Logo Search packages:      
Sourcecode: linux version File versions  Download package

page-writeback.c

/*
 * mm/page-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
 * 10Apr2002      akpm@zip.com.au
 *          Initial version
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/blkdev.h>
#include <linux/mpage.h>
#include <linux/rmap.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
#include <linux/buffer_head.h>
#include <linux/pagevec.h>

/*
 * The maximum number of pages to writeout in a single bdflush/kupdate
 * operation.  We do this so we don't hold I_SYNC against an inode for
 * enormous amounts of time, which would block a userspace task which has
 * been forced to throttle against that inode.  Also, the code reevaluates
 * the dirty each time it has written this many pages.
 */
#define MAX_WRITEBACK_PAGES   1024

/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/*
 * When balance_dirty_pages decides that the caller needs to perform some
 * non-background writeback, this is how many pages it will attempt to write.
 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
 * large amounts of I/O are submitted.
 */
static inline long sync_writeback_pages(void)
{
      return ratelimit_pages + ratelimit_pages / 2;
}

/* The following parameters are exported via /proc/sys/vm */

/*
 * Start background writeback (via pdflush) at this percentage
 */
int dirty_background_ratio = 5;

/*
 * The generator of dirty data starts writeback at this percentage
 */
int vm_dirty_ratio = 10;

/*
 * The interval between `kupdate'-style writebacks, in jiffies
 */
int dirty_writeback_interval = 5 * HZ;

/*
 * The longest number of jiffies for which data is allowed to remain dirty
 */
int dirty_expire_interval = 30 * HZ;

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */


static void background_writeout(unsigned long _min_pages);

/*
 * Scale the writeback cache size proportional to the relative writeout speeds.
 *
 * We do this by keeping a floating proportion between BDIs, based on page
 * writeback completions [end_page_writeback()]. Those devices that write out
 * pages fastest will get the larger share, while the slower will get a smaller
 * share.
 *
 * We use page writeout completions because we are interested in getting rid of
 * dirty pages. Having them written out is the primary goal.
 *
 * We introduce a concept of time, a period over which we measure these events,
 * because demand can/will vary over time. The length of this period itself is
 * measured in page writeback completions.
 *
 */
static struct prop_descriptor vm_completions;
static struct prop_descriptor vm_dirties;

static unsigned long determine_dirtyable_memory(void);

/*
 * couple the period to the dirty_ratio:
 *
 *   period/2 ~ roundup_pow_of_two(dirty limit)
 */
static int calc_period_shift(void)
{
      unsigned long dirty_total;

      dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
      return 2 + ilog2(dirty_total - 1);
}

/*
 * update the period when the dirty ratio changes.
 */
int dirty_ratio_handler(struct ctl_table *table, int write,
            struct file *filp, void __user *buffer, size_t *lenp,
            loff_t *ppos)
{
      int old_ratio = vm_dirty_ratio;
      int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
      if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
            int shift = calc_period_shift();
            prop_change_shift(&vm_completions, shift);
            prop_change_shift(&vm_dirties, shift);
      }
      return ret;
}

/*
 * Increment the BDI's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
{
      __prop_inc_percpu(&vm_completions, &bdi->completions);
}

static inline void task_dirty_inc(struct task_struct *tsk)
{
      prop_inc_single(&vm_dirties, &tsk->dirties);
}

/*
 * Obtain an accurate fraction of the BDI's portion.
 */
static void bdi_writeout_fraction(struct backing_dev_info *bdi,
            long *numerator, long *denominator)
{
      if (bdi_cap_writeback_dirty(bdi)) {
            prop_fraction_percpu(&vm_completions, &bdi->completions,
                        numerator, denominator);
      } else {
            *numerator = 0;
            *denominator = 1;
      }
}

/*
 * Clip the earned share of dirty pages to that which is actually available.
 * This avoids exceeding the total dirty_limit when the floating averages
 * fluctuate too quickly.
 */
static void
clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
{
      long avail_dirty;

      avail_dirty = dirty -
            (global_page_state(NR_FILE_DIRTY) +
             global_page_state(NR_WRITEBACK) +
             global_page_state(NR_UNSTABLE_NFS));

      if (avail_dirty < 0)
            avail_dirty = 0;

      avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
            bdi_stat(bdi, BDI_WRITEBACK);

