Logo Search packages:      
Sourcecode: linux version File versions  Download package

numa_64.c

/* 
 * Generic VM initialization for x86-64 NUMA setups.
 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
 */ 
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/nodemask.h>

#include <asm/e820.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/numa.h>
#include <asm/acpi.h>

#ifndef Dprintk
#define Dprintk(x...)
#endif

struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
bootmem_data_t plat_node_bdata[MAX_NUMNODES];

struct memnode memnode;

unsigned char cpu_to_node[NR_CPUS] __read_mostly = {
      [0 ... NR_CPUS-1] = NUMA_NO_NODE
};
unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
      [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};
cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly;

int numa_off __initdata;
unsigned long __initdata nodemap_addr;
unsigned long __initdata nodemap_size;


/*
 * Given a shift value, try to populate memnodemap[]
 * Returns :
 * 1 if OK
 * 0 if memnodmap[] too small (of shift too small)
 * -1 if node overlap or lost ram (shift too big)
 */
static int __init
populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift)
{
      int i; 
      int res = -1;
      unsigned long addr, end;

      memset(memnodemap, 0xff, memnodemapsize);
      for (i = 0; i < numnodes; i++) {
            addr = nodes[i].start;
            end = nodes[i].end;
            if (addr >= end)
                  continue;
            if ((end >> shift) >= memnodemapsize)
                  return 0;
            do {
                  if (memnodemap[addr >> shift] != 0xff)
                        return -1;
                  memnodemap[addr >> shift] = i;
                  addr += (1UL << shift);
            } while (addr < end);
            res = 1;
      } 
      return res;
}

static int __init allocate_cachealigned_memnodemap(void)
{
      unsigned long pad, pad_addr;

      memnodemap = memnode.embedded_map;
      if (memnodemapsize <= 48)
            return 0;

      pad = L1_CACHE_BYTES - 1;
      pad_addr = 0x8000;
      nodemap_size = pad + memnodemapsize;
      nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
                              nodemap_size);
      if (nodemap_addr == -1UL) {
            printk(KERN_ERR
                   "NUMA: Unable to allocate Memory to Node hash map\n");
            nodemap_addr = nodemap_size = 0;
            return -1;
      }
      pad_addr = (nodemap_addr + pad) & ~pad;
      memnodemap = phys_to_virt(pad_addr);

      printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
             nodemap_addr, nodemap_addr + nodemap_size);
      return 0;
}

/*
 * The LSB of all start and end addresses in the node map is the value of the
 * maximum possible shift.
 */
static int __init
extract_lsb_from_nodes (const struct bootnode *nodes, int numnodes)
{
      int i, nodes_used = 0;
      unsigned long start, end;
      unsigned long bitfield = 0, memtop = 0;

      for (i = 0; i < numnodes; i++) {
            start = nodes[i].start;
            end = nodes[i].end;
            if (start >= end)
                  continue;
            bitfield |= start;
            nodes_used++;
            if (end > memtop)
                  memtop = end;
      }
      if (nodes_used <= 1)
            i = 63;
      else
            i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
      memnodemapsize = (memtop >> i)+1;
      return i;
}

int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
{
      int shift;

      shift = extract_lsb_from_nodes(nodes, numnodes);
      if (allocate_cachealigned_memnodemap())
            return -1;
      printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
            shift);

      if (populate_memnodemap(nodes, numnodes, shift) != 1) {
            printk(KERN_INFO
      "Your memory is not aligned you need to rebuild your kernel "
      "with a bigger NODEMAPSIZE shift=%d\n",
                  shift);
            return -1;
      }
      return shift;
}

#ifdef CONFIG_SPARSEMEM
int early_pfn_to_nid(unsigned long pfn)
{
      return phys_to_nid(pfn << PAGE_SHIFT);
}
#endif

static void * __init
early_node_mem(int nodeid, unsigned long start, unsigned long end,
            unsigned long size)
{
      unsigned long mem = find_e820_area(start, end, size);
      void *ptr;
      if (mem != -1L)
            return __va(mem);
      ptr = __alloc_bootmem_nopanic(size,
                        SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
      if (ptr == NULL) {
            printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
                  size, nodeid);
            return NULL;
      }
      return ptr;
}

/* Initialize bootmem allocator for a node */
void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
{ 
      unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start; 
      unsigned long nodedata_phys;
      void *bootmap;
      const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);

      start = round_up(start, ZONE_ALIGN); 

      printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end);

      start_pfn = start >> PAGE_SHIFT;
      end_pfn = end >> PAGE_SHIFT;

      node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
      if (node_data[nodeid] == NULL)
            return;
      nodedata_phys = __pa(node_data[nodeid]);

      memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
      NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
      NODE_DATA(nodeid)->node_start_pfn = start_pfn;
      NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;

