Logo Search packages:      
Sourcecode: linux version File versions  Download package

rioboot.c

/*
** -----------------------------------------------------------------------------
**
**  Perle Specialix driver for Linux
**  Ported from existing RIO Driver for SCO sources.
 *
 *  (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
 *
 *      This program is free software; you can redistribute it and/or modify
 *      it under the terms of the GNU General Public License as published by
 *      the Free Software Foundation; either version 2 of the License, or
 *      (at your option) any later version.
 *
 *      This program is distributed in the hope that it will be useful,
 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *      GNU General Public License for more details.
 *
 *      You should have received a copy of the GNU General Public License
 *      along with this program; if not, write to the Free Software
 *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**
**    Module            : rioboot.c
**    SID         : 1.3
**    Last Modified     : 11/6/98 10:33:36
**    Retrieved   : 11/6/98 10:33:48
**
**  ident @(#)rioboot.c 1.3
**
** -----------------------------------------------------------------------------
*/

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/termios.h>
#include <linux/serial.h>
#include <linux/vmalloc.h>
#include <asm/semaphore.h>
#include <linux/generic_serial.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/string.h>
#include <asm/uaccess.h>


#include "linux_compat.h"
#include "rio_linux.h"
#include "pkt.h"
#include "daemon.h"
#include "rio.h"
#include "riospace.h"
#include "cmdpkt.h"
#include "map.h"
#include "rup.h"
#include "port.h"
#include "riodrvr.h"
#include "rioinfo.h"
#include "func.h"
#include "errors.h"
#include "pci.h"

#include "parmmap.h"
#include "unixrup.h"
#include "board.h"
#include "host.h"
#include "phb.h"
#include "link.h"
#include "cmdblk.h"
#include "route.h"

static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP);

static const unsigned char RIOAtVec2Ctrl[] = {
      /* 0 */ INTERRUPT_DISABLE,
      /* 1 */ INTERRUPT_DISABLE,
      /* 2 */ INTERRUPT_DISABLE,
      /* 3 */ INTERRUPT_DISABLE,
      /* 4 */ INTERRUPT_DISABLE,
      /* 5 */ INTERRUPT_DISABLE,
      /* 6 */ INTERRUPT_DISABLE,
      /* 7 */ INTERRUPT_DISABLE,
      /* 8 */ INTERRUPT_DISABLE,
      /* 9 */ IRQ_9 | INTERRUPT_ENABLE,
      /* 10 */ INTERRUPT_DISABLE,
      /* 11 */ IRQ_11 | INTERRUPT_ENABLE,
      /* 12 */ IRQ_12 | INTERRUPT_ENABLE,
      /* 13 */ INTERRUPT_DISABLE,
      /* 14 */ INTERRUPT_DISABLE,
      /* 15 */ IRQ_15 | INTERRUPT_ENABLE
};

/**
 *    RIOBootCodeRTA          -     Load RTA boot code
 *    @p: RIO to load
 *    @rbp: Download descriptor
 *
 *    Called when the user process initiates booting of the card firmware.
 *    Lads the firmware
 */

int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp)
{
      int offset;

      func_enter();

      rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP);

      /*
       ** Check that we have set asside enough memory for this
       */
      if (rbp->Count > SIXTY_FOUR_K) {
            rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
            p->RIOError.Error = HOST_FILE_TOO_LARGE;
            func_exit();
            return -ENOMEM;
      }

      if (p->RIOBooting) {
            rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
            p->RIOError.Error = BOOT_IN_PROGRESS;
            func_exit();
            return -EBUSY;
      }

      /*
       ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
       ** so calculate how far we have to move the data up the buffer
       ** to achieve this.
       */
      offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;

      /*
       ** Be clean, and clear the 'unused' portion of the boot buffer,
       ** because it will (eventually) be part of the Rta run time environment
       ** and so should be zeroed.
       */
      memset(p->RIOBootPackets, 0, offset);

      /*
       ** Copy the data from user space into the array
       */

      if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) {
            rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
            p->RIOError.Error = COPYIN_FAILED;
            func_exit();
            return -EFAULT;
      }

