Logo Search packages:      
Sourcecode: linux version File versions  Download package

journal.c

/* -*- mode: c; c-basic-offset: 8; -*-
 * vim: noexpandtab sw=8 ts=8 sts=0:
 *
 * journal.c
 *
 * Defines functions of journalling api
 *
 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/kthread.h>

#define MLOG_MASK_PREFIX ML_JOURNAL
#include <cluster/masklog.h>

#include "ocfs2.h"

#include "alloc.h"
#include "dir.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "heartbeat.h"
#include "inode.h"
#include "journal.h"
#include "localalloc.h"
#include "slot_map.h"
#include "super.h"
#include "vote.h"
#include "sysfile.h"

#include "buffer_head_io.h"

DEFINE_SPINLOCK(trans_inc_lock);

static int ocfs2_force_read_journal(struct inode *inode);
static int ocfs2_recover_node(struct ocfs2_super *osb,
                        int node_num);
static int __ocfs2_recovery_thread(void *arg);
static int ocfs2_commit_cache(struct ocfs2_super *osb);
static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
                              int dirty);
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
                         int slot_num);
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
                         int slot);
static int ocfs2_commit_thread(void *arg);

static int ocfs2_commit_cache(struct ocfs2_super *osb)
{
      int status = 0;
      unsigned int flushed;
      unsigned long old_id;
      struct ocfs2_journal *journal = NULL;

      mlog_entry_void();

      journal = osb->journal;

      /* Flush all pending commits and checkpoint the journal. */
      down_write(&journal->j_trans_barrier);

      if (atomic_read(&journal->j_num_trans) == 0) {
            up_write(&journal->j_trans_barrier);
            mlog(0, "No transactions for me to flush!\n");
            goto finally;
      }

      journal_lock_updates(journal->j_journal);
      status = journal_flush(journal->j_journal);
      journal_unlock_updates(journal->j_journal);
      if (status < 0) {
            up_write(&journal->j_trans_barrier);
            mlog_errno(status);
            goto finally;
      }

      old_id = ocfs2_inc_trans_id(journal);

      flushed = atomic_read(&journal->j_num_trans);
      atomic_set(&journal->j_num_trans, 0);
      up_write(&journal->j_trans_barrier);

      mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
           journal->j_trans_id, flushed);

      ocfs2_kick_vote_thread(osb);
      wake_up(&journal->j_checkpointed);
finally:
      mlog_exit(status);
      return status;
}

/* pass it NULL and it will allocate a new handle object for you.  If
 * you pass it a handle however, it may still return error, in which
 * case it has free'd the passed handle for you. */
handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
{
      journal_t *journal = osb->journal->j_journal;
      handle_t *handle;

      BUG_ON(!osb || !osb->journal->j_journal);

      if (ocfs2_is_hard_readonly(osb))
            return ERR_PTR(-EROFS);

      BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
      BUG_ON(max_buffs <= 0);

      /* JBD might support this, but our journalling code doesn't yet. */
      if (journal_current_handle()) {
            mlog(ML_ERROR, "Recursive transaction attempted!\n");
            BUG();
      }

      down_read(&osb->journal->j_trans_barrier);

      handle = journal_start(journal, max_buffs);
      if (IS_ERR(handle)) {
            up_read(&osb->journal->j_trans_barrier);

            mlog_errno(PTR_ERR(handle));

            if (is_journal_aborted(journal)) {
                  ocfs2_abort(osb->sb, "Detected aborted journal");
                  handle = ERR_PTR(-EROFS);
            }
      } else {
            if (!ocfs2_mount_local(osb))
                  atomic_inc(&(osb->journal->j_num_trans));
      }

      return handle;
}

int ocfs2_commit_trans(struct ocfs2_super *osb,
                   handle_t *handle)
{
      int ret;
      struct ocfs2_journal *journal = osb->journal;

      BUG_ON(!handle);

      ret = journal_stop(handle);
      if (ret < 0)
            mlog_errno(ret);

      up_read(&journal->j_trans_barrier);

      return ret;
}

/*
 * 'nblocks' is what you want to add to the current
 * transaction. extend_trans will either extend the current handle by
 * nblocks, or commit it and start a new one with nblocks credits.
 *
 * This might call journal_restart() which will commit dirty buffers
 * and then restart the transaction. Before calling
 * ocfs2_extend_trans(), any changed blocks should have been
 * dirtied. After calling it, all blocks which need to be changed must
 * go through another set of journal_access/journal_dirty calls.
 *
 * WARNING: This will not release any semaphores or disk locks taken
 * during the transaction, so make sure they were taken *before*
 * start_trans or we'll have ordering deadlocks.
 *
 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 * good because transaction ids haven't yet been recorded on the
 * cluster locks associated with this handle.
 */
int ocfs2_extend_trans(handle_t *handle, int nblocks)
{
      int status;

      BUG_ON(!handle);
      BUG_ON(!nblocks);

      mlog_entry_void();

      mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);

