Logo Search packages:      
Sourcecode: linux version File versions  Download package

nxt6000.c

/*
      NxtWave Communications - NXT6000 demodulator driver

    Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
    Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>

#include "dvb_frontend.h"
#include "nxt6000_priv.h"
#include "nxt6000.h"



struct nxt6000_state {
      struct i2c_adapter* i2c;
      /* configuration settings */
      const struct nxt6000_config* config;
      struct dvb_frontend frontend;
};

static int debug = 0;
#define dprintk if (debug) printk

static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
{
      u8 buf[] = { reg, data };
      struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
      int ret;

      if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
            dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);

      return (ret != 1) ? -EFAULT : 0;
}

static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
{
      int ret;
      u8 b0[] = { reg };
      u8 b1[] = { 0 };
      struct i2c_msg msgs[] = {
            {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
            {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
      };

      ret = i2c_transfer(state->i2c, msgs, 2);

      if (ret != 2)
            dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);

      return b1[0];
}

static void nxt6000_reset(struct nxt6000_state* state)
{
      u8 val;

      val = nxt6000_readreg(state, OFDM_COR_CTL);

      nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
      nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
}

static int nxt6000_set_bandwidth(struct nxt6000_state* state, fe_bandwidth_t bandwidth)
{
      u16 nominal_rate;
      int result;

      switch (bandwidth) {

      case BANDWIDTH_6_MHZ:
            nominal_rate = 0x55B7;
            break;

      case BANDWIDTH_7_MHZ:
            nominal_rate = 0x6400;
            break;

      case BANDWIDTH_8_MHZ:
            nominal_rate = 0x7249;
            break;

      default:
            return -EINVAL;
      }

      if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
            return result;

      return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
}

static int nxt6000_set_guard_interval(struct nxt6000_state* state, fe_guard_interval_t guard_interval)
{
      switch (guard_interval) {

      case GUARD_INTERVAL_1_32:
            return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));

      case GUARD_INTERVAL_1_16:
            return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));

      case GUARD_INTERVAL_AUTO:
      case GUARD_INTERVAL_1_8:
            return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));

      case GUARD_INTERVAL_1_4:
            return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));

      default:
            return -EINVAL;
      }
}

static int nxt6000_set_inversion(struct nxt6000_state* state, fe_spectral_inversion_t inversion)
{
      switch (inversion) {

      case INVERSION_OFF:
            return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);

      case INVERSION_ON:
            return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);

      default:
            return -EINVAL;

      }
}

static int nxt6000_set_transmission_mode(struct nxt6000_state* state, fe_transmit_mode_t transmission_mode)
{
      int result;

      switch (transmission_mode) {

      case TRANSMISSION_MODE_2K:
            if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
                  return result;

            return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));

      case TRANSMISSION_MODE_8K:
      case TRANSMISSION_MODE_AUTO:
            if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
                  return result;

            return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));

      default:
            return -EINVAL;

      }
}

static void nxt6000_setup(struct dvb_frontend* fe)
{
      struct nxt6000_state* state = fe->demodulator_priv;

      nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
      nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
      nxt6000_writereg(state, VIT_BERTIME_2, 0x00);  // BER Timer = 0x000200 * 256 = 131072 bits
      nxt6000_writereg(state, VIT_BERTIME_1, 0x02);  //
      nxt6000_writereg(state, VIT_BERTIME_0, 0x00);  //
      nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
      nxt6000_writereg(state, VIT_COR_CTL, 0x82);   // Enable BER measurement
      nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
      nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
      nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
      nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
      nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
      nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
      nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
      nxt6000_writereg(state, CAS_FREQ, 0xBB);  /* CHECKME */
      nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
      nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
      nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
      nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
      nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
      nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
      nxt6000_writereg(state, DIAG_CONFIG, TB_SET);

      if (state->config->clock_inversion)
            nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
      else
            nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);

      nxt6000_writereg(state, TS_FORMAT, 0);
}

static void nxt6000_dump_status(struct nxt6000_state *state)
{
      u8 val;