      /*
       ** Make sure that our copy of the size includes that offset we discussed
       ** earlier.
       */
      p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
      p->RIOBootCount = rbp->Count;

      func_exit();
      return 0;
}

/**
 *    rio_start_card_running        -     host card start
 *    @HostP: The RIO to kick off
 *
 *    Start a RIO processor unit running. Encapsulates the knowledge
 *    of the card type.
 */

void rio_start_card_running(struct Host *HostP)
{
      switch (HostP->Type) {
      case RIO_AT:
            rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
            writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control);
            break;
      case RIO_PCI:
            /*
             ** PCI is much the same as MCA. Everything is once again memory
             ** mapped, so we are writing to memory registers instead of io
             ** ports.
             */
            rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
            writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control);
            break;
      default:
            rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
            break;
      }
      return;
}

/*
** Load in the host boot code - load it directly onto all halted hosts
** of the correct type.
**
** Put your rubber pants on before messing with this code - even the magic
** numbers have trouble understanding what they are doing here.
*/

int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp)
{
      struct Host *HostP;
      u8 __iomem *Cad;
      PARM_MAP __iomem *ParmMapP;
      int RupN;
      int PortN;
      unsigned int host;
      u8 __iomem *StartP;
      u8 __iomem *DestP;
      int wait_count;
      u16 OldParmMap;
      u16 offset;       /* It is very important that this is a u16 */
      u8 *DownCode = NULL;
      unsigned long flags;

      HostP = NULL;           /* Assure the compiler we've initialized it */


      /* Walk the hosts */
      for (host = 0; host < p->RIONumHosts; host++) {
            rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
            HostP = &p->RIOHosts[host];

            rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);

            /* Don't boot hosts already running */
            if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
                  rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
                  continue;
            }

            /*
             ** Grab a pointer to the card (ioremapped)
             */
            Cad = HostP->Caddr;

            /*
             ** We are going to (try) and load in rbp->Count bytes.
             ** The last byte will reside at p->RIOConf.HostLoadBase-1;
             ** Therefore, we need to start copying at address
             ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
             */
            StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count];

            rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad);
            rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP);
            rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
            rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);

            /* Make sure it fits */
            if (p->RIOConf.HostLoadBase < rbp->Count) {
                  rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
                  p->RIOError.Error = HOST_FILE_TOO_LARGE;
                  func_exit();
                  return -EFBIG;
            }
            /*
             ** Ensure that the host really is stopped.
             ** Disable it's external bus & twang its reset line.
             */
            RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot);

            /*
             ** Copy the data directly from user space to the SRAM.
             ** This ain't going to be none too clever if the download
             ** code is bigger than this segment.
             */
            rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");

            /* Buffer to local memory as we want to use I/O space and
               some cards only do 8 or 16 bit I/O */

            DownCode = vmalloc(rbp->Count);
            if (!DownCode) {
                  p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
                  func_exit();
                  return -ENOMEM;
            }
            if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) {
                  kfree(DownCode);
                  p->RIOError.Error = COPYIN_FAILED;
                  func_exit();
                  return -EFAULT;
            }
            HostP->Copy(DownCode, StartP, rbp->Count);
            vfree(DownCode);

            rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");

            /*
             **                     S T O P !
             **
             ** Upto this point the code has been fairly rational, and possibly
             ** even straight forward. What follows is a pile of crud that will
             ** magically turn into six bytes of transputer assembler. Normally
             ** you would expect an array or something, but, being me, I have
             ** chosen [been told] to use a technique whereby the startup code
             ** will be correct if we change the loadbase for the code. Which
             ** brings us onto another issue - the loadbase is the *end* of the
             ** code, not the start.
             **
             ** If I were you I wouldn't start from here.
             */