#ifdef OCFS2_DEBUG_FS
      status = 1;
#else
      status = journal_extend(handle, nblocks);
      if (status < 0) {
            mlog_errno(status);
            goto bail;
      }
#endif

      if (status > 0) {
            mlog(0, "journal_extend failed, trying journal_restart\n");
            status = journal_restart(handle, nblocks);
            if (status < 0) {
                  mlog_errno(status);
                  goto bail;
            }
      }

      status = 0;
bail:

      mlog_exit(status);
      return status;
}

int ocfs2_journal_access(handle_t *handle,
                   struct inode *inode,
                   struct buffer_head *bh,
                   int type)
{
      int status;

      BUG_ON(!inode);
      BUG_ON(!handle);
      BUG_ON(!bh);

      mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
               (unsigned long long)bh->b_blocknr, type,
               (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
               "OCFS2_JOURNAL_ACCESS_CREATE" :
               "OCFS2_JOURNAL_ACCESS_WRITE",
               bh->b_size);

      /* we can safely remove this assertion after testing. */
      if (!buffer_uptodate(bh)) {
            mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
            mlog(ML_ERROR, "b_blocknr=%llu\n",
                 (unsigned long long)bh->b_blocknr);
            BUG();
      }

      /* Set the current transaction information on the inode so
       * that the locking code knows whether it can drop it's locks
       * on this inode or not. We're protected from the commit
       * thread updating the current transaction id until
       * ocfs2_commit_trans() because ocfs2_start_trans() took
       * j_trans_barrier for us. */
      ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);

      mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
      switch (type) {
      case OCFS2_JOURNAL_ACCESS_CREATE:
      case OCFS2_JOURNAL_ACCESS_WRITE:
            status = journal_get_write_access(handle, bh);
            break;

      case OCFS2_JOURNAL_ACCESS_UNDO:
            status = journal_get_undo_access(handle, bh);
            break;

      default:
            status = -EINVAL;
            mlog(ML_ERROR, "Uknown access type!\n");
      }
      mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);

      if (status < 0)
            mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
                 status, type);

      mlog_exit(status);
      return status;
}

int ocfs2_journal_dirty(handle_t *handle,
                  struct buffer_head *bh)
{
      int status;

      mlog_entry("(bh->b_blocknr=%llu)\n",
               (unsigned long long)bh->b_blocknr);

      status = journal_dirty_metadata(handle, bh);
      if (status < 0)
            mlog(ML_ERROR, "Could not dirty metadata buffer. "
                 "(bh->b_blocknr=%llu)\n",
                 (unsigned long long)bh->b_blocknr);

      mlog_exit(status);
      return status;
}

int ocfs2_journal_dirty_data(handle_t *handle,
                       struct buffer_head *bh)
{
      int err = journal_dirty_data(handle, bh);
      if (err)
            mlog_errno(err);
      /* TODO: When we can handle it, abort the handle and go RO on
       * error here. */

      return err;
}

#define OCFS2_DEFAULT_COMMIT_INTERVAL     (HZ * 5)

void ocfs2_set_journal_params(struct ocfs2_super *osb)
{
      journal_t *journal = osb->journal->j_journal;

      spin_lock(&journal->j_state_lock);
      journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
      if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
            journal->j_flags |= JFS_BARRIER;
      else
            journal->j_flags &= ~JFS_BARRIER;
      spin_unlock(&journal->j_state_lock);
}

int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
{
      int status = -1;
      struct inode *inode = NULL; /* the journal inode */
      journal_t *j_journal = NULL;
      struct ocfs2_dinode *di = NULL;
      struct buffer_head *bh = NULL;
      struct ocfs2_super *osb;
      int meta_lock = 0;

      mlog_entry_void();

      BUG_ON(!journal);

      osb = journal->j_osb;

      /* already have the inode for our journal */
      inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
                                  osb->slot_num);
      if (inode == NULL) {
            status = -EACCES;
            mlog_errno(status);
            goto done;
      }
      if (is_bad_inode(inode)) {
            mlog(ML_ERROR, "access error (bad inode)\n");
            iput(inode);
            inode = NULL;
            status = -EACCES;
            goto done;
      }

      SET_INODE_JOURNAL(inode);
      OCFS2_I(inode)->ip_open_count++;

      /* Skip recovery waits here - journal inode metadata never
       * changes in a live cluster so it can be considered an
       * exception to the rule. */
      status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
      if (status < 0) {
            if (status != -ERESTARTSYS)
                  mlog(ML_ERROR, "Could not get lock on journal!\n");
            goto done;
      }

      meta_lock = 1;
      di = (struct ocfs2_dinode *)bh->b_data;

      if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
            mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
                 inode->i_size);
            status = -EINVAL;
            goto done;
      }

      mlog(0, "inode->i_size = %lld\n", inode->i_size);
      mlog(0, "inode->i_blocks = %llu\n",
                  (unsigned long long)inode->i_blocks);
      mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);

