDLE) continue;
            if (cp->cmd == cmd) {
                  found = 1;
                  break;
            }
      }

      if (!found) {
            return SCSI_ABORT_NOT_RUNNING;
      }

      if (np->settle_time) {
            return SCSI_ABORT_SNOOZE;
      }

      /*
      **    If the CCB is active, patch schedule jumps for the 
      **    script to abort the command.
      */

      switch(cp->host_status) {
      case HS_BUSY:
      case HS_NEGOTIATE:
            printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
                  cp->start.schedule.l_paddr =
                        cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
            retv = SCSI_ABORT_PENDING;
            break;
      case HS_DISCONNECT:
            cp->restart.schedule.l_paddr =
                        cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
            retv = SCSI_ABORT_PENDING;
            break;
      default:
            retv = SCSI_ABORT_NOT_RUNNING;
            break;

      }

      /*
      **      If there are no requests, the script
      **      processor will sleep on SEL_WAIT_RESEL.
      **      Let's wake it up, since it may have to work.
      */
      OUTB (nc_istat, SIGP);

      return retv;
}
#endif

static void ncr_detach(struct ncb *np)
{
      struct ccb *cp;
      struct tcb *tp;
      struct lcb *lp;
      int target, lun;
      int i;
      char inst_name[16];

      /* Local copy so we don't access np after freeing it! */
      strlcpy(inst_name, ncr_name(np), sizeof(inst_name));

      printk("%s: releasing host resources\n", ncr_name(np));

/*
**    Stop the ncr_timeout process
**    Set release_stage to 1 and wait that ncr_timeout() set it to 2.
*/

#ifdef DEBUG_NCR53C8XX
      printk("%s: stopping the timer\n", ncr_name(np));
#endif
      np->release_stage = 1;
      for (i = 50 ; i && np->release_stage != 2 ; i--)
            mdelay(100);
      if (np->release_stage != 2)
            printk("%s: the timer seems to be already stopped\n", ncr_name(np));
      else np->release_stage = 2;

/*
**    Disable chip interrupts
*/

#ifdef DEBUG_NCR53C8XX
      printk("%s: disabling chip interrupts\n", ncr_name(np));
#endif
      OUTW (nc_sien , 0);
      OUTB (nc_dien , 0);

      /*
      **    Reset NCR chip
      **    Restore bios setting for automatic clock detection.
      */

      printk("%s: resetting chip\n", ncr_name(np));
      ncr_chip_reset(np, 100);

      OUTB(nc_dmode,    np->sv_dmode);
      OUTB(nc_dcntl,    np->sv_dcntl);
      OUTB(nc_ctest0,   np->sv_ctest0);
      OUTB(nc_ctest3,   np->sv_ctest3);
      OUTB(nc_ctest4,   np->sv_ctest4);
      OUTB(nc_ctest5,   np->sv_ctest5);
      OUTB(nc_gpcntl,   np->sv_gpcntl);
      OUTB(nc_stest2,   np->sv_stest2);

      ncr_selectclock(np, np->sv_scntl3);

      /*
      **    Free allocated ccb(s)
      */

      while ((cp=np->ccb->link_ccb) != NULL) {
            np->ccb->link_ccb = cp->link_ccb;
            if (cp->host_status) {
            printk("%s: shall free an active ccb (host_status=%d)\n",
                  ncr_name(np), cp->host_status);
            }
#ifdef DEBUG_NCR53C8XX
      printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
#endif
            m_free_dma(cp, sizeof(*cp), "CCB");
      }

      /* Free allocated tp(s) */

      for (target = 0; target < MAX_TARGET ; target++) {
            tp=&np->target[target];
            for (lun = 0 ; lun < MAX_LUN ; lun++) {
                  lp = tp->lp[lun];
                  if (lp) {
#ifdef DEBUG_NCR53C8XX
      printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
#endif
                        if (lp->jump_ccb != &lp->jump_ccb_0)
                              m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
                        m_free_dma(lp, sizeof(*lp), "LCB");
                  }
            }
      }

      if (np->scripth0)
            m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
      if (np->script0)
            m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
      if (np->ccb)
            m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
      m_free_dma(np, sizeof(struct ncb), "NCB");

      printk("%s: host resources successfully released\n", inst_name);
}

/*==========================================================
**
**
**    Complete execution of a SCSI command.
**    Signal completion to the generic SCSI driver.
**
**
**==========================================================
*/

void ncr_complete (struct ncb *np, struct ccb *cp)
{
      struct scsi_cmnd *cmd;
      struct tcb *tp;
      struct lcb *lp;

      /*
      **    Sanity check
      */

      if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
            return;

      /*
      **    Print minimal debug information.
      */

      if (DEBUG_FLAGS & DEBUG_TINY)
            printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
                  cp->host_status,cp->scsi_status);

      /*
      **    Get command, target and lun pointers.
      */

      cmd = cp->cmd;
      cp->cmd = NULL;
      tp = &np->target[cmd->device->id];
      lp = tp->lp[cmd->device->lun];

      /*
      **    We donnot queue more than 1 ccb per target 
      **    with negotiation at any time. If this ccb was 
      **    used for negotiation, clear this info in the tcb.
      */

      if (cp == tp->nego_cp)
            tp->nego_cp = NULL;

      /*
      **    If auto-sense performed, change scsi status.
      */
      if (cp->auto_sense) {
            cp->scsi_status = cp->auto_sense;
      }

      /*
      **    If we were recovering from queue full or performing 
      **    auto-sense, requeue skipped CCBs to the wait queue.
      */

      if (lp && lp->held_ccb) {
            if (cp == lp->held_ccb) {
                  list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
                  lp->held_ccb = NULL;
            }
      }

      /*
      **    Check for parity errors.
      */

      if (cp->parity_status > 1) {
            PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
      }

      /*
      **    Check for extended errors.
      */

      if (cp->xerr_status != XE_OK) {
            switch (cp->xerr_status) {
            case XE_EXTRA_DATA:
                  PRINT_ADDR(cmd, "extraneous data discarded.\n");
                  break;
            case XE_BAD_PHASE:
                  PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
                  break;
            default:
                  PRINT_ADDR(cmd, "extended error %d.\n",
                              cp->xerr_status);
                  break;
            }
            if (cp->host_status==HS_COMPLETE)
                  cp->host_status = HS_FAIL;
      }

      /*
      **    Print out any error for debugging purpose.
      */
      if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
            if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
                  PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
                              "scsi_status=%x\n", cmd->cmnd[0],
                              cp->host_status, cp->scsi_status);
            }
      }

      /*
      **    Check the status.
      */
      if (   (cp->host_status == HS_COMPLETE)
            && (cp->scsi_status == S_GOOD ||
                cp->scsi_status == S_COND_MET)) {
            /*
             *    All went well (GOOD status).
             *    CONDITION MET status is returned on 
             *    `Pre-Fetch' or `Search data' success.
             */
            cmd->result = ScsiResult(DID_OK, cp->scsi_status);

            /*
            **    @RESID@
            **    Could dig out the correct value for resid,
            **    but it would be quite complicated.
            */
            /* if (cp->phys.header.lastp != cp->phys.header.goalp) */

            /*
            **    Allocate the lcb if not yet.
            */
            if (!lp)
                  ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);

            tp->bytes     += cp->data_len;
            tp->transfers ++;

            /*
            **    If tags was reduced due to queue full,
            **    increase tags if 1000 good status received.
            */
            if (lp && lp->usetags && lp->numtags < lp->maxtags) {
                  ++lp->num_good;
                  if (lp->num_good >= 1000) {
                        lp->num_good = 0;
                        ++lp->numtags;
                        ncr_setup_tags (np, cmd->device);
                  }
            }
      } else if ((cp->host_status == HS_COMPLETE)
            && (cp->scsi_status == S_CHECK_COND)) {
            /*
            **   Check condition code
            */
            cmd->result = ScsiResult(DID_OK, S_CHECK_COND);

            /*
            **    Copy back sense data to caller's buffer.
            */
            memcpy(cmd->sense_buffer, cp->sense_buf,
                   min(sizeof(cmd->sense_buffer), sizeof(cp->sense_buf)));

            if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
                  u_char * p = (u_char*) & cmd->sense_buffer;
                  int i;
                  PRINT_ADDR(cmd, "sense data:");
                  for (i=0; i<14; i++) printk (" %x", *p++);
                  printk (".\n");
            }
      } else if ((cp->host_status == HS_COMPLETE)
            && (cp->scsi_status == S_CONFLICT)) {
            /*
            **   Reservation Conflict condition code
            */
            cmd->result = ScsiResult(DID_OK, S_CONFLICT);
      
      } else if ((cp->host_status == HS_COMPLETE)
            && (cp->scsi_status == S_BUSY ||
                cp->scsi_status == S_QUEUE_FULL)) {

            /*
            **   Target is busy.
            */
            cmd->result = ScsiResult(DID_OK, cp->scsi_status);

      } else if ((cp->host_status == HS_SEL_TIMEOUT)
            || (cp->host_status == HS_TIMEOUT)) {

            /*
            **   No response
            */
            cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);

      } else if (cp->host_status == HS_RESET) {

            /*
            **   SCSI bus reset
            */
            cmd->result = ScsiResult(DID_RESET, cp->scsi_status);

      } else if (cp->host_status == HS_ABORTED) {

            /*
            **   Transfer aborted
            */
            cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);

      } else {

            /*
            **  Other protocol messes
            */
            PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
                  cp->host_status, cp->scsi_status, cp);

            cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
      }

      /*
      **    trace output
      */

      if (tp->usrflag & UF_TRACE) {
            u_char * p;
            int i;
            PRINT_ADDR(cmd, " CMD:");
            p = (u_char*) &cmd->cmnd[0];
            for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);

            if (cp->host_status==HS_COMPLETE) {
                  switch (cp->scsi_status) {
                  case S_GOOD:
                        printk ("  GOOD");
                        break;
                  case S_CHECK_COND:
                        printk ("  SENSE:");
                        p = (u_char*) &cmd->sense_buffer;
                        for (i=0; i<14; i++)
                              printk (" %x", *p++);
                        break;
                  default:
                        printk ("  STAT: %x\n", cp->scsi_status);
                        break;
                  }
            } else printk ("  HOSTERROR: %x", cp->host_status);
            printk ("\n");
      }

      /*
      **    Free this ccb
      */
      ncr_free_ccb (np, cp);

      /*
      **    requeue awaiting scsi commands for this lun.
      */
      if (lp && lp->queuedccbs < lp->queuedepth &&
          !list_empty(&lp->wait_ccbq))
            ncr_start_next_ccb(np, lp, 2);

      /*
      **    requeue awaiting scsi commands for this controller.
      */
      if (np->waiting_list)
            requeue_waiting_list(np);

      /*
      **    signal completion to generic driver.
      */
      ncr_queue_done_cmd(np, cmd);
}

/*==========================================================
**
**
**    Signal all (or one) control block done.
**
**
**==========================================================
*/

/*
**    This CCB has been skipped by the NCR.
**    Queue it in the corresponding unit queue.
*/
static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
{
      struct tcb *tp = &np->target[cp->target];
      struct lcb *lp = tp->lp[cp->lun];

      if (lp && cp != np->ccb) {
            cp->host_status &= ~HS_SKIPMASK;
            cp->start.schedule.l_paddr = 
                  cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
            list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
            if (cp->queued) {
                  --lp->queuedccbs;
            }
      }
      if (cp->queued) {
            --np->queuedccbs;
            cp->queued = 0;
      }
}

/*
**    The NCR has completed CCBs.
**    Look at the DONE QUEUE if enabled, otherwise scan all CCBs
*/
void ncr_wakeup_done (struct ncb *np)
{
      struct ccb *cp;
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
      int i, j;

      i = np->ccb_done_ic;
      while (1) {
            j = i+1;
            if (j >= MAX_DONE)
                  j = 0;

            cp = np->ccb_done[j];
            if (!CCB_DONE_VALID(cp))
                  break;

            np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
            np->scripth->done_queue[5*j + 4] =
                        cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
            MEMORY_BARRIER();
            np->scripth->done_queue[5*i + 4] =
                        cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));

            if (cp->host_status & HS_DONEMASK)
                  ncr_complete (np, cp);
            else if (cp->host_status & HS_SKIPMASK)
                  ncr_ccb_skipped (np, cp);

            i = j;
      }
      np->ccb_done_ic = i;
#else
      cp = np->ccb;
      while (cp) {
            if (cp->host_status & HS_DONEMASK)
                  ncr_complete (np, cp);
            else if (cp->host_status & HS_SKIPMASK)
                  ncr_ccb_skipped (np, cp);
            cp = cp->link_ccb;
      }
#endif
}