      *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
}

static inline void task_dirties_fraction(struct task_struct *tsk,
            long *numerator, long *denominator)
{
      prop_fraction_single(&vm_dirties, &tsk->dirties,
                        numerator, denominator);
}

/*
 * scale the dirty limit
 *
 * task specific dirty limit:
 *
 *   dirty -= (dirty/8) * p_{t}
 */
void task_dirty_limit(struct task_struct *tsk, long *pdirty)
{
      long numerator, denominator;
      long dirty = *pdirty;
      u64 inv = dirty >> 3;

      task_dirties_fraction(tsk, &numerator, &denominator);
      inv *= numerator;
      do_div(inv, denominator);

      dirty -= inv;
      if (dirty < *pdirty/2)
            dirty = *pdirty/2;

      *pdirty = dirty;
}

/*
 * Work out the current dirty-memory clamping and background writeout
 * thresholds.
 *
 * The main aim here is to lower them aggressively if there is a lot of mapped
 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 * pages.  It is better to clamp down on writers than to start swapping, and
 * performing lots of scanning.
 *
 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 *
 * We don't permit the clamping level to fall below 5% - that is getting rather
 * excessive.
 *
 * We make sure that the background writeout level is below the adjusted
 * clamping level.
 */

static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
      int node;
      unsigned long x = 0;

      for_each_node_state(node, N_HIGH_MEMORY) {
            struct zone *z =
                  &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];

            x += zone_page_state(z, NR_FREE_PAGES)
                  + zone_page_state(z, NR_INACTIVE)
                  + zone_page_state(z, NR_ACTIVE);
      }
      /*
       * Make sure that the number of highmem pages is never larger
       * than the number of the total dirtyable memory. This can only
       * occur in very strange VM situations but we want to make sure
       * that this does not occur.
       */
      return min(x, total);
#else
      return 0;
#endif
}

static unsigned long determine_dirtyable_memory(void)
{
      unsigned long x;

      x = global_page_state(NR_FREE_PAGES)
            + global_page_state(NR_INACTIVE)
            + global_page_state(NR_ACTIVE);
      x -= highmem_dirtyable_memory(x);
      return x + 1;     /* Ensure that we never return 0 */
}

static void
get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
             struct backing_dev_info *bdi)
{
      int background_ratio;         /* Percentages */
      int dirty_ratio;
      long background;
      long dirty;
      unsigned long available_memory = determine_dirtyable_memory();
      struct task_struct *tsk;

      dirty_ratio = vm_dirty_ratio;
      if (dirty_ratio < 5)
            dirty_ratio = 5;

      background_ratio = dirty_background_ratio;
      if (background_ratio >= dirty_ratio)
            background_ratio = dirty_ratio / 2;

      background = (background_ratio * available_memory) / 100;
      dirty = (dirty_ratio * available_memory) / 100;
      tsk = current;
      if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
            background += background / 4;
            dirty += dirty / 4;
      }
      *pbackground = background;
      *pdirty = dirty;

      if (bdi) {
            u64 bdi_dirty = dirty;
            long numerator, denominator;

            /*
             * Calculate this BDI's share of the dirty ratio.
             */
            bdi_writeout_fraction(bdi, &numerator, &denominator);

            bdi_dirty *= numerator;
            do_div(bdi_dirty, denominator);

            *pbdi_dirty = bdi_dirty;
            clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
            task_dirty_limit(current, pbdi_dirty);
      }
}

