Logo Search packages:      
Sourcecode: linux version File versions  Download package

rt2x00dev.c

/*
      Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
      <http://rt2x00.serialmonkey.com>

      This program is free software; you can redistribute it and/or modify
      it under the terms of the GNU General Public License as published by
      the Free Software Foundation; either version 2 of the License, or
      (at your option) any later version.

      This program is distributed in the hope that it will be useful,
      but WITHOUT ANY WARRANTY; without even the implied warranty of
      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
      GNU General Public License for more details.

      You should have received a copy of the GNU General Public License
      along with this program; if not, write to the
      Free Software Foundation, Inc.,
      59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
      Module: rt2x00lib
      Abstract: rt2x00 generic device routines.
 */

/*
 * Set enviroment defines for rt2x00.h
 */
#define DRV_NAME "rt2x00lib"

#include <linux/kernel.h>
#include <linux/module.h>

#include "rt2x00.h"
#include "rt2x00lib.h"

/*
 * Ring handler.
 */
struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
                             const unsigned int queue)
{
      int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);

      /*
       * Check if we are requesting a reqular TX ring,
       * or if we are requesting a Beacon or Atim ring.
       * For Atim rings, we should check if it is supported.
       */
      if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
            return &rt2x00dev->tx[queue];

      if (!rt2x00dev->bcn || !beacon)
            return NULL;

      if (queue == IEEE80211_TX_QUEUE_BEACON)
            return &rt2x00dev->bcn[0];
      else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
            return &rt2x00dev->bcn[1];

      return NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);

/*
 * Link tuning handlers
 */
static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
{
      rt2x00_clear_link(&rt2x00dev->link);

      /*
       * Reset the link tuner.
       */
      rt2x00dev->ops->lib->reset_tuner(rt2x00dev);

      queue_delayed_work(rt2x00dev->hw->workqueue,
                     &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
}

static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
{
      cancel_delayed_work_sync(&rt2x00dev->link.work);
}

void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
{
      if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
            return;

      rt2x00lib_stop_link_tuner(rt2x00dev);
      rt2x00lib_start_link_tuner(rt2x00dev);
}

/*
 * Radio control handlers.
 */
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
      int status;

      /*
       * Don't enable the radio twice.
       * And check if the hardware button has been disabled.
       */
      if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
          test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
            return 0;

      /*
       * Enable radio.
       */
      status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
                                           STATE_RADIO_ON);
      if (status)
            return status;

      __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);

      /*
       * Enable RX.
       */
      rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);

      /*
       * Start the TX queues.
       */
      ieee80211_start_queues(rt2x00dev->hw);

      return 0;
}

void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
      if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
            return;

      /*
       * Stop all scheduled work.
       */
      if (work_pending(&rt2x00dev->beacon_work))
            cancel_work_sync(&rt2x00dev->beacon_work);
      if (work_pending(&rt2x00dev->filter_work))
            cancel_work_sync(&rt2x00dev->filter_work);
      if (work_pending(&rt2x00dev->config_work))
            cancel_work_sync(&rt2x00dev->config_work);

      /*
       * Stop the TX queues.
       */
      ieee80211_stop_queues(rt2x00dev->hw);

      /*
       * Disable RX.
       */
      rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);

      /*
       * Disable radio.
       */
      rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
}

void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
      /*
       * When we are disabling the RX, we should also stop the link tuner.
       */
      if (state == STATE_RADIO_RX_OFF)
            rt2x00lib_stop_link_tuner(rt2x00dev);

      rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);

      /*
       * When we are enabling the RX, we should also start the link tuner.
       */
      if (state == STATE_RADIO_RX_ON &&
          is_interface_present(&rt2x00dev->interface))
            rt2x00lib_start_link_tuner(rt2x00dev);
}

static void rt2x00lib_precalculate_link_signal(struct link *link)
{
      if (link->rx_failed || link->rx_success)
            link->rx_percentage =
                (link->rx_success * 100) /
                (link->rx_failed + link->rx_success);
      else
            link->rx_percentage = 50;

      if (link->tx_failed || link->tx_success)
            link->tx_percentage =
                (link->tx_success * 100) /
                (link->tx_failed + link->tx_success);
      else
            link->tx_percentage = 50;

      link->rx_success = 0;
      link->rx_failed = 0;
      link->tx_success = 0;
      link->tx_failed = 0;
}

static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
                                 int rssi)
{
      int rssi_percentage = 0;
      int signal;