/*
**    Complete all active CCBs.
*/
void ncr_wakeup (struct ncb *np, u_long code)
{
      struct ccb *cp = np->ccb;

      while (cp) {
            if (cp->host_status != HS_IDLE) {
                  cp->host_status = code;
                  ncr_complete (np, cp);
            }
            cp = cp->link_ccb;
      }
}

/*
** Reset ncr chip.
*/

/* Some initialisation must be done immediately following reset, for 53c720,
 * at least.  EA (dcntl bit 5) isn't set here as it is set once only in
 * the _detect function.
 */
static void ncr_chip_reset(struct ncb *np, int delay)
{
      OUTB (nc_istat,  SRST);
      udelay(delay);
      OUTB (nc_istat,  0   );

      if (np->features & FE_EHP)
            OUTB (nc_ctest0, EHP);
      if (np->features & FE_MUX)
            OUTB (nc_ctest4, MUX);
}


/*==========================================================
**
**
**    Start NCR chip.
**
**
**==========================================================
*/

void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
{
      int   i;

      /*
      **    Reset chip if asked, otherwise just clear fifos.
      */

      if (reset) {
            OUTB (nc_istat,  SRST);
            udelay(100);
      }
      else {
            OUTB (nc_stest3, TE|CSF);
            OUTONB (nc_ctest3, CLF);
      }
 
      /*
      **    Message.
      */

      if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);

      /*
      **    Clear Start Queue
      */
      np->queuedepth = MAX_START - 1;     /* 1 entry needed as end marker */
      for (i = 1; i < MAX_START + MAX_START; i += 2)
            np->scripth0->tryloop[i] =
                        cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));

      /*
      **    Start at first entry.
      */
      np->squeueput = 0;
      np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));

#ifdef SCSI_NCR_CCB_DONE_SUPPORT
      /*
      **    Clear Done Queue
      */
      for (i = 0; i < MAX_DONE; i++) {
            np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
            np->scripth0->done_queue[5*i + 4] =
                  cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
      }
#endif

      /*
      **    Start at first entry.
      */
      np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
      np->ccb_done_ic = MAX_DONE-1;
      np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
                  cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));

      /*
      **    Wakeup all pending jobs.
      */
      ncr_wakeup (np, code);

      /*
      **    Init chip.
      */

      /*
      ** Remove reset; big delay because the 895 needs time for the
      ** bus mode to settle
      */
      ncr_chip_reset(np, 2000);

      OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
                              /*  full arb., ena parity, par->ATN  */
      OUTB (nc_scntl1, 0x00);       /*  odd parity, and remove CRST!! */

      ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */

      OUTB (nc_scid  , RRE|np->myaddr);   /* Adapter SCSI address */
      OUTW (nc_respid, 1ul<<np->myaddr);  /* Id to respond to */
      OUTB (nc_istat , SIGP   );          /*  Signal Process */
      OUTB (nc_dmode , np->rv_dmode);           /* Burst length, dma mode */
      OUTB (nc_ctest5, np->rv_ctest5);    /* Large fifo + large burst */

      OUTB (nc_dcntl , NOCOM|np->rv_dcntl);     /* Protect SFBR */
      OUTB (nc_ctest0, np->rv_ctest0);    /* 720: CDIS and EHP */
      OUTB (nc_ctest3, np->rv_ctest3);    /* Write and invalidate */
      OUTB (nc_ctest4, np->rv_ctest4);    /* Master parity checking */

      OUTB (nc_stest2, EXT|np->rv_stest2);      /* Extended Sreq/Sack filtering */
      OUTB (nc_stest3, TE);               /* TolerANT enable */
      OUTB (nc_stime0, 0x0c   );          /* HTH disabled  STO 0.25 sec */

      /*
      **    Disable disconnects.
      */

      np->disc = 0;

      /*
      **    Enable GPIO0 pin for writing if LED support.
      */

      if (np->features & FE_LED0) {
            OUTOFFB (nc_gpcntl, 0x01);
      }

      /*
      **      enable ints
      */

      OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
      OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);

      /*
      **    Fill in target structure.
      **    Reinitialize usrsync.
      **    Reinitialize usrwide.
      **    Prepare sync negotiation according to actual SCSI bus mode.
      */

      for (i=0;i<MAX_TARGET;i++) {
            struct tcb *tp = &np->target[i];

            tp->sval    = 0;
            tp->wval    = np->rv_scntl3;

            if (tp->usrsync != 255) {
                  if (tp->usrsync <= np->maxsync) {
                        if (tp->usrsync < np->minsync) {
                              tp->usrsync = np->minsync;
                        }
                  }
                  else
                        tp->usrsync = 255;
            }

            if (tp->usrwide > np->maxwide)
                  tp->usrwide = np->maxwide;

      }

      /*
      **    Start script processor.
      */
      if (np->paddr2) {
            if (bootverbose)
                  printk ("%s: Downloading SCSI SCRIPTS.\n",
                        ncr_name(np));
            OUTL (nc_scratcha, vtobus(np->script0));
            OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
      }
      else
            OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
}

/*==========================================================
**
**    Prepare the negotiation values for wide and
**    synchronous transfers.
**
**==========================================================
*/

static void ncr_negotiate (struct ncb* np, struct tcb* tp)
{
      /*
      **    minsync unit is 4ns !
      */

      u_long minsync = tp->usrsync;

      /*
      **    SCSI bus mode limit
      */

      if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
            if (minsync < 12) minsync = 12;
      }

      /*
      **    our limit ..
      */

      if (minsync < np->minsync)
            minsync = np->minsync;

      /*
      **    divider limit
      */

      if (minsync > np->maxsync)
            minsync = 255;

      if (tp->maxoffs > np->maxoffs)
            tp->maxoffs = np->maxoffs;

      tp->minsync = minsync;
      tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);

      /*
      **    period=0: has to negotiate sync transfer
      */

      tp->period=0;

      /*
      **    widedone=0: has to negotiate wide transfer
      */
      tp->widedone=0;
}

/*==========================================================
**
**    Get clock factor and sync divisor for a given 
**    synchronous factor period.
**    Returns the clock factor (in sxfer) and scntl3 
**    synchronous divisor field.
**
**==========================================================
*/

static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
{
      u_long      clk = np->clock_khz;    /* SCSI clock frequency in kHz      */
      int   div = np->clock_divn;   /* Number of divisors supported     */
      u_long      fak;              /* Sync factor in sxfer       */
      u_long      per;              /* Period in tenths of ns     */
      u_long      kpc;              /* (per * clk)                */

      /*
      **    Compute the synchronous period in tenths of nano-seconds
      */
      if    (sfac <= 10)      per = 250;
      else if     (sfac == 11)      per = 303;
      else if     (sfac == 12)      per = 500;
      else              per = 40 * sfac;

      /*
      **    Look for the greatest clock divisor that allows an 
      **    input speed faster than the period.
      */
      kpc = per * clk;
      while (--div >= 0)
            if (kpc >= (div_10M[div] << 2)) break;

      /*
      **    Calculate the lowest clock factor that allows an output 
      **    speed not faster than the period.
      */
      fak = (kpc - 1) / div_10M[div] + 1;

#if 0 /* This optimization does not seem very useful */

      per = (fak * div_10M[div]) / clk;

      /*
      **    Why not to try the immediate lower divisor and to choose 
      **    the one that allows the fastest output speed ?
      **    We don't want input speed too much greater than output speed.
      */
      if (div >= 1 && fak < 8) {
            u_long fak2, per2;
            fak2 = (kpc - 1) / div_10M[div-1] + 1;
            per2 = (fak2 * div_10M[div-1]) / clk;
            if (per2 < per && fak2 <= 8) {
                  fak = fak2;
                  per = per2;
                  --div;
            }
      }
#endif

      if (fak < 4) fak = 4;   /* Should never happen, too bad ... */

      /*
      **    Compute and return sync parameters for the ncr
      */
      *fakp       = fak - 4;
      *scntl3p    = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
}


/*==========================================================
**
**    Set actual values, sync status and patch all ccbs of 
**    a target according to new sync/wide agreement.
**
**==========================================================
*/

static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
{
      struct ccb *cp;
      struct tcb *tp = &np->target[target];

      /*
      **    set actual value and sync_status
      */
      OUTB (nc_sxfer, tp->sval);
      np->sync_st = tp->sval;
      OUTB (nc_scntl3, tp->wval);
      np->wide_st = tp->wval;

      /*
      **    patch ALL ccbs of this target.
      */
      for (cp = np->ccb; cp; cp = cp->link_ccb) {
            if (!cp->cmd) continue;
            if (scmd_id(cp->cmd) != target) continue;
#if 0
            cp->sync_status = tp->sval;
            cp->wide_status = tp->wval;
#endif
            cp->phys.select.sel_scntl3 = tp->wval;
            cp->phys.select.sel_sxfer  = tp->sval;
      }
}

/*==========================================================
**
**    Switch sync mode for current job and it's target
**
**==========================================================
*/

static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
{
      struct scsi_cmnd *cmd = cp->cmd;
      struct tcb *tp;
      u_char target = INB (nc_sdid) & 0x0f;
      u_char idiv;

      BUG_ON(target != (scmd_id(cmd) & 0xf));

      tp = &np->target[target];

      if (!scntl3 || !(sxfer & 0x1f))
            scntl3 = np->rv_scntl3;
      scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);

      /*
      **    Deduce the value of controller sync period from scntl3.
      **    period is in tenths of nano-seconds.
      */

      idiv = ((scntl3 >> 4) & 0x7);
      if ((sxfer & 0x1f) && idiv)
            tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
      else
            tp->period = 0xffff;

      /* Stop there if sync parameters are unchanged */
      if (tp->sval == sxfer && tp->wval == scntl3)
            return;
      tp->sval = sxfer;
      tp->wval = scntl3;

      if (sxfer & 0x01f) {
            /* Disable extended Sreq/Sack filtering */
            if (tp->period <= 2000)
                  OUTOFFB(nc_stest2, EXT);
      }
 
      spi_display_xfer_agreement(tp->starget);

      /*
      **    set actual value and sync_status
      **    patch ALL ccbs of this target.
      */
      ncr_set_sync_wide_status(np, target);
}

/*==========================================================
**
**    Switch wide mode for current job and it's target
**    SCSI specs say: a SCSI device that accepts a WDTR 
**    message shall reset the synchronous agreement to 
**    asynchronous mode.
**
**==========================================================
*/

static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
{
      struct scsi_cmnd *cmd = cp->cmd;
      u16 target = INB (nc_sdid) & 0x0f;
      struct tcb *tp;
      u_char      scntl3;
      u_char      sxfer;

      BUG_ON(target != (scmd_id(cmd) & 0xf));

      tp = &np->target[target];
      tp->widedone  =  wide+1;
      scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);

      sxfer = ack ? 0 : tp->sval;

      /*
      **     Stop there if sync/wide parameters are unchanged
      */
      if (tp->sval == sxfer && tp->wval == scntl3) return;
      tp->sval = sxfer;
      tp->wval = scntl3;

      /*
      **    Bells and whistles   ;-)
      */
      if (bootverbose >= 2) {
            dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
                        (scntl3 & EWS) ? "en" : "dis");
      }

      /*
      **    set actual value and sync_status
      **    patch ALL ccbs of this target.
      */
      ncr_set_sync_wide_status(np, target);
}

/*==========================================================
**
**    Switch tagged mode for a target.
**
**==========================================================
*/

static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
{
      unsigned char tn = sdev->id, ln = sdev->lun;
      struct tcb *tp = &np->target[tn];
      struct lcb *lp = tp->lp[ln];
      u_char   reqtags, maxdepth;

      /*
      **    Just in case ...
      */
      if ((!tp) || (!lp) || !sdev)
            return;

      /*
      **    If SCSI device queue depth is not yet set, leave here.
      */
      if (!lp->scdev_depth)
            return;

      /*
      **    Donnot allow more tags than the SCSI driver can queue 
      **    for this device.
      **    Donnot allow more tags than we can handle.
      */
      maxdepth = lp->scdev_depth;
      if (maxdepth > lp->maxnxs)    maxdepth    = lp->maxnxs;
      if (lp->maxtags > maxdepth)   lp->maxtags = maxdepth;
      if (lp->numtags > maxdepth)   lp->numtags = maxdepth;

      /*
      **    only devices conformant to ANSI Version >= 2
      **    only devices capable of tagged commands
      **    only if enabled by user ..
      */
      if (sdev->tagged_supported && lp->numtags > 1) {
            reqtags = lp->numtags;
      } else {
            reqtags = 1;
      }

      /*
      **    Update max number of tags
      */
      lp->numtags = reqtags;
      if (lp->numtags > lp->maxtags)
            lp->maxtags = lp->numtags;