      /* call the kernels journal init function now */
      j_journal = journal_init_inode(inode);
      if (j_journal == NULL) {
            mlog(ML_ERROR, "Linux journal layer error\n");
            status = -EINVAL;
            goto done;
      }

      mlog(0, "Returned from journal_init_inode\n");
      mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);

      *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
              OCFS2_JOURNAL_DIRTY_FL);

      journal->j_journal = j_journal;
      journal->j_inode = inode;
      journal->j_bh = bh;

      ocfs2_set_journal_params(osb);

      journal->j_state = OCFS2_JOURNAL_LOADED;

      status = 0;
done:
      if (status < 0) {
            if (meta_lock)
                  ocfs2_meta_unlock(inode, 1);
            if (bh != NULL)
                  brelse(bh);
            if (inode) {
                  OCFS2_I(inode)->ip_open_count--;
                  iput(inode);
            }
      }

      mlog_exit(status);
      return status;
}

static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
                              int dirty)
{
      int status;
      unsigned int flags;
      struct ocfs2_journal *journal = osb->journal;
      struct buffer_head *bh = journal->j_bh;
      struct ocfs2_dinode *fe;

      mlog_entry_void();

      fe = (struct ocfs2_dinode *)bh->b_data;
      if (!OCFS2_IS_VALID_DINODE(fe)) {
            /* This is called from startup/shutdown which will
             * handle the errors in a specific manner, so no need
             * to call ocfs2_error() here. */
            mlog(ML_ERROR, "Journal dinode %llu  has invalid "
                 "signature: %.*s",
                 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
                 fe->i_signature);
            status = -EIO;
            goto out;
      }

      flags = le32_to_cpu(fe->id1.journal1.ij_flags);
      if (dirty)
            flags |= OCFS2_JOURNAL_DIRTY_FL;
      else
            flags &= ~OCFS2_JOURNAL_DIRTY_FL;
      fe->id1.journal1.ij_flags = cpu_to_le32(flags);

      status = ocfs2_write_block(osb, bh, journal->j_inode);
      if (status < 0)
            mlog_errno(status);

out:
      mlog_exit(status);
      return status;
}

/*
 * If the journal has been kmalloc'd it needs to be freed after this
 * call.
 */
void ocfs2_journal_shutdown(struct ocfs2_super *osb)
{
      struct ocfs2_journal *journal = NULL;
      int status = 0;
      struct inode *inode = NULL;
      int num_running_trans = 0;

      mlog_entry_void();

      BUG_ON(!osb);

      journal = osb->journal;
      if (!journal)
            goto done;

      inode = journal->j_inode;

      if (journal->j_state != OCFS2_JOURNAL_LOADED)
            goto done;

      /* need to inc inode use count as journal_destroy will iput. */
      if (!igrab(inode))
            BUG();

      num_running_trans = atomic_read(&(osb->journal->j_num_trans));
      if (num_running_trans > 0)
            mlog(0, "Shutting down journal: must wait on %d "
                 "running transactions!\n",
                 num_running_trans);

      /* Do a commit_cache here. It will flush our journal, *and*
       * release any locks that are still held.
       * set the SHUTDOWN flag and release the trans lock.
       * the commit thread will take the trans lock for us below. */
      journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;

      /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
       * drop the trans_lock (which we want to hold until we
       * completely destroy the journal. */
      if (osb->commit_task) {
            /* Wait for the commit thread */
            mlog(0, "Waiting for ocfs2commit to exit....\n");
            kthread_stop(osb->commit_task);
            osb->commit_task = NULL;
      }

      BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);

      if (ocfs2_mount_local(osb)) {
            journal_lock_updates(journal->j_journal);
            status = journal_flush(journal->j_journal);
            journal_unlock_updates(journal->j_journal);
            if (status < 0)
                  mlog_errno(status);
      }

      if (status == 0) {
            /*
             * Do not toggle if flush was unsuccessful otherwise
             * will leave dirty metadata in a "clean" journal
             */
            status = ocfs2_journal_toggle_dirty(osb, 0);
            if (status < 0)
                  mlog_errno(status);
      }

      /* Shutdown the kernel journal system */
      journal_destroy(journal->j_journal);

      OCFS2_I(inode)->ip_open_count--;

      /* unlock our journal */
      ocfs2_meta_unlock(inode, 1);

      brelse(journal->j_bh);
      journal->j_bh = NULL;

      journal->j_state = OCFS2_JOURNAL_FREE;

//    up_write(&journal->j_trans_barrier);
done:
      if (inode)
            iput(inode);
      mlog_exit_void();
}

static void ocfs2_clear_journal_error(struct super_block *sb,
                              journal_t *journal,
                              int slot)
{
      int olderr;

      olderr = journal_errno(journal);
      if (olderr) {
            mlog(ML_ERROR, "File system error %d recorded in "
                 "journal %u.\n", olderr, slot);
            mlog(ML_ERROR, "File system on device %s needs checking.\n",
                 sb->s_id);

            journal_ack_err(journal);
            journal_clear_err(journal);
      }
}

int ocfs2_journal_load(struct ocfs2_journal *journal, int local)
{
      int status = 0;
      struct ocfs2_super *osb;

      mlog_entry_void();

      if (!journal)
            BUG();

      osb = journal->j_osb;

      status = journal_load(journal->j_journal);
      if (status < 0) {
            mlog(ML_ERROR, "Failed to load journal!\n");
            goto done;
      }

      ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);

      status = ocfs2_journal_toggle_dirty(osb, 1);
      if (status < 0) {
            mlog_errno(status);
            goto done;
      }

      /* Launch the commit thread */
      if (!local) {
            osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
                                     "ocfs2cmt");
            if (IS_ERR(osb->commit_task)) {
                  status = PTR_ERR(osb->commit_task);
                  osb->commit_task = NULL;
                  mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
                       "error=%d", status);
                  goto done;
            }
      } else
            osb->commit_task = NULL;

done:
      mlog_exit(status);
      return status;
}


/* 'full' flag tells us whether we clear out all blocks or if we just
 * mark the journal clean */
int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
{
      int status;

      mlog_entry_void();

      BUG_ON(!journal);

      status = journal_wipe(journal->j_journal, full);
      if (status < 0) {
            mlog_errno(status);
            goto bail;
      }

      status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
      if (status < 0)
            mlog_errno(status);

bail:
      mlog_exit(status);
      return status;
}

/*
 * JBD Might read a cached version of another nodes journal file. We
 * don't want this as this file changes often and we get no
 * notification on those changes. The only way to be sure that we've
 * got the most up to date version of those blocks then is to force
 * read them off disk. Just searching through the buffer cache won't
 * work as there may be pages backing this file which are still marked
 * up to date. We know things can't change on this file underneath us
 * as we have the lock by now :)
 */
static int ocfs2_force_read_journal(struct inode *inode)
{
      int status = 0;
      int i;
      u64 v_blkno, p_blkno, p_blocks, num_blocks;
#define CONCURRENT_JOURNAL_FILL 32ULL
      struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];

      mlog_entry_void();

      memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);

      num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
      v_blkno = 0;
      while (v_blkno < num_blocks) {
            status = ocfs2_extent_map_get_blocks(inode, v_blkno,
                                         &p_blkno, &p_blocks, NULL);
            if (status < 0) {
                  mlog_errno(status);
                  goto bail;
            }

            if (p_blocks > CONCURRENT_JOURNAL_FILL)
                  p_blocks = CONCURRENT_JOURNAL_FILL;

            /* We are reading journal data which should not
             * be put in the uptodate cache */
            status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
                                 p_blkno, p_blocks, bhs, 0,
                                 NULL);
            if (status < 0) {
                  mlog_errno(status);
                  goto bail;
            }

            for(i = 0; i < p_blocks; i++) {
                  brelse(bhs[i]);
                  bhs[i] = NULL;
            }

            v_blkno += p_blocks;
      }

bail:
      for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
            if (bhs[i])
                  brelse(bhs[i]);
      mlog_exit(status);
      return status;
}

struct ocfs2_la_recovery_item {
      struct list_head  lri_list;
      int               lri_slot;
      struct ocfs2_dinode     *lri_la_dinode;
      struct ocfs2_dinode     *lri_tl_dinode;
};

/* Does the second half of the recovery process. By this point, the
 * node is marked clean and can actually be considered recovered,
 * hence it's no longer in the recovery map, but there's still some
 * cleanup we can do which shouldn't happen within the recovery thread
 * as locking in that context becomes very difficult if we are to take
 * recovering nodes into account.
 *
 * NOTE: This function can and will sleep on recovery of other nodes
 * during cluster locking, just like any other ocfs2 process.
 */
void ocfs2_complete_recovery(struct work_struct *work)
{
      int ret;
      struct ocfs2_journal *journal =
            container_of(work, struct ocfs2_journal, j_recovery_work);
      struct ocfs2_super *osb = journal->j_osb;
      struct ocfs2_dinode *la_dinode, *tl_dinode;
      struct ocfs2_la_recovery_item *item, *n;
      LIST_HEAD(tmp_la_list);

      mlog_entry_void();

      mlog(0, "completing recovery from keventd\n");

      spin_lock(&journal->j_lock);
      list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
      spin_unlock(&journal->j_lock);

      list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
            list_del_init(&item->lri_list);

            mlog(0, "Complete recovery for slot %d\n", item->lri_slot);

            la_dinode = item->lri_la_dinode;
            if (la_dinode) {
                  mlog(0, "Clean up local alloc %llu\n",
                       (unsigned long long)le64_to_cpu(la_dinode->i_blkno));

                  ret = ocfs2_complete_local_alloc_recovery(osb,
                                                  la_dinode);
                  if (ret < 0)
                        mlog_errno(ret);

                  kfree(la_dinode);
            }

            tl_dinode = item->lri_tl_dinode;
            if (tl_dinode) {
                  mlog(0, "Clean up truncate log %llu\n",
                       (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));