      /*
       * We need a positive value for the RSSI.
       */
      if (rssi < 0)
            rssi += rt2x00dev->rssi_offset;

      /*
       * Calculate the different percentages,
       * which will be used for the signal.
       */
      if (rt2x00dev->rssi_offset)
            rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;

      /*
       * Add the individual percentages and use the WEIGHT
       * defines to calculate the current link signal.
       */
      signal = ((WEIGHT_RSSI * rssi_percentage) +
              (WEIGHT_TX * rt2x00dev->link.tx_percentage) +
              (WEIGHT_RX * rt2x00dev->link.rx_percentage)) / 100;

      return (signal > 100) ? 100 : signal;
}

static void rt2x00lib_link_tuner(struct work_struct *work)
{
      struct rt2x00_dev *rt2x00dev =
          container_of(work, struct rt2x00_dev, link.work.work);

      /*
       * When the radio is shutting down we should
       * immediately cease all link tuning.
       */
      if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
            return;

      /*
       * Update statistics.
       */
      rt2x00dev->ops->lib->link_stats(rt2x00dev);

      rt2x00dev->low_level_stats.dot11FCSErrorCount +=
          rt2x00dev->link.rx_failed;

      /*
       * Only perform the link tuning when Link tuning
       * has been enabled (This could have been disabled from the EEPROM).
       */
      if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
            rt2x00dev->ops->lib->link_tuner(rt2x00dev);

      /*
       * Precalculate a portion of the link signal which is
       * in based on the tx/rx success/failure counters.
       */
      rt2x00lib_precalculate_link_signal(&rt2x00dev->link);

      /*
       * Increase tuner counter, and reschedule the next link tuner run.
       */
      rt2x00dev->link.count++;
      queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
                     LINK_TUNE_INTERVAL);
}

static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
{
      struct rt2x00_dev *rt2x00dev =
          container_of(work, struct rt2x00_dev, filter_work);
      unsigned int filter = rt2x00dev->interface.filter;

      /*
       * Since we had stored the filter inside interface.filter,
       * we should now clear that field. Otherwise the driver will
       * assume nothing has changed (*total_flags will be compared
       * to interface.filter to determine if any action is required).
       */
      rt2x00dev->interface.filter = 0;

      rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
                                   filter, &filter, 0, NULL);
}

static void rt2x00lib_configuration_scheduled(struct work_struct *work)
{
      struct rt2x00_dev *rt2x00dev =
          container_of(work, struct rt2x00_dev, config_work);
      int preamble = !test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);

      rt2x00mac_erp_ie_changed(rt2x00dev->hw,
                         IEEE80211_ERP_CHANGE_PREAMBLE, 0, preamble);
}

/*
 * Interrupt context handlers.
 */
static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
{
      struct rt2x00_dev *rt2x00dev =
          container_of(work, struct rt2x00_dev, beacon_work);
      struct data_ring *ring =
          rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
      struct data_entry *entry = rt2x00_get_data_entry(ring);
      struct sk_buff *skb;

      skb = ieee80211_beacon_get(rt2x00dev->hw,
                           rt2x00dev->interface.id,
                           &entry->tx_status.control);
      if (!skb)
            return;

      rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
                                &entry->tx_status.control);

      dev_kfree_skb(skb);
}

void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
{
      if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
            return;

      queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
}
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);

void rt2x00lib_txdone(struct data_entry *entry,
                  const int status, const int retry)
{
      struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
      struct ieee80211_tx_status *tx_status = &entry->tx_status;
      struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
      int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
      int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
                  status == TX_FAIL_OTHER);

      /*
       * Update TX statistics.
       */
      tx_status->flags = 0;
      tx_status->ack_signal = 0;
      tx_status->excessive_retries = (status == TX_FAIL_RETRY);
      tx_status->retry_count = retry;
      rt2x00dev->link.tx_success += success;
      rt2x00dev->link.tx_failed += retry + fail;

      if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
            if (success)
                  tx_status->flags |= IEEE80211_TX_STATUS_ACK;
            else
                  stats->dot11ACKFailureCount++;
      }

      tx_status->queue_length = entry->ring->stats.limit;
      tx_status->queue_number = tx_status->control.queue;

      if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
            if (success)
                  stats->dot11RTSSuccessCount++;
            else
                  stats->dot11RTSFailureCount++;
      }

      /*
       * Send the tx_status to mac80211,
       * that method also cleans up the skb structure.
       */
      ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
      entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);

void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
                  struct rxdata_entry_desc *desc)
{
      struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
      struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
      struct ieee80211_hw_mode *mode;
      struct ieee80211_rate *rate;
      unsigned int i;
      int val = 0;