      /* Find a place for the bootmem map */
      bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 
      bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
      bootmap = early_node_mem(nodeid, bootmap_start, end,
                              bootmap_pages<<PAGE_SHIFT);
      if (bootmap == NULL)  {
            if (nodedata_phys < start || nodedata_phys >= end)
                  free_bootmem((unsigned long)node_data[nodeid],pgdat_size);
            node_data[nodeid] = NULL;
            return;
      }
      bootmap_start = __pa(bootmap);
      Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages); 
      
      bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
                               bootmap_start >> PAGE_SHIFT, 
                               start_pfn, end_pfn); 

      free_bootmem_with_active_regions(nodeid, end);

      reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size); 
      reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<<PAGE_SHIFT);
#ifdef CONFIG_ACPI_NUMA
      srat_reserve_add_area(nodeid);
#endif
      node_set_online(nodeid);
} 

/* Initialize final allocator for a zone */
void __init setup_node_zones(int nodeid)
{ 
      unsigned long start_pfn, end_pfn, memmapsize, limit;

      start_pfn = node_start_pfn(nodeid);
      end_pfn = node_end_pfn(nodeid);

      Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
            nodeid, start_pfn, end_pfn);

      /* Try to allocate mem_map at end to not fill up precious <4GB
         memory. */
      memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
      limit = end_pfn << PAGE_SHIFT;
#ifdef CONFIG_FLAT_NODE_MEM_MAP
      NODE_DATA(nodeid)->node_mem_map = 
            __alloc_bootmem_core(NODE_DATA(nodeid)->bdata, 
                        memmapsize, SMP_CACHE_BYTES, 
                        round_down(limit - memmapsize, PAGE_SIZE), 
                        limit);
#endif
} 

void __init numa_init_array(void)
{
      int rr, i;
      /* There are unfortunately some poorly designed mainboards around
         that only connect memory to a single CPU. This breaks the 1:1 cpu->node
         mapping. To avoid this fill in the mapping for all possible
         CPUs, as the number of CPUs is not known yet. 
         We round robin the existing nodes. */
      rr = first_node(node_online_map);
      for (i = 0; i < NR_CPUS; i++) {
            if (cpu_to_node(i) != NUMA_NO_NODE)
                  continue;
            numa_set_node(i, rr);
            rr = next_node(rr, node_online_map);
            if (rr == MAX_NUMNODES)
                  rr = first_node(node_online_map);
      }

}

#ifdef CONFIG_NUMA_EMU
/* Numa emulation */
char *cmdline __initdata;

/*
 * Setups up nid to range from addr to addr + size.  If the end boundary is
 * greater than max_addr, then max_addr is used instead.  The return value is 0
 * if there is additional memory left for allocation past addr and -1 otherwise.
 * addr is adjusted to be at the end of the node.
 */
static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
                           u64 size, u64 max_addr)
{
      int ret = 0;
      nodes[nid].start = *addr;
      *addr += size;
      if (*addr >= max_addr) {
            *addr = max_addr;
            ret = -1;
      }
      nodes[nid].end = *addr;
      node_set(nid, node_possible_map);
      printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
             nodes[nid].start, nodes[nid].end,
             (nodes[nid].end - nodes[nid].start) >> 20);
      return ret;
}

/*
 * Splits num_nodes nodes up equally starting at node_start.  The return value
 * is the number of nodes split up and addr is adjusted to be at the end of the
 * last node allocated.
 */
static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
                              u64 max_addr, int node_start,
                              int num_nodes)
{
      unsigned int big;
      u64 size;
      int i;

      if (num_nodes <= 0)
            return -1;
      if (num_nodes > MAX_NUMNODES)
            num_nodes = MAX_NUMNODES;
      size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
             num_nodes;
      /*
       * Calculate the number of big nodes that can be allocated as a result
       * of consolidating the leftovers.
       */
      big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
            FAKE_NODE_MIN_SIZE;