                  ret = ocfs2_complete_truncate_log_recovery(osb,
                                                   tl_dinode);
                  if (ret < 0)
                        mlog_errno(ret);

                  kfree(tl_dinode);
            }

            ret = ocfs2_recover_orphans(osb, item->lri_slot);
            if (ret < 0)
                  mlog_errno(ret);

            kfree(item);
      }

      mlog(0, "Recovery completion\n");
      mlog_exit_void();
}

/* NOTE: This function always eats your references to la_dinode and
 * tl_dinode, either manually on error, or by passing them to
 * ocfs2_complete_recovery */
static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
                                  int slot_num,
                                  struct ocfs2_dinode *la_dinode,
                                  struct ocfs2_dinode *tl_dinode)
{
      struct ocfs2_la_recovery_item *item;

      item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
      if (!item) {
            /* Though we wish to avoid it, we are in fact safe in
             * skipping local alloc cleanup as fsck.ocfs2 is more
             * than capable of reclaiming unused space. */
            if (la_dinode)
                  kfree(la_dinode);

            if (tl_dinode)
                  kfree(tl_dinode);

            mlog_errno(-ENOMEM);
            return;
      }

      INIT_LIST_HEAD(&item->lri_list);
      item->lri_la_dinode = la_dinode;
      item->lri_slot = slot_num;
      item->lri_tl_dinode = tl_dinode;

      spin_lock(&journal->j_lock);
      list_add_tail(&item->lri_list, &journal->j_la_cleanups);
      queue_work(ocfs2_wq, &journal->j_recovery_work);
      spin_unlock(&journal->j_lock);
}

/* Called by the mount code to queue recovery the last part of
 * recovery for it's own slot. */
void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
{
      struct ocfs2_journal *journal = osb->journal;

      if (osb->dirty) {
            /* No need to queue up our truncate_log as regular
             * cleanup will catch that. */
            ocfs2_queue_recovery_completion(journal,
                                    osb->slot_num,
                                    osb->local_alloc_copy,
                                    NULL);
            ocfs2_schedule_truncate_log_flush(osb, 0);

            osb->local_alloc_copy = NULL;
            osb->dirty = 0;
      }
}

static int __ocfs2_recovery_thread(void *arg)
{
      int status, node_num;
      struct ocfs2_super *osb = arg;

      mlog_entry_void();

      status = ocfs2_wait_on_mount(osb);
      if (status < 0) {
            goto bail;
      }

restart:
      status = ocfs2_super_lock(osb, 1);
      if (status < 0) {
            mlog_errno(status);
            goto bail;
      }

      while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
            node_num = ocfs2_node_map_first_set_bit(osb,
                                          &osb->recovery_map);
            if (node_num == O2NM_INVALID_NODE_NUM) {
                  mlog(0, "Out of nodes to recover.\n");
                  break;
            }

            status = ocfs2_recover_node(osb, node_num);
            if (status < 0) {
                  mlog(ML_ERROR,
                       "Error %d recovering node %d on device (%u,%u)!\n",
                       status, node_num,
                       MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
                  mlog(ML_ERROR, "Volume requires unmount.\n");
                  continue;
            }

            ocfs2_recovery_map_clear(osb, node_num);
      }
      ocfs2_super_unlock(osb, 1);

      /* We always run recovery on our own orphan dir - the dead
       * node(s) may have voted "no" on an inode delete earlier. A
       * revote is therefore required. */
      ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
                              NULL);

bail:
      mutex_lock(&osb->recovery_lock);
      if (!status &&
          !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
            mutex_unlock(&osb->recovery_lock);
            goto restart;
      }

      osb->recovery_thread_task = NULL;
      mb(); /* sync with ocfs2_recovery_thread_running */
      wake_up(&osb->recovery_event);

      mutex_unlock(&osb->recovery_lock);

      mlog_exit(status);
      /* no one is callint kthread_stop() for us so the kthread() api
       * requires that we call do_exit().  And it isn't exported, but
       * complete_and_exit() seems to be a minimal wrapper around it. */
      complete_and_exit(NULL, status);
      return status;
}

void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
{
      mlog_entry("(node_num=%d, osb->node_num = %d)\n",
               node_num, osb->node_num);

      mutex_lock(&osb->recovery_lock);
      if (osb->disable_recovery)
            goto out;