      /*
       * Update RX statistics.
       */
      mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
      for (i = 0; i < mode->num_rates; i++) {
            rate = &mode->rates[i];

            /*
             * When frame was received with an OFDM bitrate,
             * the signal is the PLCP value. If it was received with
             * a CCK bitrate the signal is the rate in 0.5kbit/s.
             */
            if (!desc->ofdm)
                  val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
            else
                  val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);

            if (val == desc->signal) {
                  val = rate->val;
                  break;
            }
      }

      rt2x00_update_link_rssi(&rt2x00dev->link, desc->rssi);
      rt2x00dev->link.rx_success++;
      rx_status->rate = val;
      rx_status->signal =
          rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
      rx_status->ssi = desc->rssi;
      rx_status->flag = desc->flags;

      /*
       * Send frame to mac80211
       */
      ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);

/*
 * TX descriptor initializer
 */
void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
                       struct data_desc *txd,
                       struct ieee80211_hdr *ieee80211hdr,
                       unsigned int length,
                       struct ieee80211_tx_control *control)
{
      struct txdata_entry_desc desc;
      struct data_ring *ring;
      int tx_rate;
      int bitrate;
      int duration;
      int residual;
      u16 frame_control;
      u16 seq_ctrl;

      /*
       * Make sure the descriptor is properly cleared.
       */
      memset(&desc, 0x00, sizeof(desc));

      /*
       * Get ring pointer, if we fail to obtain the
       * correct ring, then use the first TX ring.
       */
      ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
      if (!ring)
            ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);

      desc.cw_min = ring->tx_params.cw_min;
      desc.cw_max = ring->tx_params.cw_max;
      desc.aifs = ring->tx_params.aifs;

      /*
       * Identify queue
       */
      if (control->queue < rt2x00dev->hw->queues)
            desc.queue = control->queue;
      else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
             control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
            desc.queue = QUEUE_MGMT;
      else
            desc.queue = QUEUE_OTHER;

      /*
       * Read required fields from ieee80211 header.
       */
      frame_control = le16_to_cpu(ieee80211hdr->frame_control);
      seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);

      tx_rate = control->tx_rate;

      /*
       * Check if this is a RTS/CTS frame
       */
      if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
            __set_bit(ENTRY_TXD_BURST, &desc.flags);
            if (is_rts_frame(frame_control))
                  __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
            if (control->rts_cts_rate)
                  tx_rate = control->rts_cts_rate;
      }

      /*
       * Check for OFDM
       */
      if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
            __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);

      /*
       * Check if more fragments are pending
       */
      if (ieee80211_get_morefrag(ieee80211hdr)) {
            __set_bit(ENTRY_TXD_BURST, &desc.flags);
            __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
      }

      /*
       * Beacons and probe responses require the tsf timestamp
       * to be inserted into the frame.
       */
      if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
          is_probe_resp(frame_control))
            __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);

      /*
       * Determine with what IFS priority this frame should be send.
       * Set ifs to IFS_SIFS when the this is not the first fragment,
       * or this fragment came after RTS/CTS.
       */
      if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
          test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
            desc.ifs = IFS_SIFS;
      else
            desc.ifs = IFS_BACKOFF;

      /*
       * PLCP setup
       * Length calculation depends on OFDM/CCK rate.
       */
      desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
      desc.service = 0x04;

      if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
            desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
            desc.length_low = ((length + FCS_LEN) & 0x3f);
      } else {
            bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);

            /*
             * Convert length to microseconds.
             */
            residual = get_duration_res(length + FCS_LEN, bitrate);
            duration = get_duration(length + FCS_LEN, bitrate);

            if (residual != 0) {
                  duration++;

                  /*
                   * Check if we need to set the Length Extension
                   */
                  if (bitrate == 110 && residual <= 30)
                        desc.service |= 0x80;
            }

            desc.length_high = (duration >> 8) & 0xff;
            desc.length_low = duration & 0xff;

            /*
             * When preamble is enabled we should set the
             * preamble bit for the signal.
             */
            if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
                  desc.signal |= 0x08;
      }

      rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc,
                                 ieee80211hdr, length, control);
}
EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);