            /*
             ** We now need to insert a short boot section into
             ** the memory at the end of Sram2. This is normally (de)composed
             ** of the last eight bytes of the download code. The
             ** download has been assembled/compiled to expect to be
             ** loaded from 0x7FFF downwards. We have loaded it
             ** at some other address. The startup code goes into the small
             ** ram window at Sram2, in the last 8 bytes, which are really
             ** at addresses 0x7FF8-0x7FFF.
             **
             ** If the loadbase is, say, 0x7C00, then we need to branch to
             ** address 0x7BFE to run the host.bin startup code. We assemble
             ** this jump manually.
             **
             ** The two byte sequence 60 08 is loaded into memory at address
             ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
             ** which adds '0' to the .O register, complements .O, and then shifts
             ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
             ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
             ** location. Now, the branch starts from the value of .PC (or .IP or
             ** whatever the bloody register is called on this chip), and the .PC
             ** will be pointing to the location AFTER the branch, in this case
             ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
             **
             ** A long branch is coded at 0x7FF8. This consists of loading a four
             ** byte offset into .O using nfix (as above) and pfix operators. The
             ** pfix operates in exactly the same way as the nfix operator, but
             ** without the complement operation. The offset, of course, must be
             ** relative to the address of the byte AFTER the branch instruction,
             ** which will be (urm) 0x7FFC, so, our final destination of the branch
             ** (loadbase-2), has to be reached from here. Imagine that the loadbase
             ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
             ** is the first byte of the initial two byte short local branch of the
             ** download code).
             **
             ** To code a jump from 0x7FFC (which is where the branch will start
             ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
             ** 0x7BFE.
             ** This will be coded as four bytes:
             ** 60 2C 20 02
             ** being nfix .O+0
             **        pfix .O+C
             **        pfix .O+0
             **        jump .O+2
             **
             ** The nfix operator is used, so that the startup code will be
             ** compatible with the whole Tp family. (lies, damn lies, it'll never
             ** work in a month of Sundays).
             **
             ** The nfix nyble is the 1s complement of the nyble value you
             ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
             */


            /*
             ** Dest points to the top 8 bytes of Sram2. The Tp jumps
             ** to 0x7FFE at reset time, and starts executing. This is
             ** a short branch to 0x7FF8, where a long branch is coded.
             */

            DestP = &Cad[0x7FF8];   /* <<<---- READ THE ABOVE COMMENTS */

#define     NFIX(N)     (0x60 | (N))      /* .O  = (~(.O + N))<<4 */
#define     PFIX(N)     (0x20 | (N))      /* .O  =   (.O + N)<<4  */
#define     JUMP(N)     (0x00 | (N))      /* .PC =   .PC + .O      */

            /*
             ** 0x7FFC is the address of the location following the last byte of
             ** the four byte jump instruction.
             ** READ THE ABOVE COMMENTS
             **
             ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
             ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
             ** cos I don't understand 2's complement).
             */
            offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;

            writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP);
            writeb(PFIX((offset >> 8) & 0xF), DestP + 1);
            writeb(PFIX((offset >> 4) & 0xF), DestP + 2);
            writeb(JUMP(offset & 0xF), DestP + 3);

            writeb(NFIX(0), DestP + 6);
            writeb(JUMP(8), DestP + 7);

            rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
            rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);

            /*
             ** Flag what is going on
             */
            HostP->Flags &= ~RUN_STATE;
            HostP->Flags |= RC_STARTUP;

            /*
             ** Grab a copy of the current ParmMap pointer, so we
             ** can tell when it has changed.
             */
            OldParmMap = readw(&HostP->__ParmMapR);

            rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);

            /*
             ** And start it running (I hope).
             ** As there is nothing dodgy or obscure about the
             ** above code, this is guaranteed to work every time.
             */
            rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);

            rio_start_card_running(HostP);

            rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");

            /*
             ** Now, wait for upto five seconds for the Tp to setup the parmmap
             ** pointer:
             */
            for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) {
                  rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR));
                  mdelay(100);

            }

            /*
             ** If the parmmap pointer is unchanged, then the host code
             ** has crashed & burned in a really spectacular way
             */
            if (readw(&HostP->__ParmMapR) == OldParmMap) {
                  rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR));
                  rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
                  HostP->Flags &= ~RUN_STATE;
                  HostP->Flags |= RC_STUFFED;
                  RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
                  continue;
            }

            rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR));

            /*
             ** Well, the board thought it was OK, and setup its parmmap
             ** pointer. For the time being, we will pretend that this
             ** board is running, and check out what the error flag says.
             */

            /*
             ** Grab a 32 bit pointer to the parmmap structure
             */
            ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR));
            rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
            ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR));
            rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);