      /* People waiting on recovery will wait on
       * the recovery map to empty. */
      if (!ocfs2_recovery_map_set(osb, node_num))
            mlog(0, "node %d already be in recovery.\n", node_num);

      mlog(0, "starting recovery thread...\n");

      if (osb->recovery_thread_task)
            goto out;

      osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
                                     "ocfs2rec");
      if (IS_ERR(osb->recovery_thread_task)) {
            mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
            osb->recovery_thread_task = NULL;
      }

out:
      mutex_unlock(&osb->recovery_lock);
      wake_up(&osb->recovery_event);

      mlog_exit_void();
}

/* Does the actual journal replay and marks the journal inode as
 * clean. Will only replay if the journal inode is marked dirty. */
static int ocfs2_replay_journal(struct ocfs2_super *osb,
                        int node_num,
                        int slot_num)
{
      int status;
      int got_lock = 0;
      unsigned int flags;
      struct inode *inode = NULL;
      struct ocfs2_dinode *fe;
      journal_t *journal = NULL;
      struct buffer_head *bh = NULL;

      inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
                                  slot_num);
      if (inode == NULL) {
            status = -EACCES;
            mlog_errno(status);
            goto done;
      }
      if (is_bad_inode(inode)) {
            status = -EACCES;
            iput(inode);
            inode = NULL;
            mlog_errno(status);
            goto done;
      }
      SET_INODE_JOURNAL(inode);

      status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
      if (status < 0) {
            mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
            if (status != -ERESTARTSYS)
                  mlog(ML_ERROR, "Could not lock journal!\n");
            goto done;
      }
      got_lock = 1;

      fe = (struct ocfs2_dinode *) bh->b_data;

      flags = le32_to_cpu(fe->id1.journal1.ij_flags);

      if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
            mlog(0, "No recovery required for node %d\n", node_num);
            goto done;
      }

      mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
           node_num, slot_num,
           MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));

      OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);

      status = ocfs2_force_read_journal(inode);
      if (status < 0) {
            mlog_errno(status);
            goto done;
      }

      mlog(0, "calling journal_init_inode\n");
      journal = journal_init_inode(inode);
      if (journal == NULL) {
            mlog(ML_ERROR, "Linux journal layer error\n");
            status = -EIO;
            goto done;
      }

      status = journal_load(journal);
      if (status < 0) {
            mlog_errno(status);
            if (!igrab(inode))
                  BUG();
            journal_destroy(journal);
            goto done;
      }

      ocfs2_clear_journal_error(osb->sb, journal, slot_num);

      /* wipe the journal */
      mlog(0, "flushing the journal.\n");
      journal_lock_updates(journal);
      status = journal_flush(journal);
      journal_unlock_updates(journal);
      if (status < 0)
            mlog_errno(status);

      /* This will mark the node clean */
      flags = le32_to_cpu(fe->id1.journal1.ij_flags);
      flags &= ~OCFS2_JOURNAL_DIRTY_FL;
      fe->id1.journal1.ij_flags = cpu_to_le32(flags);

      status = ocfs2_write_block(osb, bh, inode);
      if (status < 0)
            mlog_errno(status);

      if (!igrab(inode))
            BUG();

      journal_destroy(journal);

done:
      /* drop the lock on this nodes journal */
      if (got_lock)
            ocfs2_meta_unlock(inode, 1);

      if (inode)
            iput(inode);

      if (bh)
            brelse(bh);

      mlog_exit(status);
      return status;
}

/*
 * Do the most important parts of node recovery:
 *  - Replay it's journal
 *  - Stamp a clean local allocator file
 *  - Stamp a clean truncate log
 *  - Mark the node clean
 *
 * If this function completes without error, a node in OCFS2 can be
 * said to have been safely recovered. As a result, failure during the
 * second part of a nodes recovery process (local alloc recovery) is
 * far less concerning.
 */
static int ocfs2_recover_node(struct ocfs2_super *osb,
                        int node_num)
{
      int status = 0;
      int slot_num;
      struct ocfs2_slot_info *si = osb->slot_info;
      struct ocfs2_dinode *la_copy = NULL;
      struct ocfs2_dinode *tl_copy = NULL;

      mlog_entry("(node_num=%d, osb->node_num = %d)\n",
               node_num, osb->node_num);

      mlog(0, "checking node %d\n", node_num);

      /* Should not ever be called to recover ourselves -- in that
       * case we should've called ocfs2_journal_load instead. */
      BUG_ON(osb->node_num == node_num);

      slot_num = ocfs2_node_num_to_slot(si, node_num);
      if (slot_num == OCFS2_INVALID_SLOT) {
            status = 0;
            mlog(0, "no slot for this node, so no recovery required.\n");
            goto done;
      }

      mlog(0, "node %d was using slot %d\n", node_num, slot_num);

      status = ocfs2_replay_journal(osb, node_num, slot_num);
      if (status < 0) {
            mlog_errno(status);
            goto done;
      }

      /* Stamp a clean local alloc file AFTER recovering the journal... */
      status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
      if (status < 0) {
            mlog_errno(status);
            goto done;
      }

      /* An error from begin_truncate_log_recovery is not
       * serious enough to warrant halting the rest of
       * recovery. */
      status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
      if (status < 0)
            mlog_errno(status);

      /* Likewise, this would be a strange but ultimately not so
       * harmful place to get an error... */
      ocfs2_clear_slot(si, slot_num);
      status = ocfs2_update_disk_slots(osb, si);
      if (status < 0)
            mlog_errno(status);