/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
 * If we're over `background_thresh' then pdflush is woken to perform some
 * writeout.
 */
static void balance_dirty_pages(struct address_space *mapping)
{
      long nr_reclaimable, bdi_nr_reclaimable;
      long nr_writeback, bdi_nr_writeback;
      long background_thresh;
      long dirty_thresh;
      long bdi_thresh;
      unsigned long pages_written = 0;
      unsigned long write_chunk = sync_writeback_pages();

      struct backing_dev_info *bdi = mapping->backing_dev_info;

      for (;;) {
            struct writeback_control wbc = {
                  .bdi        = bdi,
                  .sync_mode  = WB_SYNC_NONE,
                  .older_than_this = NULL,
                  .nr_to_write      = write_chunk,
                  .range_cyclic     = 1,
            };

            get_dirty_limits(&background_thresh, &dirty_thresh,
                        &bdi_thresh, bdi);

            nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
                              global_page_state(NR_UNSTABLE_NFS);
            nr_writeback = global_page_state(NR_WRITEBACK);

            bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
            bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);

            if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
                  break;

            /*
             * Throttle it only when the background writeback cannot
             * catch-up. This avoids (excessively) small writeouts
             * when the bdi limits are ramping up.
             */
            if (nr_reclaimable + nr_writeback <
                        (background_thresh + dirty_thresh) / 2)
                  break;

            if (!bdi->dirty_exceeded)
                  bdi->dirty_exceeded = 1;

            /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
             * Unstable writes are a feature of certain networked
             * filesystems (i.e. NFS) in which data may have been
             * written to the server's write cache, but has not yet
             * been flushed to permanent storage.
             */
            if (bdi_nr_reclaimable) {
                  writeback_inodes(&wbc);
                  pages_written += write_chunk - wbc.nr_to_write;
                  get_dirty_limits(&background_thresh, &dirty_thresh,
                               &bdi_thresh, bdi);
            }

            /*
             * In order to avoid the stacked BDI deadlock we need
             * to ensure we accurately count the 'dirty' pages when
             * the threshold is low.
             *
             * Otherwise it would be possible to get thresh+n pages
             * reported dirty, even though there are thresh-m pages
             * actually dirty; with m+n sitting in the percpu
             * deltas.
             */
            if (bdi_thresh < 2*bdi_stat_error(bdi)) {
                  bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
                  bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
            } else if (bdi_nr_reclaimable) {
                  bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
                  bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
            }

            if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
                  break;
            if (pages_written >= write_chunk)
                  break;            /* We've done our duty */

            congestion_wait(WRITE, HZ/10);
      }

      if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
                  bdi->dirty_exceeded)
            bdi->dirty_exceeded = 0;

      if (writeback_in_progress(bdi))
            return;           /* pdflush is already working this queue */

      /*
       * In laptop mode, we wait until hitting the higher threshold before
       * starting background writeout, and then write out all the way down
       * to the lower threshold.  So slow writers cause minimal disk activity.
       *
       * In normal mode, we start background writeout at the lower
       * background_thresh, to keep the amount of dirty memory low.
       */
      if ((laptop_mode && pages_written) ||
                  (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
                                + global_page_state(NR_UNSTABLE_NFS)
                                > background_thresh)))
            pdflush_operation(background_writeout, 0);
}

void set_page_dirty_balance(struct page *page, int page_mkwrite)
{
      if (set_page_dirty(page) || page_mkwrite) {
            struct address_space *mapping = page_mapping(page);

            if (mapping)
                  balance_dirty_pages_ratelimited(mapping);
      }
}

/**
 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
 * @mapping: address_space which was dirtied
 * @nr_pages_dirtied: number of pages which the caller has just dirtied
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
                              unsigned long nr_pages_dirtied)
{
      static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
      unsigned long ratelimit;
      unsigned long *p;

      ratelimit = ratelimit_pages;
      if (mapping->backing_dev_info->dirty_exceeded)
            ratelimit = 8;

      /*
       * Check the rate limiting. Also, we do not want to throttle real-time
       * tasks in balance_dirty_pages(). Period.
       */
      preempt_disable();
      p =  &__get_cpu_var(ratelimits);
      *p += nr_pages_dirtied;
      if (unlikely(*p >= ratelimit)) {
            *p = 0;
            preempt_enable();
            balance_dirty_pages(mapping);
            return;
      }
      preempt_enable();
}
EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);

void throttle_vm_writeout(gfp_t gfp_mask)
{
      long background_thresh;
      long dirty_thresh;

        for ( ; ; ) {
            get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

                if (global_page_state(NR_UNSTABLE_NFS) +
                  global_page_state(NR_WRITEBACK) <= dirty_thresh)
                              break;
                congestion_wait(WRITE, HZ/10);