            /*
             ** The links entry should be 0xFFFF; we set it up
             ** with a mask to say how many PHBs to use, and
             ** which links to use.
             */
            if (readw(&ParmMapP->links) != 0xFFFF) {
                  rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
                  rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links));
                  HostP->Flags &= ~RUN_STATE;
                  HostP->Flags |= RC_STUFFED;
                  RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
                  continue;
            }

            writew(RIO_LINK_ENABLE, &ParmMapP->links);

            /*
             ** now wait for the card to set all the parmmap->XXX stuff
             ** this is a wait of upto two seconds....
             */
            rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
            HostP->timeout_id = 0;
            for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) {
                  rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
                  mdelay(100);
            }
            rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");

            if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) {
                  rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
                  rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
                  HostP->Flags &= ~RUN_STATE;
                  HostP->Flags |= RC_STUFFED;
                  RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
                  continue;
            }

            rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");

            /*
             ** It runs! It runs!
             */
            rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);

            /*
             ** set the time period between interrupts.
             */
            writew(p->RIOConf.Timer, &ParmMapP->timer);

            /*
             ** Translate all the 16 bit pointers in the __ParmMapR into
             ** 32 bit pointers for the driver in ioremap space.
             */
            HostP->ParmMapP = ParmMapP;
            HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr));
            HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups));
            HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr));
            HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr));

            /*
             ** point the UnixRups at the real Rups
             */
            for (RupN = 0; RupN < MAX_RUP; RupN++) {
                  HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
                  HostP->UnixRups[RupN].Id = RupN + 1;
                  HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
                  spin_lock_init(&HostP->UnixRups[RupN].RupLock);
            }

            for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
                  HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
                  HostP->UnixRups[RupN + MAX_RUP].Id = 0;
                  HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
                  spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
            }

            /*
             ** point the PortP->Phbs at the real Phbs
             */
            for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
                  if (p->RIOPortp[PortN]->HostP == HostP) {
                        struct Port *PortP = p->RIOPortp[PortN];
                        struct PHB __iomem *PhbP;
                        /* int oldspl; */

                        if (!PortP->Mapped)
                              continue;

                        PhbP = &HostP->PhbP[PortP->HostPort];
                        rio_spin_lock_irqsave(&PortP->portSem, flags);

                        PortP->PhbP = PhbP;

                        PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add));
                        PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start));
                        PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end));
                        PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove));
                        PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start));
                        PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end));

                        rio_spin_unlock_irqrestore(&PortP->portSem, flags);
                        /*
                         ** point the UnixRup at the base SysPort
                         */
                        if (!(PortN % PORTS_PER_RTA))
                              HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
                  }
            }

            rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
            /*
             ** last thing - show the world that everything is in place
             */
            HostP->Flags &= ~RUN_STATE;
            HostP->Flags |= RC_RUNNING;
      }
      /*
       ** MPX always uses a poller. This is actually patched into the system
       ** configuration and called directly from each clock tick.
       **
       */
      p->RIOPolling = 1;

      p->RIOSystemUp++;

      rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
      func_exit();
      return 0;
}



/**
 *    RIOBootRup        -     Boot an RTA
 *    @p: rio we are working with
 *    @Rup: Rup number
 *    @HostP: host object
 *    @PacketP: packet to use
 *
 *    If we have successfully processed this boot, then
 *    return 1. If we havent, then return 0.
 */

int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP)
{
      struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
      struct PktCmd_M *PktReplyP;
      struct CmdBlk *CmdBlkP;
      unsigned int sequence;

      /*
       ** If we haven't been told what to boot, we can't boot it.
       */
      if (p->RIONumBootPkts == 0) {
            rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
            return 0;
      }

      /*
       ** Special case of boot completed - if we get one of these then we
       ** don't need a command block. For all other cases we do, so handle
       ** this first and then get a command block, then handle every other
       ** case, relinquishing the command block if disaster strikes!
       */
      if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED))
            return RIOBootComplete(p, HostP, Rup, PktCmdP);

      /*
       ** Try to allocate a command block. This is in kernel space
       */
      if (!(CmdBlkP = RIOGetCmdBlk())) {
            rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
            return 0;
      }

      /*
       ** Fill in the default info on the command block
       */
      CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0;
      CmdBlkP->Packet.dest_port = BOOT_RUP;
      CmdBlkP->Packet.src_unit = 0;
      CmdBlkP->Packet.src_port = BOOT_RUP;

      CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
      PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;

      /*
       ** process COMMANDS on the boot rup!
       */
      if (readb(&PacketP->len) & PKT_CMD_BIT) {
            /*
             ** We only expect one type of command - a BOOT_REQUEST!
             */
            if (readb(&PktCmdP->Command) != BOOT_REQUEST) {
                  rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts);
                  RIOFreeCmdBlk(CmdBlkP);
                  return 1;
            }

            /*
             ** Build a Boot Sequence command block
             **
             ** We no longer need to use "Boot Mode", we'll always allow
             ** boot requests - the boot will not complete if the device
             ** appears in the bindings table.
             **
             ** We'll just (always) set the command field in packet reply
             ** to allow an attempted boot sequence :
             */
            PktReplyP->Command = BOOT_SEQUENCE;

            PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
            PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
            PktReplyP->BootSequence.CodeSize = p->RIOBootCount;

            CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;

            memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4);

            rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);

            /*
             ** If this host is in slave mode, send the RTA an invalid boot
             ** sequence command block to force it to kill the boot. We wait
             ** for half a second before sending this packet to prevent the RTA
             ** attempting to boot too often. The master host should then grab
             ** the RTA and make it its own.
             */
            p->RIOBooting++;
            RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
            return 1;
      }

      /*
       ** It is a request for boot data.
       */
      sequence = readw(&PktCmdP->Sequence);

      rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup);

      if (sequence >= p->RIONumBootPkts) {
            rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
      }

      PktReplyP->Sequence = sequence;
      memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE);
      CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
      RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
      return 1;
}

/**
 *    RIOBootComplete         -     RTA boot is done
 *    @p: RIO we are working with
 *    @HostP: Host structure
 *    @Rup: RUP being used
 *    @PktCmdP: Packet command that was used
 *
 *    This function is called when an RTA been booted.
 *    If booted by a host, HostP->HostUniqueNum is the booting host.
 *    If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
 *    RtaUniq is the booted RTA.
 */

static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP)
{
      struct Map *MapP = NULL;
      struct Map *MapP2 = NULL;
      int Flag;
      int found;
      int host, rta;
      int EmptySlot = -1;
      int entry, entry2;
      char *MyType, *MyName;
      unsigned int MyLink;
      unsigned short RtaType;
      u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);

      p->RIOBooting = 0;

      rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);

      /*
       ** Determine type of unit (16/8 port RTA).
       */

      RtaType = GetUnitType(RtaUniq);
      if (Rup >= (unsigned short) MAX_RUP)
            rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
      else
            rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');

      rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);

      if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) {
            rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
            return 1;
      }

      /*
       ** If this RTA has just booted an RTA which doesn't belong to this
       ** system, or the system is in slave mode, do not attempt to create
       ** a new table entry for it.
       */

      if (!RIOBootOk(p, HostP, RtaUniq)) {
            MyLink = readb(&PktCmdP->LinkNum);
            if (Rup < (unsigned short) MAX_RUP) {
                  /*
                   ** RtaUniq was clone booted (by this RTA). Instruct this RTA
                   ** to hold off further attempts to boot on this link for 30
                   ** seconds.
                   */
                  if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
                        rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
                  }
            } else
                  /*
                   ** RtaUniq was booted by this host. Set the booting link
                   ** to hold off for 30 seconds to give another unit a
                   ** chance to boot it.
                   */
                  writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot);
            rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
            return 1;
      }

      /*
       ** Check for a SLOT_IN_USE entry for this RTA attached to the
       ** current host card in the driver table.
       **
       ** If it exists, make a note that we have booted it. Other parts of
       ** the driver are interested in this information at a later date,
       ** in particular when the booting RTA asks for an ID for this unit,
       ** we must have set the BOOTED flag, and the NEWBOOT flag is used
       ** to force an open on any ports that where previously open on this
       ** unit.
       */
      for (entry = 0; entry < MAX_RUP; entry++) {
            unsigned int sysport;