      /*
      **    If we want to switch tag mode, we must wait 
      **    for no CCB to be active.
      */
      if    (reqtags > 1 && lp->usetags) {       /* Stay in tagged mode    */
            if (lp->queuedepth == reqtags)       /* Already announced      */
                  return;
            lp->queuedepth    = reqtags;
      }
      else if     (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode  */
            lp->queuedepth    = reqtags;
            return;
      }
      else {                               /* Want to switch tag mode */
            if (lp->busyccbs)        /* If not yet safe, return */
                  return;
            lp->queuedepth    = reqtags;
            lp->usetags = reqtags > 1 ? 1 : 0;
      }

      /*
      **    Patch the lun mini-script, according to tag mode.
      */
      lp->jump_tag.l_paddr = lp->usetags?
                  cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
                  cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));

      /*
      **    Announce change to user.
      */
      if (bootverbose) {
            if (lp->usetags) {
                  dev_info(&sdev->sdev_gendev,
                        "tagged command queue depth set to %d\n",
                        reqtags);
            } else {
                  dev_info(&sdev->sdev_gendev,
                              "tagged command queueing disabled\n");
            }
      }
}

/*==========================================================
**
**
**    ncr timeout handler.
**
**
**==========================================================
**
**    Misused to keep the driver running when
**    interrupts are not configured correctly.
**
**----------------------------------------------------------
*/

static void ncr_timeout (struct ncb *np)
{
      u_long      thistime = jiffies;

      /*
      **    If release process in progress, let's go
      **    Set the release stage from 1 to 2 to synchronize
      **    with the release process.
      */

      if (np->release_stage) {
            if (np->release_stage == 1) np->release_stage = 2;
            return;
      }

      np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
      add_timer(&np->timer);

      /*
      **    If we are resetting the ncr, wait for settle_time before 
      **    clearing it. Then command processing will be resumed.
      */
      if (np->settle_time) {
            if (np->settle_time <= thistime) {
                  if (bootverbose > 1)
                        printk("%s: command processing resumed\n", ncr_name(np));
                  np->settle_time   = 0;
                  np->disc    = 1;
                  requeue_waiting_list(np);
            }
            return;
      }

      /*
      **    Since the generic scsi driver only allows us 0.5 second 
      **    to perform abort of a command, we must look at ccbs about 
      **    every 0.25 second.
      */
      if (np->lasttime + 4*HZ < thistime) {
            /*
            **    block ncr interrupts
            */
            np->lasttime = thistime;
      }

#ifdef SCSI_NCR_BROKEN_INTR
      if (INB(nc_istat) & (INTF|SIP|DIP)) {

            /*
            **    Process pending interrupts.
            */
            if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
            ncr_exception (np);
            if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
      }
#endif /* SCSI_NCR_BROKEN_INTR */
}

/*==========================================================
**
**    log message for real hard errors
**
**    "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
**    "           reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
**
**    exception register:
**          ds:   dstat
**          si:   sist
**
**    SCSI bus lines:
**          so:   control lines as driver by NCR.
**          si:   control lines as seen by NCR.
**          sd:   scsi data lines as seen by NCR.
**
**    wide/fastmode:
**          sxfer:      (see the manual)
**          scntl3:     (see the manual)
**
**    current script command:
**          dsp:  script address (relative to start of script).
**          dbc:  first word of script command.
**
**    First 16 register of the chip:
**          r0..rf
**
**==========================================================
*/

static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
{
      u32   dsp;
      int   script_ofs;
      int   script_size;
      char  *script_name;
      u_char      *script_base;
      int   i;

      dsp   = INL (nc_dsp);

      if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
            script_ofs  = dsp - np->p_script;
            script_size = sizeof(struct script);
            script_base = (u_char *) np->script0;
            script_name = "script";
      }
      else if (np->p_scripth < dsp && 
             dsp <= np->p_scripth + sizeof(struct scripth)) {
            script_ofs  = dsp - np->p_scripth;
            script_size = sizeof(struct scripth);
            script_base = (u_char *) np->scripth0;
            script_name = "scripth";
      } else {
            script_ofs  = dsp;
            script_size = 0;
            script_base = NULL;
            script_name = "mem";
      }

      printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
            ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
            (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
            (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
            (unsigned)INL (nc_dbc));

      if (((script_ofs & 3) == 0) &&
          (unsigned)script_ofs < script_size) {
            printk ("%s: script cmd = %08x\n", ncr_name(np),
                  scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
      }

      printk ("%s: regdump:", ncr_name(np));
      for (i=0; i<16;i++)
            printk (" %02x", (unsigned)INB_OFF(i));
      printk (".\n");
}

/*============================================================
**
**    ncr chip exception handler.
**
**============================================================
**
**    In normal cases, interrupt conditions occur one at a 
**    time. The ncr is able to stack in some extra registers 
**    other interrupts that will occur after the first one.
**    But, several interrupts may occur at the same time.
**
**    We probably should only try to deal with the normal 
**    case, but it seems that multiple interrupts occur in 
**    some cases that are not abnormal at all.
**
**    The most frequent interrupt condition is Phase Mismatch.
**    We should want to service this interrupt quickly.
**    A SCSI parity error may be delivered at the same time.
**    The SIR interrupt is not very frequent in this driver, 
**    since the INTFLY is likely used for command completion 
**    signaling.
**    The Selection Timeout interrupt may be triggered with 
**    IID and/or UDC.
**    The SBMC interrupt (SCSI Bus Mode Change) may probably 
**    occur at any time.
**
**    This handler try to deal as cleverly as possible with all
**    the above.
**
**============================================================
*/

void ncr_exception (struct ncb *np)
{
      u_char      istat, dstat;
      u16   sist;
      int   i;

      /*
      **    interrupt on the fly ?
      **    Since the global header may be copied back to a CCB 
      **    using a posted PCI memory write, the last operation on 
      **    the istat register is a READ in order to flush posted 
      **    PCI write commands.
      */
      istat = INB (nc_istat);
      if (istat & INTF) {
            OUTB (nc_istat, (istat & SIGP) | INTF);
            istat = INB (nc_istat);
            if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
            ncr_wakeup_done (np);
      }

      if (!(istat & (SIP|DIP)))
            return;

      if (istat & CABRT)
            OUTB (nc_istat, CABRT);

      /*
      **    Steinbach's Guideline for Systems Programming:
      **    Never test for an error condition you don't know how to handle.
      */

      sist  = (istat & SIP) ? INW (nc_sist)  : 0;
      dstat = (istat & DIP) ? INB (nc_dstat) : 0;

      if (DEBUG_FLAGS & DEBUG_TINY)
            printk ("<%d|%x:%x|%x:%x>",
                  (int)INB(nc_scr0),
                  dstat,sist,
                  (unsigned)INL(nc_dsp),
                  (unsigned)INL(nc_dbc));

      /*========================================================
      **    First, interrupts we want to service cleanly.
      **
      **    Phase mismatch is the most frequent interrupt, and 
      **    so we have to service it as quickly and as cleanly 
      **    as possible.
      **    Programmed interrupts are rarely used in this driver,
      **    but we must handle them cleanly anyway.
      **    We try to deal with PAR and SBMC combined with 
      **    some other interrupt(s).
      **=========================================================
      */

      if (!(sist  & (STO|GEN|HTH|SGE|UDC|RST)) &&
          !(dstat & (MDPE|BF|ABRT|IID))) {
            if ((sist & SBMC) && ncr_int_sbmc (np))
                  return;
            if ((sist & PAR)  && ncr_int_par  (np))
                  return;
            if (sist & MA) {
                  ncr_int_ma (np);
                  return;
            }
            if (dstat & SIR) {
                  ncr_int_sir (np);
                  return;
            }
            /*
            **  DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
            */
            if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
                  printk(     "%s: unknown interrupt(s) ignored, "
                        "ISTAT=%x DSTAT=%x SIST=%x\n",
                        ncr_name(np), istat, dstat, sist);
                  return;
            }
            OUTONB_STD ();
            return;
      }

      /*========================================================
      **    Now, interrupts that need some fixing up.
      **    Order and multiple interrupts is so less important.
      **
      **    If SRST has been asserted, we just reset the chip.
      **
      **    Selection is intirely handled by the chip. If the 
      **    chip says STO, we trust it. Seems some other 
      **    interrupts may occur at the same time (UDC, IID), so 
      **    we ignore them. In any case we do enough fix-up 
      **    in the service routine.
      **    We just exclude some fatal dma errors.
      **=========================================================
      */

      if (sist & RST) {
            ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
            return;
      }

      if ((sist & STO) &&
            !(dstat & (MDPE|BF|ABRT))) {
      /*
      **    DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
      */
            OUTONB (nc_ctest3, CLF);

            ncr_int_sto (np);
            return;
      }

      /*=========================================================
      **    Now, interrupts we are not able to recover cleanly.
      **    (At least for the moment).
      **
      **    Do the register dump.
      **    Log message for real hard errors.
      **    Clear all fifos.
      **    For MDPE, BF, ABORT, IID, SGE and HTH we reset the 
      **    BUS and the chip.
      **    We are more soft for UDC.
      **=========================================================
      */

      if (time_after(jiffies, np->regtime)) {
            np->regtime = jiffies + 10*HZ;
            for (i = 0; i<sizeof(np->regdump); i++)
                  ((char*)&np->regdump)[i] = INB_OFF(i);
            np->regdump.nc_dstat = dstat;
            np->regdump.nc_sist  = sist;
      }

      ncr_log_hard_error(np, sist, dstat);

      printk ("%s: have to clear fifos.\n", ncr_name (np));
      OUTB (nc_stest3, TE|CSF);
      OUTONB (nc_ctest3, CLF);

      if ((sist & (SGE)) ||
            (dstat & (MDPE|BF|ABRT|IID))) {
            ncr_start_reset(np);
            return;
      }

      if (sist & HTH) {
            printk ("%s: handshake timeout\n", ncr_name(np));
            ncr_start_reset(np);
            return;
      }

      if (sist & UDC) {
            printk ("%s: unexpected disconnect\n", ncr_name(np));
            OUTB (HS_PRT, HS_UNEXPECTED);
            OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
            return;
      }

      /*=========================================================
      **    We just miss the cause of the interrupt. :(
      **    Print a message. The timeout will do the real work.
      **=========================================================
      */
      printk ("%s: unknown interrupt\n", ncr_name(np));
}

/*==========================================================
**
**    ncr chip exception handler for selection timeout
**
**==========================================================
**
**    There seems to be a bug in the 53c810.
**    Although a STO-Interrupt is pending,
**    it continues executing script commands.
**    But it will fail and interrupt (IID) on
**    the next instruction where it's looking
**    for a valid phase.
**
**----------------------------------------------------------
*/

void ncr_int_sto (struct ncb *np)
{
      u_long dsa;
      struct ccb *cp;
      if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");

      /*
      **    look for ccb and set the status.
      */

      dsa = INL (nc_dsa);
      cp = np->ccb;
      while (cp && (CCB_PHYS (cp, phys) != dsa))
            cp = cp->link_ccb;

      if (cp) {
            cp-> host_status = HS_SEL_TIMEOUT;
            ncr_complete (np, cp);
      }

      /*
      **    repair start queue and jump to start point.
      */

      OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
      return;
}

/*==========================================================
**
**    ncr chip exception handler for SCSI bus mode change
**
**==========================================================
**
**    spi2-r12 11.2.3 says a transceiver mode change must 
**    generate a reset event and a device that detects a reset 
**    event shall initiate a hard reset. It says also that a
**    device that detects a mode change shall set data transfer 
**    mode to eight bit asynchronous, etc...
**    So, just resetting should be enough.
**     
**
**----------------------------------------------------------
*/

static int ncr_int_sbmc (struct ncb *np)
{
      u_char scsi_mode = INB (nc_stest4) & SMODE;

      if (scsi_mode != np->scsi_mode) {
            printk("%s: SCSI bus mode change from %x to %x.\n",
                  ncr_name(np), np->scsi_mode, scsi_mode);

            np->scsi_mode = scsi_mode;


            /*
            **    Suspend command processing for 1 second and 
            **    reinitialize all except the chip.
            */
            np->settle_time   = jiffies + HZ;
            ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
            return 1;
      }
      return 0;
}

/*==========================================================
**
**    ncr chip exception handler for SCSI parity error.
**
**==========================================================
**
**
**----------------------------------------------------------
*/

static int ncr_int_par (struct ncb *np)
{
      u_char      hsts  = INB (HS_PRT);
      u32   dbc   = INL (nc_dbc);
      u_char      sstat1      = INB (nc_sstat1);
      int phase   = -1;
      int msg           = -1;
      u32 jmp;

      printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
            ncr_name(np), hsts, dbc, sstat1);

      /*
       *    Ignore the interrupt if the NCR is not connected 
       *    to the SCSI bus, since the right work should have  
       *    been done on unexpected disconnection handling.
       */
      if (!(INB (nc_scntl1) & ISCON))
            return 0;

      /*
       *    If the nexus is not clearly identified, reset the bus.
       *    We will try to do better later.
       */
      if (hsts & HS_INVALMASK)
            goto reset_all;