/*
      printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
      printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
      printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
      printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
      printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
      printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
      printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
      printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
      printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
      printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
*/
      printk("NXT6000 status:");

      val = nxt6000_readreg(state, RS_COR_STAT);

      printk(" DATA DESCR LOCK: %d,", val & 0x01);
      printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);

      val = nxt6000_readreg(state, VIT_SYNC_STATUS);

      printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);

      switch ((val >> 4) & 0x07) {

      case 0x00:
            printk(" VITERBI CODERATE: 1/2,");
            break;

      case 0x01:
            printk(" VITERBI CODERATE: 2/3,");
            break;

      case 0x02:
            printk(" VITERBI CODERATE: 3/4,");
            break;

      case 0x03:
            printk(" VITERBI CODERATE: 5/6,");
            break;

      case 0x04:
            printk(" VITERBI CODERATE: 7/8,");
            break;

      default:
            printk(" VITERBI CODERATE: Reserved,");

      }

      val = nxt6000_readreg(state, OFDM_COR_STAT);

      printk(" CHCTrack: %d,", (val >> 7) & 0x01);
      printk(" TPSLock: %d,", (val >> 6) & 0x01);
      printk(" SYRLock: %d,", (val >> 5) & 0x01);
      printk(" AGCLock: %d,", (val >> 4) & 0x01);

      switch (val & 0x0F) {

      case 0x00:
            printk(" CoreState: IDLE,");
            break;

      case 0x02:
            printk(" CoreState: WAIT_AGC,");
            break;

      case 0x03:
            printk(" CoreState: WAIT_SYR,");
            break;

      case 0x04:
            printk(" CoreState: WAIT_PPM,");
            break;

      case 0x01:
            printk(" CoreState: WAIT_TRL,");
            break;

      case 0x05:
            printk(" CoreState: WAIT_TPS,");
            break;

      case 0x06:
            printk(" CoreState: MONITOR_TPS,");
            break;

      default:
            printk(" CoreState: Reserved,");

      }

      val = nxt6000_readreg(state, OFDM_SYR_STAT);

      printk(" SYRLock: %d,", (val >> 4) & 0x01);
      printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");

      switch ((val >> 4) & 0x03) {

      case 0x00:
            printk(" SYRGuard: 1/32,");
            break;

      case 0x01:
            printk(" SYRGuard: 1/16,");
            break;

      case 0x02:
            printk(" SYRGuard: 1/8,");
            break;

      case 0x03:
            printk(" SYRGuard: 1/4,");
            break;
      }

      val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);

      switch ((val >> 4) & 0x07) {

      case 0x00:
            printk(" TPSLP: 1/2,");
            break;

      case 0x01:
            printk(" TPSLP: 2/3,");
            break;

      case 0x02:
            printk(" TPSLP: 3/4,");
            break;

      case 0x03:
            printk(" TPSLP: 5/6,");
            break;

      case 0x04:
            printk(" TPSLP: 7/8,");
            break;

      default:
            printk(" TPSLP: Reserved,");

      }

      switch (val & 0x07) {

      case 0x00:
            printk(" TPSHP: 1/2,");
            break;

      case 0x01:
            printk(" TPSHP: 2/3,");
            break;

      case 0x02:
            printk(" TPSHP: 3/4,");
            break;

      case 0x03:
            printk(" TPSHP: 5/6,");
            break;

      case 0x04:
            printk(" TPSHP: 7/8,");
            break;

      default:
            printk(" TPSHP: Reserved,");

      }

      val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);

      printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");

      switch ((val >> 4) & 0x03) {

      case 0x00:
            printk(" TPSGuard: 1/32,");
            break;

      case 0x01:
            printk(" TPSGuard: 1/16,");
            break;

      case 0x02:
            printk(" TPSGuard: 1/8,");
            break;

      case 0x03:
            printk(" TPSGuard: 1/4,");
            break;

      }

      /* Strange magic required to gain access to RF_AGC_STATUS */
      nxt6000_readreg(state, RF_AGC_VAL_1);
      val = nxt6000_readreg(state, RF_AGC_STATUS);
      val = nxt6000_readreg(state, RF_AGC_STATUS);

      printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
      printk("\n");
}

static int nxt6000_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
      u8 core_status;
      struct nxt6000_state* state = fe->demodulator_priv;

