Logo Search packages:      
Sourcecode: linux version File versions  Download package

padlock-aes.c

/* 
 * Cryptographic API.
 *
 * Support for VIA PadLock hardware crypto engine.
 *
 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
 *
 * Key expansion routine taken from crypto/aes_generic.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * ---------------------------------------------------------------------------
 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 * All rights reserved.
 *
 * LICENSE TERMS
 *
 * The free distribution and use of this software in both source and binary
 * form is allowed (with or without changes) provided that:
 *
 *   1. distributions of this source code include the above copyright
 *      notice, this list of conditions and the following disclaimer;
 *
 *   2. distributions in binary form include the above copyright
 *      notice, this list of conditions and the following disclaimer
 *      in the documentation and/or other associated materials;
 *
 *   3. the copyright holder's name is not used to endorse products
 *      built using this software without specific written permission.
 *
 * ALTERNATIVELY, provided that this notice is retained in full, this product
 * may be distributed under the terms of the GNU General Public License (GPL),
 * in which case the provisions of the GPL apply INSTEAD OF those given above.
 *
 * DISCLAIMER
 *
 * This software is provided 'as is' with no explicit or implied warranties
 * in respect of its properties, including, but not limited to, correctness
 * and/or fitness for purpose.
 * ---------------------------------------------------------------------------
 */

#include <crypto/algapi.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <asm/byteorder.h>
#include "padlock.h"

#define AES_MIN_KEY_SIZE      16    /* in uint8_t units */
#define AES_MAX_KEY_SIZE      32    /* ditto */
#define AES_BLOCK_SIZE        16    /* ditto */
#define AES_EXTENDED_KEY_SIZE 64    /* in uint32_t units */
#define AES_EXTENDED_KEY_SIZE_B     (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))

/* Control word. */
struct cword {
      unsigned int __attribute__ ((__packed__))
            rounds:4,
            algo:3,
            keygen:1,
            interm:1,
            encdec:1,
            ksize:2;
} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));

/* Whenever making any changes to the following
 * structure *make sure* you keep E, d_data
 * and cword aligned on 16 Bytes boundaries!!! */
struct aes_ctx {
      struct {
            struct cword encrypt;
            struct cword decrypt;
      } cword;
      u32 *D;
      int key_length;
      u32 E[AES_EXTENDED_KEY_SIZE]
            __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
      u32 d_data[AES_EXTENDED_KEY_SIZE]
            __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
};

/* ====== Key management routines ====== */

static inline uint32_t
generic_rotr32 (const uint32_t x, const unsigned bits)
{
      const unsigned n = bits % 32;
      return (x >> n) | (x << (32 - n));
}

static inline uint32_t
generic_rotl32 (const uint32_t x, const unsigned bits)
{
      const unsigned n = bits % 32;
      return (x << n) | (x >> (32 - n));
}

#define rotl generic_rotl32
#define rotr generic_rotr32

/*
 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
 */
static inline uint8_t
byte(const uint32_t x, const unsigned n)
{
      return x >> (n << 3);
}

#define E_KEY ctx->E
#define D_KEY ctx->D

static uint8_t pow_tab[256];
static uint8_t log_tab[256];
static uint8_t sbx_tab[256];
static uint8_t isb_tab[256];
static uint32_t rco_tab[10];
static uint32_t ft_tab[4][256];
static uint32_t it_tab[4][256];

static uint32_t fl_tab[4][256];
static uint32_t il_tab[4][256];

static inline uint8_t
f_mult (uint8_t a, uint8_t b)
{
      uint8_t aa = log_tab[a], cc = aa + log_tab[b];

      return pow_tab[cc + (cc < aa ? 1 : 0)];
}

#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)

#define f_rn(bo, bi, n, k)                            \
    bo[n] =  ft_tab[0][byte(bi[n],0)] ^                     \
             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^           \
             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^           \
             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)

#define i_rn(bo, bi, n, k)                            \
    bo[n] =  it_tab[0][byte(bi[n],0)] ^                     \
             it_tab[1][byte(bi[(n + 3) & 3],1)] ^           \
             it_tab[2][byte(bi[(n + 2) & 3],2)] ^           \
             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)

#define ls_box(x)                   \
    ( fl_tab[0][byte(x, 0)] ^             \
      fl_tab[1][byte(x, 1)] ^             \
      fl_tab[2][byte(x, 2)] ^             \
      fl_tab[3][byte(x, 3)] )