            if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
                  HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
                  if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
                        if (sysport < p->RIOFirstPortsBooted)
                              p->RIOFirstPortsBooted = sysport;
                        if (sysport > p->RIOLastPortsBooted)
                              p->RIOLastPortsBooted = sysport;
                        /*
                         ** For a 16 port RTA, check the second bank of 8 ports
                         */
                        if (RtaType == TYPE_RTA16) {
                              entry2 = HostP->Mapping[entry].ID2 - 1;
                              HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
                              sysport = HostP->Mapping[entry2].SysPort;
                              if (sysport < p->RIOFirstPortsBooted)
                                    p->RIOFirstPortsBooted = sysport;
                              if (sysport > p->RIOLastPortsBooted)
                                    p->RIOLastPortsBooted = sysport;
                        }
                  }
                  if (RtaType == TYPE_RTA16)
                        rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
                  else
                        rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
                  return 1;
            }
      }

      rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");

      if (Rup >= (unsigned short) MAX_RUP) {
            /*
             ** It was a host that did the booting
             */
            MyType = "Host";
            MyName = HostP->Name;
      } else {
            /*
             ** It was an RTA that did the booting
             */
            MyType = "RTA";
            MyName = HostP->Mapping[Rup].Name;
      }
      MyLink = readb(&PktCmdP->LinkNum);

      /*
       ** There is no SLOT_IN_USE entry for this RTA attached to the current
       ** host card in the driver table.
       **
       ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
       ** current host card in the driver table.
       **
       ** If we find one, then we re-use that slot.
       */
      for (entry = 0; entry < MAX_RUP; entry++) {
            if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
                  if (RtaType == TYPE_RTA16) {
                        entry2 = HostP->Mapping[entry].ID2 - 1;
                        if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
                              rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
                        else
                              continue;
                  } else
                        rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
                  if (!p->RIONoMessage)
                        printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
                  return 1;
            }
      }

      /*
       ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
       ** attached to the current host card in the driver table.
       **
       ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
       ** host for this RTA in the driver table.
       **
       ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
       ** entry from the other host and add it to this host (using some of
       ** the functions from table.c which do this).
       ** For a SLOT_TENTATIVE entry on another host, we must cope with the
       ** following scenario:
       **
       ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
       **   in table)
       ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
       **   entries)
       ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
       ** + Unplug RTA and plug back into host A.
       ** + Configure RTA on host A. We now have the same RTA configured
       **   with different ports on two different hosts.
       */
      rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
      found = 0;
      Flag = 0;         /* Convince the compiler this variable is initialized */
      for (host = 0; !found && (host < p->RIONumHosts); host++) {
            for (rta = 0; rta < MAX_RUP; rta++) {
                  if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
                        Flag = p->RIOHosts[host].Mapping[rta].Flags;
                        MapP = &p->RIOHosts[host].Mapping[rta];
                        if (RtaType == TYPE_RTA16) {
                              MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
                              rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
                        } else
                              rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
                        found = 1;
                        break;
                  }
            }
      }

      /*
       ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
       ** attached to the current host card in the driver table.
       **
       ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
       ** another host for this RTA in the driver table...
       **
       ** Check for a SLOT_IN_USE entry for this RTA in the config table.
       */
      if (!MapP) {
            rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
            for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
                  rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);

                  if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
                        MapP = &p->RIOSavedTable[rta];
                        Flag = p->RIOSavedTable[rta].Flags;
                        if (RtaType == TYPE_RTA16) {
                              for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
                                    if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
                                          break;
                              }
                              MapP2 = &p->RIOSavedTable[entry2];
                              rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
                        } else
                              rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
                        break;
                  }
            }
      }

      /*
       ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
       ** attached to the current host card in the driver table.
       **
       ** We may have found a SLOT_IN_USE entry on another host for this
       ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
       ** on another host for this RTA in the driver table.
       **
       ** Check the driver table for room to fit this newly discovered RTA.
       ** RIOFindFreeID() first looks for free slots and if it does not
       ** find any free slots it will then attempt to oust any
       ** tentative entry in the table.
       */
      EmptySlot = 1;
      if (RtaType == TYPE_RTA16) {
            if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
                  RIODefaultName(p, HostP, entry);
                  rio_fill_host_slot(entry, entry2, RtaUniq, HostP);
                  EmptySlot = 0;
            }
      } else {
            if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
                  RIODefaultName(p, HostP, entry);
                  rio_fill_host_slot(entry, 0, RtaUniq, HostP);
                  EmptySlot = 0;
            }
      }