      /*
       *    If the SCSI parity error occurs in MSG IN phase, prepare a 
       *    MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED 
       *    ERROR message and let the device decide to retry the command 
       *    or to terminate with check condition. If we were in MSG IN 
       *    phase waiting for the response of a negotiation, we will 
       *    get SIR_NEGO_FAILED at dispatch.
       */
      if (!(dbc & 0xc0000000))
            phase = (dbc >> 24) & 7;
      if (phase == 7)
            msg = MSG_PARITY_ERROR;
      else
            msg = INITIATOR_ERROR;


      /*
       *    If the NCR stopped on a MOVE ^ DATA_IN, we jump to a 
       *    script that will ignore all data in bytes until phase 
       *    change, since we are not sure the chip will wait the phase 
       *    change prior to delivering the interrupt.
       */
      if (phase == 1)
            jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
      else
            jmp = NCB_SCRIPTH_PHYS (np, par_err_other);

      OUTONB (nc_ctest3, CLF );     /* clear dma fifo  */
      OUTB (nc_stest3, TE|CSF);     /* clear scsi fifo */

      np->msgout[0] = msg;
      OUTL_DSP (jmp);
      return 1;

reset_all:
      ncr_start_reset(np);
      return 1;
}

/*==========================================================
**
**
**    ncr chip exception handler for phase errors.
**
**
**==========================================================
**
**    We have to construct a new transfer descriptor,
**    to transfer the rest of the current block.
**
**----------------------------------------------------------
*/

static void ncr_int_ma (struct ncb *np)
{
      u32   dbc;
      u32   rest;
      u32   dsp;
      u32   dsa;
      u32   nxtdsp;
      u32   newtmp;
      u32   *vdsp;
      u32   oadr, olen;
      u32   *tblp;
      ncrcmd *newcmd;
      u_char      cmd, sbcl;
      struct ccb *cp;

      dsp   = INL (nc_dsp);
      dbc   = INL (nc_dbc);
      sbcl  = INB (nc_sbcl);

      cmd   = dbc >> 24;
      rest  = dbc & 0xffffff;

      /*
      **    Take into account dma fifo and various buffers and latches,
      **    only if the interrupted phase is an OUTPUT phase.
      */

      if ((cmd & 1) == 0) {
            u_char      ctest5, ss0, ss2;
            u16   delta;

            ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
            if (ctest5 & DFS)
                  delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
            else
                  delta=(INB (nc_dfifo) - rest) & 0x7f;

            /*
            **    The data in the dma fifo has not been transferred to
            **    the target -> add the amount to the rest
            **    and clear the data.
            **    Check the sstat2 register in case of wide transfer.
            */

            rest += delta;
            ss0  = INB (nc_sstat0);
            if (ss0 & OLF) rest++;
            if (ss0 & ORF) rest++;
            if (INB(nc_scntl3) & EWS) {
                  ss2 = INB (nc_sstat2);
                  if (ss2 & OLF1) rest++;
                  if (ss2 & ORF1) rest++;
            }

            if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
                  printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
                        (unsigned) rest, (unsigned) delta, ss0);

      } else      {
            if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
                  printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
      }

      /*
      **    Clear fifos.
      */
      OUTONB (nc_ctest3, CLF );     /* clear dma fifo  */
      OUTB (nc_stest3, TE|CSF);     /* clear scsi fifo */

      /*
      **    locate matching cp.
      **    if the interrupted phase is DATA IN or DATA OUT,
      **    trust the global header.
      */
      dsa = INL (nc_dsa);
      if (!(cmd & 6)) {
            cp = np->header.cp;
            if (CCB_PHYS(cp, phys) != dsa)
                  cp = NULL;
      } else {
            cp  = np->ccb;
            while (cp && (CCB_PHYS (cp, phys) != dsa))
                  cp = cp->link_ccb;
      }

      /*
      **    try to find the interrupted script command,
      **    and the address at which to continue.
      */
      vdsp  = NULL;
      nxtdsp      = 0;
      if    (dsp >  np->p_script &&
             dsp <= np->p_script + sizeof(struct script)) {
            vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
            nxtdsp = dsp;
      }
      else if     (dsp >  np->p_scripth &&
             dsp <= np->p_scripth + sizeof(struct scripth)) {
            vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
            nxtdsp = dsp;
      }
      else if (cp) {
            if    (dsp == CCB_PHYS (cp, patch[2])) {
                  vdsp = &cp->patch[0];
                  nxtdsp = scr_to_cpu(vdsp[3]);
            }
            else if (dsp == CCB_PHYS (cp, patch[6])) {
                  vdsp = &cp->patch[4];
                  nxtdsp = scr_to_cpu(vdsp[3]);
            }
      }

      /*
      **    log the information
      */

      if (DEBUG_FLAGS & DEBUG_PHASE) {
            printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
                  cp, np->header.cp,
                  (unsigned)dsp,
                  (unsigned)nxtdsp, vdsp, cmd);
      }

      /*
      **    cp=0 means that the DSA does not point to a valid control 
      **    block. This should not happen since we donnot use multi-byte 
      **    move while we are being reselected ot after command complete.
      **    We are not able to recover from such a phase error.
      */
      if (!cp) {
            printk ("%s: SCSI phase error fixup: "
                  "CCB already dequeued (0x%08lx)\n", 
                  ncr_name (np), (u_long) np->header.cp);
            goto reset_all;
      }

      /*
      **    get old startaddress and old length.
      */

      oadr = scr_to_cpu(vdsp[1]);

      if (cmd & 0x10) { /* Table indirect */
            tblp = (u32 *) ((char*) &cp->phys + oadr);
            olen = scr_to_cpu(tblp[0]);
            oadr = scr_to_cpu(tblp[1]);
      } else {
            tblp = (u32 *) 0;
            olen = scr_to_cpu(vdsp[0]) & 0xffffff;
      }

      if (DEBUG_FLAGS & DEBUG_PHASE) {
            printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
                  (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
                  tblp,
                  (unsigned) olen,
                  (unsigned) oadr);
      }

      /*
      **    check cmd against assumed interrupted script command.
      */

      if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
            PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
                        ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);

            goto reset_all;
      }

      /*
      **    cp != np->header.cp means that the header of the CCB 
      **    currently being processed has not yet been copied to 
      **    the global header area. That may happen if the device did 
      **    not accept all our messages after having been selected.
      */
      if (cp != np->header.cp) {
            printk ("%s: SCSI phase error fixup: "
                  "CCB address mismatch (0x%08lx != 0x%08lx)\n", 
                  ncr_name (np), (u_long) cp, (u_long) np->header.cp);
      }

      /*
      **    if old phase not dataphase, leave here.
      */

      if (cmd & 0x06) {
            PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
                  cmd&7, sbcl&7, (unsigned)olen,
                  (unsigned)oadr, (unsigned)rest);
            goto unexpected_phase;
      }

      /*
      **    choose the correct patch area.
      **    if savep points to one, choose the other.
      */

      newcmd = cp->patch;
      newtmp = CCB_PHYS (cp, patch);
      if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
            newcmd = &cp->patch[4];
            newtmp = CCB_PHYS (cp, patch[4]);
      }

      /*
      **    fillin the commands
      */

      newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
      newcmd[1] = cpu_to_scr(oadr + olen - rest);
      newcmd[2] = cpu_to_scr(SCR_JUMP);
      newcmd[3] = cpu_to_scr(nxtdsp);

      if (DEBUG_FLAGS & DEBUG_PHASE) {
            PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
                  (int) (newcmd - cp->patch),
                  (unsigned)scr_to_cpu(newcmd[0]),
                  (unsigned)scr_to_cpu(newcmd[1]),
                  (unsigned)scr_to_cpu(newcmd[2]),
                  (unsigned)scr_to_cpu(newcmd[3]));
      }
      /*
      **    fake the return address (to the patch).
      **    and restart script processor at dispatcher.
      */
      OUTL (nc_temp, newtmp);
      OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
      return;

      /*
      **    Unexpected phase changes that occurs when the current phase 
      **    is not a DATA IN or DATA OUT phase are due to error conditions.
      **    Such event may only happen when the SCRIPTS is using a 
      **    multibyte SCSI MOVE.
      **
      **    Phase change            Some possible cause
      **
      **    COMMAND  --> MSG IN     SCSI parity error detected by target.
      **    COMMAND  --> STATUS     Bad command or refused by target.
      **    MSG OUT  --> MSG IN     Message rejected by target.
      **    MSG OUT  --> COMMAND    Bogus target that discards extended
      **                      negotiation messages.
      **
      **    The code below does not care of the new phase and so 
      **    trusts the target. Why to annoy it ?
      **    If the interrupted phase is COMMAND phase, we restart at
      **    dispatcher.
      **    If a target does not get all the messages after selection, 
      **    the code assumes blindly that the target discards extended 
      **    messages and clears the negotiation status.
      **    If the target does not want all our response to negotiation,
      **    we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 
      **    bloat for such a should_not_happen situation).
      **    In all other situation, we reset the BUS.
      **    Are these assumptions reasonnable ? (Wait and see ...)
      */
unexpected_phase:
      dsp -= 8;
      nxtdsp = 0;

      switch (cmd & 7) {
      case 2:     /* COMMAND phase */
            nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
            break;
#if 0
      case 3:     /* STATUS  phase */
            nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
            break;
#endif
      case 6:     /* MSG OUT phase */
            np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
            if    (dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
                  cp->host_status = HS_BUSY;
                  nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
            }
            else if     (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
                   dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
                  nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
            }
            break;
#if 0
      case 7:     /* MSG IN  phase */
            nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
            break;
#endif
      }

      if (nxtdsp) {
            OUTL_DSP (nxtdsp);
            return;
      }

reset_all:
      ncr_start_reset(np);
}


static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
{
      struct scsi_cmnd *cmd   = cp->cmd;
      struct tcb *tp    = &np->target[cmd->device->id];
      struct lcb *lp    = tp->lp[cmd->device->lun];
      struct list_head *qp;
      struct ccb *      cp2;
      int         disc_cnt = 0;
      int         busy_cnt = 0;
      u32         startp;
      u_char            s_status = INB (SS_PRT);

      /*
      **    Let the SCRIPTS processor skip all not yet started CCBs,
      **    and count disconnected CCBs. Since the busy queue is in 
      **    the same order as the chip start queue, disconnected CCBs 
      **    are before cp and busy ones after.
      */
      if (lp) {
            qp = lp->busy_ccbq.prev;
            while (qp != &lp->busy_ccbq) {
                  cp2 = list_entry(qp, struct ccb, link_ccbq);
                  qp  = qp->prev;
                  ++busy_cnt;
                  if (cp2 == cp)
                        break;
                  cp2->start.schedule.l_paddr =
                  cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
            }
            lp->held_ccb = cp;      /* Requeue when this one completes */
            disc_cnt = lp->queuedccbs - busy_cnt;
      }

      switch(s_status) {
      default:    /* Just for safety, should never happen */
      case S_QUEUE_FULL:
            /*
            **    Decrease number of tags to the number of 
            **    disconnected commands.
            */
            if (!lp)
                  goto out;
            if (bootverbose >= 1) {
                  PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
                              "CCBs\n", busy_cnt, disc_cnt);
            }
            if (disc_cnt < lp->numtags) {
                  lp->numtags = disc_cnt > 2 ? disc_cnt : 2;
                  lp->num_good      = 0;
                  ncr_setup_tags (np, cmd->device);
            }
            /*
            **    Requeue the command to the start queue.
            **    If any disconnected commands,
            **          Clear SIGP.
            **          Jump to reselect.
            */
            cp->phys.header.savep = cp->startp;
            cp->host_status = HS_BUSY;
            cp->scsi_status = S_ILLEGAL;

            ncr_put_start_queue(np, cp);
            if (disc_cnt)
                  INB (nc_ctest2);        /* Clear SIGP */
            OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
            return;
      case S_TERMINATED:
      case S_CHECK_COND:
            /*
            **    If we were requesting sense, give up.
            */
            if (cp->auto_sense)
                  goto out;

            /*
            **    Device returned CHECK CONDITION status.
            **    Prepare all needed data strutures for getting 
            **    sense data.
            **
            **    identify message
            */
            cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun);
            cp->phys.smsg.addr      = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
            cp->phys.smsg.size      = cpu_to_scr(1);

            /*
            **    sense command
            */
            cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
            cp->phys.cmd.size = cpu_to_scr(6);

            /*
            **    patch requested size into sense command
            */
            cp->sensecmd[0]         = 0x03;
            cp->sensecmd[1]         = cmd->device->lun << 5;
            cp->sensecmd[4]         = sizeof(cp->sense_buf);

            /*
            **    sense data
            */
            memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
            cp->phys.sense.addr     = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
            cp->phys.sense.size     = cpu_to_scr(sizeof(cp->sense_buf));