      /* Round down to nearest FAKE_NODE_MIN_SIZE. */
      size &= FAKE_NODE_MIN_HASH_MASK;
      if (!size) {
            printk(KERN_ERR "Not enough memory for each node.  "
                   "NUMA emulation disabled.\n");
            return -1;
      }

      for (i = node_start; i < num_nodes + node_start; i++) {
            u64 end = *addr + size;
            if (i < big)
                  end += FAKE_NODE_MIN_SIZE;
            /*
             * The final node can have the remaining system RAM.  Other
             * nodes receive roughly the same amount of available pages.
             */
            if (i == num_nodes + node_start - 1)
                  end = max_addr;
            else
                  while (end - *addr - e820_hole_size(*addr, end) <
                         size) {
                        end += FAKE_NODE_MIN_SIZE;
                        if (end > max_addr) {
                              end = max_addr;
                              break;
                        }
                  }
            if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
                  break;
      }
      return i - node_start + 1;
}

/*
 * Splits the remaining system RAM into chunks of size.  The remaining memory is
 * always assigned to a final node and can be asymmetric.  Returns the number of
 * nodes split.
 */
static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
                              u64 max_addr, int node_start, u64 size)
{
      int i = node_start;
      size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
      while (!setup_node_range(i++, nodes, addr, size, max_addr))
            ;
      return i - node_start;
}

/*
 * Sets up the system RAM area from start_pfn to end_pfn according to the
 * numa=fake command-line option.
 */
static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
{
      struct bootnode nodes[MAX_NUMNODES];
      u64 addr = start_pfn << PAGE_SHIFT;
      u64 max_addr = end_pfn << PAGE_SHIFT;
      int num_nodes = 0;
      int coeff_flag;
      int coeff = -1;
      int num = 0;
      u64 size;
      int i;

      memset(&nodes, 0, sizeof(nodes));
      /*
       * If the numa=fake command-line is just a single number N, split the
       * system RAM into N fake nodes.
       */
      if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
            num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0,
                                    simple_strtol(cmdline, NULL, 0));
            if (num_nodes < 0)
                  return num_nodes;
            goto out;
      }

      /* Parse the command line. */
      for (coeff_flag = 0; ; cmdline++) {
            if (*cmdline && isdigit(*cmdline)) {
                  num = num * 10 + *cmdline - '0';
                  continue;
            }
            if (*cmdline == '*') {
                  if (num > 0)
                        coeff = num;
                  coeff_flag = 1;
            }
            if (!*cmdline || *cmdline == ',') {
                  if (!coeff_flag)
                        coeff = 1;
                  /*
                   * Round down to the nearest FAKE_NODE_MIN_SIZE.
                   * Command-line coefficients are in megabytes.
                   */
                  size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
                  if (size)
                        for (i = 0; i < coeff; i++, num_nodes++)
                              if (setup_node_range(num_nodes, nodes,
                                    &addr, size, max_addr) < 0)
                                    goto done;
                  if (!*cmdline)
                        break;
                  coeff_flag = 0;
                  coeff = -1;
            }
            num = 0;
      }
done:
      if (!num_nodes)
            return -1;
      /* Fill remainder of system RAM, if appropriate. */
      if (addr < max_addr) {
            if (coeff_flag && coeff < 0) {
                  /* Split remaining nodes into num-sized chunks */
                  num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
                                           num_nodes, num);
                  goto out;
            }
            switch (*(cmdline - 1)) {
            case '*':
                  /* Split remaining nodes into coeff chunks */
                  if (coeff <= 0)
                        break;
                  num_nodes += split_nodes_equally(nodes, &addr, max_addr,
                                           num_nodes, coeff);
                  break;
            case ',':
                  /* Do not allocate remaining system RAM */
                  break;
            default:
                  /* Give one final node */
                  setup_node_range(num_nodes, nodes, &addr,
                               max_addr - addr, max_addr);
                  num_nodes++;
            }
      }
out:
      memnode_shift = compute_hash_shift(nodes, num_nodes);
      if (memnode_shift < 0) {
            memnode_shift = 0;
            printk(KERN_ERR "No NUMA hash function found.  NUMA emulation "
                   "disabled.\n");
            return -1;
      }

      /*
       * We need to vacate all active ranges that may have been registered by
       * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
       * true.  NUMA emulation has succeeded so we will not scan ACPI nodes.
       */
      remove_all_active_ranges();
#ifdef CONFIG_ACPI_NUMA
      acpi_numa = -1;
#endif
      for_each_node_mask(i, node_possible_map) {
            e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
                                    nodes[i].end >> PAGE_SHIFT);
            setup_node_bootmem(i, nodes[i].start, nodes[i].end);
      }
      acpi_fake_nodes(nodes, num_nodes);
      numa_init_array();
      return 0;
}
#endif /* CONFIG_NUMA_EMU */

void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
{ 
      int i;

      nodes_clear(node_possible_map);