/*
 * Driver initialization handlers.
 */
static void rt2x00lib_channel(struct ieee80211_channel *entry,
                        const int channel, const int tx_power,
                        const int value)
{
      entry->chan = channel;
      if (channel <= 14)
            entry->freq = 2407 + (5 * channel);
      else
            entry->freq = 5000 + (5 * channel);
      entry->val = value;
      entry->flag =
          IEEE80211_CHAN_W_IBSS |
          IEEE80211_CHAN_W_ACTIVE_SCAN |
          IEEE80211_CHAN_W_SCAN;
      entry->power_level = tx_power;
      entry->antenna_max = 0xff;
}

static void rt2x00lib_rate(struct ieee80211_rate *entry,
                     const int rate, const int mask,
                     const int plcp, const int flags)
{
      entry->rate = rate;
      entry->val =
          DEVICE_SET_RATE_FIELD(rate, RATE) |
          DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
          DEVICE_SET_RATE_FIELD(plcp, PLCP);
      entry->flags = flags;
      entry->val2 = entry->val;
      if (entry->flags & IEEE80211_RATE_PREAMBLE2)
            entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
      entry->min_rssi_ack = 0;
      entry->min_rssi_ack_delta = 0;
}

static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
                            struct hw_mode_spec *spec)
{
      struct ieee80211_hw *hw = rt2x00dev->hw;
      struct ieee80211_hw_mode *hwmodes;
      struct ieee80211_channel *channels;
      struct ieee80211_rate *rates;
      unsigned int i;
      unsigned char tx_power;

      hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
      if (!hwmodes)
            goto exit;

      channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
      if (!channels)
            goto exit_free_modes;

      rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
      if (!rates)
            goto exit_free_channels;

      /*
       * Initialize Rate list.
       */
      rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
                   0x00, IEEE80211_RATE_CCK);
      rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
                   0x01, IEEE80211_RATE_CCK_2);
      rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
                   0x02, IEEE80211_RATE_CCK_2);
      rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
                   0x03, IEEE80211_RATE_CCK_2);

      if (spec->num_rates > 4) {
            rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
                         0x0b, IEEE80211_RATE_OFDM);
            rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
                         0x0f, IEEE80211_RATE_OFDM);
            rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
                         0x0a, IEEE80211_RATE_OFDM);
            rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
                         0x0e, IEEE80211_RATE_OFDM);
            rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
                         0x09, IEEE80211_RATE_OFDM);
            rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
                         0x0d, IEEE80211_RATE_OFDM);
            rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
                         0x08, IEEE80211_RATE_OFDM);
            rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
                         0x0c, IEEE80211_RATE_OFDM);
      }

      /*
       * Initialize Channel list.
       */
      for (i = 0; i < spec->num_channels; i++) {
            if (spec->channels[i].channel <= 14)
                  tx_power = spec->tx_power_bg[i];
            else if (spec->tx_power_a)
                  tx_power = spec->tx_power_a[i];
            else
                  tx_power = spec->tx_power_default;

            rt2x00lib_channel(&channels[i],
                          spec->channels[i].channel, tx_power, i);
      }

      /*
       * Intitialize 802.11b
       * Rates: CCK.
       * Channels: OFDM.
       */
      if (spec->num_modes > HWMODE_B) {
            hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
            hwmodes[HWMODE_B].num_channels = 14;
            hwmodes[HWMODE_B].num_rates = 4;
            hwmodes[HWMODE_B].channels = channels;
            hwmodes[HWMODE_B].rates = rates;
      }

      /*
       * Intitialize 802.11g
       * Rates: CCK, OFDM.
       * Channels: OFDM.
       */
      if (spec->num_modes > HWMODE_G) {
            hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
            hwmodes[HWMODE_G].num_channels = 14;
            hwmodes[HWMODE_G].num_rates = spec->num_rates;
            hwmodes[HWMODE_G].channels = channels;
            hwmodes[HWMODE_G].rates = rates;
      }

      /*
       * Intitialize 802.11a
       * Rates: OFDM.
       * Channels: OFDM, UNII, HiperLAN2.
       */
      if (spec->num_modes > HWMODE_A) {
            hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
            hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
            hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
            hwmodes[HWMODE_A].channels = &channels[14];
            hwmodes[HWMODE_A].rates = &rates[4];
      }

      if (spec->num_modes > HWMODE_G &&
          ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
            goto exit_free_rates;

      if (spec->num_modes > HWMODE_B &&
          ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
            goto exit_free_rates;

      if (spec->num_modes > HWMODE_A &&
          ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
            goto exit_free_rates;

      rt2x00dev->hwmodes = hwmodes;

      return 0;

exit_free_rates:
      kfree(rates);

exit_free_channels:
      kfree(channels);

exit_free_modes:
      kfree(hwmodes);

exit:
      ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
      return -ENOMEM;
}

static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
{
      if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
            ieee80211_unregister_hw(rt2x00dev->hw);

      if (likely(rt2x00dev->hwmodes)) {
            kfree(rt2x00dev->hwmodes->channels);
            kfree(rt2x00dev->hwmodes->rates);
            kfree(rt2x00dev->hwmodes);
            rt2x00dev->hwmodes = NULL;
      }
}

static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
{
      struct hw_mode_spec *spec = &rt2x00dev->spec;
      int status;