            /*
            **    requeue the command.
            */
            startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));

            cp->phys.header.savep   = startp;
            cp->phys.header.goalp   = startp + 24;
            cp->phys.header.lastp   = startp;
            cp->phys.header.wgoalp  = startp + 24;
            cp->phys.header.wlastp  = startp;

            cp->host_status = HS_BUSY;
            cp->scsi_status = S_ILLEGAL;
            cp->auto_sense    = s_status;

            cp->start.schedule.l_paddr =
                  cpu_to_scr(NCB_SCRIPT_PHYS (np, select));

            /*
            **    Select without ATN for quirky devices.
            */
            if (cmd->device->select_no_atn)
                  cp->start.schedule.l_paddr =
                  cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));

            ncr_put_start_queue(np, cp);

            OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
            return;
      }

out:
      OUTONB_STD ();
      return;
}


/*==========================================================
**
**
**      ncr chip exception handler for programmed interrupts.
**
**
**==========================================================
*/

void ncr_int_sir (struct ncb *np)
{
      u_char scntl3;
      u_char chg, ofs, per, fak, wide;
      u_char num = INB (nc_dsps);
      struct ccb *cp=NULL;
      u_long      dsa    = INL (nc_dsa);
      u_char      target = INB (nc_sdid) & 0x0f;
      struct tcb *tp     = &np->target[target];
      struct scsi_target *starget = tp->starget;

      if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);

      switch (num) {
      case SIR_INTFLY:
            /*
            **    This is used for HP Zalon/53c720 where INTFLY
            **    operation is currently broken.
            */
            ncr_wakeup_done(np);
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
            OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
#else
            OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
#endif
            return;
      case SIR_RESEL_NO_MSG_IN:
      case SIR_RESEL_NO_IDENTIFY:
            /*
            **    If devices reselecting without sending an IDENTIFY 
            **    message still exist, this should help.
            **    We just assume lun=0, 1 CCB, no tag.
            */
            if (tp->lp[0]) { 
                  OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
                  return;
            }
      case SIR_RESEL_BAD_TARGET:    /* Will send a TARGET RESET message */
      case SIR_RESEL_BAD_LUN:       /* Will send a TARGET RESET message */
      case SIR_RESEL_BAD_I_T_L_Q:   /* Will send an ABORT TAG message   */
      case SIR_RESEL_BAD_I_T_L:     /* Will send an ABORT message     */
            printk ("%s:%d: SIR %d, "
                  "incorrect nexus identification on reselection\n",
                  ncr_name (np), target, num);
            goto out;
      case SIR_DONE_OVERFLOW:
            printk ("%s:%d: SIR %d, "
                  "CCB done queue overflow\n",
                  ncr_name (np), target, num);
            goto out;
      case SIR_BAD_STATUS:
            cp = np->header.cp;
            if (!cp || CCB_PHYS (cp, phys) != dsa)
                  goto out;
            ncr_sir_to_redo(np, num, cp);
            return;
      default:
            /*
            **    lookup the ccb
            */
            cp = np->ccb;
            while (cp && (CCB_PHYS (cp, phys) != dsa))
                  cp = cp->link_ccb;

            BUG_ON(!cp);
            BUG_ON(cp != np->header.cp);

            if (!cp || cp != np->header.cp)
                  goto out;
      }

      switch (num) {
/*-----------------------------------------------------------------------------
**
**    Was Sie schon immer ueber transfermode negotiation wissen wollten ...
**    ("Everything you've always wanted to know about transfer mode
**      negotiation")
**
**    We try to negotiate sync and wide transfer only after
**    a successful inquire command. We look at byte 7 of the
**    inquire data to determine the capabilities of the target.
**
**    When we try to negotiate, we append the negotiation message
**    to the identify and (maybe) simple tag message.
**    The host status field is set to HS_NEGOTIATE to mark this
**    situation.
**
**    If the target doesn't answer this message immediately
**    (as required by the standard), the SIR_NEGO_FAIL interrupt
**    will be raised eventually.
**    The handler removes the HS_NEGOTIATE status, and sets the
**    negotiated value to the default (async / nowide).
**
**    If we receive a matching answer immediately, we check it
**    for validity, and set the values.
**
**    If we receive a Reject message immediately, we assume the
**    negotiation has failed, and fall back to standard values.
**
**    If we receive a negotiation message while not in HS_NEGOTIATE
**    state, it's a target initiated negotiation. We prepare a
**    (hopefully) valid answer, set our parameters, and send back 
**    this answer to the target.
**
**    If the target doesn't fetch the answer (no message out phase),
**    we assume the negotiation has failed, and fall back to default
**    settings.
**
**    When we set the values, we adjust them in all ccbs belonging 
**    to this target, in the controller's register, and in the "phys"
**    field of the controller's struct ncb.
**
**    Possible cases:            hs  sir   msg_in value  send   goto
**    We try to negotiate:
**    -> target doesn't msgin    NEG FAIL  noop   defa.  -      dispatch
**    -> target rejected our msg NEG FAIL  reject defa.  -      dispatch
**    -> target answered  (ok)   NEG SYNC  sdtr   set    -      clrack
**    -> target answered (!ok)   NEG SYNC  sdtr   defa.  REJ--->msg_bad
**    -> target answered  (ok)   NEG WIDE  wdtr   set    -      clrack
**    -> target answered (!ok)   NEG WIDE  wdtr   defa.  REJ--->msg_bad
**    -> any other msgin         NEG FAIL  noop   defa.  -      dispatch
**
**    Target tries to negotiate:
**    -> incoming message        --- SYNC  sdtr   set    SDTR   -
**    -> incoming message        --- WIDE  wdtr   set    WDTR   -
**      We sent our answer:
**    -> target doesn't msgout   --- PROTO ?      defa.  -      dispatch
**
**-----------------------------------------------------------------------------
*/

      case SIR_NEGO_FAILED:
            /*-------------------------------------------------------
            **
            **    Negotiation failed.
            **    Target doesn't send an answer message,
            **    or target rejected our message.
            **
            **      Remove negotiation request.
            **
            **-------------------------------------------------------
            */
            OUTB (HS_PRT, HS_BUSY);

            /* fall through */

      case SIR_NEGO_PROTO:
            /*-------------------------------------------------------
            **
            **    Negotiation failed.
            **    Target doesn't fetch the answer message.
            **
            **-------------------------------------------------------
            */

            if (DEBUG_FLAGS & DEBUG_NEGO) {
                  PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
                              "status=%x.\n", num, cp->nego_status);
            }

            /*
            **    any error in negotiation:
            **    fall back to default mode.
            */
            switch (cp->nego_status) {

            case NS_SYNC:
                  spi_period(starget) = 0;
                  spi_offset(starget) = 0;
                  ncr_setsync (np, cp, 0, 0xe0);
                  break;

            case NS_WIDE:
                  spi_width(starget) = 0;
                  ncr_setwide (np, cp, 0, 0);
                  break;

            }
            np->msgin [0] = NOP;
            np->msgout[0] = NOP;
            cp->nego_status = 0;
            break;

      case SIR_NEGO_SYNC:
            if (DEBUG_FLAGS & DEBUG_NEGO) {
                  ncr_print_msg(cp, "sync msgin", np->msgin);
            }

            chg = 0;
            per = np->msgin[3];
            ofs = np->msgin[4];
            if (ofs==0) per=255;

            /*
            **      if target sends SDTR message,
            **          it CAN transfer synch.
            */

            if (ofs && starget)
                  spi_support_sync(starget) = 1;

            /*
            **    check values against driver limits.
            */

            if (per < np->minsync)
                  {chg = 1; per = np->minsync;}
            if (per < tp->minsync)
                  {chg = 1; per = tp->minsync;}
            if (ofs > tp->maxoffs)
                  {chg = 1; ofs = tp->maxoffs;}

            /*
            **    Check against controller limits.
            */
            fak   = 7;
            scntl3      = 0;
            if (ofs != 0) {
                  ncr_getsync(np, per, &fak, &scntl3);
                  if (fak > 7) {
                        chg = 1;
                        ofs = 0;
                  }
            }
            if (ofs == 0) {
                  fak   = 7;
                  per   = 0;
                  scntl3      = 0;
                  tp->minsync = 0;
            }

            if (DEBUG_FLAGS & DEBUG_NEGO) {
                  PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
                        "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
            }

            if (INB (HS_PRT) == HS_NEGOTIATE) {
                  OUTB (HS_PRT, HS_BUSY);
                  switch (cp->nego_status) {

                  case NS_SYNC:
                        /* This was an answer message */
                        if (chg) {
                              /* Answer wasn't acceptable.  */
                              spi_period(starget) = 0;
                              spi_offset(starget) = 0;
                              ncr_setsync(np, cp, 0, 0xe0);
                              OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
                        } else {
                              /* Answer is ok.  */
                              spi_period(starget) = per;
                              spi_offset(starget) = ofs;
                              ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
                              OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
                        }
                        return;

                  case NS_WIDE:
                        spi_width(starget) = 0;
                        ncr_setwide(np, cp, 0, 0);
                        break;
                  }
            }

            /*
            **    It was a request. Set value and
            **      prepare an answer message
            */

            spi_period(starget) = per;
            spi_offset(starget) = ofs;
            ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);

            spi_populate_sync_msg(np->msgout, per, ofs);
            cp->nego_status = NS_SYNC;

            if (DEBUG_FLAGS & DEBUG_NEGO) {
                  ncr_print_msg(cp, "sync msgout", np->msgout);
            }

            if (!ofs) {
                  OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
                  return;
            }
            np->msgin [0] = NOP;

            break;

      case SIR_NEGO_WIDE:
            /*
            **    Wide request message received.
            */
            if (DEBUG_FLAGS & DEBUG_NEGO) {
                  ncr_print_msg(cp, "wide msgin", np->msgin);
            }

            /*
            **    get requested values.
            */

            chg  = 0;
            wide = np->msgin[3];

            /*
            **      if target sends WDTR message,
            **          it CAN transfer wide.
            */

            if (wide && starget)
                  spi_support_wide(starget) = 1;

            /*
            **    check values against driver limits.
            */

            if (wide > tp->usrwide)
                  {chg = 1; wide = tp->usrwide;}

            if (DEBUG_FLAGS & DEBUG_NEGO) {
                  PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
                              chg);
            }

            if (INB (HS_PRT) == HS_NEGOTIATE) {
                  OUTB (HS_PRT, HS_BUSY);
                  switch (cp->nego_status) {

                  case NS_WIDE:
                        /*
                        **      This was an answer message
                        */
                        if (chg) {
                              /* Answer wasn't acceptable.  */
                              spi_width(starget) = 0;
                              ncr_setwide(np, cp, 0, 1);
                              OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
                        } else {
                              /* Answer is ok.  */
                              spi_width(starget) = wide;
                              ncr_setwide(np, cp, wide, 1);
                              OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
                        }
                        return;

                  case NS_SYNC:
                        spi_period(starget) = 0;
                        spi_offset(starget) = 0;
                        ncr_setsync(np, cp, 0, 0xe0);
                        break;
                  }
            }

            /*
            **    It was a request, set value and
            **      prepare an answer message
            */

            spi_width(starget) = wide;
            ncr_setwide(np, cp, wide, 1);
            spi_populate_width_msg(np->msgout, wide);

            np->msgin [0] = NOP;

            cp->nego_status = NS_WIDE;

            if (DEBUG_FLAGS & DEBUG_NEGO) {
                  ncr_print_msg(cp, "wide msgout", np->msgin);
            }
            break;

/*--------------------------------------------------------------------
**
**    Processing of special messages
**
**--------------------------------------------------------------------
*/

      case SIR_REJECT_RECEIVED:
            /*-----------------------------------------------
            **
            **    We received a MESSAGE_REJECT.
            **
            **-----------------------------------------------
            */

            PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
                  (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
            break;

      case SIR_REJECT_SENT:
            /*-----------------------------------------------
            **
            **    We received an unknown message
            **
            **-----------------------------------------------
            */

            ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
            break;

/*--------------------------------------------------------------------
**
**    Processing of special messages
**
**--------------------------------------------------------------------
*/

      case SIR_IGN_RESIDUE:
            /*-----------------------------------------------
            **
            **    We received an IGNORE RESIDUE message,
            **    which couldn't be handled by the script.
            **
            **-----------------------------------------------
            */

            PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
                        "implemented.\n");
            break;
#if 0
      case SIR_MISSING_SAVE:
            /*-----------------------------------------------
            **
            **    We received an DISCONNECT message,
            **    but the datapointer wasn't saved before.
            **
            **-----------------------------------------------
            */

            PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
                        "not saved: data=%x save=%x goal=%x.\n",
                  (unsigned) INL (nc_temp),
                  (unsigned) scr_to_cpu(np->header.savep),
                  (unsigned) scr_to_cpu(np->header.goalp));
            break;
#endif
      }

out:
      OUTONB_STD ();
}

/*==========================================================
**
**
**    Acquire a control block
**
**
**==========================================================
*/

static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
{
      u_char tn = cmd->device->id;
      u_char ln = cmd->device->lun;
      struct tcb *tp = &np->target[tn];
      struct lcb *lp = tp->lp[ln];
      u_char tag = NO_TAG;
      struct ccb *cp = NULL;

      /*
      **    Lun structure available ?
      */
      if (lp) {
            struct list_head *qp;
            /*
            **    Keep from using more tags than we can handle.
            */
            if (lp->usetags && lp->busyccbs >= lp->maxnxs)
                  return NULL;

            /*
            **    Allocate a new CCB if needed.
            */
            if (list_empty(&lp->free_ccbq))
                  ncr_alloc_ccb(np, tn, ln);

            /*
            **    Look for free CCB
            */
            qp = ncr_list_pop(&lp->free_ccbq);
            if (qp) {
                  cp = list_entry(qp, struct ccb, link_ccbq);
                  if (cp->magic) {
                        PRINT_ADDR(cmd, "ccb free list corrupted "
                                    "(@%p)\n", cp);
                        cp = NULL;
                  } else {
                        list_add_tail(qp, &lp->wait_ccbq);
                        ++lp->busyccbs;
                  }
            }

            /*
            **    If a CCB is available,
            **    Get a tag for this nexus if required.
            */
            if (cp) {
                  if (lp->usetags)
                        tag = lp->cb_tags[lp->ia_tag];
            }
            else if (lp->actccbs > 0)
                  return NULL;
      }

      /*
      **    if nothing available, take the default.
      */
      if (!cp)
            cp = np->ccb;

      /*
      **    Wait until available.
      */
#if 0
      while (cp->magic) {
            if (flags & SCSI_NOSLEEP) break;
            if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
                  break;
      }
#endif

      if (cp->magic)
            return NULL;

      cp->magic = 1;

      /*
      **    Move to next available tag if tag used.
      */
      if (lp) {
            if (tag != NO_TAG) {
                  ++lp->ia_tag;
                  if (lp->ia_tag == MAX_TAGS)
                        lp->ia_tag = 0;
                  lp->tags_umap |= (((tagmap_t) 1) << tag);
            }
      }

      /*
      **    Remember all informations needed to free this CCB.
      */
      cp->tag        = tag;
      cp->target = tn;
      cp->lun    = ln;

      if (DEBUG_FLAGS & DEBUG_TAGS) {
            PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
      }

      return cp;
}

/*==========================================================
**
**
**    Release one control block
**
**
**==========================================================
*/

static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
{
      struct tcb *tp = &np->target[cp->target];
      struct lcb *lp = tp->lp[cp->lun];

      if (DEBUG_FLAGS & DEBUG_TAGS) {
            PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
      }

      /*
      **    If lun control block available,
      **    decrement active commands and increment credit, 
      **    free the tag if any and remove the JUMP for reselect.
      */
      if (lp) {
            if (cp->tag != NO_TAG) {
                  lp->cb_tags[lp->if_tag++] = cp->tag;
                  if (lp->if_tag == MAX_TAGS)
                        lp->if_tag = 0;
                  lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
                  lp->tags_smap &= lp->tags_umap;
                  lp->jump_ccb[cp->tag] =
                        cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
            } else {
                  lp->jump_ccb[0] =
                        cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
            }
      }

      /*
      **    Make this CCB available.
      */

      if (lp) {
            if (cp != np->ccb)
                  list_move(&cp->link_ccbq, &lp->free_ccbq);
            --lp->busyccbs;
            if (cp->queued) {
                  --lp->queuedccbs;
            }
      }
      cp -> host_status = HS_IDLE;
      cp -> magic = 0;
      if (cp->queued) {
            --np->queuedccbs;
            cp->queued = 0;
      }

#if 0
      if (cp == np->ccb)
            wakeup ((caddr_t) cp);
#endif
}


#define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))

/*------------------------------------------------------------------------
**    Initialize the fixed part of a CCB structure.
**------------------------------------------------------------------------
**------------------------------------------------------------------------
*/
static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
{
      ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);

      /*
      **    Remember virtual and bus address of this ccb.
      */
      cp->p_ccb      = vtobus(cp);
      cp->phys.header.cp = cp;

      /*
      **    This allows list_del to work for the default ccb.
      */
      INIT_LIST_HEAD(&cp->link_ccbq);

      /*
      **    Initialyze the start and restart launch script.
      **
      **    COPY(4) @(...p_phys), @(dsa)
      **    JUMP @(sched_point)
      */
      cp->start.setup_dsa[0]   = cpu_to_scr(copy_4);
      cp->start.setup_dsa[1]   = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
      cp->start.setup_dsa[2]   = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
      cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
      cp->start.p_phys   = cpu_to_scr(CCB_PHYS(cp, phys));

      memcpy(&cp->restart, &cp->start, sizeof(cp->restart));

      cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
      cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
}


/*------------------------------------------------------------------------
**    Allocate a CCB and initialize its fixed part.
**------------------------------------------------------------------------
**------------------------------------------------------------------------
*/
static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
{
      struct tcb *tp = &np->target[tn];
      struct lcb *lp = tp->lp[ln];
      struct ccb *cp = NULL;

      /*
      **    Allocate memory for this CCB.
      */
      cp = m_calloc_dma(sizeof(struct ccb), "CCB");
      if (!cp)
            return;

      /*
      **    Count it and initialyze it.
      */
      lp->actccbs++;
      np->actccbs++;
      memset(cp, 0, sizeof (*cp));
      ncr_init_ccb(np, cp);

      /*
      **    Chain into wakeup list and free ccb queue and take it 
      **    into account for tagged commands.
      */
      cp->link_ccb      = np->ccb->link_ccb;
      np->ccb->link_ccb = cp;

      list_add(&cp->link_ccbq, &lp->free_ccbq);
}

/*==========================================================
**
**
**      Allocation of resources for Targets/Luns/Tags.
**
**
**==========================================================
*/


/*------------------------------------------------------------------------
**    Target control block initialisation.
**------------------------------------------------------------------------
**    This data structure is fully initialized after a SCSI command 
**    has been successfully completed for this target.
**    It contains a SCRIPT that is called on target reselection.
**------------------------------------------------------------------------
*/
static void ncr_init_tcb (struct ncb *np, u_char tn)
{
      struct tcb *tp = &np->target[tn];
      ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
      int th = tn & 3;
      int i;

      /*
      **    Jump to next tcb if SFBR does not match this target.
      **    JUMP  IF (SFBR != #target#), @(next tcb)
      */
      tp->jump_tcb.l_cmd   =
            cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
      tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;

      /*
      **    Load the synchronous transfer register.
      **    COPY @(tp->sval), @(sxfer)
      */
      tp->getscr[0] =   cpu_to_scr(copy_1);
      tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
#ifdef SCSI_NCR_BIG_ENDIAN
      tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
#else
      tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
#endif

      /*
      **    Load the timing register.
      **    COPY @(tp->wval), @(scntl3)
      */
      tp->getscr[3] =   cpu_to_scr(copy_1);
      tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
#ifdef SCSI_NCR_BIG_ENDIAN
      tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
#else
      tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
#endif

      /*
      **    Get the IDENTIFY message and the lun.
      **    CALL @script(resel_lun)
      */
      tp->call_lun.l_cmd   = cpu_to_scr(SCR_CALL);
      tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));

      /*
      **    Look for the lun control block of this nexus.
      **    For i = 0 to 3
      **          JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
      */
      for (i = 0 ; i < 4 ; i++) {
            tp->jump_lcb[i].l_cmd   =
                        cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
            tp->jump_lcb[i].l_paddr =
                        cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
      }

      /*
      **    Link this target control block to the JUMP chain.
      */
      np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));

      /*
      **    These assert's should be moved at driver initialisations.
      */
#ifdef SCSI_NCR_BIG_ENDIAN
      BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
             offsetof(struct tcb    , sval    )) &3) != 3);
      BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
             offsetof(struct tcb    , wval    )) &3) != 3);
#else
      BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
             offsetof(struct tcb    , sval    )) &3) != 0);
      BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
             offsetof(struct tcb    , wval    )) &3) != 0);
#endif
}


/*------------------------------------------------------------------------
**    Lun control block allocation and initialization.
**------------------------------------------------------------------------
**    This data structure is allocated and initialized after a SCSI 
**    command has been successfully completed for this target/lun.
**------------------------------------------------------------------------
*/
static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
{
      struct tcb *tp = &np->target[tn];
      struct lcb *lp = tp->lp[ln];
      ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
      int lh = ln & 3;

      /*
      **    Already done, return.
      */
      if (lp)
            return lp;

      /*
      **    Allocate the lcb.
      */
      lp = m_calloc_dma(sizeof(struct lcb), "LCB");
      if (!lp)
            goto fail;
      memset(lp, 0, sizeof(*lp));
      tp->lp[ln] = lp;

      /*
      **    Initialize the target control block if not yet.
      */
      if (!tp->jump_tcb.l_cmd)
            ncr_init_tcb(np, tn);

      /*
      **    Initialize the CCB queue headers.
      */
      INIT_LIST_HEAD(&lp->free_ccbq);
      INIT_LIST_HEAD(&lp->busy_ccbq);
      INIT_LIST_HEAD(&lp->wait_ccbq);
      INIT_LIST_HEAD(&lp->skip_ccbq);

      /*
      **    Set max CCBs to 1 and use the default 1 entry 
      **    jump table by default.
      */
      lp->maxnxs  = 1;
      lp->jump_ccb      = &lp->jump_ccb_0;
      lp->p_jump_ccb    = cpu_to_scr(vtobus(lp->jump_ccb));

      /*
      **    Initilialyze the reselect script:
      **
      **    Jump to next lcb if SFBR does not match this lun.
      **    Load TEMP with the CCB direct jump table bus address.
      **    Get the SIMPLE TAG message and the tag.
      **
      **    JUMP  IF (SFBR != #lun#), @(next lcb)
      **    COPY @(lp->p_jump_ccb),   @(temp)
      **    JUMP @script(resel_notag)
      */
      lp->jump_lcb.l_cmd   =
            cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
      lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;

      lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
      lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
      lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));

      lp->jump_tag.l_cmd   = cpu_to_scr(SCR_JUMP);
      lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));

      /*
      **    Link this lun control block to the JUMP chain.
      */
      tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));

      /*
      **    Initialize command queuing control.
      */
      lp->busyccbs      = 1;
      lp->queuedccbs    = 1;
      lp->queuedepth    = 1;
fail:
      return lp;
}


/*------------------------------------------------------------------------
**    Lun control block setup on INQUIRY data received.
**------------------------------------------------------------------------
**    We only support WIDE, SYNC for targets and CMDQ for logical units.
**    This setup is done on each INQUIRY since we are expecting user 
**    will play with CHANGE DEFINITION commands. :-)
**------------------------------------------------------------------------
*/
static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
{
      unsigned char tn = sdev->id, ln = sdev->lun;
      struct tcb *tp = &np->target[tn];
      struct lcb *lp = tp->lp[ln];

      /* If no lcb, try to allocate it.  */
      if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
            goto fail;

      /*
      **    If unit supports tagged commands, allocate the 
      **    CCB JUMP table if not yet.
      */
      if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
            int i;
            lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
            if (!lp->jump_ccb) {
                  lp->jump_ccb = &lp->jump_ccb_0;
                  goto fail;
            }
            lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
            for (i = 0 ; i < 64 ; i++)
                  lp->jump_ccb[i] =
                        cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
            for (i = 0 ; i < MAX_TAGS ; i++)
                  lp->cb_tags[i] = i;
            lp->maxnxs = MAX_TAGS;
            lp->tags_stime = jiffies + 3*HZ;
            ncr_setup_tags (np, sdev);
      }


fail:
      return lp;
}

/*==========================================================
**
**
**    Build Scatter Gather Block
**
**
**==========================================================
**
**    The transfer area may be scattered among
**    several non adjacent physical pages.
**
**    We may use MAX_SCATTER blocks.
**
**----------------------------------------------------------
*/