#define f_rl(bo, bi, n, k)                            \
    bo[n] =  fl_tab[0][byte(bi[n],0)] ^                     \
             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^           \
             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^           \
             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)

#define i_rl(bo, bi, n, k)                            \
    bo[n] =  il_tab[0][byte(bi[n],0)] ^                     \
             il_tab[1][byte(bi[(n + 3) & 3],1)] ^           \
             il_tab[2][byte(bi[(n + 2) & 3],2)] ^           \
             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)

static void
gen_tabs (void)
{
      uint32_t i, t;
      uint8_t p, q;

      /* log and power tables for GF(2**8) finite field with
         0x011b as modular polynomial - the simplest prmitive
         root is 0x03, used here to generate the tables */

      for (i = 0, p = 1; i < 256; ++i) {
            pow_tab[i] = (uint8_t) p;
            log_tab[p] = (uint8_t) i;

            p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
      }

      log_tab[1] = 0;

      for (i = 0, p = 1; i < 10; ++i) {
            rco_tab[i] = p;

            p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
      }

      for (i = 0; i < 256; ++i) {
            p = (i ? pow_tab[255 - log_tab[i]] : 0);
            q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
            p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
            sbx_tab[i] = p;
            isb_tab[p] = (uint8_t) i;
      }

      for (i = 0; i < 256; ++i) {
            p = sbx_tab[i];

            t = p;
            fl_tab[0][i] = t;
            fl_tab[1][i] = rotl (t, 8);
            fl_tab[2][i] = rotl (t, 16);
            fl_tab[3][i] = rotl (t, 24);

            t = ((uint32_t) ff_mult (2, p)) |
                ((uint32_t) p << 8) |
                ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);

            ft_tab[0][i] = t;
            ft_tab[1][i] = rotl (t, 8);
            ft_tab[2][i] = rotl (t, 16);
            ft_tab[3][i] = rotl (t, 24);

            p = isb_tab[i];

            t = p;
            il_tab[0][i] = t;
            il_tab[1][i] = rotl (t, 8);
            il_tab[2][i] = rotl (t, 16);
            il_tab[3][i] = rotl (t, 24);

            t = ((uint32_t) ff_mult (14, p)) |
                ((uint32_t) ff_mult (9, p) << 8) |
                ((uint32_t) ff_mult (13, p) << 16) |
                ((uint32_t) ff_mult (11, p) << 24);

            it_tab[0][i] = t;
            it_tab[1][i] = rotl (t, 8);
            it_tab[2][i] = rotl (t, 16);
            it_tab[3][i] = rotl (t, 24);
      }
}

#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)

#define imix_col(y,x)       \
    u   = star_x(x);        \
    v   = star_x(u);        \
    w   = star_x(v);        \
    t   = w ^ (x);          \
   (y)  = u ^ v ^ w;        \
   (y) ^= rotr(u ^ t,  8) ^ \
          rotr(v ^ t, 16) ^ \
          rotr(t,24)

/* initialise the key schedule from the user supplied key */

#define loop4(i)                                    \
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
}

#define loop6(i)                                    \
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
}

#define loop8(i)                                    \
{   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
    E_KEY[8 * i + 12] = t;                \
    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
}

/* Tells whether the ACE is capable to generate
   the extended key for a given key_len. */
static inline int
aes_hw_extkey_available(uint8_t key_len)
{
      /* TODO: We should check the actual CPU model/stepping
               as it's possible that the capability will be
               added in the next CPU revisions. */
      if (key_len == 16)
            return 1;
      return 0;
}

static inline struct aes_ctx *aes_ctx_common(void *ctx)
{
      unsigned long addr = (unsigned long)ctx;
      unsigned long align = PADLOCK_ALIGNMENT;

      if (align <= crypto_tfm_ctx_alignment())
            align = 1;
      return (struct aes_ctx *)ALIGN(addr, align);
}

static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
{
      return aes_ctx_common(crypto_tfm_ctx(tfm));
}

static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
{
      return aes_ctx_common(crypto_blkcipher_ctx(tfm));
}

static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
                   unsigned int key_len)
{
      struct aes_ctx *ctx = aes_ctx(tfm);
      const __le32 *key = (const __le32 *)in_key;
      u32 *flags = &tfm->crt_flags;
      uint32_t i, t, u, v, w;
      uint32_t P[AES_EXTENDED_KEY_SIZE];
      uint32_t rounds;

      if (key_len % 8) {
            *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
            return -EINVAL;
      }

      ctx->key_length = key_len;