#ifdef CONFIG_NUMA_EMU
      if (cmdline && !numa_emulation(start_pfn, end_pfn))
            return;
      nodes_clear(node_possible_map);
#endif

#ifdef CONFIG_ACPI_NUMA
      if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
                                end_pfn << PAGE_SHIFT))
            return;
      nodes_clear(node_possible_map);
#endif

#ifdef CONFIG_K8_NUMA
      if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT))
            return;
      nodes_clear(node_possible_map);
#endif
      printk(KERN_INFO "%s\n",
             numa_off ? "NUMA turned off" : "No NUMA configuration found");

      printk(KERN_INFO "Faking a node at %016lx-%016lx\n", 
             start_pfn << PAGE_SHIFT,
             end_pfn << PAGE_SHIFT); 
            /* setup dummy node covering all memory */ 
      memnode_shift = 63; 
      memnodemap = memnode.embedded_map;
      memnodemap[0] = 0;
      nodes_clear(node_online_map);
      node_set_online(0);
      node_set(0, node_possible_map);
      for (i = 0; i < NR_CPUS; i++)
            numa_set_node(i, 0);
      node_to_cpumask[0] = cpumask_of_cpu(0);
      e820_register_active_regions(0, start_pfn, end_pfn);
      setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
}

__cpuinit void numa_add_cpu(int cpu)
{
      set_bit(cpu, &node_to_cpumask[cpu_to_node(cpu)]);
} 

void __cpuinit numa_set_node(int cpu, int node)
{
      cpu_pda(cpu)->nodenumber = node;
      cpu_to_node(cpu) = node;
}

unsigned long __init numa_free_all_bootmem(void) 
{ 
      int i;
      unsigned long pages = 0;
      for_each_online_node(i) {
            pages += free_all_bootmem_node(NODE_DATA(i));
      }
      return pages;
} 

void __init paging_init(void)
{ 
      int i;
      unsigned long max_zone_pfns[MAX_NR_ZONES];
      memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
      max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
      max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
      max_zone_pfns[ZONE_NORMAL] = end_pfn;

      sparse_memory_present_with_active_regions(MAX_NUMNODES);
      sparse_init();

      for_each_online_node(i) {
            setup_node_zones(i); 
      }

      free_area_init_nodes(max_zone_pfns);
} 

static __init int numa_setup(char *opt)
{ 
      if (!opt)
            return -EINVAL;
      if (!strncmp(opt,"off",3))
            numa_off = 1;
#ifdef CONFIG_NUMA_EMU
      if (!strncmp(opt, "fake=", 5))
            cmdline = opt + 5;
#endif
#ifdef CONFIG_ACPI_NUMA
      if (!strncmp(opt,"noacpi",6))
            acpi_numa = -1;
      if (!strncmp(opt,"hotadd=", 7))
            hotadd_percent = simple_strtoul(opt+7, NULL, 10);
#endif
      return 0;
} 

early_param("numa", numa_setup);

/*
 * Setup early cpu_to_node.
 *
 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
 * and apicid_to_node[] tables have valid entries for a CPU.
 * This means we skip cpu_to_node[] initialisation for NUMA
 * emulation and faking node case (when running a kernel compiled
 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
 * is already initialized in a round robin manner at numa_init_array,
 * prior to this call, and this initialization is good enough
 * for the fake NUMA cases.
 */
void __init init_cpu_to_node(void)
{
      int i;
      for (i = 0; i < NR_CPUS; i++) {
            u8 apicid = x86_cpu_to_apicid_init[i];
            if (apicid == BAD_APICID)
                  continue;
            if (apicid_to_node[apicid] == NUMA_NO_NODE)
                  continue;
            numa_set_node(i,apicid_to_node[apicid]);
      }
}

EXPORT_SYMBOL(cpu_to_node);
EXPORT_SYMBOL(node_to_cpumask);
EXPORT_SYMBOL(memnode);
EXPORT_SYMBOL(node_data);

#ifdef CONFIG_DISCONTIGMEM
/*
 * Functions to convert PFNs from/to per node page addresses.
 * These are out of line because they are quite big.
 * They could be all tuned by pre caching more state.
 * Should do that.
 */

int pfn_valid(unsigned long pfn)
{
      unsigned nid;
      if (pfn >= num_physpages)
            return 0;
      nid = pfn_to_nid(pfn);
      if (nid == 0xff)
            return 0;
      return pfn >= node_start_pfn(nid) && (pfn) < node_end_pfn(nid);
}
EXPORT_SYMBOL(pfn_valid);
#endif

Generated by  Doxygen 1.6.0   Back to index