/*
**    We try to reduce the number of interrupts caused
**    by unexpected phase changes due to disconnects.
**    A typical harddisk may disconnect before ANY block.
**    If we wanted to avoid unexpected phase changes at all
**    we had to use a break point every 512 bytes.
**    Of course the number of scatter/gather blocks is
**    limited.
**    Under Linux, the scatter/gatter blocks are provided by 
**    the generic driver. We just have to copy addresses and 
**    sizes to the data segment array.
*/

static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
{
      int segment = 0;
      int use_sg  = scsi_sg_count(cmd);

      cp->data_len      = 0;

      use_sg = map_scsi_sg_data(np, cmd);
      if (use_sg > 0) {
            struct scatterlist *sg;
            struct scr_tblmove *data;

            if (use_sg > MAX_SCATTER) {
                  unmap_scsi_data(np, cmd);
                  return -1;
            }

            data = &cp->phys.data[MAX_SCATTER - use_sg];

            scsi_for_each_sg(cmd, sg, use_sg, segment) {
                  dma_addr_t baddr = sg_dma_address(sg);
                  unsigned int len = sg_dma_len(sg);

                  ncr_build_sge(np, &data[segment], baddr, len);
                  cp->data_len += len;
            }
      } else
            segment = -2;

      return segment;
}

/*==========================================================
**
**
**    Test the bus snoop logic :-(
**
**    Has to be called with interrupts disabled.
**
**
**==========================================================
*/

static int __init ncr_regtest (struct ncb* np)
{
      register volatile u32 data;
      /*
      **    ncr registers may NOT be cached.
      **    write 0xffffffff to a read only register area,
      **    and try to read it back.
      */
      data = 0xffffffff;
      OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
      data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
#if 1
      if (data == 0xffffffff) {
#else
      if ((data & 0xe2f0fffd) != 0x02000080) {
#endif
            printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
                  (unsigned) data);
            return (0x10);
      }
      return (0);
}

static int __init ncr_snooptest (struct ncb* np)
{
      u32   ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
      int   i, err=0;
      if (np->reg) {
            err |= ncr_regtest (np);
            if (err)
                  return (err);
      }

      /* init */
      pc  = NCB_SCRIPTH_PHYS (np, snooptest);
      host_wr = 1;
      ncr_wr  = 2;
      /*
      **    Set memory and register.
      */
      np->ncr_cache = cpu_to_scr(host_wr);
      OUTL (nc_temp, ncr_wr);
      /*
      **    Start script (exchange values)
      */
      OUTL_DSP (pc);
      /*
      **    Wait 'til done (with timeout)
      */
      for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
            if (INB(nc_istat) & (INTF|SIP|DIP))
                  break;
      /*
      **    Save termination position.
      */
      pc = INL (nc_dsp);
      /*
      **    Read memory and register.
      */
      host_rd = scr_to_cpu(np->ncr_cache);
      ncr_rd  = INL (nc_scratcha);
      ncr_bk  = INL (nc_temp);
      /*
      **    Reset ncr chip
      */
      ncr_chip_reset(np, 100);
      /*
      **    check for timeout
      */
      if (i>=NCR_SNOOP_TIMEOUT) {
            printk ("CACHE TEST FAILED: timeout.\n");
            return (0x20);
      }
      /*
      **    Check termination position.
      */
      if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
            printk ("CACHE TEST FAILED: script execution failed.\n");
            printk ("start=%08lx, pc=%08lx, end=%08lx\n", 
                  (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
                  (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
            return (0x40);
      }
      /*
      **    Show results.
      */
      if (host_wr != ncr_rd) {
            printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
                  (int) host_wr, (int) ncr_rd);
            err |= 1;
      }
      if (host_rd != ncr_wr) {
            printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
                  (int) ncr_wr, (int) host_rd);
            err |= 2;
      }
      if (ncr_bk != ncr_wr) {
            printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
                  (int) ncr_wr, (int) ncr_bk);
            err |= 4;
      }
      return (err);
}

/*==========================================================
**
**    Determine the ncr's clock frequency.
**    This is essential for the negotiation
**    of the synchronous transfer rate.
**
**==========================================================
**
**    Note: we have to return the correct value.
**    THERE IS NO SAFE DEFAULT VALUE.
**
**    Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
**    53C860 and 53C875 rev. 1 support fast20 transfers but 
**    do not have a clock doubler and so are provided with a 
**    80 MHz clock. All other fast20 boards incorporate a doubler 
**    and so should be delivered with a 40 MHz clock.
**    The future fast40 chips (895/895) use a 40 Mhz base clock 
**    and provide a clock quadrupler (160 Mhz). The code below 
**    tries to deal as cleverly as possible with all this stuff.
**
**----------------------------------------------------------
*/

/*
 *    Select NCR SCSI clock frequency
 */
static void ncr_selectclock(struct ncb *np, u_char scntl3)
{
      if (np->multiplier < 2) {
            OUTB(nc_scntl3,   scntl3);
            return;
      }

      if (bootverbose >= 2)
            printk ("%s: enabling clock multiplier\n", ncr_name(np));

      OUTB(nc_stest1, DBLEN);    /* Enable clock multiplier         */
      if (np->multiplier > 2) {  /* Poll bit 5 of stest4 for quadrupler */
            int i = 20;
            while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
                  udelay(20);
            if (!i)
                  printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
      } else                  /* Wait 20 micro-seconds for doubler      */
            udelay(20);
      OUTB(nc_stest3, HSC);         /* Halt the scsi clock        */
      OUTB(nc_scntl3,   scntl3);
      OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier  */
      OUTB(nc_stest3, 0x00);        /* Restart scsi clock         */
}


/*
 *    calculate NCR SCSI clock frequency (in KHz)
 */
static unsigned __init ncrgetfreq (struct ncb *np, int gen)
{
      unsigned ms = 0;
      char count = 0;

      /*
       * Measure GEN timer delay in order 
       * to calculate SCSI clock frequency
       *
       * This code will never execute too
       * many loop iterations (if DELAY is 
       * reasonably correct). It could get
       * too low a delay (too high a freq.)
       * if the CPU is slow executing the 
       * loop for some reason (an NMI, for
       * example). For this reason we will
       * if multiple measurements are to be 
       * performed trust the higher delay 
       * (lower frequency returned).
       */
      OUTB (nc_stest1, 0);    /* make sure clock doubler is OFF */
      OUTW (nc_sien , 0);     /* mask all scsi interrupts */
      (void) INW (nc_sist);   /* clear pending scsi interrupt */
      OUTB (nc_dien , 0);     /* mask all dma interrupts */
      (void) INW (nc_sist);   /* another one, just to be sure :) */
      OUTB (nc_scntl3, 4);    /* set pre-scaler to divide by 3 */
      OUTB (nc_stime1, 0);    /* disable general purpose timer */
      OUTB (nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
      while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
            for (count = 0; count < 10; count ++)
                  udelay(100);      /* count ms */
      }
      OUTB (nc_stime1, 0);    /* disable general purpose timer */
      /*
       * set prescaler to divide by whatever 0 means
       * 0 ought to choose divide by 2, but appears
       * to set divide by 3.5 mode in my 53c810 ...
       */
      OUTB (nc_scntl3, 0);

      if (bootverbose >= 2)
            printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
      /*
       * adjust for prescaler, and convert into KHz 
       */
      return ms ? ((1 << gen) * 4340) / ms : 0;
}

/*
 *    Get/probe NCR SCSI clock frequency
 */
static void __init ncr_getclock (struct ncb *np, int mult)
{
      unsigned char scntl3 = INB(nc_scntl3);
      unsigned char stest1 = INB(nc_stest1);
      unsigned f1;

      np->multiplier = 1;
      f1 = 40000;

      /*
      **    True with 875 or 895 with clock multiplier selected
      */
      if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
            if (bootverbose >= 2)
                  printk ("%s: clock multiplier found\n", ncr_name(np));
            np->multiplier = mult;
      }

      /*
      **    If multiplier not found or scntl3 not 7,5,3,
      **    reset chip and get frequency from general purpose timer.
      **    Otherwise trust scntl3 BIOS setting.
      */
      if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
            unsigned f2;

            ncr_chip_reset(np, 5);

            (void) ncrgetfreq (np, 11);   /* throw away first result */
            f1 = ncrgetfreq (np, 11);
            f2 = ncrgetfreq (np, 11);

            if(bootverbose)
                  printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);

            if (f1 > f2) f1 = f2;         /* trust lower result   */

            if    (f1 < 45000)            f1 =  40000;
            else if (f1 <     55000)            f1 =  50000;
            else                    f1 =  80000;

            if (f1 < 80000 && mult > 1) {
                  if (bootverbose >= 2)
                        printk ("%s: clock multiplier assumed\n", ncr_name(np));
                  np->multiplier    = mult;
            }
      } else {
            if    ((scntl3 & 7) == 3)     f1 =  40000;
            else if     ((scntl3 & 7) == 5)     f1 =  80000;
            else                    f1 = 160000;

            f1 /= np->multiplier;
      }

      /*
      **    Compute controller synchronous parameters.
      */
      f1          *= np->multiplier;
      np->clock_khz     = f1;
}

/*===================== LINUX ENTRY POINTS SECTION ==========================*/

static int ncr53c8xx_slave_alloc(struct scsi_device *device)
{
      struct Scsi_Host *host = device->host;
      struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
      struct tcb *tp = &np->target[device->id];
      tp->starget = device->sdev_target;

      return 0;
}

static int ncr53c8xx_slave_configure(struct scsi_device *device)
{
      struct Scsi_Host *host = device->host;
      struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
      struct tcb *tp = &np->target[device->id];
      struct lcb *lp = tp->lp[device->lun];
      int numtags, depth_to_use;

      ncr_setup_lcb(np, device);

      /*
      **    Select queue depth from driver setup.
      **    Donnot use more than configured by user.
      **    Use at least 2.
      **    Donnot use more than our maximum.
      */
      numtags = device_queue_depth(np->unit, device->id, device->lun);
      if (numtags > tp->usrtags)
            numtags = tp->usrtags;
      if (!device->tagged_supported)
            numtags = 1;
      depth_to_use = numtags;
      if (depth_to_use < 2)
            depth_to_use = 2;
      if (depth_to_use > MAX_TAGS)
            depth_to_use = MAX_TAGS;

      scsi_adjust_queue_depth(device,
                        (device->tagged_supported ?
                         MSG_SIMPLE_TAG : 0),
                        depth_to_use);

      /*
      **    Since the queue depth is not tunable under Linux,
      **    we need to know this value in order not to 
      **    announce stupid things to user.
      **
      **    XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
      **            In fact we just tuned it, or did I miss
      **            something important? :)
      */
      if (lp) {
            lp->numtags = lp->maxtags = numtags;
            lp->scdev_depth = depth_to_use;
      }
      ncr_setup_tags (np, device);

#ifdef DEBUG_NCR53C8XX
      printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
             np->unit, device->id, device->lun, depth_to_use);
#endif

      if (spi_support_sync(device->sdev_target) &&
          !spi_initial_dv(device->sdev_target))
            spi_dv_device(device);
      return 0;
}

static int ncr53c8xx_queue_command (struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *))
{
     struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
     unsigned long flags;
     int sts;

#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx_queue_command\n");
#endif

     cmd->scsi_done     = done;
     cmd->host_scribble = NULL;
     cmd->__data_mapped = 0;
     cmd->__data_mapping = 0;

     spin_lock_irqsave(&np->smp_lock, flags);

     if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
        cmd->result = ScsiResult(sts, 0);
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx : command not queued - result=%d\n", sts);
#endif
     }
#ifdef DEBUG_NCR53C8XX
     else
printk("ncr53c8xx : command successfully queued\n");
#endif

     spin_unlock_irqrestore(&np->smp_lock, flags);

     if (sts != DID_OK) {
          unmap_scsi_data(np, cmd);
          done(cmd);
        sts = 0;
     }

     return sts;
}

irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
{
     unsigned long flags;
     struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
     struct host_data *host_data = (struct host_data *)shost->hostdata;
     struct ncb *np = host_data->ncb;
     struct scsi_cmnd *done_list;

#ifdef DEBUG_NCR53C8XX
     printk("ncr53c8xx : interrupt received\n");
#endif

     if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");

     spin_lock_irqsave(&np->smp_lock, flags);
     ncr_exception(np);
     done_list     = np->done_list;
     np->done_list = NULL;
     spin_unlock_irqrestore(&np->smp_lock, flags);

     if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");

     if (done_list)
           ncr_flush_done_cmds(done_list);
     return IRQ_HANDLED;
}

static void ncr53c8xx_timeout(unsigned long npref)
{
      struct ncb *np = (struct ncb *) npref;
      unsigned long flags;
      struct scsi_cmnd *done_list;

      spin_lock_irqsave(&np->smp_lock, flags);
      ncr_timeout(np);
      done_list     = np->done_list;
      np->done_list = NULL;
      spin_unlock_irqrestore(&np->smp_lock, flags);

      if (done_list)
            ncr_flush_done_cmds(done_list);
}

static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
{
      struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
      int sts;
      unsigned long flags;
      struct scsi_cmnd *done_list;