      /*
       * If the hardware is capable of generating the extended key
       * itself we must supply the plain key for both encryption
       * and decryption.
       */
      ctx->D = ctx->E;

      E_KEY[0] = le32_to_cpu(key[0]);
      E_KEY[1] = le32_to_cpu(key[1]);
      E_KEY[2] = le32_to_cpu(key[2]);
      E_KEY[3] = le32_to_cpu(key[3]);

      /* Prepare control words. */
      memset(&ctx->cword, 0, sizeof(ctx->cword));

      ctx->cword.decrypt.encdec = 1;
      ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
      ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
      ctx->cword.encrypt.ksize = (key_len - 16) / 8;
      ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;

      /* Don't generate extended keys if the hardware can do it. */
      if (aes_hw_extkey_available(key_len))
            return 0;

      ctx->D = ctx->d_data;
      ctx->cword.encrypt.keygen = 1;
      ctx->cword.decrypt.keygen = 1;

      switch (key_len) {
      case 16:
            t = E_KEY[3];
            for (i = 0; i < 10; ++i)
                  loop4 (i);
            break;

      case 24:
            E_KEY[4] = le32_to_cpu(key[4]);
            t = E_KEY[5] = le32_to_cpu(key[5]);
            for (i = 0; i < 8; ++i)
                  loop6 (i);
            break;

      case 32:
            E_KEY[4] = le32_to_cpu(key[4]);
            E_KEY[5] = le32_to_cpu(key[5]);
            E_KEY[6] = le32_to_cpu(key[6]);
            t = E_KEY[7] = le32_to_cpu(key[7]);
            for (i = 0; i < 7; ++i)
                  loop8 (i);
            break;
      }

      D_KEY[0] = E_KEY[0];
      D_KEY[1] = E_KEY[1];
      D_KEY[2] = E_KEY[2];
      D_KEY[3] = E_KEY[3];

      for (i = 4; i < key_len + 24; ++i) {
            imix_col (D_KEY[i], E_KEY[i]);
      }

      /* PadLock needs a different format of the decryption key. */
      rounds = 10 + (key_len - 16) / 4;

      for (i = 0; i < rounds; i++) {
            P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
            P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
            P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
            P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
      }

      P[0] = E_KEY[(rounds * 4) + 0];
      P[1] = E_KEY[(rounds * 4) + 1];
      P[2] = E_KEY[(rounds * 4) + 2];
      P[3] = E_KEY[(rounds * 4) + 3];

      memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);

      return 0;
}

/* ====== Encryption/decryption routines ====== */

/* These are the real call to PadLock. */
static inline void padlock_xcrypt(const u8 *input, u8 *output, void *key,
                          void *control_word)
{
      asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
                  : "+S"(input), "+D"(output)
                  : "d"(control_word), "b"(key), "c"(1));
}

static void aes_crypt_copy(const u8 *in, u8 *out, u32 *key, struct cword *cword)
{
      u8 buf[AES_BLOCK_SIZE * 2 + PADLOCK_ALIGNMENT - 1];
      u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);

      memcpy(tmp, in, AES_BLOCK_SIZE);
      padlock_xcrypt(tmp, out, key, cword);
}

static inline void aes_crypt(const u8 *in, u8 *out, u32 *key,
                       struct cword *cword)
{
      asm volatile ("pushfl; popfl");

      /* padlock_xcrypt requires at least two blocks of data. */
      if (unlikely(!(((unsigned long)in ^ (PAGE_SIZE - AES_BLOCK_SIZE)) &
                   (PAGE_SIZE - 1)))) {
            aes_crypt_copy(in, out, key, cword);
            return;
      }

      padlock_xcrypt(in, out, key, cword);
}

static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
                              void *control_word, u32 count)
{
      if (count == 1) {
            aes_crypt(input, output, key, control_word);
            return;
      }