      *status = 0;

      core_status = nxt6000_readreg(state, OFDM_COR_STAT);

      if (core_status & AGCLOCKED)
            *status |= FE_HAS_SIGNAL;

      if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
            *status |= FE_HAS_CARRIER;

      if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
            *status |= FE_HAS_VITERBI;

      if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
            *status |= FE_HAS_SYNC;

      if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
            *status |= FE_HAS_LOCK;

      if (debug)
            nxt6000_dump_status(state);

      return 0;
}

static int nxt6000_init(struct dvb_frontend* fe)
{
      struct nxt6000_state* state = fe->demodulator_priv;

      nxt6000_reset(state);
      nxt6000_setup(fe);

      return 0;
}

static int nxt6000_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *param)
{
      struct nxt6000_state* state = fe->demodulator_priv;
      int result;

      if (fe->ops.tuner_ops.set_params) {
            fe->ops.tuner_ops.set_params(fe, param);
            if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
      }

      if ((result = nxt6000_set_bandwidth(state, param->u.ofdm.bandwidth)) < 0)
            return result;
      if ((result = nxt6000_set_guard_interval(state, param->u.ofdm.guard_interval)) < 0)
            return result;
      if ((result = nxt6000_set_transmission_mode(state, param->u.ofdm.transmission_mode)) < 0)
            return result;
      if ((result = nxt6000_set_inversion(state, param->inversion)) < 0)
            return result;

      msleep(500);
      return 0;
}

static void nxt6000_release(struct dvb_frontend* fe)
{
      struct nxt6000_state* state = fe->demodulator_priv;
      kfree(state);
}

static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
{
      struct nxt6000_state* state = fe->demodulator_priv;

      *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;

      return 0;
}

static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
{
      struct nxt6000_state* state = fe->demodulator_priv;

      nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );

      *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
            nxt6000_readreg( state, VIT_BER_0 );

      nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts

      return 0;
}

static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
{
      struct nxt6000_state* state = fe->demodulator_priv;

      *signal_strength = (short) (511 -
            (nxt6000_readreg(state, AGC_GAIN_1) +
            ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));

      return 0;
}

static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
{
      tune->min_delay_ms = 500;
      return 0;
}

static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
      struct nxt6000_state* state = fe->demodulator_priv;

      if (enable) {
            return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
      } else {
            return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
      }
}

static struct dvb_frontend_ops nxt6000_ops;

struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
                            struct i2c_adapter* i2c)
{
      struct nxt6000_state* state = NULL;

      /* allocate memory for the internal state */
      state = kmalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
      if (state == NULL) goto error;

      /* setup the state */
      state->config = config;
      state->i2c = i2c;

      /* check if the demod is there */
      if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;

      /* create dvb_frontend */
      memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
      state->frontend.demodulator_priv = state;
      return &state->frontend;

error:
      kfree(state);
      return NULL;
}

static struct dvb_frontend_ops nxt6000_ops = {

      .info = {
            .name = "NxtWave NXT6000 DVB-T",
            .type = FE_OFDM,
            .frequency_min = 0,
            .frequency_max = 863250000,
            .frequency_stepsize = 62500,
            /*.frequency_tolerance = *//* FIXME: 12% of SR */
            .symbol_rate_min = 0,   /* FIXME */
            .symbol_rate_max = 9360000,   /* FIXME */
            .symbol_rate_tolerance = 4000,
            .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
                  FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
                  FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
                  FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
                  FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
                  FE_CAN_HIERARCHY_AUTO,
      },

      .release = nxt6000_release,

      .init = nxt6000_init,
      .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,

      .get_tune_settings = nxt6000_fe_get_tune_settings,

      .set_frontend = nxt6000_set_frontend,

      .read_status = nxt6000_read_status,
      .read_ber = nxt6000_read_ber,
      .read_signal_strength = nxt6000_read_signal_strength,
      .read_snr = nxt6000_read_snr,
};

module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");

MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
MODULE_AUTHOR("Florian Schirmer");
MODULE_LICENSE("GPL");

EXPORT_SYMBOL(nxt6000_attach);

Generated by  Doxygen 1.6.0   Back to index