      /* This will kfree the memory pointed to by la_copy and tl_copy */
      ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
                              tl_copy);

      status = 0;
done:

      mlog_exit(status);
      return status;
}

/* Test node liveness by trylocking his journal. If we get the lock,
 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
 * still alive (we couldn't get the lock) and < 0 on error. */
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
                         int slot_num)
{
      int status, flags;
      struct inode *inode = NULL;

      inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
                                  slot_num);
      if (inode == NULL) {
            mlog(ML_ERROR, "access error\n");
            status = -EACCES;
            goto bail;
      }
      if (is_bad_inode(inode)) {
            mlog(ML_ERROR, "access error (bad inode)\n");
            iput(inode);
            inode = NULL;
            status = -EACCES;
            goto bail;
      }
      SET_INODE_JOURNAL(inode);

      flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
      status = ocfs2_meta_lock_full(inode, NULL, 1, flags);
      if (status < 0) {
            if (status != -EAGAIN)
                  mlog_errno(status);
            goto bail;
      }

      ocfs2_meta_unlock(inode, 1);
bail:
      if (inode)
            iput(inode);

      return status;
}

/* Call this underneath ocfs2_super_lock. It also assumes that the
 * slot info struct has been updated from disk. */
int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
{
      int status, i, node_num;
      struct ocfs2_slot_info *si = osb->slot_info;

      /* This is called with the super block cluster lock, so we
       * know that the slot map can't change underneath us. */

      spin_lock(&si->si_lock);
      for(i = 0; i < si->si_num_slots; i++) {
            if (i == osb->slot_num)
                  continue;
            if (ocfs2_is_empty_slot(si, i))
                  continue;

            node_num = si->si_global_node_nums[i];
            if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
                  continue;
            spin_unlock(&si->si_lock);

            /* Ok, we have a slot occupied by another node which
             * is not in the recovery map. We trylock his journal
             * file here to test if he's alive. */
            status = ocfs2_trylock_journal(osb, i);
            if (!status) {
                  /* Since we're called from mount, we know that
                   * the recovery thread can't race us on
                   * setting / checking the recovery bits. */
                  ocfs2_recovery_thread(osb, node_num);
            } else if ((status < 0) && (status != -EAGAIN)) {
                  mlog_errno(status);
                  goto bail;
            }

            spin_lock(&si->si_lock);
      }
      spin_unlock(&si->si_lock);

      status = 0;
bail:
      mlog_exit(status);
      return status;
}

struct ocfs2_orphan_filldir_priv {
      struct inode            *head;
      struct ocfs2_super      *osb;
};

static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
                        loff_t pos, u64 ino, unsigned type)
{
      struct ocfs2_orphan_filldir_priv *p = priv;
      struct inode *iter;

      if (name_len == 1 && !strncmp(".", name, 1))
            return 0;
      if (name_len == 2 && !strncmp("..", name, 2))
            return 0;

      /* Skip bad inodes so that recovery can continue */
      iter = ocfs2_iget(p->osb, ino,
                    OCFS2_FI_FLAG_ORPHAN_RECOVERY);
      if (IS_ERR(iter))
            return 0;

      mlog(0, "queue orphan %llu\n",
           (unsigned long long)OCFS2_I(iter)->ip_blkno);
      /* No locking is required for the next_orphan queue as there
       * is only ever a single process doing orphan recovery. */
      OCFS2_I(iter)->ip_next_orphan = p->head;
      p->head = iter;

      return 0;
}

static int ocfs2_queue_orphans(struct ocfs2_super *osb,
                         int slot,
                         struct inode **head)
{
      int status;
      struct inode *orphan_dir_inode = NULL;
      struct ocfs2_orphan_filldir_priv priv;
      loff_t pos = 0;

      priv.osb = osb;
      priv.head = *head;

      orphan_dir_inode = ocfs2_get_system_file_inode(osb,
                                           ORPHAN_DIR_SYSTEM_INODE,
                                           slot);
      if  (!orphan_dir_inode) {
            status = -ENOENT;
            mlog_errno(status);
            return status;
      }     

      mutex_lock(&orphan_dir_inode->i_mutex);
      status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0);
      if (status < 0) {
            mlog_errno(status);
            goto out;
      }

      status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
                           ocfs2_orphan_filldir);
      if (status) {
            mlog_errno(status);
            goto out_cluster;
      }

      *head = priv.head;

out_cluster:
      ocfs2_meta_unlock(orphan_dir_inode, 0);
out:
      mutex_unlock(&orphan_dir_inode->i_mutex);
      iput(orphan_dir_inode);
      return status;
}

static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
                                    int slot)
{
      int ret;

      spin_lock(&osb->osb_lock);
      ret = !osb->osb_orphan_wipes[slot];
      spin_unlock(&osb->osb_lock);
      return ret;
}

static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
                                   int slot)
{
      spin_lock(&osb->osb_lock);
      /* Mark ourselves such that new processes in delete_inode()
       * know to quit early. */
      ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
      while (osb->osb_orphan_wipes[slot]) {
            /* If any processes are already in the middle of an
             * orphan wipe on this dir, then we need to wait for
             * them. */
            spin_unlock(&osb->osb_lock);
            wait_event_interruptible(osb->osb_wipe_event,
                               ocfs2_orphan_recovery_can_continue(osb, slot));
            spin_lock(&osb->osb_lock);
      }
      spin_unlock(&osb->osb_lock);
}

static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
                                    int slot)
{
      ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
}