      /*
       ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
       ** attached to the current host card in the driver table.
       **
       ** If we found a SLOT_IN_USE entry on another host for this
       ** RTA in the config or driver table, and there are enough free
       ** slots in the driver table, then we need to move it over and
       ** delete it from the other host.
       ** If we found a SLOT_TENTATIVE entry on another host for this
       ** RTA in the driver table, just delete the other host entry.
       */
      if (EmptySlot == 0) {
            if (MapP) {
                  if (Flag & SLOT_IN_USE) {
                        rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
                        HostP->Mapping[entry].SysPort = MapP->SysPort;
                        memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN);
                        HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
                        RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
                        if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
                              p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
                        if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
                              p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
                        rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
                  } else {
                        rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
                        HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
                  }
                  if (RtaType == TYPE_RTA16) {
                        if (Flag & SLOT_IN_USE) {
                              HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
                              HostP->Mapping[entry2].SysPort = MapP2->SysPort;
                              /*
                               ** Map second block of ttys for 16 port RTA
                               */
                              RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
                              if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
                                    p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
                              if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
                                    p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
                              rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
                        } else
                              HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
                        memset(MapP2, 0, sizeof(struct Map));
                  }
                  memset(MapP, 0, sizeof(struct Map));
                  if (!p->RIONoMessage)
                        printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
            } else if (!p->RIONoMessage)
                  printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
            RIOSetChange(p);
            return 1;
      }

      /*
       ** There is no room in the driver table to make an entry for the
       ** booted RTA. Keep a note of its Uniq Num in the overflow table,
       ** so we can ignore it's ID requests.
       */
      if (!p->RIONoMessage)
            printk("The RTA connected to %s '%s' (%c) cannot be configured.  You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
      for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
            if (HostP->ExtraUnits[entry] == RtaUniq) {
                  /*
                   ** already got it!
                   */
                  return 1;
            }
      }
      /*
       ** If there is room, add the unit to the list of extras
       */
      if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
            HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
      return 1;
}


/*
** If the RTA or its host appears in the RIOBindTab[] structure then
** we mustn't boot the RTA and should return 0.
** This operation is slightly different from the other drivers for RIO
** in that this is designed to work with the new utilities
** not config.rio and is FAR SIMPLER.
** We no longer support the RIOBootMode variable. It is all done from the
** "boot/noboot" field in the rio.cf file.
*/
int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq)
{
      int Entry;
      unsigned int HostUniq = HostP->UniqueNum;

      /*
       ** Search bindings table for RTA or its parent.
       ** If it exists, return 0, else 1.
       */
      for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
            if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
                  return 0;
      }
      return 1;
}

/*
** Make an empty slot tentative. If this is a 16 port RTA, make both
** slots tentative, and the second one RTA_SECOND_SLOT as well.
*/

void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host)
{
      int link;

      rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq);

      host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
      host->Mapping[entry].SysPort = NO_PORT;
      host->Mapping[entry].RtaUniqueNum = rta_uniq;
      host->Mapping[entry].HostUniqueNum = host->UniqueNum;
      host->Mapping[entry].ID = entry + 1;
      host->Mapping[entry].ID2 = 0;
      if (entry2) {
            host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
            host->Mapping[entry2].SysPort = NO_PORT;
            host->Mapping[entry2].RtaUniqueNum = rta_uniq;
            host->Mapping[entry2].HostUniqueNum = host->UniqueNum;
            host->Mapping[entry2].Name[0] = '\0';
            host->Mapping[entry2].ID = entry2 + 1;
            host->Mapping[entry2].ID2 = entry + 1;
            host->Mapping[entry].ID2 = entry2 + 1;
      }
      /*
       ** Must set these up, so that utilities show
       ** topology of 16 port RTAs correctly
       */
      for (link = 0; link < LINKS_PER_UNIT; link++) {
            host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
            host->Mapping[entry].Topology[link].Link = NO_LINK;
            if (entry2) {
                  host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
                  host->Mapping[entry2].Topology[link].Link = NO_LINK;
            }
      }
}

Generated by  Doxygen 1.6.0   Back to index