            /*
             * The caller might hold locks which can prevent IO completion
             * or progress in the filesystem.  So we cannot just sit here
             * waiting for IO to complete.
             */
            if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
                  break;
        }
}

/*
 * writeback at least _min_pages, and keep writing until the amount of dirty
 * memory is less than the background threshold, or until we're all clean.
 */
static void background_writeout(unsigned long _min_pages)
{
      long min_pages = _min_pages;
      struct writeback_control wbc = {
            .bdi        = NULL,
            .sync_mode  = WB_SYNC_NONE,
            .older_than_this = NULL,
            .nr_to_write      = 0,
            .nonblocking      = 1,
            .range_cyclic     = 1,
      };

      for ( ; ; ) {
            long background_thresh;
            long dirty_thresh;

            get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
            if (global_page_state(NR_FILE_DIRTY) +
                  global_page_state(NR_UNSTABLE_NFS) < background_thresh
                        && min_pages <= 0)
                  break;
            wbc.encountered_congestion = 0;
            wbc.nr_to_write = MAX_WRITEBACK_PAGES;
            wbc.pages_skipped = 0;
            writeback_inodes(&wbc);
            min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
            if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
                  /* Wrote less than expected */
                  congestion_wait(WRITE, HZ/10);
                  if (!wbc.encountered_congestion)
                        break;
            }
      }
}

/*
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
 * -1 if all pdflush threads were busy.
 */
int wakeup_pdflush(long nr_pages)
{
      if (nr_pages == 0)
            nr_pages = global_page_state(NR_FILE_DIRTY) +
                        global_page_state(NR_UNSTABLE_NFS);
      return pdflush_operation(background_writeout, nr_pages);
}

static void wb_timer_fn(unsigned long unused);
static void laptop_timer_fn(unsigned long unused);

static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);

/*
 * Periodic writeback of "old" data.
 *
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
 *
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
 *
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
 */
static void wb_kupdate(unsigned long arg)
{
      unsigned long oldest_jif;
      unsigned long start_jif;
      unsigned long next_jif;
      long nr_to_write;
      struct writeback_control wbc = {
            .bdi        = NULL,
            .sync_mode  = WB_SYNC_NONE,
            .older_than_this = &oldest_jif,
            .nr_to_write      = 0,
            .nonblocking      = 1,
            .for_kupdate      = 1,
            .range_cyclic     = 1,
      };

      sync_supers();

      oldest_jif = jiffies - dirty_expire_interval;
      start_jif = jiffies;
      next_jif = start_jif + dirty_writeback_interval;
      nr_to_write = global_page_state(NR_FILE_DIRTY) +
                  global_page_state(NR_UNSTABLE_NFS) +
                  (inodes_stat.nr_inodes - inodes_stat.nr_unused);
      while (nr_to_write > 0) {
            wbc.encountered_congestion = 0;
            wbc.nr_to_write = MAX_WRITEBACK_PAGES;
            writeback_inodes(&wbc);
            if (wbc.nr_to_write > 0) {
                  if (wbc.encountered_congestion)
                        congestion_wait(WRITE, HZ/10);
                  else
                        break;      /* All the old data is written */
            }
            nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
      }
      if (time_before(next_jif, jiffies + HZ))
            next_jif = jiffies + HZ;
      if (dirty_writeback_interval)
            mod_timer(&wb_timer, next_jif);
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
int dirty_writeback_centisecs_handler(ctl_table *table, int write,
      struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
      proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
      if (dirty_writeback_interval)
            mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
      else
            del_timer(&wb_timer);
      return 0;
}

static void wb_timer_fn(unsigned long unused)
{
      if (pdflush_operation(wb_kupdate, 0) < 0)
            mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
}

static void laptop_flush(unsigned long unused)
{
      sys_sync();
}

static void laptop_timer_fn(unsigned long unused)
{
      pdflush_operation(laptop_flush, 0);
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
void laptop_io_completion(void)
{
      mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
      del_timer(&laptop_mode_wb_timer);
}