      asm volatile ("pushfl; popfl");           /* enforce key reload. */
      asm volatile ("test $1, %%cl;"
                  "je 1f;"
                  "lea -1(%%ecx), %%eax;"
                  "mov $1, %%ecx;"
                  ".byte 0xf3,0x0f,0xa7,0xc8;"  /* rep xcryptecb */
                  "mov %%eax, %%ecx;"
                  "1:"
                  ".byte 0xf3,0x0f,0xa7,0xc8"   /* rep xcryptecb */
                  : "+S"(input), "+D"(output)
                  : "d"(control_word), "b"(key), "c"(count)
                  : "ax");
}

static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
                             u8 *iv, void *control_word, u32 count)
{
      /* Enforce key reload. */
      asm volatile ("pushfl; popfl");
      /* rep xcryptcbc */
      asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
                  : "+S" (input), "+D" (output), "+a" (iv)
                  : "d" (control_word), "b" (key), "c" (count));
      return iv;
}

static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
      struct aes_ctx *ctx = aes_ctx(tfm);
      aes_crypt(in, out, ctx->E, &ctx->cword.encrypt);
}

static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
      struct aes_ctx *ctx = aes_ctx(tfm);
      aes_crypt(in, out, ctx->D, &ctx->cword.decrypt);
}

static struct crypto_alg aes_alg = {
      .cra_name         =     "aes",
      .cra_driver_name  =     "aes-padlock",
      .cra_priority           =     PADLOCK_CRA_PRIORITY,
      .cra_flags        =     CRYPTO_ALG_TYPE_CIPHER,
      .cra_blocksize          =     AES_BLOCK_SIZE,
      .cra_ctxsize            =     sizeof(struct aes_ctx),
      .cra_alignmask          =     PADLOCK_ALIGNMENT - 1,
      .cra_module       =     THIS_MODULE,
      .cra_list         =     LIST_HEAD_INIT(aes_alg.cra_list),
      .cra_u                  =     {
            .cipher = {
                  .cia_min_keysize  =     AES_MIN_KEY_SIZE,
                  .cia_max_keysize  =     AES_MAX_KEY_SIZE,
                  .cia_setkey       =     aes_set_key,
                  .cia_encrypt            =     aes_encrypt,
                  .cia_decrypt            =     aes_decrypt,
            }
      }
};

static int ecb_aes_encrypt(struct blkcipher_desc *desc,
                     struct scatterlist *dst, struct scatterlist *src,
                     unsigned int nbytes)
{
      struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
      struct blkcipher_walk walk;
      int err;

      blkcipher_walk_init(&walk, dst, src, nbytes);
      err = blkcipher_walk_virt(desc, &walk);

      while ((nbytes = walk.nbytes)) {
            padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
                           ctx->E, &ctx->cword.encrypt,
                           nbytes / AES_BLOCK_SIZE);
            nbytes &= AES_BLOCK_SIZE - 1;
            err = blkcipher_walk_done(desc, &walk, nbytes);
      }

      return err;
}

static int ecb_aes_decrypt(struct blkcipher_desc *desc,
                     struct scatterlist *dst, struct scatterlist *src,
                     unsigned int nbytes)
{
      struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
      struct blkcipher_walk walk;
      int err;

      blkcipher_walk_init(&walk, dst, src, nbytes);
      err = blkcipher_walk_virt(desc, &walk);

      while ((nbytes = walk.nbytes)) {
            padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
                           ctx->D, &ctx->cword.decrypt,
                           nbytes / AES_BLOCK_SIZE);
            nbytes &= AES_BLOCK_SIZE - 1;
            err = blkcipher_walk_done(desc, &walk, nbytes);
      }

      return err;
}

static struct crypto_alg ecb_aes_alg = {
      .cra_name         =     "ecb(aes)",
      .cra_driver_name  =     "ecb-aes-padlock",
      .cra_priority           =     PADLOCK_COMPOSITE_PRIORITY,
      .cra_flags        =     CRYPTO_ALG_TYPE_BLKCIPHER,
      .cra_blocksize          =     AES_BLOCK_SIZE,
      .cra_ctxsize            =     sizeof(struct aes_ctx),
      .cra_alignmask          =     PADLOCK_ALIGNMENT - 1,
      .cra_type         =     &crypto_blkcipher_type,
      .cra_module       =     THIS_MODULE,
      .cra_list         =     LIST_HEAD_INIT(ecb_aes_alg.cra_list),
      .cra_u                  =     {
            .blkcipher = {
                  .min_keysize            =     AES_MIN_KEY_SIZE,
                  .max_keysize            =     AES_MAX_KEY_SIZE,
                  .setkey                 =     aes_set_key,
                  .encrypt          =     ecb_aes_encrypt,
                  .decrypt          =     ecb_aes_decrypt,
            }
      }
};