      /*
       * Initialize HW modes.
       */
      status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
      if (status)
            return status;

      /*
       * Register HW.
       */
      status = ieee80211_register_hw(rt2x00dev->hw);
      if (status) {
            rt2x00lib_remove_hw(rt2x00dev);
            return status;
      }

      __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);

      return 0;
}

/*
 * Initialization/uninitialization handlers.
 */
static int rt2x00lib_alloc_entries(struct data_ring *ring,
                           const u16 max_entries, const u16 data_size,
                           const u16 desc_size)
{
      struct data_entry *entry;
      unsigned int i;

      ring->stats.limit = max_entries;
      ring->data_size = data_size;
      ring->desc_size = desc_size;

      /*
       * Allocate all ring entries.
       */
      entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
      if (!entry)
            return -ENOMEM;

      for (i = 0; i < ring->stats.limit; i++) {
            entry[i].flags = 0;
            entry[i].ring = ring;
            entry[i].skb = NULL;
      }

      ring->entry = entry;

      return 0;
}

static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
{
      struct data_ring *ring;

      /*
       * Allocate the RX ring.
       */
      if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
                            rt2x00dev->ops->rxd_size))
            return -ENOMEM;

      /*
       * First allocate the TX rings.
       */
      txring_for_each(rt2x00dev, ring) {
            if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
                                  rt2x00dev->ops->txd_size))
                  return -ENOMEM;
      }

      if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
            return 0;

      /*
       * Allocate the BEACON ring.
       */
      if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
                            MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
            return -ENOMEM;

      /*
       * Allocate the Atim ring.
       */
      if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
                            DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
            return -ENOMEM;

      return 0;
}

static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
{
      struct data_ring *ring;

      ring_for_each(rt2x00dev, ring) {
            kfree(ring->entry);
            ring->entry = NULL;
      }
}

void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
{
      if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
            return;

      /*
       * Unregister rfkill.
       */
      rt2x00rfkill_unregister(rt2x00dev);

      /*
       * Allow the HW to uninitialize.
       */
      rt2x00dev->ops->lib->uninitialize(rt2x00dev);

      /*
       * Free allocated ring entries.
       */
      rt2x00lib_free_ring_entries(rt2x00dev);
}

int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
{
      int status;

      if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
            return 0;

      /*
       * Allocate all ring entries.
       */
      status = rt2x00lib_alloc_ring_entries(rt2x00dev);
      if (status) {
            ERROR(rt2x00dev, "Ring entries allocation failed.\n");
            return status;
      }

      /*
       * Initialize the device.
       */
      status = rt2x00dev->ops->lib->initialize(rt2x00dev);
      if (status)
            goto exit;

      __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);

      /*
       * Register the rfkill handler.
       */
      status = rt2x00rfkill_register(rt2x00dev);
      if (status)
            goto exit_unitialize;

      return 0;

exit_unitialize:
      rt2x00lib_uninitialize(rt2x00dev);

exit:
      rt2x00lib_free_ring_entries(rt2x00dev);

      return status;
}

/*
 * driver allocation handlers.
 */
static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
{
      struct data_ring *ring;

      /*
       * We need the following rings:
       * RX: 1
       * TX: hw->queues
       * Beacon: 1 (if required)
       * Atim: 1 (if required)
       */
      rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
          (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));

      ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
      if (!ring) {
            ERROR(rt2x00dev, "Ring allocation failed.\n");
            return -ENOMEM;
      }

      /*
       * Initialize pointers
       */
      rt2x00dev->rx = ring;
      rt2x00dev->tx = &rt2x00dev->rx[1];
      if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
            rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];

      /*
       * Initialize ring parameters.
       * cw_min: 2^5 = 32.
       * cw_max: 2^10 = 1024.
       */
      ring_for_each(rt2x00dev, ring) {
            ring->rt2x00dev = rt2x00dev;
            ring->tx_params.aifs = 2;
            ring->tx_params.cw_min = 5;
            ring->tx_params.cw_max = 10;
      }

      return 0;
}

static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
{
      kfree(rt2x00dev->rx);
      rt2x00dev->rx = NULL;
      rt2x00dev->tx = NULL;
      rt2x00dev->bcn = NULL;
}

int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
      int retval = -ENOMEM;