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 * thresholds before writeback cuts in.
 *
 * But the limit should not be set too high.  Because it also controls the
 * amount of memory which the balance_dirty_pages() caller has to write back.
 * If this is too large then the caller will block on the IO queue all the
 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
 * will write six megabyte chunks, max.
 */

void writeback_set_ratelimit(void)
{
      ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
      if (ratelimit_pages < 16)
            ratelimit_pages = 16;
      if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
            ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
}

static int __cpuinit
ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
{
      writeback_set_ratelimit();
      return NOTIFY_DONE;
}

static struct notifier_block __cpuinitdata ratelimit_nb = {
      .notifier_call    = ratelimit_handler,
      .next       = NULL,
};

/*
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
 */
void __init page_writeback_init(void)
{
      int shift;

      mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
      writeback_set_ratelimit();
      register_cpu_notifier(&ratelimit_nb);

      shift = calc_period_shift();
      prop_descriptor_init(&vm_completions, shift);
      prop_descriptor_init(&vm_dirties, shift);
}

/**
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 * @writepage: function called for each page
 * @data: data passed to writepage function
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
int write_cache_pages(struct address_space *mapping,
                  struct writeback_control *wbc, writepage_t writepage,
                  void *data)
{
      struct backing_dev_info *bdi = mapping->backing_dev_info;
      int ret = 0;
      int done = 0;
      struct pagevec pvec;
      int nr_pages;
      pgoff_t index;
      pgoff_t end;            /* Inclusive */
      int scanned = 0;
      int range_whole = 0;

      if (wbc->nonblocking && bdi_write_congested(bdi)) {
            wbc->encountered_congestion = 1;
            return 0;
      }

      pagevec_init(&pvec, 0);
      if (wbc->range_cyclic) {
            index = mapping->writeback_index; /* Start from prev offset */
            end = -1;
      } else {
            index = wbc->range_start >> PAGE_CACHE_SHIFT;
            end = wbc->range_end >> PAGE_CACHE_SHIFT;
            if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
                  range_whole = 1;
            scanned = 1;
      }
retry:
      while (!done && (index <= end) &&
             (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
                                    PAGECACHE_TAG_DIRTY,
                                    min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
            unsigned i;

            scanned = 1;
            for (i = 0; i < nr_pages; i++) {
                  struct page *page = pvec.pages[i];

                  /*
                   * At this point we hold neither mapping->tree_lock nor
                   * lock on the page itself: the page may be truncated or
                   * invalidated (changing page->mapping to NULL), or even
                   * swizzled back from swapper_space to tmpfs file
                   * mapping
                   */
                  lock_page(page);

                  if (unlikely(page->mapping != mapping)) {
                        unlock_page(page);
                        continue;
                  }

                  if (!wbc->range_cyclic && page->index > end) {
                        done = 1;
                        unlock_page(page);
                        continue;
                  }

                  if (wbc->sync_mode != WB_SYNC_NONE)
                        wait_on_page_writeback(page);

                  if (PageWriteback(page) ||
                      !clear_page_dirty_for_io(page)) {
                        unlock_page(page);
                        continue;
                  }

                  ret = (*writepage)(page, wbc, data);

                  if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
                        unlock_page(page);
                        ret = 0;
                  }
                  if (ret || (--(wbc->nr_to_write) <= 0))
                        done = 1;
                  if (wbc->nonblocking && bdi_write_congested(bdi)) {
                        wbc->encountered_congestion = 1;
                        done = 1;
                  }
            }
            pagevec_release(&pvec);
            cond_resched();
      }
      if (!scanned && !done) {
            /*
             * We hit the last page and there is more work to be done: wrap
             * back to the start of the file
             */
            scanned = 1;
            index = 0;
            goto retry;
      }
      if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
            mapping->writeback_index = index;
      return ret;
}
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
                   void *data)
{
      struct address_space *mapping = data;
      int ret = mapping->a_ops->writepage(page, wbc);
      mapping_set_error(mapping, ret);
      return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
                   struct writeback_control *wbc)
{
      /* deal with chardevs and other special file */
      if (!mapping->a_ops->writepage)
            return 0;