static int cbc_aes_encrypt(struct blkcipher_desc *desc,
                     struct scatterlist *dst, struct scatterlist *src,
                     unsigned int nbytes)
{
      struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
      struct blkcipher_walk walk;
      int err;

      blkcipher_walk_init(&walk, dst, src, nbytes);
      err = blkcipher_walk_virt(desc, &walk);

      while ((nbytes = walk.nbytes)) {
            u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
                                  walk.dst.virt.addr, ctx->E,
                                  walk.iv, &ctx->cword.encrypt,
                                  nbytes / AES_BLOCK_SIZE);
            memcpy(walk.iv, iv, AES_BLOCK_SIZE);
            nbytes &= AES_BLOCK_SIZE - 1;
            err = blkcipher_walk_done(desc, &walk, nbytes);
      }

      return err;
}

static int cbc_aes_decrypt(struct blkcipher_desc *desc,
                     struct scatterlist *dst, struct scatterlist *src,
                     unsigned int nbytes)
{
      struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
      struct blkcipher_walk walk;
      int err;

      blkcipher_walk_init(&walk, dst, src, nbytes);
      err = blkcipher_walk_virt(desc, &walk);

      while ((nbytes = walk.nbytes)) {
            padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
                           ctx->D, walk.iv, &ctx->cword.decrypt,
                           nbytes / AES_BLOCK_SIZE);
            nbytes &= AES_BLOCK_SIZE - 1;
            err = blkcipher_walk_done(desc, &walk, nbytes);
      }

      return err;
}

static struct crypto_alg cbc_aes_alg = {
      .cra_name         =     "cbc(aes)",
      .cra_driver_name  =     "cbc-aes-padlock",
      .cra_priority           =     PADLOCK_COMPOSITE_PRIORITY,
      .cra_flags        =     CRYPTO_ALG_TYPE_BLKCIPHER,
      .cra_blocksize          =     AES_BLOCK_SIZE,
      .cra_ctxsize            =     sizeof(struct aes_ctx),
      .cra_alignmask          =     PADLOCK_ALIGNMENT - 1,
      .cra_type         =     &crypto_blkcipher_type,
      .cra_module       =     THIS_MODULE,
      .cra_list         =     LIST_HEAD_INIT(cbc_aes_alg.cra_list),
      .cra_u                  =     {
            .blkcipher = {
                  .min_keysize            =     AES_MIN_KEY_SIZE,
                  .max_keysize            =     AES_MAX_KEY_SIZE,
                  .ivsize                 =     AES_BLOCK_SIZE,
                  .setkey                 =     aes_set_key,
                  .encrypt          =     cbc_aes_encrypt,
                  .decrypt          =     cbc_aes_decrypt,
            }
      }
};

static int __init padlock_init(void)
{
      int ret;

      if (!cpu_has_xcrypt) {
            printk(KERN_ERR PFX "VIA PadLock not detected.\n");
            return -ENODEV;
      }

      if (!cpu_has_xcrypt_enabled) {
            printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
            return -ENODEV;
      }

      gen_tabs();
      if ((ret = crypto_register_alg(&aes_alg)))
            goto aes_err;

      if ((ret = crypto_register_alg(&ecb_aes_alg)))
            goto ecb_aes_err;

      if ((ret = crypto_register_alg(&cbc_aes_alg)))
            goto cbc_aes_err;

      printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");

out:
      return ret;

cbc_aes_err:
      crypto_unregister_alg(&ecb_aes_alg);
ecb_aes_err:
      crypto_unregister_alg(&aes_alg);
aes_err:
      printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
      goto out;
}

static void __exit padlock_fini(void)
{
      crypto_unregister_alg(&cbc_aes_alg);
      crypto_unregister_alg(&ecb_aes_alg);
      crypto_unregister_alg(&aes_alg);
}

module_init(padlock_init);
module_exit(padlock_fini);

MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Ludvig");

MODULE_ALIAS("aes");

Generated by  Doxygen 1.6.0   Back to index