      /*
       * Let the driver probe the device to detect the capabilities.
       */
      retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
      if (retval) {
            ERROR(rt2x00dev, "Failed to allocate device.\n");
            goto exit;
      }

      /*
       * Initialize configuration work.
       */
      INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
      INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
      INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
      INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);

      /*
       * Reset current working type.
       */
      rt2x00dev->interface.type = INVALID_INTERFACE;

      /*
       * Allocate ring array.
       */
      retval = rt2x00lib_alloc_rings(rt2x00dev);
      if (retval)
            goto exit;

      /*
       * Initialize ieee80211 structure.
       */
      retval = rt2x00lib_probe_hw(rt2x00dev);
      if (retval) {
            ERROR(rt2x00dev, "Failed to initialize hw.\n");
            goto exit;
      }

      /*
       * Allocatie rfkill.
       */
      retval = rt2x00rfkill_allocate(rt2x00dev);
      if (retval)
            goto exit;

      /*
       * Open the debugfs entry.
       */
      rt2x00debug_register(rt2x00dev);

      __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);

      return 0;

exit:
      rt2x00lib_remove_dev(rt2x00dev);

      return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);

void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
      __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);

      /*
       * Disable radio.
       */
      rt2x00lib_disable_radio(rt2x00dev);

      /*
       * Uninitialize device.
       */
      rt2x00lib_uninitialize(rt2x00dev);

      /*
       * Close debugfs entry.
       */
      rt2x00debug_deregister(rt2x00dev);

      /*
       * Free rfkill
       */
      rt2x00rfkill_free(rt2x00dev);

      /*
       * Free ieee80211_hw memory.
       */
      rt2x00lib_remove_hw(rt2x00dev);

      /*
       * Free firmware image.
       */
      rt2x00lib_free_firmware(rt2x00dev);

      /*
       * Free ring structures.
       */
      rt2x00lib_free_rings(rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);

/*
 * Device state handlers
 */
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
{
      int retval;

      NOTICE(rt2x00dev, "Going to sleep.\n");
      __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);

      /*
       * Only continue if mac80211 has open interfaces.
       */
      if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
            goto exit;
      __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);

      /*
       * Disable radio and unitialize all items
       * that must be recreated on resume.
       */
      rt2x00mac_stop(rt2x00dev->hw);
      rt2x00lib_uninitialize(rt2x00dev);
      rt2x00debug_deregister(rt2x00dev);

exit:
      /*
       * Set device mode to sleep for power management.
       */
      retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
      if (retval)
            return retval;

      return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);

int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
      struct interface *intf = &rt2x00dev->interface;
      int retval;

      NOTICE(rt2x00dev, "Waking up.\n");
      __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);

      /*
       * Open the debugfs entry.
       */
      rt2x00debug_register(rt2x00dev);

      /*
       * Only continue if mac80211 had open interfaces.
       */
      if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
            return 0;

      /*
       * Reinitialize device and all active interfaces.
       */
      retval = rt2x00mac_start(rt2x00dev->hw);
      if (retval)
            goto exit;

      /*
       * Reconfigure device.
       */
      rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
      if (!rt2x00dev->hw->conf.radio_enabled)
            rt2x00lib_disable_radio(rt2x00dev);

      rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
      rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
      rt2x00lib_config_type(rt2x00dev, intf->type);

      /*
       * It is possible that during that mac80211 has attempted
       * to send frames while we were suspending or resuming.
       * In that case we have disabled the TX queue and should
       * now enable it again
       */
      ieee80211_start_queues(rt2x00dev->hw);

      /*
       * When in Master or Ad-hoc mode,
       * restart Beacon transmitting by faking a beacondone event.
       */
      if (intf->type == IEEE80211_IF_TYPE_AP ||
          intf->type == IEEE80211_IF_TYPE_IBSS)
            rt2x00lib_beacondone(rt2x00dev);

      return 0;

exit:
      rt2x00lib_disable_radio(rt2x00dev);
      rt2x00lib_uninitialize(rt2x00dev);
      rt2x00debug_deregister(rt2x00dev);

      return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
#endif /* CONFIG_PM */

/*
 * rt2x00lib module information.
 */
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");

Generated by  Doxygen 1.6.0   Back to index