      return write_cache_pages(mapping, wbc, __writepage, mapping);
}

EXPORT_SYMBOL(generic_writepages);

int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
      int ret;

      if (wbc->nr_to_write <= 0)
            return 0;
      wbc->for_writepages = 1;
      if (mapping->a_ops->writepages)
            ret = mapping->a_ops->writepages(mapping, wbc);
      else
            ret = generic_writepages(mapping, wbc);
      wbc->for_writepages = 0;
      return ret;
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
 * @page: the page to write
 * @wait: if true, wait on writeout
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
      struct address_space *mapping = page->mapping;
      int ret = 0;
      struct writeback_control wbc = {
            .sync_mode = WB_SYNC_ALL,
            .nr_to_write = 1,
      };

      BUG_ON(!PageLocked(page));

      if (wait)
            wait_on_page_writeback(page);

      if (clear_page_dirty_for_io(page)) {
            page_cache_get(page);
            ret = mapping->a_ops->writepage(page, &wbc);
            if (ret == 0 && wait) {
                  wait_on_page_writeback(page);
                  if (PageError(page))
                        ret = -EIO;
            }
            page_cache_release(page);
      } else {
            unlock_page(page);
      }
      return ret;
}
EXPORT_SYMBOL(write_one_page);

/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
      if (!PageDirty(page))
            SetPageDirty(page);
      return 0;
}

/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
 * Most callers have locked the page, which pins the address_space in memory.
 * But zap_pte_range() does not lock the page, however in that case the
 * mapping is pinned by the vma's ->vm_file reference.
 *
 * We take care to handle the case where the page was truncated from the
 * mapping by re-checking page_mapping() inside tree_lock.
 */
int __set_page_dirty_nobuffers(struct page *page)
{
      if (!TestSetPageDirty(page)) {
            struct address_space *mapping = page_mapping(page);
            struct address_space *mapping2;

            if (!mapping)
                  return 1;

            write_lock_irq(&mapping->tree_lock);
            mapping2 = page_mapping(page);
            if (mapping2) { /* Race with truncate? */
                  BUG_ON(mapping2 != mapping);
                  WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
                  if (mapping_cap_account_dirty(mapping)) {
                        __inc_zone_page_state(page, NR_FILE_DIRTY);
                        __inc_bdi_stat(mapping->backing_dev_info,
                                    BDI_RECLAIMABLE);
                        task_io_account_write(PAGE_CACHE_SIZE);
                  }
                  radix_tree_tag_set(&mapping->page_tree,
                        page_index(page), PAGECACHE_TAG_DIRTY);
            }
            write_unlock_irq(&mapping->tree_lock);
            if (mapping->host) {
                  /* !PageAnon && !swapper_space */
                  __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
            }
            return 1;
      }
      return 0;
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
      wbc->pages_skipped++;
      return __set_page_dirty_nobuffers(page);
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
static int __set_page_dirty(struct page *page)
{
      struct address_space *mapping = page_mapping(page);

      if (likely(mapping)) {
            int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
#ifdef CONFIG_BLOCK
            if (!spd)
                  spd = __set_page_dirty_buffers;
#endif
            return (*spd)(page);
      }
      if (!PageDirty(page)) {
            if (!TestSetPageDirty(page))
                  return 1;
      }
      return 0;
}

int fastcall set_page_dirty(struct page *page)
{
      int ret = __set_page_dirty(page);
      if (ret)
            task_dirty_inc(current);
      return ret;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
      int ret;

      lock_page_nosync(page);
      ret = set_page_dirty(page);
      unlock_page(page);
      return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
      struct address_space *mapping = page_mapping(page);

      BUG_ON(!PageLocked(page));