/*
 * Orphan recovery. Each mounted node has it's own orphan dir which we
 * must run during recovery. Our strategy here is to build a list of
 * the inodes in the orphan dir and iget/iput them. The VFS does
 * (most) of the rest of the work.
 *
 * Orphan recovery can happen at any time, not just mount so we have a
 * couple of extra considerations.
 *
 * - We grab as many inodes as we can under the orphan dir lock -
 *   doing iget() outside the orphan dir risks getting a reference on
 *   an invalid inode.
 * - We must be sure not to deadlock with other processes on the
 *   system wanting to run delete_inode(). This can happen when they go
 *   to lock the orphan dir and the orphan recovery process attempts to
 *   iget() inside the orphan dir lock. This can be avoided by
 *   advertising our state to ocfs2_delete_inode().
 */
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
                         int slot)
{
      int ret = 0;
      struct inode *inode = NULL;
      struct inode *iter;
      struct ocfs2_inode_info *oi;

      mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);

      ocfs2_mark_recovering_orphan_dir(osb, slot);
      ret = ocfs2_queue_orphans(osb, slot, &inode);
      ocfs2_clear_recovering_orphan_dir(osb, slot);

      /* Error here should be noted, but we want to continue with as
       * many queued inodes as we've got. */
      if (ret)
            mlog_errno(ret);

      while (inode) {
            oi = OCFS2_I(inode);
            mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);

            iter = oi->ip_next_orphan;

            spin_lock(&oi->ip_lock);
            /* Delete voting may have set these on the assumption
             * that the other node would wipe them successfully.
             * If they are still in the node's orphan dir, we need
             * to reset that state. */
            oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);

            /* Set the proper information to get us going into
             * ocfs2_delete_inode. */
            oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
            spin_unlock(&oi->ip_lock);

            iput(inode);

            inode = iter;
      }

      return ret;
}

static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
{
      /* This check is good because ocfs2 will wait on our recovery
       * thread before changing it to something other than MOUNTED
       * or DISABLED. */
      wait_event(osb->osb_mount_event,
               atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
               atomic_read(&osb->vol_state) == VOLUME_DISABLED);

      /* If there's an error on mount, then we may never get to the
       * MOUNTED flag, but this is set right before
       * dismount_volume() so we can trust it. */
      if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
            mlog(0, "mount error, exiting!\n");
            return -EBUSY;
      }

      return 0;
}

static int ocfs2_commit_thread(void *arg)
{
      int status;
      struct ocfs2_super *osb = arg;
      struct ocfs2_journal *journal = osb->journal;

      /* we can trust j_num_trans here because _should_stop() is only set in
       * shutdown and nobody other than ourselves should be able to start
       * transactions.  committing on shutdown might take a few iterations
       * as final transactions put deleted inodes on the list */
      while (!(kthread_should_stop() &&
             atomic_read(&journal->j_num_trans) == 0)) {

            wait_event_interruptible(osb->checkpoint_event,
                               atomic_read(&journal->j_num_trans)
                               || kthread_should_stop());

            status = ocfs2_commit_cache(osb);
            if (status < 0)
                  mlog_errno(status);

            if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
                  mlog(ML_KTHREAD,
                       "commit_thread: %u transactions pending on "
                       "shutdown\n",
                       atomic_read(&journal->j_num_trans));
            }
      }

      return 0;
}

/* Look for a dirty journal without taking any cluster locks. Used for
 * hard readonly access to determine whether the file system journals
 * require recovery. */
int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
{
      int ret = 0;
      unsigned int slot;
      struct buffer_head *di_bh;
      struct ocfs2_dinode *di;
      struct inode *journal = NULL;

      for(slot = 0; slot < osb->max_slots; slot++) {
            journal = ocfs2_get_system_file_inode(osb,
                                          JOURNAL_SYSTEM_INODE,
                                          slot);
            if (!journal || is_bad_inode(journal)) {
                  ret = -EACCES;
                  mlog_errno(ret);
                  goto out;
            }

            di_bh = NULL;
            ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
                               0, journal);
            if (ret < 0) {
                  mlog_errno(ret);
                  goto out;
            }

            di = (struct ocfs2_dinode *) di_bh->b_data;

            if (le32_to_cpu(di->id1.journal1.ij_flags) &
                OCFS2_JOURNAL_DIRTY_FL)
                  ret = -EROFS;

            brelse(di_bh);
            if (ret)
                  break;
      }

out:
      if (journal)
            iput(journal);

      return ret;
}

Generated by  Doxygen 1.6.0   Back to index