      /*
       * If the mid-level driver told us reset is synchronous, it seems 
       * that we must call the done() callback for the involved command, 
       * even if this command was not queued to the low-level driver, 
       * before returning SUCCESS.
       */

      spin_lock_irqsave(&np->smp_lock, flags);
      sts = ncr_reset_bus(np, cmd, 1);

      done_list     = np->done_list;
      np->done_list = NULL;
      spin_unlock_irqrestore(&np->smp_lock, flags);

      ncr_flush_done_cmds(done_list);

      return sts;
}

#if 0 /* unused and broken */
static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
{
      struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
      int sts;
      unsigned long flags;
      struct scsi_cmnd *done_list;

      printk("ncr53c8xx_abort: command pid %lu\n", cmd->serial_number);

      NCR_LOCK_NCB(np, flags);

      sts = ncr_abort_command(np, cmd);
out:
      done_list     = np->done_list;
      np->done_list = NULL;
      NCR_UNLOCK_NCB(np, flags);

      ncr_flush_done_cmds(done_list);

      return sts;
}
#endif


/*
**    Scsi command waiting list management.
**
**    It may happen that we cannot insert a scsi command into the start queue,
**    in the following circumstances.
**          Too few preallocated ccb(s), 
**          maxtags < cmd_per_lun of the Linux host control block,
**          etc...
**    Such scsi commands are inserted into a waiting list.
**    When a scsi command complete, we try to requeue the commands of the
**    waiting list.
*/

#define next_wcmd host_scribble

static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
{
      struct scsi_cmnd *wcmd;

#ifdef DEBUG_WAITING_LIST
      printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
#endif
      cmd->next_wcmd = NULL;
      if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
      else {
            while ((wcmd->next_wcmd) != 0)
                  wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
            wcmd->next_wcmd = (char *) cmd;
      }
}

static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
{
      struct scsi_cmnd **pcmd = &np->waiting_list;

      while (*pcmd) {
            if (cmd == *pcmd) {
                  if (to_remove) {
                        *pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
                        cmd->next_wcmd = NULL;
                  }
#ifdef DEBUG_WAITING_LIST
      printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
#endif
                  return cmd;
            }
            pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
      }
      return NULL;
}

static void process_waiting_list(struct ncb *np, int sts)
{
      struct scsi_cmnd *waiting_list, *wcmd;

      waiting_list = np->waiting_list;
      np->waiting_list = NULL;

#ifdef DEBUG_WAITING_LIST
      if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
#endif
      while ((wcmd = waiting_list) != 0) {
            waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
            wcmd->next_wcmd = NULL;
            if (sts == DID_OK) {
#ifdef DEBUG_WAITING_LIST
      printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
#endif
                  sts = ncr_queue_command(np, wcmd);
            }
            if (sts != DID_OK) {
#ifdef DEBUG_WAITING_LIST
      printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
#endif
                  wcmd->result = ScsiResult(sts, 0);
                  ncr_queue_done_cmd(np, wcmd);
            }
      }
}

#undef next_wcmd

static ssize_t show_ncr53c8xx_revision(struct class_device *dev, char *buf)
{
      struct Scsi_Host *host = class_to_shost(dev);
      struct host_data *host_data = (struct host_data *)host->hostdata;
  
      return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
}
  
static struct class_device_attribute ncr53c8xx_revision_attr = {
      .attr = { .name = "revision", .mode = S_IRUGO, },
      .show = show_ncr53c8xx_revision,
};
  
static struct class_device_attribute *ncr53c8xx_host_attrs[] = {
      &ncr53c8xx_revision_attr,
      NULL
};

/*==========================================================
**
**    Boot command line.
**
**==========================================================
*/
#ifdef      MODULE
char *ncr53c8xx;  /* command line passed by insmod */
module_param(ncr53c8xx, charp, 0);
#endif

#ifndef MODULE
static int __init ncr53c8xx_setup(char *str)
{
      return sym53c8xx__setup(str);
}

__setup("ncr53c8xx=", ncr53c8xx_setup);
#endif


/*
 *    Host attach and initialisations.
 *
 *    Allocate host data and ncb structure.
 *    Request IO region and remap MMIO region.
 *    Do chip initialization.
 *    If all is OK, install interrupt handling and
 *    start the timer daemon.
 */
struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
                              int unit, struct ncr_device *device)
{
      struct host_data *host_data;
      struct ncb *np = NULL;
      struct Scsi_Host *instance = NULL;
      u_long flags = 0;
      int i;

      if (!tpnt->name)
            tpnt->name  = SCSI_NCR_DRIVER_NAME;
      if (!tpnt->shost_attrs)
            tpnt->shost_attrs = ncr53c8xx_host_attrs;

      tpnt->queuecommand      = ncr53c8xx_queue_command;
      tpnt->slave_configure   = ncr53c8xx_slave_configure;
      tpnt->slave_alloc = ncr53c8xx_slave_alloc;
      tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
      tpnt->can_queue         = SCSI_NCR_CAN_QUEUE;
      tpnt->this_id           = 7;
      tpnt->sg_tablesize      = SCSI_NCR_SG_TABLESIZE;
      tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN;
      tpnt->use_clustering    = ENABLE_CLUSTERING;

      if (device->differential)
            driver_setup.diff_support = device->differential;

      printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
            unit, device->chip.revision_id, device->slot.irq);

      instance = scsi_host_alloc(tpnt, sizeof(*host_data));
      if (!instance)
              goto attach_error;
      host_data = (struct host_data *) instance->hostdata;

      np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
      if (!np)
            goto attach_error;
      spin_lock_init(&np->smp_lock);
      np->dev = device->dev;
      np->p_ncb = vtobus(np);
      host_data->ncb = np;

      np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
      if (!np->ccb)
            goto attach_error;

      /* Store input information in the host data structure.  */
      np->unit    = unit;
      np->verbose = driver_setup.verbose;
      sprintf(np->inst_name, "ncr53c720-%d", np->unit);
      np->revision_id   = device->chip.revision_id;
      np->features      = device->chip.features;
      np->clock_divn    = device->chip.nr_divisor;
      np->maxoffs = device->chip.offset_max;
      np->maxburst      = device->chip.burst_max;
      np->myaddr  = device->host_id;

      /* Allocate SCRIPTS areas.  */
      np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
      if (!np->script0)
            goto attach_error;
      np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
      if (!np->scripth0)
            goto attach_error;

      init_timer(&np->timer);
      np->timer.data     = (unsigned long) np;
      np->timer.function = ncr53c8xx_timeout;

      /* Try to map the controller chip to virtual and physical memory. */

      np->paddr   = device->slot.base;
      np->paddr2  = (np->features & FE_RAM) ? device->slot.base_2 : 0;

      if (device->slot.base_v)
            np->vaddr = device->slot.base_v;
      else
            np->vaddr = ioremap(device->slot.base_c, 128);

      if (!np->vaddr) {
            printk(KERN_ERR
                  "%s: can't map memory mapped IO region\n",ncr_name(np));
            goto attach_error;
      } else {
            if (bootverbose > 1)
                  printk(KERN_INFO
                        "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
      }

      /* Make the controller's registers available.  Now the INB INW INL
       * OUTB OUTW OUTL macros can be used safely.
       */

      np->reg = (struct ncr_reg __iomem *)np->vaddr;

      /* Do chip dependent initialization.  */
      ncr_prepare_setting(np);

      if (np->paddr2 && sizeof(struct script) > 4096) {
            np->paddr2 = 0;
            printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
                  ncr_name(np));
      }

      instance->max_channel   = 0;
      instance->this_id       = np->myaddr;
      instance->max_id  = np->maxwide ? 16 : 8;
      instance->max_lun = SCSI_NCR_MAX_LUN;
      instance->base          = (unsigned long) np->reg;
      instance->irq           = device->slot.irq;
      instance->unique_id     = device->slot.base;
      instance->dma_channel   = 0;
      instance->cmd_per_lun   = MAX_TAGS;
      instance->can_queue     = (MAX_START-4);
      /* This can happen if you forget to call ncr53c8xx_init from
       * your module_init */
      BUG_ON(!ncr53c8xx_transport_template);
      instance->transportt    = ncr53c8xx_transport_template;

      /* Patch script to physical addresses */
      ncr_script_fill(&script0, &scripth0);

      np->scripth = np->scripth0;
      np->p_scripth     = vtobus(np->scripth);
      np->p_script      = (np->paddr2) ?  np->paddr2 : vtobus(np->script0);

      ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
                  (ncrcmd *) np->script0, sizeof(struct script));
      ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
                  (ncrcmd *) np->scripth0, sizeof(struct scripth));
      np->ccb->p_ccb    = vtobus (np->ccb);

      /* Patch the script for LED support.  */

      if (np->features & FE_LED0) {
            np->script0->idle[0]  =
                        cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR,  0x01));
            np->script0->reselected[0] =
                        cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
            np->script0->start[0] =
                        cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
      }

      /*
       * Look for the target control block of this nexus.
       * For i = 0 to 3
       *   JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
       */
      for (i = 0 ; i < 4 ; i++) {
            np->jump_tcb[i].l_cmd   =
                        cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
            np->jump_tcb[i].l_paddr =
                        cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
      }

      ncr_chip_reset(np, 100);

      /* Now check the cache handling of the chipset.  */

      if (ncr_snooptest(np)) {
            printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
            goto attach_error;
      }

      /* Install the interrupt handler.  */
      np->irq = device->slot.irq;

      /* Initialize the fixed part of the default ccb.  */
      ncr_init_ccb(np, np->ccb);

      /*
       * After SCSI devices have been opened, we cannot reset the bus
       * safely, so we do it here.  Interrupt handler does the real work.
       * Process the reset exception if interrupts are not enabled yet.
       * Then enable disconnects.
       */
      spin_lock_irqsave(&np->smp_lock, flags);
      if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
            printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));

            spin_unlock_irqrestore(&np->smp_lock, flags);
            goto attach_error;
      }
      ncr_exception(np);

      np->disc = 1;

      /*
       * The middle-level SCSI driver does not wait for devices to settle.
       * Wait synchronously if more than 2 seconds.
       */
      if (driver_setup.settle_delay > 2) {
            printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
                  ncr_name(np), driver_setup.settle_delay);
            mdelay(1000 * driver_setup.settle_delay);
      }

      /* start the timeout daemon */
      np->lasttime=0;
      ncr_timeout (np);

      /* use SIMPLE TAG messages by default */
#ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
      np->order = SIMPLE_QUEUE_TAG;
#endif

      spin_unlock_irqrestore(&np->smp_lock, flags);

      return instance;

 attach_error:
      if (!instance)
            return NULL;
      printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
      if (!np)
            goto unregister;
      if (np->scripth0)
            m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
      if (np->script0)
            m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
      if (np->ccb)
            m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
      m_free_dma(np, sizeof(struct ncb), "NCB");
      host_data->ncb = NULL;

 unregister:
      scsi_host_put(instance);

      return NULL;
}


void ncr53c8xx_release(struct Scsi_Host *host)
{
      struct host_data *host_data = shost_priv(host);
#ifdef DEBUG_NCR53C8XX
      printk("ncr53c8xx: release\n");
#endif
      if (host_data->ncb)
            ncr_detach(host_data->ncb);
      scsi_host_put(host);
}

static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
      struct tcb *tp = &np->target[starget->id];

      if (period > np->maxsync)
            period = np->maxsync;
      else if (period < np->minsync)
            period = np->minsync;

      tp->usrsync = period;

      ncr_negotiate(np, tp);
}

static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
      struct tcb *tp = &np->target[starget->id];

      if (offset > np->maxoffs)
            offset = np->maxoffs;
      else if (offset < 0)
            offset = 0;

      tp->maxoffs = offset;

      ncr_negotiate(np, tp);
}

static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
{
      struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
      struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
      struct tcb *tp = &np->target[starget->id];

      if (width > np->maxwide)
            width = np->maxwide;
      else if (width < 0)
            width = 0;

      tp->usrwide = width;

      ncr_negotiate(np, tp);
}

static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
{
      struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
      enum spi_signal_type type;

      switch (np->scsi_mode) {
      case SMODE_SE:
            type = SPI_SIGNAL_SE;
            break;
      case SMODE_HVD:
            type = SPI_SIGNAL_HVD;
            break;
      default:
            type = SPI_SIGNAL_UNKNOWN;
            break;
      }
      spi_signalling(shost) = type;
}

static struct spi_function_template ncr53c8xx_transport_functions =  {
      .set_period = ncr53c8xx_set_period,
      .show_period      = 1,
      .set_offset = ncr53c8xx_set_offset,
      .show_offset      = 1,
      .set_width  = ncr53c8xx_set_width,
      .show_width = 1,
      .get_signalling   = ncr53c8xx_get_signalling,
};

int __init ncr53c8xx_init(void)
{
      ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
      if (!ncr53c8xx_transport_template)
            return -ENODEV;
      return 0;
}

void ncr53c8xx_exit(void)
{
      spi_release_transport(ncr53c8xx_transport_template);
}

Generated by  Doxygen 1.6.0   Back to index