      ClearPageReclaim(page);
      if (mapping && mapping_cap_account_dirty(mapping)) {
            /*
             * Yes, Virginia, this is indeed insane.
             *
             * We use this sequence to make sure that
             *  (a) we account for dirty stats properly
             *  (b) we tell the low-level filesystem to
             *      mark the whole page dirty if it was
             *      dirty in a pagetable. Only to then
             *  (c) clean the page again and return 1 to
             *      cause the writeback.
             *
             * This way we avoid all nasty races with the
             * dirty bit in multiple places and clearing
             * them concurrently from different threads.
             *
             * Note! Normally the "set_page_dirty(page)"
             * has no effect on the actual dirty bit - since
             * that will already usually be set. But we
             * need the side effects, and it can help us
             * avoid races.
             *
             * We basically use the page "master dirty bit"
             * as a serialization point for all the different
             * threads doing their things.
             */
            if (page_mkclean(page))
                  set_page_dirty(page);
            /*
             * We carefully synchronise fault handlers against
             * installing a dirty pte and marking the page dirty
             * at this point. We do this by having them hold the
             * page lock at some point after installing their
             * pte, but before marking the page dirty.
             * Pages are always locked coming in here, so we get
             * the desired exclusion. See mm/memory.c:do_wp_page()
             * for more comments.
             */
            if (TestClearPageDirty(page)) {
                  dec_zone_page_state(page, NR_FILE_DIRTY);
                  dec_bdi_stat(mapping->backing_dev_info,
                              BDI_RECLAIMABLE);
                  return 1;
            }
            return 0;
      }
      return TestClearPageDirty(page);
}
EXPORT_SYMBOL(clear_page_dirty_for_io);

int test_clear_page_writeback(struct page *page)
{
      struct address_space *mapping = page_mapping(page);
      int ret;

      if (mapping) {
            struct backing_dev_info *bdi = mapping->backing_dev_info;
            unsigned long flags;

            write_lock_irqsave(&mapping->tree_lock, flags);
            ret = TestClearPageWriteback(page);
            if (ret) {
                  radix_tree_tag_clear(&mapping->page_tree,
                                    page_index(page),
                                    PAGECACHE_TAG_WRITEBACK);
                  if (bdi_cap_writeback_dirty(bdi)) {
                        __dec_bdi_stat(bdi, BDI_WRITEBACK);
                        __bdi_writeout_inc(bdi);
                  }
            }
            write_unlock_irqrestore(&mapping->tree_lock, flags);
      } else {
            ret = TestClearPageWriteback(page);
      }
      if (ret)
            dec_zone_page_state(page, NR_WRITEBACK);
      return ret;
}

int test_set_page_writeback(struct page *page)
{
      struct address_space *mapping = page_mapping(page);
      int ret;

      if (mapping) {
            struct backing_dev_info *bdi = mapping->backing_dev_info;
            unsigned long flags;

            write_lock_irqsave(&mapping->tree_lock, flags);
            ret = TestSetPageWriteback(page);
            if (!ret) {
                  radix_tree_tag_set(&mapping->page_tree,
                                    page_index(page),
                                    PAGECACHE_TAG_WRITEBACK);
                  if (bdi_cap_writeback_dirty(bdi))
                        __inc_bdi_stat(bdi, BDI_WRITEBACK);
            }
            if (!PageDirty(page))
                  radix_tree_tag_clear(&mapping->page_tree,
                                    page_index(page),
                                    PAGECACHE_TAG_DIRTY);
            write_unlock_irqrestore(&mapping->tree_lock, flags);
      } else {
            ret = TestSetPageWriteback(page);
      }
      if (!ret)
            inc_zone_page_state(page, NR_WRITEBACK);
      return ret;

}
EXPORT_SYMBOL(test_set_page_writeback);

/*
 * Return true if any of the pages in the mapping are marked with the
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
      int ret;
      rcu_read_lock();
      ret = radix_tree_tagged(&mapping->page_tree, tag);
      rcu_read_unlock();
      return ret;
}
EXPORT_SYMBOL(mapping_tagged);

Generated by  Doxygen 1.6.0   Back to index